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Abstract. The Svalbard Archipelago represents the northernmost place on Earth where cryospheric hazards, such as thaw 15 

slumps (TS) and thermo-erosion gullies (TEG) could take place and rapidly develop under the influence of climatic 

variations. Svalbard permafrost is specifically sensitive to rapidly occurring warming and therefore, a deeper understanding 

of TS and TEG is necessary to understand and foresee the dynamics behind local cryospheric hazards' occurrences and their 

global implications. We present the latest update of two polygonal inventories where the extent of TS and TEG is recorded 

across Nordenskiöld Land (Svalbard Archipelago), over a surface of approximately 4000 km2. This area was chosen because 20 

it represents the most concentrated ice-free area of the Svalbard Archipelago and, at the same time, where most of the current 

human settlements are concentrated. The inventories were created through visual interpretation of high-resolution aerial 

photographs, as part of our ongoing effort toward creating a pan-Arctic repository of TS and TEG. Overall, we mapped 562 

TS and 908 TEG, from which we separately generated two susceptibility maps using a Generalized Additive Modelling 

(GAM) approach, under the assumption that TS and TEG manifest across Nordenskiöld Land, according to a Bernoulli 25 

probability distribution. Once validating the modelling results, the two susceptibility patterns were combined into the first 

multi-hazard cryospheric susceptibility map of the area. The two inventories are available at 

https://doi.org/10.1594/PANGAEA.945348 (Nicu et al., 2022a) and https://doi.pangaea.de/10.1594/PANGAEA.945395 

(Nicu et al., 2022b). 

 30 

Short Summary 

Thaw slumps and thermo-erosion gullies are cryospheric hazards that are widely encountered in Nordenskiöld Land, the 

largest and most compact ice-free area of the Svalbard Archipelago. By statistically analysing the landscape characteristics 
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of locations where these processes occurred, we can estimate where they may occur in the future. We mapped 562 thaw 

slumps and 908 thermo-erosion gullies and used them to create the first multi-hazard susceptibility map in a high-Arctic 35 

environment. 

1 Introduction 

Permafrost constitutes subsurface materials that remain continuously at or below 0°C for at least two consecutive years. The 

rapidly increasing temperatures recorded since the 1980s have initiated permafrost degradation in many Arctic regions 

(Smith et al., 2022; Biskaborn et al., 2019). The cryosphere (including sea ice, glaciers, lake and river ice, continental ice 40 

sheets, seasonal snow, permafrost, and seasonally frozen ground) covers 14% of the Earth’s surface. Some atmospheric 

hazards such as hail, frost, and freezing rain have globally decreased in recent years (Ding et al., 2021). In Arctic conditions, 

this effect implies a reduced ice cover forming over the underlying permafrost soil, which therefore in turn gets increasingly 

exposed to subaerial conditions (Gilbert et al., 2018). This mechanism is, together with prolonged seasons with +0 degrees, 

one of the main drivers of permafrost degradation. Permanent thawing of the internal ice in permafrost soils often leads to 45 

subsidence and slumps, which are called thermokarst (Kokelj and Jorgenson, 2013). 

Thermokarst is a significant threat in Arctic environments, and numerous examples of its negative effects have been reported 

at various scales, across several ecosystems (Voigt et al., 2019), infrastructure types (Hjort et al., 2018; Hjort et al., 2022), 

and affecting cultural heritage sites (Nicu et al., 2021a; Nicu et al., 2021b; Nicu et al., 2022c). Aside from these directly 

observable effects on the ground, permafrost thawing can also release greenhouse gases such as carbon dioxide and methane 50 

into the atmosphere, thus contributing to global warming (Oberle et al., 2019; Ran et al., 2022). At the mesoscale, one of the 

consequences of warming permafrost ground consists of the deepening of the active layer. This layer represents the 

uppermost part of the soil column, subjected to seasonal thawing and refreezing. Therefore, as warming occurs, the part of 

the soil column where this cycle takes place becomes increasingly deep, whereas previously ice would have held the soil 

particles together at these depths (Frey and Mcclelland, 2009; Schaefer et al., 2011). In turn, this naturally results in reduced 55 

cohesion between soil particles, something that can promote the initiation of geomorphic processes unique to Arctic 

environments, known as thaw slumps (TS, also depending on water released from ground ice) (Cassidy et al., 2017) and 

thermo-erosion gullies (TEG) (Godin et al., 2012). The precise feedback mechanisms involved in TS and TEG activity are 

still relatively poorly understood. 

TS is caused by the thawing of ice-rich permafrost which, independently or together with precipitation, result in 60 

oversaturated soils. This induces a significant loss in terms of shear strength and may lead to soil collapses, forming slumps 

(Daanen et al., 2012). TS can initiate along an erosive riverbank or shoreline, or even within a TEG, where fluvial erosion 

exposes ice-rich frozen ground to rapid thawing (Nicu et al., 2021a; Cassidy et al., 2017). Conversely, a TEG may be 

initiated in response to heat transfer along preferential directions. This is the case when water infiltrates into the soil column 

warming the surrounding material and causing loss of cohesion. This may occur in or along seasonal freeze-cracks in the 65 
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ground, sometimes in connection to ice-wedge polygons. Something that can also add further instability is the increase in the 

active layer's depth due to the same heat transfer process. Below the active layer, the ground remains permanently frozen, 

with the upper portion commonly referred to as the transition zone (Godin and Fortier, 2012). This ice-rich transition zone 

will, if thawed, release excess water that may further initiate small-scale fluvial processes and small slumps or grain 

collapses. TEG can develop both retrogressively upslope and through widening/deepening of the initial incision (Iwahana et 70 

al., 2014; Nicu et al., 2022c). 

Over the last few years, there has been an increasing interest in studies referring to TS activity in permafrost regions of 

China (Niu et al., 2015; Xia et al., 2021), Russia (Séjourné et al., 2015), Alaska (Swanson and Nolan, 2018; Swanson, 2021), 

Canada (Lewkowicz and Way, 2019), and Svalbard (Nicu et al., 2021a). TEG is less studied, except for a few cases in 

Canada (Godin et al., 2014; Godin et al., 2019), Russia (Sidorchuk, 2019), and Svalbard (Nicu et al., 2022c). Hardly any of 75 

these research efforts though have focused on learning from past TS and TEG occurrences to estimate locations where they 

may form in the future (Yin et al., 2021). This concept, at lower latitudes and for other geomorphological processes is 

usually referred to as susceptibility, or the probability of a given process occurring across a given landscape (Hansen, 1984). 

However, single susceptibility maps would not be highly informative in an Arctic context where TS and TEG can take place 

within the same terrain and be mutually triggering. For this reason, a much more interesting scientific product would consist 80 

of a multi-hazard susceptibility map where the likelihood of TS and TEG is combined to highlight locations where these 

processes may contextually initiate and develop. 

Multi-hazard assessment is also part of Agenda 21 for Sustainable Development (Un Department of Economic and Social 

Affairs, 1992). Its relevance is highlighted in the context of risk reduction strategies because the combination of one or more 

hazards together (especially cryospheric ones) may be more threatening than the occurrence of one (Kappes et al., 2012). 85 

Even aside from the specific peri-Arctic context, multi-hazard susceptibility modelling is rarely touched upon, with few 

examples on landslides and gully erosion (Lombardo et al., 2020), rock fall and debris fall (Saha et al., 2021), floods, 

landslides, and gully erosion (Javidan et al., 2021). Specifically in the context of cryospheric hazards though, the current 

literature offers no examples in the Arctic. 

Our work fits in this gap and aims to bring two essential elements to the attention of the geoscientific community. The first is 90 

related to the limited availability of cryospheric hazard inventories, for which we try here to promote a positive habit of data 

sharing, a fundamental aspect of scientific progress especially when working in an unchartered territory such as the Arctic 

regions, local processes, and their manifestation in response to climate change. For this reason, we share the first update of 

two TS and TEG inventories mapped across the Nordenskiöld Land (Svalbard Archipelago), an area covering about 4000 

km2. The second objective of this work is to produce locally valuable probabilistic estimates of TS and TEG occurrences and 95 

their multi-hazard relation. This is achieved by implementing two separate binomial Generalized Additive Models (GAM), 

whose results are explored in depth both by interpreting landscape characteristics associated with one or the other hazard 

under consideration and by validating the predictive patterns via a set of performance assessment tools. 

 



4 
 

2 Study area 100 

Svalbard Archipelago covers an area of about 61,020 km2 and is located halfway through the North Pole and the coast of 

Norway (Fig. 1a) (Zwoliński et al., 2013). The study area is in central Spitsbergen (Fig. 1b), which represents the largest 

island of the Svalbard Archipelago (governed by Norway and established by the Spitsbergen Treaty on 9 February 1920). 

The average annual air temperature for Svalbard calculated for the 30 years between 1988 and 2017 was 1.5°C higher than 

the same for the reference period 1971-2000 (Hanssen-Bauer et al., 2019). In Svalbard, the projected temperature increase in 105 

the 21st century varies from a few percent in the SW to more than 40% in the NE (Førland et al., 2011). This increase in 

temperature is likely to be driven by sea ice decline, higher sea surface temperature, and a general background warming 

(Isaksen et al., 2016). As a result, the permafrost is expected to degrade even further in the future. Moreover, a significant 

increase in rainfall discharges has been locally recorded over the last century, with annual precipitation in 1940 measured at 

482 mm and reaching 704 mm in 2018. The period between October and March corresponds to the wettest season 110 

(overlapping the period of high cyclonic activity), followed from April to July by the driest. Specifically, precipitation during 

winter is up to two times higher than in summertime (Demidov et al., 2021). 

 

 
Figure 1. Panels showing location of the study area in the context of a) the Northern Hemisphere; b) the Svalbard Archipelago and 115 
c) local settlements, with colour coded details where toponyms appear in yellow and fjords in blue (base maps from © Google 
Earth). 

 

Svalbard represents one of the most diverse geological landscapes in the world, where sections representing most of the 

Earth’s history are accessible. Outcropping bedrock formations in Svalbard range from the Archaean to Quaternary in age 120 
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and were uplifted during the Cenozoic era (Koevoets et al., 2019). Geologically, the peninsula is part of the contact zone of 

two large structures of the first order: the horst-anticlinorium of the western coast of Spitsbergen and the West Spitsbergen 

graben. Quaternary deposits (soft sediment) consist of isostatically raised marine sediments in the lowlands, glacial and 

glacio-fluvial deposits in the valleys, extensive and complex slope deposits, areas of aeolian sediment cover, and extensive in 

situ weathering of bedrock. The landscape is particularly diverse: from watershed peaks to the landscapes of U-shaped 125 

valleys, extensive mountain plateaus, small valley glaciers and moraines, and coastal plains. Much of the terrain hosts 

marked mountain surfaces, steep slopes, and moraines draped by primary and desert-Arctic soils with thin herbaceous-moss-

lichen groups. All sediments and bedrock are heavily influenced by the perennial frost in the ground (permafrost) (Demidov 

et al., 2021). Over time, especially the more fine-grained deposits have accumulated an excess of ground ice, especially the 

upper 1-5 m of the permanently frozen soil (Gilbert et al., 2018). 130 

Nordenskiöld Land area was specifically chosen for this study because it represents the largest and most compact ice-free 

peninsula of the Svalbard archipelago, located between Isfjorden, Van Mijenfjorden, and Bellsund (Fig. 1c). It also 

represents the area where most of the human settlements (Longyearbyen – and recreational huts in the vicinity, Barentsburg, 

and Svea – a mining city whose activities may be decommissioned soon) and infrastructure are located. In addition, there is a 

lot of transport by snowmobile and dog sledding during the winter season, and on foot in this area for recreational and 135 

practical purposes. This makes the present study highly relevant from a societal point of view, considering that this century 

the Arctic will undergo the most rapid projected climate change of any other region around the globe (Ford et al., 2021). 

3 Methodological context and strategy 

Hydro-morphological hazards at mid to low latitudes are regularly mapped and their information is freely shared in local and 

global databases. This is the case for co-seismic (Schmitt et al., 2017; Tanyaş et al., 2017) and rainfall-induced (Kirschbaum 140 

et al., 2009; Emberson et al., 2022) landslides and the same is also valid for floods (Adhikari et al., 2010). The part of the 

geoscientific community working on cryospheric hazards has not yet produced global products, but current trends have seen 

an increase in data sharing, with thaw slumps inventories often becoming part of supplementary materials in recent 

publications (Ramage et al., 2017; Lewkowicz and Way, 2019; Swanson, 2021; Nitze et al., 2018). Our aim here is to align 

with this movement and share the latest version of our TS and TEG inventories mapped for the Nordenskiöld sector in 145 

Svalbard. In Section 3.1, we provide a detailed description of the two inventories. 

Moreover, another aspect differentiates research carried out at mid to low latitudes with respect to the trends in the Arctic 

context. In fact, hazard inventories have been commonly used for susceptibility modelling since the early years of 1970 

(Brabb et al., 1972) and their results are presented as both explanatory (Lombardo and Mai, 2018) and predictive (Lima et 

al., 2021) purposes. The explanatory element of these models is usually meant to interpret why they occur where they occur 150 

based on statistical relations between the locations where these hazards take place and their landscape/environmental 

characteristics (Steger et al., 2021). As for the predictive aspect of these models, they are used to probabilistically define 
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areas where these processes may currently be absent, but their characteristics imply that they could manifest in the future 

(Reichenbach et al., 2018). As a result, decision-makers can plan suitable remedial actions, if needed, or assign land use 

development constraints (Roccati et al., 2021). High-Arctic environments have not received the same modelling attention 155 

with few exceptions e.g., (Blais-Stevens et al., 2015; Luoto and Hjort, 2005), despite their inarguably unique and pristine 

vulnerable landscapes threatened by global warming. Therefore, our intent is to expand the available literature on data-driven 

models applied to cryospheric hazards and demonstrate their potential as tools to understand local dynamics as well as 

predict locations that will undergo the same surface deformation process. 

3.1 Cryospheric hazards inventory 160 

To build a comprehensive inventory of the two cryospheric hazards (TS and TEG), the most recent orthophotos (5 x 5 m 

pixel size) acquired in 2009-2011 from the Web Map Services (WMS) of the Norwegian Polar Institute (Npi, 2022a) were 

interpreted. Unfortunately, no subsequent imagery has been collected in the last ten years and the available scenes in Google 

Earth and Esri Wayback Imagery are quite coarse and unsuitable for detailed mapping of the relevant features. Most of both 

process TS and TEG appear to be fresh or partly active landforms and can thus be considered recent. TS (Fig. 2a) and TEG 165 

(Fig. 2d) were morphologically identified, digitised on-screen as polygons, then quality checked in the GIS environment. 

Notably, this operation was repeated twice, by two separate Arctic geomorphologists who acted independently. The resulting 

inventories were then examined and combined into a final digital version. To further validate the mapping, a series of field 

campaigns were organised and distributed over three years (2020-2022). On each occasion, two scientists went to the field, 

visited several representative sites, and judged the mapping results. During these visits, aerial surveys were also undertaken 170 

using unmanned aerial vehicles (UAV), whose example images are shown in Figures 2b and 2c. In addition to those, direct 

photos were also collected (see Figs. 2e and 2f). To complement the field surveys, we also brought a Trimble S5Series 

Motorized total station and a Trimble TSC3 controller for long-term monitoring, whose use was limited to a few specific 

TEG locations. 

Aside from manual mapping examples, it is important to stress here that the use of deep learning architectures has recently 175 

started to produce interesting results for automated cryospheric hazard mapping, with viable examples both for TS (Xia et 

al., 2021; Huang et al., 2020; Huang et al., 2022) and TEG (Huang et al., 2017). However, their implementation has not 

matured yet into operational mapping tools and for this reason, we have opted to manually interpret and digitize the two 

inventories, with the aim of producing them with the highest quality and completeness. 

We examined the frequency-area distributions of both TS and TEG inventories based on approaches widely used in the 180 

landslide literature (Malamud et al., 2004; Tanyaş et al., 2018). A few studies show that a power-law exists for medium and 

large landslides and the slope of the power-law (power-law exponent) is used to explore a link between power-law exponent 

and regional differences in structural geology, morphology, hydrology, and climate (Densmore et al., 1998; Li et al., 2011; 

Hergarten, 2012). However, these kinds of analyses are not common for TS or TEG in general. In fact, even the validity of 

power-law has not been examined in detail yet. Given this motivation, we analysed frequency-area distribution curves of the 185 
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inventories and assigned a fit to each using double‐Pareto Simplified function (Rossi et al., 2012). We also checked the 

validity of power-law fitting using the Kolmogorov–Smirnov (KS) statistic that generates a p-value indicating the 

plausibility of the hypothesis (Clauset et al., 2009). A p-value close to one indicates a good fit to the power-law distribution, 

whereas p-value equal to or less than 0.1 might indicate that the power-law is not a plausible fit to the data. 

 190 
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Figure 2. (a) TS on a north facing slope on the left side of Hanaskogelva River, in proximity of Advent City 

(orthophoto by © (Npi, 2022a) (b) UAV photo of active TS and active point slumps along the right side of Linnéelva 

river, close to Russekeila. (c) UAV photo of an inactive TS (left side) and an active TS (right side) along the left side of 

Linnéelva river, close to Russekeila. (d) Thermo-erosion gullies on a western facing slope in Finneset, south of 195 

Barentsburg (orthophoto by © (Npi, 2022a) (e) Photos of gully heads and their deposition areas south of Barentsburg. 

(f) Gully head cut into uplifted beach and marine deposits on the left side of Linnéelva river, close to Russekeila. 

3.2 Environmental variables for statistical analysis 

Due to the terrain settings of Nordenskiöld as well as known morphological and geological attributes associated to 

thermokarst activity, and specifically to TS and TEG, we selected several environmental variables (Ward Jones et al., 2019; 200 

Lacelle et al., 2010), which are presented in Table 1. 

 

Table 1. Environmental variables used in the study 

Environmental variable Shortcut Reference Unit 

Distance to Channel D2S (Rudy et al., 2017) m 

Elevation ELV (Rudy et al., 2017) m 

Planar Curvature PLC (Nicu et al., 2021a) 1/m 

Profile Curvature PRC (Nicu et al., 2021a) 1/m 

Slope SLP (Rudy et al., 2017) degrees 

Topographic Position Index TPI (Rudy et al., 2017) unitless 

Topographic Roughness Index TRI (Nicu et al., 2022c) unitless 

Topographic Wetness Index TWI (Rudy et al., 2017) unitless 

Aspect ASP (Ward Jones et al., 2019) degrees 

Geology GEO (Npi, 2022b; Rudy et al., 2016) unitless 

 

Out of these covariates, the terrain ones originated from a 5 m DEM (Melvær et al., 2014). However, keeping this resolution 205 

would have led to 122×106 grid cells for the whole study area, and therefore, we opted to upscale the grid resolution to 100 

m for computational reasons. Also, the Norwegian regulations require that cultural heritage sites should be marked under 

risk if closer than 100 m from the nearest cryospheric hazard. Therefore, a grid cell size of 100 m ensured a reasonable 

computational burden for the analyses to be carried out later, and it also represented a meaningful mapping unit for disaster 

risk reduction practices. Such operation resulted in partitioning Nordenskiöld Land into ~300 thousand grid cells. These have 210 

been assigned with a value of the corresponding covariate by taking the mean value of 5 m. As for the ASP, we reclassified 
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it into 16 classes, each one 22.5 degrees apart. Then, also for the GEO, we assigned the 100 m grid cell the predominant 

categorical class. 

3.3 Model training and validation 

Our modelling strategy relies on a Generalised Additive Model (Titti et al., 2021). This class of models ensures the same 215 

level of interpretability as the simpler and more common Generalised Additive Model (Atkinson et al., 1998; Titti et al., 

2022) while providing much higher performance, close to more complex architectures belonging to machine/deep learning 

(Aguilera et al., 2022). GAM can be used to explain data distributed in a few exponential family distributions (Gamma, 

Gaussian, etc.). Among these, the ideal framework to model dichotomous data corresponds to the binomial case, where in 

the context of our work, TS and TEG are separately assumed to occur spatially according to a Bernoulli distribution (Bryce 220 

et al., 2022). A binomial GAM can be denoted as follows: 

 

𝜂𝜂(𝜋𝜋)  =   log � 𝜋𝜋
(1−𝜋𝜋)

� = 𝛽𝛽0 + 𝑓𝑓1𝑥𝑥1 + 𝑓𝑓2𝑥𝑥2 + ⋯+ 𝑓𝑓𝑛𝑛𝑥𝑥𝑛𝑛 , 

 

where 𝜂𝜂 is the logit function, π is the probability that the response is present at a given location, 𝛽𝛽0 is the global intercept and 225 

𝑓𝑓𝑛𝑛 are the nonlinear functions estimated for each covariate in the model. In traditional regression problems, the input is a 

continuous quantity, and the output is the same. In our case, the input data for the response variable consists of a vector of 

zeroes and ones, standing for absence and presence locations. Conversely, the output is expressed in a continuous spectrum 

of values that represent the probability of occurrence of our response. Therefore, a series of metrics have been developed 

over time to express the performance of the binary classifiers. All of these can be clustered into cut-off dependent and 230 

independent metrics, where the former boils down to the selection of a specific value to reclassify the probability spectrum 

into a binary dataset, from which confusion matrices can be computed (Bertolini, 2021). The latter type relies instead on 

many probability thresholds to compute True Positives and Negatives as well as False Positives and Negatives, from which 

metrics such as Receiver Operating Characteristic (ROC) and their Area under the curve (AUC) can be computed (Hajian-

Tilaki, 2013). 235 

Aside from the context provided above a distinction must be made between binary classifications oriented toward 

explanatory and predictive assessments. The former interprets the functional relations estimated multivariately regressing the 

vector of presence/absence with respect to the covariate set. This can be usually done based on the full available information. 

For instance, in our work, this implies using 100% of the grid cells of our study area. However, the estimated results cannot 

be interpreted for prediction, and this is achieved via two common approaches. If temporal data are available, then the 240 

prediction skill of a given classifier can be measured by matching the susceptibility estimated from a given time over the 

presence/absence distribution of the subsequent period. However, this is a rarely performed task because multi-temporal 

hazard inventories are still not common (Guzzetti et al., 2012). This is even more valid in peri-Arctic environments, where 
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hazard inventories are scarce even in their pure spatial form. Therefore, when the data dimension is spatially confined, a 

well-established routine to estimate predictive performance relies on splitting the spatial data into a portion used for 245 

calibration and another one for validation, under the assumption that spatial replicates mimic the behaviour of temporal ones. 

The training and test split though can also be done in diverse ways. The simplest corresponds to pure random cross-

validation (RCV; (Roberts et al., 2017), although such practice usually leaves the data structure like the original set, 

therefore also returning similar performances to the calibration ones. A complementary validation routine uses a spatially 

constrained subset of the data instead. This is usually referred to as spatial cross-validation (SCV; (Brenning, 2012) and 250 

offers the ability to assess sectors of a given study area for which the model may locally perform well or fail. 

In this work, we make use of all the elements described above: we fit the presence-absence data to the whole Nordenskiöld 

landscape, and we use the results for interpretation. As for assessing the predictive skill, we also perform the two cross-

validations (a tenfold RCV and an eightfold SCV), for both TS and TEG. 

4 Results and discussion 255 

The resulting inventories encompass 562 TS and 908 TEG. Compared to the previous preliminary study (Nicu et al., 2021a), 

the RTS inventory has increased from 400 polygons to 562 polygons. As for the TEG, the updated version of our inventory 

included 908 polygons, 98 more than what was mapped in a previous study (Nicu et al., 2022c). This final effort brought our 

inventories to their current and final form, where the mapping procedure covered the whole study area shown in Figure 1, 

and field surveys have validated some of their positions and extent. 260 

The inventories are of high value in a climate change context, as they can be of use by a wide range of scientists, such as 

geomorphologists, climatologists, hydrologists, biologists, archaeologists, as well as stakeholders and local authorities, in 

their effort to quantify the potential impacts of the two hazards on infrastructure (Hjort et al., 2018; Hjort et al., 2022) and 

cultural heritage (Nicu et al., 2021a; Nicu et al., 2022c). To explore their characteristics for any of the users and uses 

mentioned above, below we will summarize the Frequency Area Distributions (FAD) of the two inventories we mapped and 265 

in the subsequent sections, we will present the results of the susceptibility modelling we performed. 

4.1. TS and TEG size characteristics 

First, we checked the validity of the power-law for the generated dataset. Based on the KS test, we calculated p-values, 

which are larger than 0.1 for both TS (p-value=0.6) and TEG (p-value=0.4) inventories. This shows that for both inventories, 

double-Pareto Simplified function is a numerically plausible fit to the data (Fig. 3). Second, we identified power-law 270 

exponents. Power-law exponents simply show the ratio between small and medium/large landslides. In our case, we 

calculated them as 2.41 and 2.48 for TS and TEG, respectively. Interestingly, these values gave a perfect match with 

observations carried out for landslides triggered by an earthquake, rainfall, and snowmelt where the average power-law 

exponent centralized around 2.4 (e.g., Malamud et al., 2004, Tanyas et al., 2018). Among numerous factors controlling the 
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power-law exponent of landslide inventories, the topography is one of the most mentioned parameters in the literature (Ten 275 

Brink et al., 2009). Here, our results show a clear match between power-law exponents of landslides and TS/TEG, although 

TS and TEG are not generated along steep hillslopes as landslides do. Examining the reason behind this similarity is beyond 

the scope of this contribution. However, our results indicate that more TS and TEG inventories need to be generated to better 

understand their size statistics and factors governing the shape of their frequency-area distributions. 

 280 

 
Figure 3. The FAD obtained for the two inventories in Nordenskiöld Land 

4.2. Susceptibility modelling performance 

We measured both the goodness-of-fit and predictive skills of our modelling framework. Figure 4 reports the corresponding 

ROC and AUC values, for the reference fitting procedure as well as the two cross-validations. For both cryospheric hazards, 285 

the performance falls within the excellent category according to the AUC classification proposed by (Hosmer and 

Lemeshow, 2000). At a closer look though, the fit and RCV almost fall within the outstanding class (all the means are above 

0.8 and below 0.9). The performance loss exhibited for the SCV is to be expected and it represents an important indication. 

In fact, it highlights the prediction skill of our model assuming it to be blind to the characteristics of specific portions of the 

study area. Therefore, spatial cross-validation can be interpreted as the worst situation one can examine to understand a 290 
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model prediction. Another element worth being stressed is that the variability for the RCV is clearly low since a random 

selection is not able to disentangle local spatial dependence in the data. As for the SCV, where the spatial dependence is 

perturbed due to the constrained local selection, the variability is still within an acceptable range. 

 

Figure 4. Modelling performance overview. First row indicates the results for TS whereas the second row reports the 

TEG. The thick lines for the two cross-validation schemes represent the mean ROC curve, whereas the thin lines 

graphically summarize the variability of the cross-validation scheme via a single standard deviation 

4.3. Controlling factors of TS and TEG 

From the original list of covariates shown in Table 1, we removed TRI and TPI because of a variable selection procedure. 300 

Specifically, their inclusion was slightly lowering the model performance and inflating the uncertainty in the other nonlinear 

covariate effects, both for TS and TEG. At a closer look, we noticed that TRI was linearly related to SLP with a Pearson's 

correlation coefficient (𝜌𝜌) above 0.9 whereas TPI showed a close dependence with respect to PLC attested by a 𝜌𝜌 ~ 0.8. 

Figures 5 and 6 provide an overview of the selected covariate effects we used to model TS and TEG, respectively. The most 

striking element of the two figures is that the two processes we modelled share some similarities in the way some of the 305 
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covariates are influencing their occurrence, although some marked differences also exist. For instance, both TS and TEG 

occupy the lowlands of the Nordenskiöld landscape, being the ELV contribution dominant within the first 200 m above sea 

level, after which the effect rapidly decays and becomes heavily negative after a height of approximately 300 m. From a first 

glance, this indicates a positive relation of both processes to sorted and fine-grained sediments, which are found as 

isostatically uplifted marine and glaciomarine sediments along the coasts and as fine-grained valley-fills of fluvial and 310 

aeolian origin in the rest of the landscape of lower elevations. Conversely, it speaks against a connection to the often-

extensive sediment covers of in situ weathering material on the higher mountain plateaus. This initial consideration about 

TS/TEG co-existence is enriched when considering other covariates' effects. 

Differences start to arise examining the D2S, which strongly contributes to TS’s occurrences within tens of meters and 

drastically drops after that, up to negative effects after a few hundred meters away from the channel. This effect may have to 315 

do with riverbank erosion at the base of a potentially unstable permafrost slab, which once it misses its support starts 

moving, and further develops into a retrogressive slump. It might also be secondarily linked to some snow-bank effects on 

the initiation of TS, where thermal conductivity through percolating meltwater from the snow during summer seasons might 

be of importance. The arctic winters with often high wind speed favours intensive redistribution of snow over the landscape, 

accumulating in low positions, for example, channels. Interestingly, this is not the same effect shown for the TEG case 320 

where the contribution to the susceptibility is shown to increase 500 m away from a streamline. This may be because a gully 

to form, needs an incision to develop. A streamline represents an incision that has already widened in time and therefore, it is 

only reasonable for TEG to manifest a bit further away. 
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Figure 5. Covariate effects estimated for TS. Notably, the regression coefficients estimated for outcropping lithologies 

also host strong negative values. For pure visualization purposes, we have focused on representing a coefficient range 

where the positive classes would still appear to be visible. Also, to avoid clustering the text, we have described in the 

text only the three strongest and positive contributors, labelled 1,2,3 in the image. 

 330 

The image of the landscape prone to the two processes can be further diversified by looking at SLP, where both processes 

show quite different behaviour. The probabilistic occurrence of TS is favoured up to 20 degrees after which, the SLP 

contribution becomes increasingly negative. As for TEG, the overall SLP contribution appears negligible, with the first tents 

of degrees being slightly positive and the remaining steepness domain becoming slightly negative. This indicates once more 

that TS do form in near flat areas whereas TEG can also occur along steeper morphologies. There, the overland and/or 335 

interstitial flows would accelerate over preferential directions giving rise to linear erosion forms that may further develop 

into gullies. As for the exposition, some degree of similarity can be seen once more, with the North, North-East and North-

West directions contributing to an increase in the probability of TS and TEG occurrence. 

The geological control is extremely complex and would require listing tens of lithotypes; however, this is not the primary 

focus of this paper. Firstly, we can conclude from the field and remote sensing data, that most, if not all both TS and TEG 340 

occurrences are situated in soft sediments (Quaternary deposits). This is not surprising, given that they both rely on grain-to-

grain conditions with and without permafrost internal ice. Since Nordenskiöld Land lacks continuous data on Quaternary 

geological sediment, this is not included in the statistical analysis. Knowledge of the connection between bedrock and 

deposition of sediments indicates that local bedrock is however often linked to the soft sediment deposits. This assumption is 

especially true for in situ weathering slope deposits, fluvial deposits, and glacial tills, but a little less obvious for marine 345 

deposits. This relation prompted us to look at bedrock lithology (where regional data is available) as one factor in the 

analysis. 

For reasons of conciseness, we opted to report the three highest contributors with a positive sign, to express litho-type 

characteristics prone to host TS and TEG. Specifically, the probability of TS appears to increase in areas overlying bedrock 

of shales (bituminous), siltstones and sandstone mixed deposits dated back to the Late Jurassic - Early Barremian. This is 350 

again the case for bituminous shales and siltstone mixed deposits that originated during the Late Jurassic. And the third 

lithotype prone to TS is also the highest contributor to TEG, this consisting of shales, mudstones, and siltstones of the late 

Palaeocene. The second highest geological contributor for TEG consists of a mixture of sandstones, shales and coal formed 

again during the Palaeocene and the third one is represented by a deposit hosting sandstones and conglomerates of the 

Barremian. This is clearly an interesting description of the geological effects, because the model out of many different 355 

classes consistently picked the same lithotypes as predisposing factors for TS and TEG, with minor differences represented 

by coal and conglomerate inclusions. 
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Figure 6. Covariate effects estimated for TEG. Notably, the regression coefficients estimated for outcropping 

lithologies also host strong negative values. For pure visualization purposes, we have focused on representing a 360 

coefficient range where the positive classes would still appear to be visible. Also, to avoid cluttering the text, we have 

described in the text only the three strongest and positive contributors, labelled 1,2,3 in the image 

4.4. Susceptibility mapping of TS and TEG 

The satisfactory performance and the reasonable effects presented above suggest that the models we produced for TS and 

TEG are reliable and can be considered for susceptibility mapping. To graphically summarize this task, we produced two 365 

overviews, one where the susceptibility values are shown in their continuous form and one where we grouped them into 

classes. Figure 7 returns these two options both for TS and TEG. 
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Figure 7. Susceptibility map reporting the probability in its continuous (a, b) and classified (c, d) forms, for TS (first 

column) and TEG (second column), respectively. Grey areas correspond to glaciers, which have been masked out 370 

from the analyses. The classification followed the Jenks methods, by minimizing the within-class variance after an 

arbitrary choice of three classes (L for low, M for medium and H for high susceptibility). 

 

The TS susceptibility patterns (left column) appear to be distributed along the coastlines and in part of the central-western 

sector of Nordenskiöld Land, supporting the link to the raised marine deposits. Specifically, coastal areas likely to host new 375 

formations of TS can be found between Heerodden and Eriksonodden (Colesbukta), Festningsodden and Kokerineset 

(western part of Grønfjorden), scattered areas between Kapp Linné and Kapp Starostin, Vestpynten and Adventpynten (close 

to Longyearbyen Airport), and in the northern part between Diabasodden and Elveneset, Vindodden. The reason these 
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locations are relevant for the Nordenskiöld community is that they are also locations where or close to where most human 

activities take place on the island. As for areas susceptible to TEG (right column), these are characterised by a higher 380 

probability of occurrence while also being more concentrated in a few areas. These areas overlap with main human 

settlements (Longyearbyen and Barentsburg) and former mining settlements (Grumant and Svea), to the point that it raises 

the question of whether the formation of TEG may be partially due to anthropic effects. Other than being speculation though, 

no obvious signs of such spatial dependence was found during our fieldwork activities and thus it is an observation we opted 

to share with the readers but also to reject from our own experience. 385 

It is worth mentioning that the difference in probability range shown for the two cryospheric hazards is also because TEG is 

more numerous than TS, thus the different proportion of presence and absence data influences the global intercept, making it 

less negative for the TEG than for the TS. However, this effect still allows for the spatial predictive patterns to be suitably 

depicted, with differences that emerge based on the landscape characteristics. Nevertheless, these patterns are still portrayed 

in a separate manner, therefore making it difficult to perceive areas where they clearly co-exist. In the next Section, we will 390 

address this issue by providing details on how we generated a map capable of showing the probabilistic assessment of multi-

cryospheric hazard occurrences for the Nordenskiöld Land. 

4.4. Multi-cryospheric hazard susceptibility mapping 

To simultaneously represent the likelihood of TS and TEG within the same map, we opted to combine the two reclassified 

maps previously shown in Figure 7. The resulting multi-hazard susceptibility map is shown in Figure 8, where nine classes 395 

are portrayed through a two-dimensional colour bar, reflecting the RGB (red-green-blue) combination of the three classes 

per hazard in Figure 7. Most of Nordenskiöld falls in the LL category and the extent of the other eight classes exponentially 

decreases as the combined susceptibility level increases. However, being the site extremely large, this still implies that quite 

some portions of the territory may be subjected to either or both cryospheric hazards. For this reason, we also report the total 

extent of the nine classes (whose graphical expression is plotted as a bar plot within Fig. 8, with LL covering 2657 km2, LM 400 

244 km2, LH 4 km2, ML 37 km2, HL 0.48 km2, MM 112 km2, MH 20 km2, HM 0.04 km2, and HH 0.03 km2. 
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Figure 8. Multi-hazard susceptibility map of TS and TEG for Nordenskiöld Land. The bar plot at the bottom right 

represents the number of grid cells expressed in logarithmic scale, for each of the nine combined susceptibility 

classes. 405 

 

The most susceptible areas to both cryospheric hazards are located along the coastlines from the central, north-western, 

south-western, and north-eastern parts of Nordenskiöld Land. Three suggestive examples are shown in Figure 9 to highlight 

details of the multi-hazard estimates. These are locations of actual relevance for the Nordenskiöld Land, as it is prone to 

human settlements and poses danger, especially to infrastructure. Z1 shows the area prone to the Stemmevatnet lake, which 410 

represents the main water resource for Barentsburg. Any future TS and/or TEG processes may jeopardise this aspect. Z2 

highlights the area around and north of Barentsburg, where important infrastructure and protected cultural heritage are 

located. And finally, Z3 shows the main settlement, Longyearbyen, along with the area around the airport. This is of high 
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importance for local authorities and stakeholders in their effort to minimise future disturbance of the local infrastructure and 

protected cultural heritage sites. 415 

 

 
Figure 9. Multi-hazard map overlap with Zooms 1, 2 and 3 highlight portions of the territory where the two 

cryospheric hazards can interact with human activities, local infrastructure (in red and black lines), and protected 

cultural heritage (green points) 420 

 

5. Considerations within and beyond Svalbard: supporting and opposing arguments 

A systematic TS and TEG mapping protocol to share these cryospheric hazards among researchers has yet to root within the 

geoscientific community. This work aligns well with other attempts to make data on TS and TEG become freely accessible 

because we believe that the surface deformation dynamics of delicate environments laying within Arctic and peri-Arctic 425 

regions can be studied only as a collective effort. For this reason, we share our inventories, in the hope of triggering similar 

behaviours within our community and stimulating the implementation of advanced models, as per other mid-latitude hydro-

morphological processes. 

Notably, until the use of automated mapping tools will become viable for cryospheric hazards, any manual mapping 

procedure such as the one we undertook here, may suffer from subjectivity. To minimise any individual expert-based 430 

opinion and therefore remove its bias, in this work we implemented a collective mapping protocol where two Arctic 

geomorphologists independently created the inventories only to be merged at a later stage. We believe this to be another 

requirement to be added to the collective effort we mention and recommend above. In fact, other studies have shown that 

collective mapping contributes to reducing uncertainties, which would otherwise become part of the data, and propagate in 

any model one may build with it (Ardizzone et al., 2002). 435 



20 
 

Aside from the importance of a standard data-sharing platform within the global system, even just within the Svalbard 

context, this is something of great relevance. In fact, the study site we chose had undergone significant changes in recent 

times. The work of (Ziaja, 2001) has shown the extent of these changes in the form of permafrost degradation, whose 

dynamics can be better understood if framed within the bigger picture of the Svalbard meteorological settings. 

In fact, Nordenskiöld Land has always been covered with a lesser glacier extent compared to the rest of the archipelago. This 440 

is due to the direction the maritime air masses follow in the area. Specifically, the effect of the warm West Spitsbergen Sea 

Current creates a convergence of mild and humid air from the South and chilly air from the North. This convergence results 

in a local micro-climate warmer than the rest of Svalbard and in general than what is typical at these latitudes. In addition to 

an already delicate situation, Ziaja (2001) observed that the deglaciation in Nordenskiöld Land has evolved at a double rate 

compared to Sørkapp Land (south Svalbard), arguing this to be an indication of a greater sensitivity of our study site to 445 

global warming. Therefore, we consider it vital to document and share evidence of permafrost degradation (our TS and TEG 

inventories) to reconstruct a baseline to which future monitoring protocols should refer, for further exploring the effects of 

climate change in the area. One of the possible tools to use to explore these effects falls in the category of data-driven 

models, to which susceptibility studies belong. However, hardly any susceptibility studies have been carried out so far to 

estimate locations prone to TS and TEG in peri-Artic regions (Blais-Stevens et al., 2015; Rudy et al., 2016; Veh, 2015). 450 

Along this line of research, we proposed a tool for interpretable and flexible predictive models, offering the chance to 

explore the results from multiple aspects, among which we include a multi-hazard susceptibility assessment. The 

performance produced falls within the excellent class proposed by (Hosmer and Lemeshow, 2000). Therefore, standard 

practices would consider such model results in a piece of reliable information on local administrators to base their decisions 

and plan a suitable course of action to reduce the risk due to these cryospheric hazards. This is already an important 455 

achievement, however below we would like to stress a few elements that we already envision requiring further 

considerations, to develop our model into an operational tool. Both TS and TEG processes are shown to be highly dependent 

on soft sediment characteristics, data which so far lacks on Svalbard. Adding map data with the type and potential thickness 

of surface sediments would further increase the accuracy and detail of predictions. The other prominent issue we faced had 

to do with the absent temporal information in our inventory. This is something that unfortunately affects virtually all the TS 460 

and TEG inventories mapped across the globe. For this reason, we are limited to statically investigating and understanding 

locations prone to these hazards. However, this also raises the question of whether such information can be really used 

outside the academic context. In fact, any model without a temporal connotation will inevitably learn to mimic the process 

that occurred at the time of the orthophoto or satellite image used for mapping. In other words, no temporal information on 

temperature, rainfall, and other dynamic characteristics can be included in the model. Therefore, in a rapidly changing 465 

environment such as the Svalbard landscape, the probabilities of occurrences we estimated may have already been affected 

by global warming and permafrost degradation processes (Ziaja, 2004). With this in mind, we consider our workflow just a 

proof-of-concept of what can be achieved, in the hope that the years to come and a broader scientific effort can bring 

together a fully spatio-temporal description of these cryospheric hazards. If this wish would become a reality, then a whole 



21 
 

spectrum of different models and research questions will open for the geoscientific community to address. For instance, 470 

future simulations of TS and TEG probabilities at varying climate scenarios could be achieved by introducing, for instance, 

the temperature as a covariate and then using a plug-in simulation (Do et al., 2005; Lombardo and Tanyas, 2020) tool to 

project the change in susceptibility as the future temperature pattern changes. Fortunately, the status of the scientific branch 

focused on developing automated mapping tools has reached a level of maturity close to becoming; widely adopted even in 

peri-glacial environments (Meena et al., 2022; Nava et al., 2022). For instance, a first article has already been published on 475 

the use of deep learning architectures for automated TS mapping (Huang et al., 2020). This represents a promising venue for 

multi-temporal mapping because each artificially intelligent mapper tool is run over a specific remotely sensed scene and the 

same operation can therefore be repeated for each satellite orbit. Still remaining is the lack of spatially detailed and accurate 

data from the Arctic, where the processes discussed here required a cca. 5 m resolution for accurate detection of features to 

form a training dataset. 480 

Another element that can be improved with future efforts has to do with the actual target of the model. So far, our aim was to 

estimate locations prone to TS and TEG formation. However, these processes have also a spatial extent and the threat they 

may pose to local activities is equally if not more important than the simple notion of where they may initiate. For this 

reason, we already envision future models that would take the measured extent of TS and TEG as the response variable, this 

time solving a regression task rather than a classification, one as per susceptibility requirement. Such direction has recently 485 

been explored for landslides occurring at lower latitudes (Lombardo et al., 2021; Moreno et al., 2022). And an even better 

extension has already been tested where the expectation of locations prone to landslides are modelled together with the 

expectation of the resulting landslide size (Aguilera et al., 2022; Bryce et al., 2022). 

Notably, all these methodological considerations are valid extensions to be tested within the Svalbard landscape. However, 

they can also be valid outside it. If space-time models would become a viable approach because multi-temporal inventories 490 

would also become available, then dynamic simulations could also be extended to the whole peri-Arctic sector. This would 

enable large-scale considerations on climate change and its cascading influence from temperature to TS and TEG spatio-

temporal patterns. 

At a global level, permafrost is undergoing considerable degradation following the increasing trend of global warming. 

Recent studies highlighted the fact that the Arctic has warmed four times faster than the globe since 1979 (Rantanen et al., 495 

2022). This leads to TS and TEG occurrences, which can put a threat to Arctic infrastructure (Hjort et al., 2022), cultural 

heritage (Nicu et al., 2021a; Nicu et al., 2022c), impact the fluvial sediment budget (Lamoureux and Lafrenière, 2018), 

release significant amounts of greenhouse gases, such as carbon dioxide and methane to the atmosphere (Oberle et al., 2019; 

Ran et al., 2022). Cryospheric hazards are likely to further increase in the future following climate change (Ding et al., 

2021), and using the latest statistical advances to predict their likely occurrences is of paramount importance. This study 500 

showed the importance of the two inventories and what can be achieved when using them both separately and together in a 

multi-hazard approach. The method can be adapted and transferred to the entire ice-free area of the Svalbard Archipelago 

and other circumpolar areas. The final multi-hazard map represents a valuable tool, that can be further processed and 
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improved, for local authorities and policy makers (Nicu and Fatorić, 2023), and can be transformed into plans at various 

scales of mitigation and adaptation measures (Nicu, 2022). 505 

6 Conclusions 

At a global level, permafrost is undergoing considerable degradation following the increasing trend of global warming. 

Recent studies highlighted the fact that the Arctic has warmed four times faster than the globe since 1979. To better 

understand what the expectations of future permafrost degradation-related processes are, a systematic sharing practice of the 

mapping routines we perform as a community should become commonplace. In line with this objective, in this work, we 510 

share the TS and TEG inventories we mapped and validated through several field campaigns. Moreover, to better understand 

these processes and attempt to reliably predict them, the implementation of data-driven models holds promising potential. 

This is also the case for cryospheric hazards such as TS and TEG, whose occurrence probability we propose here to be 

modelled via a binomial GAM. We also take a step further and produce a multi-hazard susceptibility map of our test site in 

Nordenskiöld Land. These types of models are also rare in peri-Arctic environments and their spread may lay the 515 

foundations to build a global assessment of cryospheric hazards' development as a function of global warming. This is the 

direction we consider to be crucial to assess the risk that Arctic communities may soon be exposed to. This is something of 

fundamental importance because the changes we have witnessed in the recent past and that we see today will be relatable to 

the changes we will see in other permafrost-rich areas such as the Alps or the Himalayan range. Their global warming is yet 

to reach the extent of the change we have observed so far near the pole and therefore in Svalbard. 520 

Data availability 

The NPI images are freely available at https://toposvalbard.npolar.no/. The Digital Elevation Model is freely available at 

https://data.npolar.no/dataset/dce53a47-c726-4845-85c3-a65b46fe2fea. The Geological Map of Svalbard (Geologi 

Svalbard), in raster format, scale 1:250 000 is freely available at 

https://geodata.npolar.no/arcgis/rest/services/Temadata/G_Geologi_Svalbard_Raster/MapServer. The TS and TEG 525 

inventories are publicly available in shapefile format at https://doi.org/10.1594/PANGAEA.945348 (Nicu et al., 2022a) and 

https://doi.pangaea.de/10.1594/PANGAEA.945395 (Nicu et al., 2022b), respectively. 

Author contributions 

ICN and LL designed the study. ICN prepared the initial datasets and wrote the draft. LE, HT, and LL designed the 

methodology and performed the statistical analysis. LR validated the initial datasets and contributed to the draft. ICN, LE, 530 

https://toposvalbard.npolar.no/
https://data.npolar.no/dataset/dce53a47-c726-4845-85c3-a65b46fe2fea
https://geodata.npolar.no/arcgis/rest/services/Temadata/G_Geologi_Svalbard_Raster/MapServer
https://doi.org/10.1594/PANGAEA.945348
https://doi.pangaea.de/10.1594/PANGAEA.945395


23 
 

LR, HT, and LL improved the writing and structure of the final manuscript. All authors agreed on the final version of the 

manuscript. 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 535 

L.L. was partially supported by King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia, 

Grant URF/1/4338-01-01. 

References 

Adhikari, P., Hong, Y., Douglas, K. R., Kirschbaum, D. B., Gourley, J., Adler, R., and Robert Brakenridge, G.: A digitized global flood 
inventory (1998–2008): compilation and preliminary results, Nat. Hazards, 55, 405-422, 10.1007/s11069-010-9537-2, 2010. 540 
Aguilera, Q., Lombardo, L., Tanyas, H., and Lipani, A.: On the prediction of landslide occurrences and sizes via Hierarchical Neural 
Networks, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-022-02215-0, 2022. 
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., and Reichenbach, P.: Impact of mapping errors on the reliability of landslide hazard 
maps, Natural Hazards and Earth System Sciences, 2, 3-14, 10.5194/nhess-2-3-2002, 2002. 
Atkinson, P., Jiskoot, H., Massari, R., and Murray, T.: Generalized linear modelling in geomorphology, Earth Surface Processes and 545 
Landforms, 23, 1185-1195, 10.1002/(SICI)1096-9837(199812)23:13<1185::AID-ESP928>3.0.CO;2-W, 1998. 
Bertolini, R.: Evaluating Performance Variability of Data Pipelines for Binary Classification with Applications to Predictive Learning 
Analytics, Stony Brook University, 511 pp., 2021. 
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. 
G., and Abramov, A.: Permafrost is warming at a global scale, Nature communications, 10, 1-11, 10.1038/s41467-018-08240-4, 2019. 550 
Blais-Stevens, A., Kremer, M., Bonnaventure, P. P., Smith, S. L., Lipovsky, P., and Lewkowicz, A. G.: Active Layer Detachment Slides 
and Retrogressive Thaw Slumps Susceptibility Mapping for Current and Future Permafrost Distribution, Yukon Alaska Highway Corridor, 
in: Engineering Geology for Society and Territory, edited by: Lollino, G., Manconi, A., Clague, J., Shan, W., and Chiarle, M., Springer, 
Cham, 449-453, 10.1007/978-3-319-09300-0_86, 2015. 
Brabb, E. E., Pampeyan, E. H., and Bonilla, M. G.: Landslide susceptibility in San Mateo County, California, Reston, VA, 1, 555 
10.3133/mf360, 1972. 
Brenning, A.: Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest, 
2012 IEEE International Geoscience and Remote Sensing Symposium, 5372-5375,  10.1109/IGARSS.2012.6352393,  
Bryce, E., Lombardo, L., van Westen, C., Tanyas, H., and Castro-Camilo, D.: Unified landslide hazard assessment using hurdle models: a 
case study in the Island of Dominica, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-022-02239-6, 2022. 560 
Cassidy, A. E., Christen, A., and Henry, G. H. R.: Impacts of active retrogressive thaw slumps on vegetation, soil, and net ecosystem 
exchange of carbon dioxide in the Canadian High Arctic, Arctic Science, 3, 179-202, 10.1139/as-2016-0034, 2017. 
Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-Law Distributions in Empirical Data, SIAM Review, 51, 661-703, 
10.1137/070710111, 2009. 
Daanen, R. P., Grosse, G., Darrow, M. M., Hamilton, T. D., and Jones, B. M.: Rapid movement of frozen debris-lobes: implications for 565 
permafrost degradation and slope instability in the south-central Brooks Range, Alaska, Natural Hazards and Earth System Sciences, 12, 
1521-1537, 10.5194/nhess-12-1521-2012, 2012. 
Demidov, N. E., Borisik, A. L., Verkulich, S. R., Wetterich, S., Gunar, A. Y., Demidov, V. E., Zheltenkova, N. V., Koshurnikov, A. V., 
Mikhailova, V. M., Nikulina, A. L., Novikov, A. L., Savatyugin, L. M., Sirotkin, A. N., Terekhov, A. V., Ugrumov, Y. V., and 
Schirrmeister, L.: Geocryological and Hydrogeological Conditions of the Western Part of Nordenskiold Land (Spitsbergen Archipelago), 570 
Izvestiya, Atmospheric and Oceanic Physics, 56, 1376-1400, 10.1134/s000143382011002x, 2021. 



24 
 

Densmore, A. L., Ellis, M. A., and Anderson, R. S.: Landsliding and the evolution of normal-fault-bounded mountains, Journal of 
Geophysical Research: Solid Earth, 103, 15203-15219, 10.1029/98jb00510, 1998. 
Ding, Y., Mu, C., Wu, T., Hu, G., Zou, D., Wang, D., Li, W., and Wu, X.: Increasing cryospheric hazards in a warming climate, Earth-Sci. 
Rev., 213, 10.1016/j.earscirev.2020.103500, 2021. 575 
Do, K.-A., Müller, P., and Tang, F.: A Bayesian mixture model for differential gene expression, J. Roy. Stat. Soc. Ser. C. (Appl. Stat.), 54, 
627-644, 10.1111/j.1467-9876.2005.05593.x, 2005. 
Emberson, R., Kirschbaum, D. B., Amatya, P., Tanyas, H., and Marc, O.: Insights from the topographic characteristics of a large global 
catalog of rainfall-induced landslide event inventories, Natural Hazards and Earth System Sciences, 22, 1129-1149, 10.5194/nhess-22-
1129-2022, 2022. 580 
Ford, J. D., Pearce, T., Canosa, I. V., and Harper, S.: The rapidly changing Arctic and its societal implications, Wires Clim. Change, 12, 
e735, 10.1002/wcc.735, 2021. 
Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., and Skaugen, T. E.: Temperature and Precipitation Development at Svalbard 
1900–2100, Adv. Meteorol., 2011, 1-14, 10.1155/2011/893790, 2011. 
Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on arctic river biogeochemistry, Hydrological Processes, 23, 169-585 
182, 10.1002/hyp.7196, 2009. 
Gilbert, G. L., O'Neill, H. B., Nemec, W., Thiel, C., Christiansen, H. H., Buylaert, J.-P., and Eyles, N.: Late Quaternary sedimentation and 
permafrost development in a Svalbard fjord-valley, Norwegian high Arctic, Sedimentology, 65, 2531-2558, 10.1111/sed.12476, 2018. 
Godin, E., Fortier, D., and Burn, C. R.: Geomorphology of a thermo-erosion gully, Bylot Island, Nunavut, Canada1This article is one of a 
series of papers published in this CJES Special Issue on the theme of Fundamental and applied research on permafrost in Canada.2Polar 590 
Continental Shelf Project Contribution 043-11, Canadian Journal of Earth Sciences, 49, 979-986, 10.1139/e2012-015, 2012. 
Godin, E., Fortier, D., and Coulombe, S.: Effects of thermo-erosion gullying on hydrologic flow networks, discharge and soil loss, 
Environ. Res. Lett., 9, 105010, 10.1088/1748-9326/9/10/105010, 2014. 
Godin, E., Osinski, G. R., Harrison, T. N., Pontefract, A., and Zanetti, M.: Geomorphology of Gullies at Thomas Lee Inlet, Devon Island, 
Canadian High Arctic, Permafrost and Periglacial Processes, 30, 19-34, 10.1002/ppp.1992, 2019. 595 
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K.-T.: Landslide inventory maps: New tools for an 
old problem, Earth-Sci. Rev., 112, 42-66, 10.1016/j.earscirev.2012.02.001, 2012. 
Hajian-Tilaki, K.: Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation, Caspian Journal of 
Internal Medicine, 4, 627-635, 2013. 
Hansen, A.: Landslide Hazard Analysis, in: Slope Instability, edited by: Brunsen, D., and Prior, D. B., John Wiley and Sons, New York, 600 
523-602, 1984. 
Hanssen-Bauer, I., Førland, E. J., Hisdal, H., Mayer, S., Sandø, A. B., and Sorteberg, A.: Climate in Svalbard 2100 – a knowledge base for 
climate adaptation, Norwegian Centre for Climate Services, Oslo, 207, 2019. 
Hergarten, S.: Topography-based modeling of large rockfalls and application to hazard assessment, Geophys. Res. Lett., 39, n/a-n/a, 
10.1029/2012gl052090, 2012. 605 
Hjort, J., Streletskiy, D., Doré, G., Wu, Q., Bjella, K., and Luoto, M.: Impacts of permafrost degradation on infrastructure, Nat. Rev. Earth 
Environ., 3, 24-38, 10.1038/s43017-021-00247-8, 2022. 
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E., Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading 
permafrost puts Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 1-9, 10.1038/s41467-018-07557-4, 2018. 
Hosmer, D. W. and Lemeshow, S.: Applied Logistic Regression, John Wiley & Sons, 10.1002/0471722146, 2000. 610 
Huang, L., Liu, L., Jiang, L., Zhang, T., and Sun, Y.: Detection of Thermal Erosion Gullies from High-Resolution Images Using Deep 
Learning, American Geophysical Union2017. 
Huang, L., Luo, J., Lin, Z., Niu, F., and Liu, L.: Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan 
Plateau) from CubeSat images, Remote Sens. Environ., 237, 10.1016/j.rse.2019.111534, 2020. 
Huang, L., Lantz, T. C., Fraser, R. H., Tiampo, K. F., Willis, M. J., and Schaefer, K.: Accuracy, Efficiency, and Transferability of a Deep 615 
Learning Model for Mapping Retrogressive Thaw Slumps across the Canadian Arctic, Remote Sensing, 14, 10.3390/rs14122747, 2022. 
Isaksen, K., Nordli, Ø., Førland, E. J., Łupikasza, E., Eastwood, S., and Niedźwiedź, T.: Recent warming on Spitsbergen—Influence of 
atmospheric circulation and sea ice cover, J. Geophys. Res. Atmos., 121, 10.1002/2016JD025606, 2016. 
Iwahana, G., Takano, S., Petrov, R. E., Tei, S., Shingubara, R., Maximov, T. C., Fedorov, A. N., Desyatkin, A. R., Nikolaev, A. N., and 
Desyatkin, R. V.: Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia, 620 
Polar Sci., 8, 96-113, 10.1016/j.polar.2014.01.005, 2014. 
Javidan, N., Kavian, A., Pourghasemi, H. R., Conoscenti, C., Jafarian, Z., and Rodrigo-Comino, J.: Evaluation of multi-hazard map 
produced using MaxEnt machine learning technique, Sci Rep, 11, 6496, 10.1038/s41598-021-85862-7, 2021. 
Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of analyzing multi-hazard risk: a review, Nat. Hazards, 64, 1925-
1958, 10.1007/s11069-012-0294-2, 2012. 625 
Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A.: A global landslide catalog for hazard applications: method, results, 
and limitations, Nat. Hazards, 52, 561-575, 10.1007/s11069-009-9401-4, 2009. 



25 
 

Koevoets, M. J., Hammer, Ø., Olaussen, S., Kim, S., and Smelror, M.: Integrating subsurface and outcrop data of the Middle Jurassic to 
Lower Cretaceous Agardhfjellet Formation in central Spitsbergen, Nor. J. Geol., 99, 219-252, 10.17850/njg98-4-01, 2019. 
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research, Permafrost and Periglac. Process., 24, 108-119, 630 
10.1002/ppp.1779, 2013. 
Lacelle, D., Bjornson, J., and Lauriol, B.: Climatic and geomorphic factors affecting contemporary (1950-2004) activity of retrogressive 
thaw slumps on the Aklavik Plateau, Richardson Mountains, NWT, Canada, Permafrost and Periglac. Process., 21, 1-15, 10.1002/ppp.666, 
2010. 
Lamoureux, S. F. and Lafrenière, M. J.: Fluvial Impact of Extensive Active Layer Detachments, Cape Bounty, Melville Island, Canada, 635 
Arct. Antarct. Alp. Res., 41, 59-68, 10.1657/1523-0430-41.1.59, 2018. 
Lewkowicz, A. G. and Way, R. G.: Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment, 
Nat Commun, 10, 1329, 10.1038/s41467-019-09314-7, 2019. 
Li, C., Ma, T., Zhu, X., and Li, W.: The power–law relationship between landslide occurrence and rainfall level, Geomorphology, 130, 
221-229, 10.1016/j.geomorph.2011.03.018, 2011. 640 
Lima, P., Steger, S., and Glade, T.: Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very 
large areas: a national-scale assessment for Austria, Landslides, 18, 3531-3546, 10.1007/s10346-021-01693-7, 2021. 
Lombardo, L. and Mai, P. M.: Presenting logistic regression-based landslide susceptibility results, Engineering Geology, 244, 14-24, 
10.1016/j.enggeo.2018.07.019, 2018. 
Lombardo, L. and Tanyas, H.: Chrono-validation of near-real-time landslide susceptibility models via plug-in statistical simulations, 645 
Engineering Geology, 278, 10.1016/j.enggeo.2020.105818, 2020. 
Lombardo, L., Tanyas, H., and Nicu, I. C.: Spatial modeling of multi-hazard threat to cultural heritage sites, Engineering Geology, 277, 
10.1016/j.enggeo.2020.105776, 2020. 
Lombardo, L., Tanyas, H., Huser, R., Guzzetti, F., and Castro-Camilo, D.: Landslide size matters: A new data-driven, spatial prototype, 
Eng. Geol., 293, 10.1016/j.enggeo.2021.106288, 2021. 650 
Luoto, M. and Hjort, J.: Evaluation of current statistical approaches for predictive geomorphological mapping, Geomorphology, 67, 299-
315, 10.1016/j.geomorph.2004.10.006, 2005. 
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical properties, Earth Surface 
Processes and Landforms, 29, 687-711, 10.1002/esp.1064, 2004. 
Meena, S. R., Soares, L. P., Grohmann, C. H., van Westen, C., Bhuyan, K., Singh, R. P., Floris, M., and Catani, F.: Landslide detection in 655 
the Himalayas using machine learning algorithms and U-Net, Landslides, 19, 1209-1229, 10.1007/s10346-022-01861-3, 2022. 
Melvær, Y., Faste Aas, H., and Skiglund, A.: Terrengmodell Svalbard (S0 Terrengmodell) [dataset], 10.21334/npolar.2014.dce53a47, 
2014. 
Moreno, M., Steger, S., Tanyas, H., and Lombardo, L.: Modeling the size of co-seismic landslides viadata-driven models  the Kaik ōura’s 
example, EarthArXiv, 10.31223/X5VD1P, 2022. 660 
Nava, L., Bhuyan, K., Meena, S. R., Monserrat, O., and Catani, F.: Rapid Mapping of Landslides on SAR Data by Attention U-Net, 
Remote Sens., 14, 10.3390/rs14061449, 2022. 
Nicu, I. C.: Short overview on international historic climate adaptation of built heritage to natural hazards: lessons for Norway, Int. J. 
Conserv. Sci., 13, 441-456, 2022. 
Nicu, I. C. and Fatorić, S.: Climate change impacts on immovable cultural heritage in polar regions: A systematic bibliometric review, 665 
WIREs Climate Change, 10.1002/wcc.822, 2023. 
Nicu, I. C., Lombardo, L., and Rubensdotter, L.: Preliminary assessment of thaw slump hazard to Arctic cultural heritage in Nordenskiöld 
Land, Svalbard, Landslides, 18, 2935-2947, 10.1007/s10346-021-01684-8, 2021a. 
Nicu, I. C., Rubensdotter, L., and Lombardo, L.: Thaw slump inventory of Nordenskiöld Land (Svalbard Archipelago) [dataset], 
10.1594/PANGAEA.945348, 2022a. 670 
Nicu, I. C., Rubensdotter, L., and Lombardo, L.: Thermo-erosion gullies inventory of Nordenskiöld Land (Svalbard Archipelago) 
[dataset], 10.1594/PANGAEA.945395, 2022b. 
Nicu, I. C., Rubensdotter, L., Stalsberg, K., and Nau, E.: Coastal Erosion of Arctic Cultural Heritage in Danger: A Case Study from 
Svalbard, Norway, Water, 13, 10.3390/w13060784, 2021b. 
Nicu, I. C., Tanyas, H., Rubensdotter, L., and Lombardo, L.: A glimpse into the northernmost thermo-erosion gullies in Svalbard 675 
archipelago and their implications for Arctic cultural heritage, Catena, 212, 10.1016/j.catena.2022.106105, 2022c. 
Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E., and Boike, J.: Remote sensing quantifies widespread abundance of permafrost 
region disturbances across the Arctic and Subarctic, Nat Commun, 9, 5423, 10.1038/s41467-018-07663-3, 2018. 
Niu, F., Luo, J., Lin, Z., Fang, J., and Liu, M.: Thaw-induced slope failures and stability analyses in permafrost regions of the Qinghai-
Tibet Plateau, China, Landslides, 13, 55-65, 10.1007/s10346-014-0545-2, 2015. 680 
Svalbard Orthophoto: https://geodata.npolar.no/, last access: 10 November 2020. 
Geologi / Geology, Svalbard: https://geodata.npolar.no/arcgis/rest/services/Temadata/G_Geologi_Svalbard_S250_S750/MapServer, last 
access: 10 June 2022. 

https://geodata.npolar.no/
https://geodata.npolar.no/arcgis/rest/services/Temadata/G_Geologi_Svalbard_S250_S750/MapServer


26 
 

Oberle, F. K. J., Gibbs, A. E., Richmond, B. M., Erikson, L. H., Waldrop, M. P., and Swarzenski, P. W.: Towards determining spatial 
methane distribution on Arctic permafrost bluffs with an unmanned aerial system, SN Applied Sciences, 1, 10.1007/s42452-019-0242-9, 685 
2019. 
Ramage, J. L., Irrgang, A. M., Herzschuh, U., Morgenstern, A., Couture, N., and Lantuit, H.: Terrain controls on the occurrence of coastal 
retrogressive thaw slumps along the Yukon Coast, Canada, Journal of Geophysical Research: Earth Surface, 122, 1619-1634, 
10.1002/2017jf004231, 2017. 
Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., Hjort, J., Luoto, M., Jin, H., Obu, J., Hori, M., Yu, Q., and Chang, X.: New 690 
high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere, Earth Syst. Sci. 
Data, 14, 865-884, 10.5194/essd-14-865-2022, 2022. 
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic 
has warmed nearly four times faster than the globe since 1979, Communications Earth & Environment, 3, 10.1038/s43247-022-00498-3, 
2022. 695 
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically-based landslide susceptibility models, 
Earth-Sci. Rev., 180, 60-91, 10.1016/j.earscirev.2018.03.001, 2018. 
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., 
Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C. F.: Cross-validation strategies for data with temporal, spatial, 
hierarchical, or phylogenetic structure, Ecography, 40, 913-929, 10.1111/ecog.02881, 2017. 700 
Roccati, A., Paliaga, G., Luino, F., Faccini, F., and Turconi, L.: GIS-Based Landslide Susceptibility Mapping for Land Use Planning and 
Risk Assessment, Land, 10, 10.3390/land10020162, 2021. 
Rossi, M., Cardinali, M., Fiorucci, F., Marchesini, I., Mondini, A. C., Santangelo, M., Ghosh, S., Riguer, D. E. L., Lahousse, T., Chang, K. 
T., and Guzzetti, F.: A tool for the estimation of the distribution of landslide area in R, EGU General Assembly,  
Rudy, A. C. A., Lamoureux, S. F., Treitz, P., and van Ewijk, K. Y.: Transferability of regional permafrost disturbance susceptibility 705 
modelling using generalized linear and generalized additive models, Geomorphology, 264, 95-108, 10.1016/j.geomorph.2016.04.011, 
2016. 
Rudy, A. C. A., Lamoureux, S. F., Treitz, P., Ewijk, K. V., Bonnaventure, P. P., and Budkewitsch, P.: Terrain Controls and Landscape-
Scale Susceptibility Modelling of Active-Layer Detachments, Sabine Peninsula, Melville Island, Nunavut, Permafrost and Periglac. 
Process., 28, 79-91, 10.1002/ppp.1900, 2017. 710 
Saha, A., Pal, S. C., Santosh, M., Janizadeh, S., Chowdhuri, I., Norouzi, A., Roy, P., and Chakrabortty, R.: Modelling multi-hazard threats 
to cultural heritage sites and environmental sustainability: The present and future scenarios, Journal of Cleaner Production, 320, 
10.1016/j.jclepro.2021.128713, 2021. 
Schaefer, K., Zhang, T., Bruhwiler, L., and Barrett, A. P.: Amount and timing of permafrost carbon release in response to climate 
warming, Tellus B, 63, 165-180, 10.1111/j.1600-0889.2011.00527.x, 2011. 715 
Schmitt, R. G., Tanyas, H., Jessee, M. A. N., Zhu, J., Biegel, K. M., Allstadt, K. E., Jibson, R. W., van Westen, C. J., Sato, H. P., Wald, D. 
J., and Godt, J. W.: An open repository of earthquake-triggered ground-failure inventories, U.S. Geological Survey, Reston, VA, USA, 17, 
10.3133/ds1064, 2017. 
Séjourné, A., Costard, F., Fedorov, A., Gargani, J., Skorve, J., Massé, M., and Mège, D.: Evolution of the banks of thermokarst lakes in 
Central Yakutia (Central Siberia) due to retrogressive thaw slump activity controlled by insolation, Geomorphology, 241, 31-40, 720 
10.1016/j.geomorph.2015.03.033, 2015. 
Sidorchuk, A.: The Potential of Gully Erosion on the Yamal Peninsula, West Siberia, Sustainability, 12, 10.3390/su12010260, 2019. 
Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J., and Romanovsky, V. E.: The changing thermal state of permafrost, Nat. Rev. Earth 
Environ., 3, 10-23, 10.1038/s43017-021-00240-1, 2022. 
Steger, S., Mair, V., Kofler, C., Pittore, M., Zebisch, M., and Schneiderbauer, S.: Correlation does not imply geomorphic causation in data-725 
driven landslide susceptibility modelling - Benefits of exploring landslide data collection effects, Sci. Total Environ., 776, 145935, 
10.1016/j.scitotenv.2021.145935, 2021. 
Swanson, D. and Nolan, M.: Growth of Retrogressive Thaw Slumps in the Noatak Valley, Alaska, 2010–2016, Measured by Airborne 
Photogrammetry, Remote Sens., 10, 10.3390/rs10070983, 2018. 
Swanson, D. K.: Permafrost thaw‐related slope failures in Alaska’s Arctic National Parks, c. 1980–2019, Permafrost and Periglac. 730 
Process., 32, 392-406, 10.1002/ppp.2098, 2021. 
Tanyaş, H., Allstadt, K. E., and van Westen, C. J.: An updated method for estimating landslide-event magnitude, Earth Surface Processes 
and Landforms, 43, 1836-1847, 10.1002/esp.4359, 2018. 
Tanyaş, H., van Westen, C. J., Allstadt, K. E., Anna Nowicki Jessee, M., Görüm, T., Jibson, R. W., Godt, J. W., Sato, H. P., Schmitt, R. 
G., Marc, O., and Hovius, N.: Presentation and Analysis of a Worldwide Database of Earthquake-Induced Landslide Inventories, Journal 735 
of Geophysical Research: Earth Surface, 122, 1991-2015, 10.1002/2017jf004236, 2017. 
ten Brink, U. S., Barkan, R., Andrews, B. D., and Chaytor, J. D.: Size distributions and failure initiation of submarine and subaerial 
landslides, Earth and Planetary Science Letters, 287, 31-42, 10.1016/j.epsl.2009.07.031, 2009. 



27 
 

Titti, G., van Westen, C., Borgatti, L., Pasuto, A., and Lombardo, L.: When Enough Is Really Enough? On the Minimum Number of 
Landslides to Build Reliable Susceptibility Models, Geosciences, 11, 10.3390/geosciences11110469, 2021. 740 
Titti, G., Sarretta, A., Lombardo, L., Crema, S., Pasuto, A., and Borgatti, L.: Mapping Susceptibility With Open-Source Tools: A New 
Plugin for QGIS, Frontiers in Earth Science, 10, 10.3389/feart.2022.842425, 2022. 
UN Department of Economic and Social Affairs: Agenda 21,  1992. 
Veh, G.: On the cause of thermal erosion on ice-rich permafrost (Lena River Delta/ Siberia), Mathematisch-Geographische Fakultät, 
Katholische Universität Eichstätt-Ingolstadt, Potsdam, 112 pp., 2015. 745 
Voigt, C., Marushchak, M. E., Mastepanov, M., Lamprecht, R. E., Christensen, T. R., Dorodnikov, M., Jackowicz‐Korczyński, M., 
Lindgren, A., Lohila, A., and Nykänen, H.: Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw, Global Change 
Biol., 25, 1746-1764, 10.1111/gcb.14574, 2019. 
Ward Jones, M. K., Pollard, W. H., and Jones, B. M.: Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and 
their response to climate and terrain factors, Environ. Res. Lett., 14, 10.1088/1748-9326/ab12fd, 2019. 750 
Xia, Z., Huang, L., Fan, C., Jia, S., Lin, Z., Liu, L., Luo, J., Niu, F., and Zhang, T.: Retrogressive thaw slumps along the Qinghai-Tibet 
Engineering Corridor: a comprehensive inventory and their distribution characteristics, Earth System Science Data, 10.5194/essd-2021-
439, 2021. 
Yin, G., Luo, J., Niu, F., Lin, Z., and Liu, M.: Machine learning-based thermokarst landslide susceptibility modeling across the permafrost 
region on the Qinghai-Tibet Plateau, Landslides, 18, 2639-2649, 10.1007/s10346-021-01669-7, 2021. 755 
Ziaja, W.: Glacial Recession in Sorkappland and Central Nordenskiolöland, Spitsbergen, Svalbard, during the 20th Century, Arct. Antarct. 
Alp. Res., 33, 36-41, 10.1080/15230430.2001.12003402, 2001. 
Ziaja, W.: Spitsbergen Landscape under 20thCentury Climate Change: Sørkapp Land, AMBIO: A Journal of the Human Environment, 33, 
295-299, 10.1579/0044-7447-33.6.295, 2004. 
Zwoliński, Z., Giżejewski, J., Karczewski, A., Kasprzak, M., Lankauf, K. R., Migoń, P., Pękala, K., Repelewska-Pękalowa, J., 760 
Rachlewicz, G., Sobota, I., Stankowski, W., and Zagórski, P.: Geomorphological settings of Polish research areas on Spitsbergen, 
Landform Analysis, 22, 125-143, 10.12657/landfana.022.011, 2013. 
 


	1 Introduction
	3 Methodological context and strategy
	3.1 Cryospheric hazards inventory
	3.2 Environmental variables for statistical analysis
	3.3 Model training and validation

	4 Results and discussion
	4.1. TS and TEG size characteristics
	4.2. Susceptibility modelling performance
	4.3. Controlling factors of TS and TEG
	4.4. Susceptibility mapping of TS and TEG
	4.4. Multi-cryospheric hazard susceptibility mapping

	6 Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

