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We very appreciate the topical editor and two reviewers for constructive 

comments, which are very helpful for the improvement of the paper. We have 

seriously addressed these comments and revised the paper accordingly. The 

following are the summary of major changes and our point-by-point responses, 

indicated in blue. 

 

General comments 

 

The authors created a new 10-m land cover map for the circumpolar Arctic based 

on the combined use of Sentinel-2, Sentinel-2, and DEM and multiple-source 

training samples. It is challenging to map land cover over the Arctic due to the 

limited number of snow/ice-free observations. Yet, the current manuscript does 

not well demonstrate the land cover product is promising, particularly for the 

validation and the comparison. I have also lots of questions regarding the method. 

Please see my detailed comments below. 

 

Response: We would like to thank the reviewer for handling our manuscript and 

pointing out key issues that help significantly improve the research and the 

quality of this work. We revised the manuscript according to these comments, 

and below we provided our detailed responses to the points raised. 



Major comments 

 

All the samples filtered by the SOM may be helpful to improve the classification, 

but it will select similar samples for each category. The validation data, with the 

same resources as training data, will overestimate the accuracy of the land cover 

map. The samples from flux tower sites may be OK, because of the real 

independence to the training samples, but the number is too limited, and serval 

important land cover types are lacking, such as cropland, forest, snow/ice (Table 

S2). Here I highly recommend the authors create new and independent validation 

samples stratified on the Arctic land cover map (see Olofsson et al. 2014, RSE, 

good practices). 

 

Response: We appreciate this thoughtful comment. The primary purpose of using 

SOM in this study was to refine the preliminary training sample derived from 

different sources. As you mentioned, the SOM filtered sample may suffer from 

“over-similarity”, which makes resultant sample less informative. We did 

recognize this issue, and have included a necessary procedure when 

implementing SOM algorithm. In this procedure, for each land cover type, we 

divided the sample into 100 clusters, thus the inter-cluster difference reflects the 

intra-class variability. We clearly mentioned this in the revised manuscript.     

 

We agree that all the validation statistics reported in the paper should be solid and 

convincing. For this purpose, we followed the reviewer’s suggestion of creating 

a completely independent validation sample using good practices by Olofsson et 

al. (2014). We used CALC-2020 map itself as the stratification of study area, and 

set the validation sample size to 6,513 by specifying a target standard error for 

overall accuracy (OA) of 0.005. We allocated 40~1872 stratified sample units for 

each class (46, 40, 1,832, 189, 463, 489,1,490, 49, 915 and 1,000 points for 

cropland, forest, graminoid tundra, shrub tundra, wetland, open water, 

lichen/moss, man-made impervious, barren, and ice/snow, respectively), and 

calculated error metrics including user’s and producer’s accuracies (UA and PA), 



along with estimates of associated 95% confidence intervals. The reference class 

label for each sampled pixel was identified based on expert interpretation of 

cloud-free Sentinel-2 images and Google Earth VHR imagery data, as available. 

Sample pixels with disagreement among experts were subsequently revisited until 

a consensus was reached. Here we offer Figure R1 and Table R1, showing the 

newly developed validation sample distribution and the error matrix, respectively. 

Based on the newly-built validation sample, the OA of CALC-2020 map is 79.3 

± 1.0% (95% confidence interval). Please find detail descriptions on validation 

sample collection and analysis in the revised manuscript. 

 

Given the capacity of depicting real land surface environments, in situ data 

provides the most valuable reference for land cover mapping accuracy assessment. 

Unfortunately, these sites are so far scarce over space and biomes within our study 

area. This situation would be improved as more high-quality site data become 

available in the future. We point out this limitation in the revised manuscript.  

 

 
Figure R1 Map showing locations of newly built validation sample used in the 

revised manuscript. 



Table R1: Error matrix of ten mapped classes with cell entries filled by sample 

number. Reference classes are in columns. 

  CRO FST GRT SRT WET OWT LAM MMI BAR IAS Total 

CRO 43 0 3 0 0 0 0 0 0 0 46 

FST 0 30 2 8 0 0 0 0 0 0 40 

GRT 0 0 1501 62 81 28 125 0 35 0 1832 

SRT 0 0 25 160 1 0 2 0 1 0 189 

WET 0 0 35 5 375 14 30 0 4 0 463 

OWT 0 0 2 0 0 458 0 0 17 12 489 

LAM 0 0 22 0 10 1 1145 0 272 40 1490 

MMI 0 0 1 0 0 0 0 47 0 1 49 

BAR 0 0 0 0 4 42 154 0 687 28 915 

IAS 0 0 0 0 0 176 10 0 74 740 1000 

Total 43 30 1591 235 471 719 1466 47 1090 821 6513 

 

Reference: Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. 

E., and Wulder, M. A.: Good practices for estimating area and assessing accuracy 

of land change, Remote Sens. Environ., 148, 42–57, 2014. 
 

The description of the sample is not clear, i.e., how many samples were in the 

study area (L 133), how many changed pixels were removed (L 134), how did the 

authors determine the land over type for the pixels within the 90-m buffer (L 135), 

what was the strategy (L 139), etc. The strategy has a 40% maximum proportion 

and a 3% minimum proportion during the training data selection. How did the 

authors apply the strategy to “each” used land cover product, such as NLCD, 

Canada land cover, and GlobeLand30? This strategy was originally designed for 

selecting the training samples, that will be directly used to train the final random 

forest model; however, when the lichen/moss class was interpreted, how did the 

authors know its proportion? By the way, how did the authors immigrate the 

category of the existing products to Table 1, which are so different? 



 

Response: Thank you for this comment. In the revised manuscript, we have re-

organized the entire paragraph by clearly introducing the three data sources of 

preliminary training sample, how they were interpreted, and their exact numbers. 

Major modifications are as follows:  

 

1) For sample derived from FAST, we pointed out that FAST contains 91,619 

sample locations at the planetary scale, and a total of 14,579 sample records 

reserved in this study after spatial and temporal screening. For each FAST 

sample location, we created a 90 × 90 m square buffer, in which the land cover 

labels of all pixels were acquired based on Seninel-2 SCL band layer (offering 

per-pixel preliminary class label with an unsupervised approach). A FAST 

sample record was preserved only when it represented the dominant land cover 

type within its buffer area (i.e., greater than 50% area proportion). 

 

2) For sample derived from pre-existing land cover products (NLCD 2016 for 

Alaska, Land Cover of Canada 2015 for Canadian Arctic, and GlobeLand30 

V2020 for the rest terrestrial Arctic countries), we first spatially incorporated 

them into one single map layer by unifying their classification schemes into 

the CALC-2020 legend based on prior knowledge. For example, wet tundra in 

GlobeLand30 can be equivalent to wetland, while grassland/herbaceous in 

NLCD 2016 is alternative to graminoid tundra, due to their similar definitions. 

With the re-classified reference land cover layer, sample extraction was 

performed by using a stratified random sampling strategy. To ensure sample 

representativeness, we randomly collected 12,000 points for each class, except 

for forest (2,000 points), shrub tundra (5,000 points) and cropland (200 points) 

because of their limited area occupations. After removing points that failed 

the double check by senior interpreters, there remained 64,133 preliminary 

training sample points derived from existing land cover products. 

 



3) For lichen/moss sample interpreted from VHR images, its sample size was set 

5,000 to balance sampling representativeness and interpretation workload. We 

kept only well-interpreted points with high-level confidence, which eventually 

led to 4,913 preliminary training sample points for lichen/moss.   

 

Here we show Figure R2, which displays the distribution of the preliminary 

training sample derived from FAST, pre-existing land cover products, and 

reference VHR imagery, respectively.  

 

 

Figure R2 Map showing preliminary training sample migrated from FAST (a), 

extracted from pre-existing land cover products (b), and interpreted from VHR 

imagery data (c). 



 

The approach of comparing the new map to existing land products is not objective. 

For example, why did the authors focus on the agreement between the new map 

and the existing products, rather than focusing on the accuracy? How did the 

authors align the different definitions of land cover between products? What are 

the means for DM, DS, and DD? What this comparison analysis delivered to 

audiences is a huge disagreement among the maps, and so what? How about the 

accuracy of each product? At least, the authors can provide the accuracy against 

the samples from flux tower sites. 

 

Response: Thanks for raising the issue on clarification. We agree that the inter-

product comparison between CALC-2020 and existing products cannot directly 

measure the accuracy of our estimation. Instead, it provides an overall insight of 

pixel-level agreement. Previous studies suggested that pixel by pixel comparison 

is necessary for large area land cover mapping evaluation, due to its 

complementarity to sample based/in situ strategies (Gong et al., 2020; Friedl et 

al., 2022). We clarified this point in the revised manuscript. 

 

Classification scheme discrepancy is the reason that blocks the potential of 

calculating error metrics of reference land cover maps for the whole Arctic. For 

example, neither ESRI nor GlobeLand30 includes the lichen/moss class, which 

will lead to biased accuracy assessments. As an alternative, we focused on per-

pixel agreement, by dividing comparing results into four categories: agreement 

(AG), disagreement due to model prediction (DM), disagreement due to scheme 

difference (DS), and disagreement due to data missing (DD).  

 

We offered detail information of definitions of AG, DM, DS and DD in the 

revised manuscript (also displayed below as Table R2), and each category has its 

own meaning. AG suggests that CALC-2020 classification agrees with that of 

reference product. DM suggests classification difference caused by model 

prediction. DD suggests the land cover class information is lacked in the reference 



products (no data or unclassified). These three categories together reflect how 

well our result matches to pre-existing products. DS, on the contrary, reflects the 

inconsistency of used classification legends. Based on these considerations, we 

further analyzed and discussed the spatial patterns of inter-comparison results, as 

well as their implications in the revised manuscript. 

 

We agree with the reviewer’s suggestion, and calculated accuracies of each 

compared land cover product with in situ data (Figure R3). Please note that pre-

processing was performed to transform different classification schemes to CALC-

2020 legend, although it may result in biased error metrics. For example, we 

treated grass class in ESA and ESRI as equivalents of graminoid tundra. These 

assumptions are expected to generate overestimated OAs for reference products. 

Even so, we still found that CALC-2020 exhibited the highest OA, followed by 

GlobeLand30 and ESA. ESRI land cover product, in contrast, had the lowest OA 

evaluated by field data records. We have added relevant descriptions in the 

revised manuscript.  

 

Table R2: Description of per-pixel level comparison categories between CALC-

2020 and reference products. 

Category (abbreviation) Definition 

Agreement (AG) 
CALC-2020 and the compared land cover product display identical 

classification result 

Disagreement due to model 

prediction (DM) 

CALC-2020 and the compared land cover product display different 

classification results, both of which are included in the CALC-2020 map 

legend 

Disagreement due to scheme 

difference (DS) 

The compared land cover product displays a classification result which is not 

included in the CALC-2020 map legend 

Disagreement due to data 

missing (DD) 
Unclassified or data missing exhibited by the compared land cover product 

 



 
Figure R3 Land cover mapping performance evaluation of three reference 

products in field and flux tower sites, measured by overall accuracy (a) and 

alluvial diagrams ((b)~(d)). 

 

Reference 1: Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B., 

Yang, J., Zhang, W., and Zhou, Y.: Annual maps of global artificial impervious 

area (GAIA) between 1985 and 2018, Remote Sens. Environ., 236, 111510, 2020. 

 

Reference 2: Friedl, M. A., Woodcock, C. E., Olofsson, P., Zhu, Z., Loveland, T., 

Stanimirova, R., Arevalo, P., Bullock, E., Hu, K.-T., Zhang, Y., Turlej, K., Tarrio, 

K., McAvoy, K., Gorelick, N., Wang, J. A., Barber, C. P., and Souza, C.: Medium 

Spatial Resolution Mapping of Global Land Cover and Land Cover Change 

Across Multiple Decades From Landsat, Front. Remote Sens., 3, 2022. 

 

Minor comments 

 



L 110: What were discarded from the Sentinel-2 QA band? Snow/ice 

observations were excluded? 

 

Response: We added the description of Sentinel-2 data screening in the revised 

manuscript. Based on the QA60 band, invalid observations, including clouds, 

cloud shadows, and snow, were identified and masked.  

 

L 157: The number of each category should be given as well. 

 

Response: Agreed and added. The exact training sample size of each land cover 

type was given in the revised manuscript: After the SOM-based refinement, the 

final training sample includes 70,260 valid records, including 192, 2,836, 15,686, 

4,794, 6,470, 11,729, 4,380, 11,445 and12,728 points for cropland, forest, 

graminoid tundra, shrub tundra, wetland, open water, lichen/moss, barren, and 

ice/snow, respectively. 

 

Section 2.4.2 Man-made impervious surface mapping: As far as I understand, the 

impervious surface from CAMI-2020 has the highest priority, and the authors 

classified the other 9 land cover types only. If that, I suggest clarifying that the 

classification method did not include the impervious surface, like in Section 2.4.3. 

 

Response: We agree with the careful check for clarifying that the classification 

of this work did not include the impervious surface. We have gone through the 

manuscript and made sure they were mentioned whenever needed. For example, 

in Section 2.4.3, we rephrased the first sentence as: After acquiring the 

distribution of man-made impervious surface, we conducted natural surface land 

cover mapping based on feature metrics derived from Sentinel-1, Sentinel-2 and 

ArcticDEM. 
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We very appreciate the topical editor and two reviewers for constructive 

comments, which are very helpful for the improvement of the paper. We have 

seriously addressed these comments and revised the paper accordingly. The 

following are the summary of major changes and our point-by-point responses, 

indicated in blue. 

 

General comments 

 

The manuscript combined the multisource and multitemporal remote sensing 

imagery to develop the new circumpolar Arctic land cover product for circa 2020, 

containing 10 land-cover types especially for the tundra. The dataset is great and 

can be used to improve earth system modelling. However, I think there are several 

problems should be solved. 

 

Response: We would like to thank the reviewer for the constructive suggestions 

that help significantly improve the research and the quality of this work. We 

revised the manuscript according to these comments, and below we provided our 

detailed responses to the points raised. 

 

 



Major comments 

 

In the second paragraph of the introduction, author stated that ‘but their strength 

is limited by the over simplification of classification schemes’ and used the 

MCD12Q1 to explain the limitations of global land-cover products. In my 

opinion, the statement might be inaccurate, the ESA CCI_LC, GlobeLand30, and 

three global 10 m land-cover products (ESA, ESRI and dynamicworld) can 

capture the land-cover information with various classification systems or spatial 

resolutions. Therefore, I suggested that the authors further added the necessity of 

developing CALC-2020 when there were so many global land-cover products. 

 

Response: Thank you for this thoughtful suggestion, which is indeed true. In the 

revised manuscript, we added descriptions on why existing global land cover 

products cannot fully meet the need of precious Arctic land cover mapping from 

two aspects. 1) Some existing scientific programs have manifested remarkable 

achievements of general-purpose land cover maps at the global scale. However, 

these products bear with coarse spatial resolutions (100 m~1 km pixel size), hence 

raising the sub-pixel mixing issue. 2) Although the entire Earth surface witnessed 

a growing number of fine spatial resolution land cover products, most of them 

have systematically low confidence in Arctic and boreal regions (Bartsch et al., 

2016; Liang et al., 2019). 

 

Reference 1: Bartsch, A., Höfler, A., Kroisleitner, C., and Trofaier, A. M.: Land 

Cover Mapping in Northern High Latitude Permafrost Regions with Satellite 

Data: Achievements and Remaining Challenges, Remote Sens., 8, 2016. 
 

Reference 2: Liang, L., Liu, Q., Liu, G., Li, H., and Huang, C.: Accuracy 

Evaluation and Consistency Analysis of Four Global Land Cover Products in the 

Arctic Region, Remote Sens., 11, 2019. 

 

In the third paragraph of the introduction, the reasons why authors used multi-

source remote sensing data to develop the CALC-2020 map was not clear. 



Actually, the combination of multisource remote sensing observations has been 

demonstrated to improve the land-cover classification in so many studies because 

of importing new information. Namely, the combination of optical, SAR and 

terrain features was not particularly novel in this study. 

 

Response: We appreciate for this valuable comment. Indeed, multi-source remote 

sensing is a widely used strategy for improving classification performance. Our 

work follows successful experiences of previous studies, with an explicit purpose 

of addressing Arctic land cover mapping challenges. 1) In the Arctic, the common 

presence of treeless tundra landscape patches gives rise to the “spectral confusion” 

issue that can lead to a decreased classification accuracy. 2) Severe cloud 

contamination and high solar zenith angles introduce uncertainties into the Arctic 

land cover mapping results derived from optical imagery. 3) The terrain condition 

also plays an important role in determining Arctic biome distribution due to its 

correlation with environmental factors including temperature, solar radiation, and 

water availability. We clarified this in our revised manuscript. 
 

Authors used the FAST sample library and three land-cover products to derive 

the primary training samples and then used visual interpretation to collect lichen 

and moss, however, how to identify the graminoid tundra and shrub tundra 

samples, which was not explained in the method. 

 

Response: We added detailed descriptions of this issue in the revised manuscript: 

Special care was taken to make a distinction between graminoid tundra and shrub 

tundra because they are easily confused for a single season. Thus, time series 

images from Sentinel-1 and Sentinel-2 were used to support judgement as needed. 

 

Authors used the SOM method and further used the threshold of 75% to remove 

the wrong samples, why chose this threshold? Can you give the number of 

training samples for each land-cover class? 

 



Response: This is a good point! We gave much critical thinking and analysis for 

the determination of purity index threshold. In this study, the purity index 

threshold was set to 75% to balance sample size and sample robustness (Gong et 

al., 2019). An extremely high threshold (e.g., 95%) will lead to the passing failure 

of most clusters, thus the size of final sample set will be too small. In contrast, an 

extremely low threshold will enlarge the impacts of non-target classes, which will 

result in reduced classification accuracy. Gong et al. (2019) performed 

experiments on size reduction and errors in sample. Following their experiences, 

we also performed sensitivity tests and found relatively robust performances 

using thresholds no less than 75%. We added a sentence in the revised manuscript 

to explicitly address this issue.  

 

The number of training samples for each land-cover class was provided in the 

revised manuscript: After the SOM-based refinement, the final training sample 

includes 70,260 valid records, including 192, 2,836, 15,686, 4,794, 6,470, 11,729, 

4,380, 11,445 and12,728 points for cropland, forest, graminoid tundra, shrub 

tundra, wetland, open water, lichen/moss, barren, and ice/snow, respectively. 

 

Reference: Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., 

Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Suen, H. P., Guo, J., Xu, 

N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., 

Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song, L.: Stable classification with 

limited sample: transferring a 30-m resolution sample set collected in 2015 to 

mapping 10-m resolution global land cover in 2017, Sci. Bull., 64, 370–373, 2019. 

 

In section 2.4.3, authors mentioned that “Cloud-free Sentinel-2 observations were 

first interpolated in each pixel at an 8-day time step using penalized cubic 

smoothing splines”, is it mean these cloudy or snow pixels were interpolated by 

cubic splines method? Can you provide the details and the results of the time-

series sentinel-2 observations after interpolating? 

 



Response: Agreed and modified. We have rewritten this paragraph to clarify the 

technical steps of phenometrics identification. Some key points are summarized 

as follows. 1) Invalid Sentinel-2 observations, including clouds, cloud shadows, 

and snow, were firstly identified and masked according to the QA60 band. 2) 

Cloud-free observations were then interpolated in each pixel at an 8-day time step 

using penalized cubic smoothing splines. 3) With the smoothed, seamless 

reflectance time series, we calculated NDVI at each temporal interval to depict 

the time (DOY) of the vegetation phenophase transitions. Furthermore, we 

provided a new figure showing original S-2 observations, fitted vegetation cycle, 

and derived metrics. Please see Figure R4 as follows: 

 

 

Figure R4 An example fit of NDVI time series for the identification of 

phenometrics. Green points represent original cloud-free Sentinel-2 observations. 

 

The CALC-2020 was individually produced for each country using RFC models, 

how to ensure the spatial continuity between the transition areas over two 

neighboring countries because of using different RFC models? 

 



Response: Thanks for raising the issue on clarification. 1) We agree that a 

universal classification model is beneficial in terms of spatial continuity. 

Meanwhile, we respectfully argue that such a method has its own limitations, 

especially when applied to continental/global scale land cover mapping. In this 

study, the land cover composition different among Arctic countries/regions is 

large (e.g., cropland only distributed in Iceland), highlighting the necessity and 

effectiveness of the nation-wide/local classification strategy (Radoux et al., 2014; 

Huang et al., 2022). 2) It should be noted that all Arctic countries/regions 

involved in this study are independent geographical units separated by oceans 

(i.e., not affected by the discontinuity problem), except for Alaska and Canada, 

between which a land border exists. Therefore, we provide three typical examples 

among others to test the spatial discontinuity issue in North America, as shown 

in the following figure. Overall, all examples exhibit reasonable spatial continuity, 

especially in two homogenous scenes (Figure R5(a) and (c)). Nevertheless, the 

level of spatial continuity is less desirable in a relatively heterogenous scene 

(Figure R5(b)), which requires further methodological improvements in the 

future. We have clearly highlighted this issue in the revised manuscript. 

 

 

Figure R5 Three typical examples ((a)~(c)) showing the performance of spatial 

continuity within the border area between Canada and the U.S. (Alaska). 



 

Reference 1: Radoux, J., Lamarche, C., Van Bogaert, E., Bontemps, S., 

Brockmann, C., and Defourny, P.: Automated training sample extraction for 

global land cover mapping, Remote Sens., 6, 2014. 
 

Reference 2: Huang, X., Yang, J., Wang, W., and Liu, Z.: Mapping 10-m global 

impervious surface area (GISA-10m) using multi-source geospatial data, Earth 

Syst. Sci. Data.,14, 2022. 

 

The comparisons between CALC-2020 with three global maps were unfair for 

global land-cover products, because the CALC-2020 only focused on the 

circumpolar Arctic while the global land-cover maps emphasized the 

comprehensive performance over the globe. 

 

Response: We agree that the inter-product comparison cannot directly reflect the 

accuracy of our estimation. Instead, the comparing results provide an overall 

insight of pixel-level agreement, both statistically and spatially. We clearly 

mentioned this in the revised manuscript. As a complementary means apart from 

sample/in situ level validation, the need of inter-product comparison in this study 

is twofold. 1) We would like to check the spatial consistency of our approach 

(including classification scheme) against to widely-used fine resolution land 

cover products covering the extent of terrestrial Arctic. 2) We would like to 

evaluate the mapping performance variation of our approach across different 

Arctic landscapes. Based on the above reasons, three existing products were used, 

although they were generated to depict general-purpose land cover at global 

scales. 

 

In the two comparison figures of Figure 6 and 7, I doubt the difference mainly 

came from the different definition for the same land-cover class especially in the 

Figure 7. 

 



Response: Thank you for this comment. As you mentioned, there exist 

considerable classification scheme discrepancies between CALC-2020 and 

existing land cover products, which makes our validation/comparison (especially 

at the per-pixel level) challenging. We do recognize this issue, and have included 

necessary procedures for ensuring the reliability of the comparison results. 1) The 

three reference land cover products were selected because they include the 

majority of land cover types used in CALC-2020, so the comparing results can 

be more robust and less affected by the issue of classification scheme discrepancy. 

2) In this paper, the main goal of Figure 7 in the original manuscript is to 

demonstrate the capacity of typical Arctic landscape characterization by CALC-

2020 map, and two situations can be expected. For the first situation, CALC-2020 

is directly comparable to at least one reference land cover dataset, given their 

similar class compositions (Figure 7(a), (c), (d) in the original manuscript). For 

the second situation, we may encounter quite different land cover compositions 

between CALC-2020 and other products (Figure 7(b) in the original manuscript), 

which makes direct comparison difficult. In this case, the Google Earth image 

plays a more important role in mapping performance evaluation. To minimize the 

confusion, we added a sentence in the revised manuscript, offering more explicit 

information on the logic of Figure 7 for inter-product evaluation. 

 

I suggest to remove the statistics figure in Figure 9b, because it cannot provide 

useful information for the CALC-2020 map. 

 

Response: Thank you for raising this issue for clarification. We agree that each 

figure/table in a paper should be informative. The main reason of displaying 

bioclimate zone level land cover compositions is due to its linkage to climate 

conditions, which cannot be revealed from the country-level statistics (Figure 

9(a) in the original manuscript). More specifically, Figure 9(b) in the original 

manuscript confirmed the strength of temperature in determining circumpolar 

Arctic land cover composition. As SWI gradually increases (bioclimate zone 

A~E), we can clearly observe area loss in snow/ice and bare land classes, which 



replaced by vegetation covers. This result matches well with two previously 

coarse resolution circumpolar Arctic map (Walker et al., 2005; Raynolds et al., 

2019). Based on the analysis shown above and careful consideration, Figure 9(b) 

was retained in the revised manuscript. We modified sentences to avoid confusion.   

 

Figure 10 about the feature importance is interesting and vital for developing the 

CALC-2020, I think the author should explain in more details why the topography 

had highest importance while the optical features were unimportant. 

 

Response: We agree with the suggestion. In the revised manuscript, 1) we clearly 

mentioned the logic why topography is the most important domain for 

circumpolar Arctic land cover mapping; 2) we also added descriptions on 

explaining why spectral features played a secondary role (compared to terrain and 

SAR features) in this study. 

 

I suggest that authors shared the validation data in the Data availability 

 

Response: We do our best to follow Open Science best practice and aim to make 

all code and data conditionally available upon publication. The CALC-2020 

product, as we mentioned in our paper, is completely open for use via Science 

Data Bank. All other data used in the study (including training and validation 

samples) are available from the corresponding authors upon reasonable request. 

We added descriptions on this issue in the revised manuscript.  

 

Line 334, Figure 30 should be 10. 

 

Response: Corrected in the revised manuscript. 
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General comments 

 

The CALC-2020 is a good baseline land cover product at 10m spatial resolution. 

The class scheme is so complete that including lichen/moss, graminoid tundra 

and shrub tundra with acceptable accuracy. The differentiation between 

graminoid and shrub tundra is relatively challenging due to low stature of shrub 

in Arctic tundra. However, the authors made a great effort to use multiple sources 

of features to classify them. I've looked through the dataset over Alaska and found 

it is really the most accurate land cover dataset over arctic that even small areas 

of impervious surface are correctly identified. 

 

Response: We thank Kun Jia for reviewing our research paper, and confirming 

the practicality of CALC-2020.  


