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Abstract. Soil moisture storage capacity (SMSC) links the atmosphere and terrestrial ecosystems,13

which is required as spatial parameters for geoscientific models. However, there are currently no14

available common datasets of the SMSC on a global scale, especially for hydrological models since15

conventional evapotranspiration-derived estimates cannot represent the extra storage capacity for the16

lateral flow and runoff generation. Here, we produce a dataset of the SMSC parameter for global17

hydrological models. Joint parameter calibration of three commonly used monthly water balance18

models provides the labels for a deep residual network. The global SMSC is constructed based on the19

deep residual network at 0.5° resolution by integrating 15 types of meteorological forcings, underlying20

surface properties, and runoff data. SMSC products are validated with the spatial distribution against21

root zone depth datasets and validated in the simulation efficiency on global grids and typical22

catchments from different climatic regions. We provide the global SMSC parameter dataset as a23

benchmark for geoscientific modelling by users.24

1. Introduction25

Soil moisture in the root zone layer is one of the vital hydrological variables in Earth system26

dynamics (Wang-Erlandsson et al., 2022). Soil moisture storage capacity (SMSC[L]) is defined as the27

total amount of water stored in the soil within the plant root zone, one of the essential parameters28
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linking the atmosphere and terrestrial ecosystems in the hydrological components (Chen, 2014;29

Mccormick et al., 2021). The rooting depth of the plant cover determines the extent to which vegetation30

returns water into the atmosphere via plant transpiration (Kleidon, 2004). A deeper SMSC means a31

larger volume of water stored in the soil and, therefore, a larger reservoir of water available for crops to32

draw from. Additionally, SMSC determines the storage and outflow capacity of water and is one of the33

comprehensive parameters that affect the rainfall-runoff relationship. Therefore, the global34

parameterization of SMSC is necessary for geoscientific modelling. The SMSC has been widely35

applied in the hydrological models, such as Xinanjiang Model (Xie et al., 2020b; Zhao, 1992),36

Dynamic Water Balance Model (DWBM) (Wang et al., 2011; Zhang et al., 2008), Snowbelt-based37

Water Balance Model (SWBM) (Wang et al., 2014), and Time-variant Gain Model (TVGM) (Wang et38

al., 2009; Xia et al., 1997), etc. These hydrological models at different spatial and temporal scales have39

the same runoff generation structure, and SMSC becomes an essential parameter in the hydrological40

process (Bai et al., 2015; Jaiswal et al., 2020).41

Broadly, previous studies have investigated conventional approaches to estimating the spatial42

distribution of the storage capacity in the root zone (Fan et al., 2017; Wang-Erlandsson et al., 2016;43

Yang et al., 2016). However, there is currently no consensus on the estimation of SMSC. Even with44

rooting depth measurements in situ from various field and laboratory observations, it is difficult to45

estimate the root zone storage capacity due to uncertainty in root density, hydrological activity, and46

horizontal spatial heterogeneity in soil data. The conventional calibration approach is only suitable for47

applications at the catchment scale, and therefore challenges remain with parameter equifinality. The48

conventional cumulative water deficit approach usually estimates soil plant-available water storage49

capacity from remote-sensing-based precipitation and evapotranspiration fluxes (Stocker et al., 2021).50

However, evapotranspiration-derived estimates of root-zone depth cannot represent the lateral flow and51

runoff generation. Soil water is not only absorbed by vegetation from root soil and stems for52

evaporation but also retains more capacity for runoff generation and groundwater flow. Overall, to our53

knowledge, little attention has been paid to quantifying a common global SMSC parameter from the54

perspective of the rainfall-runoff relationship in hydrological and land surface models (Beck et al.,55

2015a; Beck et al., 2015b; Nijssen et al., 2001). Conventionally estimated SMSC datasets are difficult56
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to obtain the advantage of the model performance in global hydrological models.57

Intense temporal unevenness and spatial heterogeneity have led to myriad problems in the58

parameterization solution (Ming et al., 2017; Blschl et al., 2019). Most global hydrological models are59

not calibrated or use prior knowledge to adjust SMSC parameters at large catchment scales since60

calibrations become computationally intensive under large amounts of data and uncertainty from basin61

characteristics (Wang et al., 2021). Essential parameters are even calibrated uniformly to subbasins62

over the entire watershed or only against regional data. During the last decade, much work has been63

done on the parameters and spatiotemporal boundaries of models (Chen, 2014; Imhoff et al., 2020;64

Samaniego et al., 2010; Vinogradov et al., 2011). The results demonstrated that the spatial distributions65

of regionalized parameters matched well with the climate and physiographic properties (Gentine et al.,66

2012). Samaniego et al. (2010) proposed a multiscale parameter regionalization (MPR) technique by a67

nonlinear transfer function and achieved the parameter transferability across the ungauged areas. Tsai et68

al. (2021) proposed a differentiable parameter learning (DPL) framework that efficiently learns a global69

mapping between dynamic inputs and hydrological parameters, and a deep learning model is trained to70

generate the generic parameters. Hence, many approaches have demonstrated the necessity and the71

feasibility of considering spatial heterogeneity in the hydrological process in quantifying a common72

global SMSC parameter dataset.73

This study seeks the global construction of the common SMSC parameter while accepting the74

existing differences among hydrological models. The structure of the construction method is shown in75

Figure 1. Specifically, the spatial distribution of SMSC parameters is obtained by the Shuffled76

Complex Evolution (SCE-UA) algorithm for the joint calibration against an observation-based global77

gridded runoff (GRUN) dataset. A deep residual network (ResNet) is used to learn the relationship78

between the input factors and the regression SMSC parameters to consider spatial heterogeneity. The79

results of the joint calibration provide the labels for the training of ResNet. Finally, the SMSC80

parameter dataset is spatially constructed based on the pre-trained ResNet on the grid-scale to fill in81

data empty areas where SMSC parameters are not available by the calibration approach. The global82

runoff database center (GRDC) station streamflow data validates the global SMSC parameter dataset.83

Solving the problem of common parameter datasets can help improve the simulation accuracy of global84
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hydrological models and help explore the physical meaning of model parameters associated with85

surface heterogeneity. The global modeling community would benefit significantly from more common86

parameter datasets.87

[Please insert Figure 1 here]88

2. Data89

Meteorological forcings and underlying surface properties affect the soil water storage capacity90

from hydrological processes, soil structure, and plant root zone. The model inputs include 15 variables91

such as global meteorological data, soil and vegetation data, topographical data, and streamflow92

characteristics. Table 1 provides the data sources used in the study.93

[Please insert Table 1 here]94

There are two different types of inputs, a continuous value input represented by precipitation and95

elevation and a categorical input represented by soil type and vegetation type. The model inputs are96

standardized. Time series values of meteorological data are used as inputs of the hydrological model.97

The multi-year averages of meteorological data are used as the spatial inputs to the deep learning98

model. Monthly measurements cover the year from 1902 to 2014 in the global grids. The data for the99

first year is used for warm-up, 80 years for calibration, and the remaining 30 years for validation.100

3. Methods101

3.1 Gridded-based monthly water balance models102

Water balance models are one of the attractive models among the available hydrological103

simulation techniques, offering flexibility and comprehensibility (Abdollahi et al., 2017;104

Rodríguez-Huerta et al., 2020; Schaake et al., 1996). Water balance models can estimate daily, monthly,105

and annual hydrological variables and processes by considering soil moisture. The advantages of106

simple structure, fewer parameters, and fewer data requirements positively affect calibration and107

regionalization.108

Monthly water balance models simulate and predict the monthly runoff under different climatic109

conditions (Do et al., 2020; Gui et al., 2019; Xiong et al., 2019). Monthly runoff processes differ from110
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daily runoff because they generalize the stochastic uncertainty over a short time scale. Therefore, there111

is no need to distinguish runoff yield and route in monthly water balance models, leading to simple112

structures and straightforward applications (Zhang et al., 2018). Most monthly water balance models113

have the concept of a water tank model (Bai et al., 2015; Singh and Woolhiser, 2002). This study114

selects three monthly water balance models for the SMSC parameter.115

(1) Dynamic Water Balance Model (DWBM)116

The dynamic water balance model used in this study is the Budyko framework model by Wang et117

al. (2011) and Zhang et al. (2008). The mean annual water balance can be modeled using the method of118

Budyko (1958) by only considering dominant controls on evaporation. Fu (1981) developed the119

following relationships for estimating mean annual evaporation:120

�
�

= 1 + �0
�

− 1 + �0
�

� 1/�
(1)121

where � is the mean annual actual evaporation, �0 is the potential evaporation, and � is a model122

parameter with the range of (1,∞). The catchment is conceptualized as a system of two storages: root123

zone storage and groundwater storage. Direct runoff can be calculated by rainfall �(�) in time step �124

deducting catchment rainfall retention � �125

�� � = � � − � � � �0 �
� �

, �1 (2)126

where �() is Fu's curve - Eq. (1), �1 is retention efficiency, i.e., a larger �1 the value will result in127

more rainfall retention and less direct runoff. Evaporation E(t) can be calculated as128

� � = � � � �0 �
� �

, �2 (3)129

where � � is water availability, and �2 is a model parameter representing evaporation efficiency.130

The soil water storage can now be calculated as:131

� � = � � � �0 � +����
� �

, �2 − �(�) (4)132

where ���� is the soil moisture storage capacity. Finally, the soil water storage is treated as a linear133

reservoir so that the groundwater balance and baseflow can be modeled as:134

�� � = ��� � − 1 (5)135
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� � = 1 − �� � � − 1 + � � (6)136

where � � is groundwater storage, and �� is a constant model parameter.137

(2) Snowbelt-based Water Balance Model (SWBM)138

The snowbelt-based water balance model used in this study is the Yellow river water balance139

model by Wang et al. (2014). According to the influencing factors of surface runoff yield, the140

calculation formula of surface runoff is put forward by generalizing the two runoff generation141

mechanisms:142

��(�) = ��
� �

����
� � (7)143

where ��(�) is the direct surface runoff, � � is the soil moisture, and ���� is the maximum soil144

moisture storage capacity, and �� is the coefficient of surface runoff. It is assumed that the145

underground runoff is a linear reservoir discharge. The underground runoff is calculated as follows:146

�� � = ��� � − 1 (8)147

where �� � is the underground runoff, and �� is the coefficient of the underground runoff. The148

evaporation capacity of the basin is equal to that of the water surface. The calculation of long-term149

evaporation of the basin is based on the calculation model of soil evaporation as follows:150

� � = ��
� �−1
����

(9)151

where � � is the actual evaporation, �� denotes the evaporation capacity of the basin and is152

calculated according to the meteorological data.153

(3) Time-variant Gain Model (TVGM)154

The relationship between rainfall and runoff is nonlinear. To grasp its nonlinear nature from155

system theory, Xia et al. (1997) and Wang et al. (2009) proposed the time-variant gain model (TVGM)156

model. The TVGM model can describe the nonlinear relationship between input and output of the157

hydrological cycle system by introducing a time-varying gain factor. The direct surface runoff158

generated by the catchment can be expressed as:159

��(�) = �1
� �

����

�2
� � (10)160
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where � � is the soil humidity at the beginning of the period, �� is the saturated soil humidity, � is161

rainfall, �1 and �2 are the related parameters of the time-varying gain factor, where �1 is the runoff162

coefficient after soil saturation, �2 is the soil moisture influence coefficient. Soil moisture flow is163

calculated as follows:164

�� � = �� � � − 1 + � � /2 (11)165

where �� is the coefficient of soil moisture outflow. The actual evaporation is based on the166

rainfall-evaporation model considering soil moisture as follows:167

� � = ���(�) � �
����

�
(12)168

where � is the weight coefficient of evaporation.169

3.2 Parameter calibration strategy170

In principle, parameters in the hydrological model are constructed based on the interpretation of171

the measured response in the catchment. However, for those parameters for which no measured values172

are available, the initial values of the parameters can first be determined empirically or by referring to173

previous results. Then the parameters are optimized according to the specific objectives against174

simulation results. Processes at different scales interact and influence each other, leading to the175

complexity of parameter calibration. The calibration will result in the spatially discontinuous parameter176

in each basin. The calibration aims to consider the spatial interactions of the parameters but often177

pursues the simulation accuracy too much since inputs are homogenized across catchments. Different178

areas make it difficult for the parameters to converge to spatially continuous values. Therefore, the179

parameters are calibrated on a spatial grid of the same area in this study. Research has shown that180

calibration on the global grids can significantly reduce parameter discontinuities compared to181

calibration on individual catchments (Xie et al., 2020a). The conceptual parameters in three monthly182

water balance models (Table 2) are calibrated against the agreement between simulated and observed183

hydrographs until the optimal value is obtained.184

[Please insert Table 2 here]185

Two parameter calibration strategies are listed below, and the joint calibration strategy is186
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considered in this study.187

Individual calibration strategy: Each model is calibrated separately across global grids. The188

purpose is to find the similarities and differences in the SMSC parameter distribution of three different189

model structures. The gridded runoff depth data is used as observations for the calibration. The gridded190

global monthly runoff time series are obtained from the GRUN dataset on a 0.5 degrees grid covering191

1902 to 2014 (Ghiggi et al., 2019a; Ghiggi et al., 2019b; Ibarra et al., 2020). The parameters calibrated192

in the catchment are used as the initial values on catchment grids.193

Joint calibration strategy: This procedure will calibrate all parameters of three models in a joint194

calibration, and the SMSC parameters in each model are equal. The physical meaning of the parameters195

can only be expressed in terms of the same values. There should be a value between the optimal values196

of multiple models. This value has a physical meaning in terms of spatial continuity and can be197

commonly considered for each model.198

The SCE-UA algorithm, one of the common global optimization methods, is used for the199

parameter calibration of monthly water balance models (Duan et al., 1994). The objective function is200

selected as the least-squares method, i.e., Mean Square Error (MSE). The Kling-Gupta Efficiency201

(KGE) is used to quantify the performance of the model simulations, which is a model evaluation202

criterion that can be decomposed into the contribution of mean, variance, and correlation to model203

performance (Gupta et al., 2009). KGE is calculated as follows:204

KGE = 1 − � − 1 2 + ����/���� − 1 2 + ����/���� − 1 2 (13)205

where � is the Pearson Correlation Coefficient, � and � are the mean and common deviation of the206

variables. KGE value ranges from −∞ to 1, with a value closer to 1 indicating a better simulation207

performance.208

3.3 Deep residual network209

Although the parameters obtained by the calibration at grid scale are accurate and have good210

spatial continuity, it is still challenging to obtain parameters on many unsuitable grids due to the211

limitations of the hydrological model in the ungauged area. It remains a daunting challenge to mine the212
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hidden information from a large amount of data because of the inherent physical variability in complex213

physical mechanisms (Clark et al., 2016; Zhang and Liu, 2021). Driven by the increasingly powerful214

performance of computers and big data, statistical and non-inferential deep learning methods enable215

machines to have the same ability to analyze and learn as human beings (Kadow et al., 2020; Karpatne216

et al., 2018; Sit et al., 2020). Recent case studies have revealed that deep learning networks have217

succeeded in geoscience fields (Karpatne et al., 2018; Xie et al., 2021). It has been widely used for218

spatial missing data (Kadow et al., 2020), spatial downscaling (Jiang et al., 2021; Nearing et al., 2021),219

rainfall simulation improvement (Liu et al., 2020), and spatial phenomena prediction (Pan et al., 2019).220

Convolutional neural networks (CNNs) can automatically learn features from massive data and221

generalize the results to unknown domains of the same type (Shin et al., 2016). The convolution and222

pooling layers in CNNs only work on a local neighborhood, which helps to capture local geometric223

features and spatial patterns and extract larger-scale representations in deeper layers (Shen, 2018). The224

filters are shared when calculating the neurons of the same depth slice, which reduces the number of225

parameters and makes them easier to train.226

A deep residual network, one of the specific types of CNN method, can automatically learn227

features from large-scale data and generalize the results to anonymous data of the same type (He et al.,228

2016). However, CNN has reached saturation accuracy when the number of layers deepens, called229

degradation. The network's performance deteriorates, and it is challenging to train shallow networks by230

backpropagation because the gradient dissipation is more severe. ResNet solves this problem by231

making it easier for gradients to flow into external networks. The structure of ResNet adds the residual232

mapping and the identity mapping through shortcut connections. If the network has reached the optimal233

level and continues to deepen, the residual mapping will be pushed to zero, leaving only identity234

mapping. Theoretically, the network has been in the optimal state, and the network performance does235

not decrease with increasing depth. Finally, the gradient vanishing can be avoided, and the network can236

be deepened. ResNet provides a new approach to learning SMSC parameters using more information237

from similar grids (Zhuo and Tan, 2021).238

CNN local connection means that each neuron is connected to only one region of the input neuron,239

and the filters used by CNN to compute neurons of the same depth slice are shared. These240
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characteristics are similar to the hydrological parameters and the spatial characteristics of the input data.241

From the conventional statistic method to the deep paradigm, ResNet has the following three242

outstanding advantages against conventional statistic methods.243

(1) ResNet is provided with the more vital generalization ability. Conventional statistic methods244

cannot explore the complex inner connections of the soil water process, while ResNet avoids directly245

interpreting the physical meaning of the parameters firstly.246

(2) More input variables are used in ResNet. Conventional root depth calculations use only247

precipitation and evaporation, while both meteorological forcings, underlying surface properties, and248

runoff data are considered in ResNet.249

(3) ResNet has faster speed and higher performance. Conventional statistic methods cannot learn250

complex interactions and are slow to compute. However, parallel computing is used in ResNet, and the251

network is complex but much faster. The model is run on a GPU (Nvidia Tesla V100 16GB) cluster and252

takes 758 microseconds per step, about one hour on all global 0.5-degree grids.253

3.4 Training and testing254

The SMSC parameters on the global grids obtained by the calibration algorithm are taken as the255

target labels of the model. On grids with KGE greater than 0, SMSC parameters can be obtained by256

calibrating the hydrological model. However, the hydrological model cannot be built in some areas257

where the model is not applicable, such as highly arid areas. Areas with KGE less than 0 are masked.258

On grids with KGE greater than zero, the samples are divided into the training set and test set259

according to the ratio of 7:3.260

Table 3 shows the learning performance of the training and test sets for different image windows.261

The results show that the recognition network is poor if the image window is too small. The effect of262

10 × 10 image windows is better than that of 5 × 5 grid windows, and the effect of 100 surrounding263

grids on the center grid can be considered for 10 × 10 windows. The Correlation coefficient (R2) of the264

test set increases from 0.59 to 0.76. The computational burden from the increase in image windows is265

no longer as cost-effective as the increase in inefficiency.266

[Please insert Table 3 here]267
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3.5 Permutation importance268

The deep learning network is often considered a black-box model, and here interpretation269

techniques are used in order to better understand the underlying relationships tapped by deep learning.270

Permutation feature importance is a model inspection technique widely used for deep learning271

networks (Altmann et al., 2010). For a fitted predictive model, permutation importance can compute272

the reference score of the model on the dataset. The importance �� for each feature �� defined as:273

�� = � − 1
� �=1

� ��,�� (14)274

where � is the reference score of the model, for instance, the accuracy for a classifier or the correlation275

coefficient (R2) for a regressor, � is each repetition in input factors.276

4. Evaluation of the global soil moisture storage capacity277

4.1 Comparison of the spatial distribution with other parameter datasets278

Figure 2a shows the SMSC values jointly calibrated by setting the SMSC parameters of the three279

models to be the same. The results show that combined objectives for the calibration of three models280

are relatively stricter, with only 45% of the grid KGE greater than zero, which is called the labeling281

area (the opposite corresponding to the constructing area). The SMSC parameters are larger in humid282

areas and smaller in arid areas. The hydrological model is no longer applicable outside the labeling area,283

such as semi-arid and cold regions. Figure 2c shows the probability density distribution of SMSC284

parameters calibrated in the labeling area. It can be found that the distribution of the jointly calibrated285

SMSC parameters is consistent with the distribution of the individually calibrated SMSC parameters.286

Figure 2b shows the spatial distribution of the global SMSC parameters both in the labeling area and287

the constructing area. The constructed SMSC is also larger in humid regions and smaller in arid regions.288

The parameters are larger in high-altitude regions. Figure 2d and Figure 2f show the variation of289

global SMSC with latitude and longitude. The results show that the global SMSC is largest at the290

equator and decreases toward the poles. Figure 2e shows the probability density function of the global291

SMSC with a double-peak distribution. The first peak corresponds to the arid region, and the second292

peak corresponds to the humid region.293
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[Please insert Figure 2 here]294

We compared the spatial distribution of global SMSC with other parameter datasets. Figure 3295

shows estimations of global root zone parameters from previous studies and compares them to global296

SMSC. Root zone storage capacity at 0.5° resolution (SR_CRUWang-Erlandsson, Figure 3a) is estimated by297

computing the maximum moisture deficit with independent energy balance equations by satellite-based298

evaporation from Wang-Erlandsson et al. (2016). Rooting depth at 1.0° resolution (SRSchenk, Figure 3c)299

estimates the rooting depth that contains 95% of all roots from Schenk et al. (2009). By comparing300

these datasets with SMSC, we can see both agreements and significant differences. The purpose is the301

geographic comparison to other soil moisture storage capacity estimates. These comparisons are302

expected to find differences in the spatial distribution between root depth and soil moisture storage303

capacity. All datasets show a relatively similar spatial distribution, decreasing from the equator to the304

poles. All datasets have smaller values in the tropical rainforest region near the equator than our SMSC305

product. SRSchenk tends to overestimate SMSC parameters in the Sahara Desert, Arabian Desert, and306

Western Australian Desert. ET-derived estimated water storage capacity might be relatively small in307

some areas. Figure 3b shows that the roots of vegetation (SR_CRUWang-Erlandsson) may not be so deep,308

especially in the humid region of the equatorial, but our proposed SMSC data is deeper in the humid309

region. The findings indicate that ET-derived estimates of root-zone depth are unable to represent the310

lateral flow and runoff generation. Soil water is not only absorbed by vegetation from root soil and311

stems for evaporation but also retains more capacity for runoff generation and groundwater flow.312

[Please insert Figure 3 here]313

4.2 Model performance of runoff depth in global grids314

We tested runoff depth simulations of the global SMSC dataset on global grids. Gridded-based315

monthly water balance models are established on each 0.5 ° and 0.5 ° grid over the global terrestrial316

land. The SMSC parameters in these models adopt the proposed global SMSC dataset, while other317

parameters are recalibrated. The model parameter SMSC among the three monthly water balance318

models is the same in the proposed dataset constructed by CCN. This parameter is no longer319

recalibrated in further modeling. The inputs are monthly precipitation and evaporation for each grid.320

Monthly runoff depths of GRUN on this grid are used as the observations for model evaluation. Figure321
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4a-c presents the distribution of simulation accuracy for three water balance models on the global grids.322

The models perform well in the humid region, semi-humid region, and most of the semi-arid region.323

The KGE performance of the models is significantly better in the humid region than in the semi-humid324

region and most of the semi-arid region. Figure 4d shows the KGE probability density distributions of325

three models. The results demonstrate that the TVGM model performs the best, with 20% of the grids326

having KGE values above 0.80 and 40% above 0.60. The results also indicate two distinct peaks in the327

KGE distribution of the SWBM model. The peak on the left represents the poor KGE of the SWBM328

model in the semi-humid and most semi-arid regions. Figure 4e shows the cumulative probability329

density distribution of KGE for three models on global grids, and Figure 4f shows the KGE box. What330

stands out in the figure is that the TVGM model has the best KGE, where the average KGE can reach331

0.55, while the SWBM model is the worst.332

As shown in Figure 4, the results indicate that TVGM and DWBM models perform better in the333

cold region. These three models do not take the temperature as the input, and therefore the snowbelt334

module is not considered. All three models do not perform very well in arid and semi-arid areas. The335

water balance model is challenging to simulate monthly runoff in arid areas because of the mismatch of336

the rainfall-runoff relationship.337

[Please insert Figure 4 here]338

4.3 Model performance of streamflow in typical catchments339

Station streamflow is used for the validation of global SMSC parameters. The GRDC dataset is a340

unique collection of river discharge data on a global scale (Peel et al., 2004; Peel et al., 2001). It341

contains daily and monthly river discharge data from over 10,000 stations worldwide. The selected342

validation basins require a basin area of more than 10,000km2 and a monthly runoff record of more343

than five years from 1991 to 2010. Finally, data from 20 stations in different climatic regions are344

selected for validation. These 20 significant rivers are distributed in five different climate zones. Table345

4 lists the simulated KGE of three models in 20 typical catchments, and the average simulation346

accuracy is more than 0.65. Figure 5 shows the dots of simulated streamflow versus observed347

streamflow during the validation periods.348

[Please insert Table 4 here]349
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[Please insert Figure 5 here]350

The spatial patterns presented by the three models would be extraordinarily different if the three351

models were directly applied in the catchment according to the lumped model since different catchment352

areas influence them. Although this approach achieves good simulation accuracy, it does not consider353

the physical significance and spatially seamless alignment. However, the constructed global SMSC354

parameters have an excellent spatial continuity. The average values of the constructed SMSC parameter355

are calculated in 20 basins in different climatic regions as the recommended value of the parameters.356

Figure 6 shows the simulation accuracy of SR_CRUWang-Erlandsson parameters in 20 basins compared357

with the SMSC parameters constructed in this study. The results show higher KGE performance of the358

constructed SMSC parameters in the three selected monthly water balance models in the 20 selected359

basins. Labels of the SMSC parameters are derived from the results of the model parameters, and more360

input information is considered in the construction. The purpose of the comparison is to evaluate the361

proposed dataset from the perspective of hydrological models. SMSC estimated from the model's362

perspective has achieved higher KGE performance and is more practical. The CRUWang_Erlandsson dataset363

is estimated using only two data types, precipitation, and evaporation, but it lacks model validation.364

Even if actual evaporation is also used in the calculation, the SMSC calculated by this method may not365

be able to simulate evaporation accurately because it lacks a model basis. On the contrary, our product366

utilizes a hydrological model, which can simultaneously simulate evaporation, runoff, and soil water367

content and achieve water balance.368

[Please insert Figure 6 here]369

4.4 The sensitivity of input factors selection370

Model input factors of the deep residual network include 15 variables affecting SMSC such as371

global meteorological data, soil and vegetation data, topographical data, and streamflow characteristics.372

These available factors, including meteorological forcings and underlying surface properties.373

Meteorology data include precipitation, potential evaporation, and near-surface temperature, which374

influence these processes such as evaporation, transpiration, and runoff in the water cycle. Soil data375

include soil thickness, root zone depth, soil type, and types of land use, which influence the soil376

structure. As the permutation importance estimate of Figure 7 below shows, the most significant377
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factors influencing the spatial construction of water storage capacity parameters in global grids are the378

precipitation and the type of land use. The precipitation, as the dominant factor in the spatial evolution379

of the SMSC parameter, explains more than 60% of the spatial distribution of SMSC. The precipitation380

and the type of land use directly influence the root zone depth and porosity of vegetation in different381

areas.382

[Please insert Figure 7 here]383

5. Uncertainty of the data384

However, there exists some uncertainty to this dataset. Meteorological data mainly include385

precipitation, temperature, and evaporation. Hydrological models are very sensitive to meteorological386

data, especially precipitation data. Firstly, data have intensively spatial and temporal variability. Most387

of the gird-based meteorological product comes from scattered observation sites, which cannot fully388

describe the spatial characteristics of features. Especially for large watersheds, the observation stations389

in the watershed cannot well represent the spatiotemporal changes, which may eventually affect the390

results of the model simulation. Secondly, there are also errors in the measurement data of the391

observation station, which leads to the uncertainty of the input data.392

In addition to meteorological data as input data, spatial data such as digital elevation, land use data,393

soil type data, etc. are usually required. The accuracy of the spatial data to describe the characteristics394

of the watershed is the premise of the accurate simulation of the model. The resolution of the elevation,395

the accuracy of the land use type and the accuracy of the soil data type all have a certain impact on the396

simulation results. The level of resolution affects the extraction of parameters of the study watershed397

characteristics (slope, slope aspect, water and sediment migration direction, confluence network,398

watershed boundary, etc.), and ultimately affects the accuracy of the product.399

The nonlinearity of the model structure and the correlation of parameters make the model solution400

space possible to have multiple local optimal solutions. The above effects all lead to large uncertainties401

in the process of watershed runoff simulation in the distributed hydrological model.402
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6. Recommendations and limitations for the use of the data403

This product is only limited by the current climatic conditions and ignores future changes. We404

estimated the SMSC based on the meteorological forcings, underlying surface properties, and runoff405

dataset over the calibration and validation period 1902-2014. Results may change when using data406

from different periods. Recent studies show that soil water storage capacity in the root zone changes407

with climate change and deforestation. The vegetation changes the ability to utilize subsoil moisture408

storage and tree cover to respond to arid climates. Additionally, the proposed dataset provides the409

global SMSC parameter dataset mainly for the water balance models at a monthly scale. At the current410

stage, it does not provide insights on quality simulations of low flow and high flow on a daily or hourly411

scale.412

7. Code and data availability413

A global terrestrial SMSC dataset with 0.5 ° spatial resolution is now available. The global414

construction map of SMSC in this study can be gathered from an open-access data server. All input415

factors and the global SMSC data are publicly available as NetCDF files or downloaded from416

smsc_data.zip at Zenodo (https://doi.org/10.5281/zenodo.5598405, Xie (2021)). Python codes are417

available to calculate the basin average SMSC value from grid values in any interested basin on a418

global scale. The Fortran codes for the parameter calibration of gridded-based global monthly water419

balance models are available at420

https://github.com/xiekangwhu/SMSC_monthly_water_balance_models. The Python codes of the deep421

residual network we developed for the global construction map of SMSC are available at422

https://github.com/xiekangwhu/SMSC_deep_residual_network.423

8. Conclusions424

In this paper, a new global SMSC dataset for global hydrological models is constructed by the425

deep residual network at 0.5° resolution by integrating 15 types of meteorological forcings, underlying426

surface properties, and runoff data. Compared with SR_CRUWang-Erlandsson and SRSchenk dataset, the427

results show that the accuracy of the three gridded-based monthly water balance models from high to428

https://doi.org/10.5194/essd-2022-217
Preprint. Discussion started: 8 September 2022
c© Author(s) 2022. CC BY 4.0 License.



17

low is the proposed SMSC, SR_CRUWang-Erlandsson and SRSchenk. Through the interpretation technique of429

the deep residual network, the most significant factors influencing water storage capacity parameters in430

global grids are precipitation and land use.431
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Table 1. Research data and sources.641

Data type Data Spatial
resolution Time span Data/product sources

Meteorology

Precipitation

0.5 degree
January 1901 -
December 2018

(monthly)

Cru TS 4.03 monthly high-resolution grid data
https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_

4.03

Potential
evaporation

Near-surface
temperature

Soil and
vegetation

Soil thickness

0.5 degree /

Global 1km grid soil, weathering layer, and
sedimentary layer thickness published by ORNL in

2016
https://daac.ornl.gov/SOILS/guides/Global_Soil_R

egolith_Sediment.html

Root zone
depth

Global root zone depth products released
by Stockholm university in 2016

http://dx.doi.org/10.5194/hess-20-1459-2016-suppl
ement

Soil type

Upper and lower global soil type data released
by USDA

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/so
ils/use/

Types of land
use

AVHRR land-use types issued
by NOAA

Topography

Slope

0.5 degree /

GMT global 0.5-degree terrain data released
by ISLSCP in 2010

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=10
07

Altitude
Composite
terrain index

CTI

Runoff
characteristic

Average flow

0.5 degree /
GSCD global runoff data set released

by GloH2O in 2015
http://www.gloh2o.org/gscd/

Runoff
coefficient
Baseflow
coefficient
1% flood
discharge

Runoff

Runoff of
catchment
stations

/
January 1991 -
December 2010

(monthly)

GRDC global runoff data center
(Including data from more than 10000 stations

around the world)
https://www.bafg.de/GRDC/EN/Home/homepage_

node.html

Grid runoff 0.5 degree
January 1902 -
December 2014

(monthly)

GRUN global grid runoff depth database released
by the Federal Institute of technology

https://doi.org/10.6084/m9.figshare.9228176
642
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Table 2. Conceptual parameters to be calibrated in hydrological models.643

Model Parameter Physical meaning
Minimum
boundary

Maximum
boundary

DWBM

���� Soil moisture storage capacity (mm) 0 1000
�1 Retardation coefficient 1 5
�2 Evaporation coefficient 1 5
�� Underground runoff coefficient 0.01 1

SWBM

���� Soil moisture storage capacity (mm) 0 1000
�� Surface runoff coefficient 0.1 1
�� Underground runoff coefficient 0.01 1

TVGM

���� Soil moisture storage capacity (mm) 0 1000
�1 Runoff coefficient after soil saturation 0.02 1.0
�2 Soil moisture influence coefficient 1.0 5
�� Soil moisture outflow coefficient 0.005 1
� Evaporation conversion index 0.1 1

644
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Table 3. Results of construction model of global soil moisture storage capacity (SMSC) parameters.645

Image window Time interval
Loss function Evaluating indicator

��� ��� �2

5×5
Training set 0.0032 0.0411 0.8932

Test set 0.0170 0.0666 0.5935

10×10
Training set 0.0021 0.0341 0.9139

Test set 0.0061 0.0510 0.7597

646
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Table 4. Validation of global SMSC parameters in typical catchments.647

Number
Site

name
Longitude Latitude

Drainage

area (km2)
River

KGE (%) of

DWBM model

KGE (%) of

SWBM model

KGE (%) of

TVGM model Basin average

SMSC (mm)
Cal1 Val2 Cal Val Cal Val

1196551 Beibrug 29.99 −22.23 201001 Limpopo 47.06 74.15 53.25 69.67 43.11 41.67 149.84

2181500 Zhimenda 96.6 33.43 137704 Tongtian 49.54 72.26 69.95 77.82 84.71 80.09 121.48

2181900 Datong 117.62 30.77 1705383 Yangtze 55.87 84.52 86.48 91.88 85.75 91.16 206.85

2260500 Sagaing 96.1 21.98 117900 Irrawaddy 78.27 76.35 70.93 68.64 63.22 56.99 365.65

2694450 Waegwan 128.39 36 11195 Naktong 67.81 58.89 66.63 41.78 77.99 44.93 231.37

3268270 Caimancito −64.47 −23.73 25800 San Francisco 67.54 78.11 53.66 83.31 63.44 63.55 228.89

3618090 Cucui −66.85 1.22 61781 Negro 69.13 72.83 69.54 67.53 89.36 89.72 226.27

3624120 Gaviao −66.85 −4.84 162000 Jurua 49.13 66.07 71.06 69.88 88.35 80.24 532.84

3627030 Manicore −61.30 −5.82 1126700 Madeira 87.15 71.24 68.83 72.46 73.24 86.55 370.19

3629000 Obidos-Porto −55.51 −1.95 4640300 Amazonas 73.55 80.47 58.66 58.92 57.02 54.63 388.80

3629150 Fortaleza −57.64 −6.05 358657 Tapajos 39.03 49.10 87.55 74.90 75.24 63.62 428.36

3650745 Ico −38.87 −6.41 12000 Salgado 39.22 46.87 54.93 63.24 58.56 94.82 392.60

4103800 Eagle AK −141.20 64.79 293965 Yukon 70.56 77.55 36.05 46.80 37.01 38.99 95.21

4115100 Salem, OR −123.04 44.94 18855 Willamette 86.86 89.73 80.01 86.28 59.46 66.52 475.76

4115201 Beaver, OR −123.18 46.18 665371 Columbia 58.60 47.52 79.14 76.35 88.81 74.00 358.43

4119100 Paul, MN −93.11 44.93 95312 Mississippi 22.95 14.15 60.29 23.76 60.88 55.06 186.30

4146281 Verona, CA −121.60 38.77 55040 Sacramento 43.65 64.24 70.63 60.40 89.41 88.84 344.22

5109170 Rockfields 142.88 −18.20 10987 Gilbert 52.02 76.95 13.20 50.34 73.34 52.15 245.60

6335180 Worms 8.38 49.64 68827 Rhine 73.97 76.66 78.43 84.00 76.88 78.37 296.07

6342800 Hofkirchen 13.12 48.68 47496 Danube 56.53 46.58 61.31 53.67 69.49 61.30 247.41

Mean KGE 59.42 66.21 64.53 66.08 70.76 68.16 ——

1 Calibration period648
2Validation period649
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List of figures650

Figure 1. Structure of depth residual image recognition in convolutional neural network (CNN) model. (a)651

The spatial distribution of soil moisture storage capacity (SMSC) parameters is obtained by the Shuffled Complex652

Evolution (SCE-UA) algorithm for the joint calibration. (b) the relationship between the input factors and the653

regression SMSC parameters is learned by a deep residual network (ResNet). (c) the SMSC parameter dataset is654

spatially constructed based on the pre-trained ResNet on the grid-scale to fill in data empty areas.655

Figure 2. Spatial distribution of labels and construction results for global soil moisture storage capacity656

(SMSC) parameters. (a) The spatial distribution of the label for deep learning of jointly calibrated SMSC values. (b)657

The spatial distribution of the constructed global SMSC parameters. (c) The probability density distribution of658

SMSC parameters calibrated in the labeling area. (e) The probability density distribution of constructed global659

SMSC parameters. (d) and (f) The distribution of variations of global SMSC with latitude and longitude.660

Figure 3. Spatial distribution of other parameter datasets and the differences with global soil moisture661

storage capacity (SMSC) parameters. (a) The spatial distribution of root zone storage capacity at 0.5° resolution by662

Wang-Erlandsson et al. (2016). (c) The spatial distribution of rooting depth at 0.5° resolution by Schenk et al.663

(2009). (b) and (d) The differences between global SMSC parameters and other parameter datasets.664

Figure 4. Global distribution of Kling-Gupta efficiency (KGE) simulated by GRUN runoff depth on665

grid-scale for three monthly water balance models. (a)The KGE of Dynamic Water Balance Model (DWBM).666

(b) The KGE of Snowbelt-based Water Balance Model (SWBM). (c) The KGE of Time-variant Gain Model667

(TVGM). (d) The probability density distributions of KGE for three models. (e) The cumulative density668

distributions of KGE for three models. (f) The boxplot of KGE for three models.669

Figure 5. Monthly observed streamflow versus simulated streamflow for three monthly water balance670

models in typical catchments. Blue dots represent Dynamic Water Balance Model (DWBM). Green dots671

represent Snowbelt-based Water Balance Model (SWBM). Orange dots represent Time-variant Gain Model672

(TVGM).673

Figure 6. Comparison of constructed SMSC parameter and root zone depth in runoff simulation for674

three monthly water balance models. The left figure represents the simulation accuracy during recalibration675

period. The right figure represents the simulation accuracy during validation period. The dots mean the average676
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values, and the lines mean the median values.677

Figure 7. Spatial correlation between SMSC and input variables by the permutation importance678

measure. Weights of permutation importance estimate represent the spatial correlation. The larger the679

absolute value means the more relevant variables.680

681

https://doi.org/10.5194/essd-2022-217
Preprint. Discussion started: 8 September 2022
c© Author(s) 2022. CC BY 4.0 License.



30

682

Figure 1. Structure of depth residual image recognition in convolutional neural network (CNN) model. (a)683

The spatial distribution of soil moisture storage capacity (SMSC) parameters is obtained by the Shuffled684

Complex Evolution (SCE-UA) algorithm for the joint calibration. (b) the relationship between the input685

factors and the regression SMSC parameters is learned by a deep residual network (ResNet). (c) the SMSC686

parameter dataset is spatially constructed based on the pre-trained ResNet on the grid-scale to fill in data687

empty areas.688
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689

Figure 2. Spatial distribution of labels and construction results for global soil moisture storage capacity690

(SMSC) parameters. (a) The spatial distribution of the label for deep learning of jointly calibrated SMSC691

values. (b) The spatial distribution of the constructed global SMSC parameters. (c) The probability density692

distribution of SMSC parameters calibrated in the labeling area. (e) The probability density distribution of693

constructed global SMSC parameters. (d) and (f) The distribution of variations of global SMSC with694

latitude and longitude.695
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696

Figure 3. Spatial distribution of other parameter datasets and the differences with global soil moisture697

storage capacity (SMSC) parameters. (a) The spatial distribution of root zone storage capacity at 0.5°698

resolution by Wang-Erlandsson et al. (2016). (c) The spatial distribution of rooting depth at 0.5° resolution699

by Schenk et al. (2009). (b) and (d) The differences between global SMSC parameters and other parameter700

datasets.701
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702

Figure 4. Global distribution of Kling-Gupta efficiency (KGE) simulated by GRUN runoff depth on703

grid-scale for three monthly water balance models. (a)The KGE of Dynamic Water Balance Model (DWBM).704

(b) The KGE of Snowbelt-based Water Balance Model (SWBM). (c) The KGE of Time-variant Gain Model705

(TVGM). (d) The probability density distributions of KGE for three models. (e) The cumulative density706

distributions of KGE for three models. (f) The boxplot of KGE for three models.707
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708

709

Figure 5. Monthly observed streamflow versus simulated streamflow for three monthly water balance710

models in typical catchments. Blue dots represent Dynamic Water Balance Model (DWBM). Green dots711

represent Snowbelt-based Water Balance Model (SWBM). Orange dots represent Time-variant Gain Model712

(TVGM).713
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714

715

Figure 6. Comparison of constructed SMSC parameter and root zone depth in runoff simulation for three716

monthly water balance models. The left figure represents the simulation accuracy during recalibration717

period. The right figure represents the simulation accuracy during validation period. The dots mean the718

average values, and the lines mean the median values.719

720
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721

Figure 7. Spatial correlation between SMSC and input variables by the permutation importance722

measure. Weights of permutation importance estimate represent the spatial correlation. The723

larger the absolute value means the more relevant variables.724

725
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