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Response to Reviewer #2 

 

Specific comments 

1. Line 99: There are 113 years in total. However, the authors only indicated 111 years. 

How about the other two years? How do you select the years for calibration and for validation?  

Response:  

Thank you. The other two years are used for warm-up. The warm-up is an adjustment 

process for the model to reach an optimal state. The sentences have been revised as follows: 

Monthly measurements cover the year from 1902 to 2014 in the global grids. The data for 

the first 3 years is used for warm-up, 80 years for calibration, and the remaining 30 years for 

validation.  

 

2. Line 319: What is CCN? 

Response:  

Sorry for the mistake. CNN represents convolutional neural networks. The sentence has 

been revised as follows: 

The model parameter SMSC among the three monthly water balance models is the same 

in the proposed dataset constructed by CNN.  

 

3. Line 391: “Secondly, there are also errors in the measurement data of the observation 

station, which leads to the uncertainty of the input data.” What kind of errors? 

Response:  

We appreciate your comments. The sentence has been revised as follows: 

Secondly, the errors also come from the observation uncertainty of the input data.  Every 

stage of hydrological modelling acquires some uncertainty. This uncertainty can be broadly 

grouped into input forecast uncertainty and hydrological model uncertainty. The input forecast 

uncertainty implies uncertainty due to input data such as precipitation, temperature and other 

metrological inputs to the model (Singh and Dutta, 2017).  

Singh, S.K. and Dutta, S., 2017. Observational uncertainty in hydrological modelling using data depth. Glob. Nest J, 19: 489-

497. 

 

4. Line 641:Table 1 Please introduce the accuracy level of every data used in this study. 

Response:  

Thank you very much.  
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The Climatic Research Unit Timeseries dataset (CRU TS) is a widely used climate dataset 

on a 0.5° latitude by 0.5° longitude grid over all land domains of the world except Antarctica. 

It is derived by the interpolation of monthly climate anomalies from extensive networks of 

weather station observations. CRU TS has good high-frequency agreement with CRUTEM4.6 

(correlation coefficient, 𝑅 = 0.99 globally), UDEL (𝑅 = 0.97 globally) and JRA-55 (𝑅 =

0.99 globally, 1958-2017 only) (Harris et al., 2020). 

The Global Streamflow Characteristics Dataset (GSCD) consists of global maps of 17 

streamflow characteristics, providing information about runoff behavior for the entire land 

surface including ungauged regions. It was constructed by streamflow observations from a 

highly heterogeneous set of 3394 catchments (<10,000 km2) worldwide. The maps were 

compared to equivalent maps derived from the simulated daily runoff of four macroscale 

hydrological models (Beck et al., 2015).  

Soil and vegetation dataset is provided by high-resolution estimates within a global 30 

arc-second (~1 km) grid using the best available data for topography, climate, and geology as 

input (Pelletier et al., 2016).  

Topography dataset contains elevation-based parameters at 0.5° spatial resolutions that 

were developed to support a wide variety of global modeling activities. It is the highest 

resolution database of global coverage of standard elevation-based derivatives (Verdin et al., 

2011). 

The Global Runoff Data Centre (GRDC) is built to provide a global observed hydrological 

data set to complement a specific set of atmospheric data in the framework of the First Global 

GARP Experiment (FGGE). Today the database comprises discharge data of well over 10,000 

gauging stations from all over the world . 

The global grid runoff depth database (GRUN) dataset contains a gridded global 

reconstruction of monthly runoff timeseries. On average GRUN shows higher predictive skills 

than a collection of the global hydrological models, especially with respect to the reproduction 

of the seasonality, dynamics and anomalies of runoff (Ghiggi et al., 2019). 

Therefore, the spatial and temporal resolution of the input information has been added in 

Table 1 as follows: 
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Table 1. Research data and sources. 

Data type Data 
Spatial 

resolution 

Temporal 

resolution 
Data/product sources 

Meteorology 

Precipitation 

0.5 degree 
1901 - 2018 

Monthly 

Cru TS 4.03 monthly high-resolution grid data 

https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.

03 

Potential 

evaporation 

Near-surface 

temperature 

Soil and 

vegetation 

Soil thickness 

0.5 degree Static 

Global 1km grid soil, weathering layer, and 

sedimentary layer thickness published by 

ORNL in 2016 

https://daac.ornl.gov/SOILS/guides/Global_Soil_Reg

olith_Sediment.html 

Root zone depth 

Global root zone depth products released by 

Stockholm university in 2016 

http://dx.doi.org/10.5194/hess-20-1459-2016-

supplement 

Soil type 

Upper and lower global soil type data released 

by USDA 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soil

s/use/ 

Types of land use AVHRR land-use types issued by NOAA 

Topography 

Slope 

0.5 degree Static 

GMT global 0.5-degree terrain data released by 

ISLSCP in 2010 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1007 

Altitude 

Composite terrain 

index CTI 

Runoff 

characteristic 

Average flow 

 

0.5 degree Static 

GSCD global runoff data set released 

by GloH2O in 2015 

http://www.gloh2o.org/gscd/ 

Runoff 

coefficient 

 

Baseflow 

coefficient 

 

1% flood 

discharge 

Runoff 

Runoff of 

catchment 

stations 

Stations 
1991 - 2010 

Monthly 

GRDC global runoff data center 

 (Including data from more than 10000 stations 

around the world) 

https://www.bafg.de/GRDC/EN/Home/homepage_no

de.html 

 

Grid runoff 0.5 degree 
1902 - 2014 

Monthly 

GRUN global grid runoff depth database 

released by the Federal Institute of technology  

https://doi.org/10.6084/m9.figshare.9228176 

 

Harris, I., Osborn, T.J., Jones, P. and Lister, D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate 

climate dataset. Scientific Data, 7(1): 1-18. 

https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.03
https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.03
https://daac.ornl.gov/SOILS/guides/Global_Soil_Regolith_Sediment.html
https://daac.ornl.gov/SOILS/guides/Global_Soil_Regolith_Sediment.html
http://dx.doi.org/10.5194/hess-20-1459-2016-supplement
http://dx.doi.org/10.5194/hess-20-1459-2016-supplement
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1007
http://www.gloh2o.org/gscd/
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://doi.org/10.6084/m9.figshare.9228176
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Beck, H.E., de Roo, A. and van Dijk, A.I.J.M., 2015. Global Maps of Streamflow Characteristics Based on Observations from 

Several Thousand Catchments*. Journal of Hydrometeorology, 16(4): 1478-1501. 

Pelletier, J.D. et al., 2016. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional 

and global land surface modeling. Journal of Advances in Modeling Earth Systems, 8(1): 41-65. 

Verdin, K.L. et al., 2011. ISLSCP II HYDRO1k elevation-derived products. 

Ghiggi, G., Humphrey, V., Seneviratne, S.I. and Gudmundsson, L., 2019. GRUN: an observation-based global gridded runoff 

dataset from 1902 to 2014. Earth System Science Data, 11(4): 1655-1674. 

 

5. Line 645: Table 3 Why do you only test the performance of image window at 5×5 and 

10×10？ 

Response:  

Thank you for the comments. 

The selection of the image window is a trade-off between the level of accuracy and the 

speed of computing. The image window at 5×5 corresponds to the influence of a 2.5° square 

(approximately 250 km) on the center point, while 10×10 corresponds to the influence of a 5° 

square (approximately 500 km). It is generally within this distance that the spatial variables are 

similar, and it is meaningless in farther distance. Additionally, we added the results for the 

smaller image window(3×3). The results show that the recognition network is poor if the image 

window is too small. The computational burden from the increase in image windows is no 

longer as cost-effective as the increase in the correlation coefficient for the image window from 

5×5 to 10×10. 

Table 3. Results of construction model of global soil moisture storage capacity (SMSC) parameters. 

Image window Time interval 
Loss function Evaluating indicator 

𝑀𝑆𝐸 𝑀𝐴𝐸 𝑅2 

3×3 
Training set 0.0116 0.0752 0.7256 

Test set 0.0252 0.0964 0.4867 

5×5 
Training set 0.0032 0.0411 0.8932 

Test set 0.0170 0.0666 0.5935 

10×10 
Training set 0.0021 0.0341 0.9139 

Test set 0.0061 0.0510 0.7597 

 

6. Line 695: Figure 2 The legends of (a) and (b) do not match the color of the content.  

Response:  

Thank you. The legends of (a) and (b) have been modified as follows: 
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Figure 1. Spatial distribution of labels and construction results for global soil moisture storage capacity (SMSC) 

parameters. (a) The spatial distribution of the label for deep learning of jointly calibrated SMSC values. (b) The spatial 

distribution of the constructed global SMSC parameters. (c) The probability density distribution of SMSC parameters 

calibrated in the labeling area. (e) The probability density distribution of constructed global SMSC parameters. (d) 

and (f) The distribution of variations of global SMSC with latitude and longitude. 
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7. Line 701: Figure 3 What are the other parameter datasets? 

Response:  

Thanks for your suggestion. 

Other parameter datasets represent the estimations of global root zone parameters from 

previous studies. They are root zone storage capacity at 0.5° resolution (SR_CRU, Figure 3a) 

from Wang-Erlandsson et al. (2016) and rooting depth at 1.0° resolution (SR, Figure 3c) from 

Schenk et al. (2009).  

The captions of Figure 3 have been revised to avoid confusions as follows: 

 

Figure 3. Spatial distribution of other parameter datasets and the differences with global soil moisture storage capacity 

(SMSC) parameters. (a) The spatial distribution of root zone storage capacity at 0.5° resolution by Wang-Erlandsson 

et al. (2016). (c) The spatial distribution of rooting depth at 0.5° resolution by Schenk et al. (2009). (b) and (d) The 

differences between global SMSC parameters and global root zone parameters from the previous studies. 

Schenk H. J., Jackson R. B., Hall F. G., Collatz G. J., Meeson B. W., Los S. O., Brown De Colstoun E., Landis D. R. Islscp ii 

ecosystem rooting depths. ORNL DAAC, 2009. 

Wang-Erlandsson, L., Bastiaanssen, W. G., Gao, H., Jägermeyr, J., Senay, G. B., Van Dijk, A. I., Guerschman, J. P., Keys, P. 

W., Gordon, L. J., and Savenije, H. H.: Global root zone storage capacity from satellite-based evaporation, Hydrology 

and Earth System Sciences, 20, 1459-1481, 10.5194/hess-20-1459-2016, 2016. 

 

8. Line 701: Figure 3 The legends of (a) and (c) do not match the color of the content. 

Response:  



8 

Thanks for your suggestion. The legends of (a) and (c) have been modified as follows: 

 

Figure 3. Spatial distribution of other parameter datasets and the differences with global soil moisture storage capacity 

(SMSC) parameters. (a) The spatial distribution of root zone storage capacity at 0.5° resolution by Wang-Erlandsson 

et al. (2016). (c) The spatial distribution of rooting depth at 0.5° resolution by Schenk et al. (2009). (b) and (d) The 

differences between global SMSC parameters and global root zone parameters from the previous studies. 

 

9. Line 710: Figure 5 The R2 of streamflow versus three simulated streamflow should be 

displayed in this figure. 

Response:  

We appreciate your comments. Figure 5 has been revised as follows: 
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Figure 5. Monthly observed streamflow versus simulated streamflow for three monthly water balance models in typical 

catchments. Blue dots represent Dynamic Water Balance Model (DWBM). Green dots represent Snowbelt-based Water 

Balance Model (SWBM). Orange dots represent Time-variant Gain Model (TVGM) 

 

10. Line 722: Figure 7 How to calculate weights of permutation importance? Why can the 

spatial correlation be presented by the weights of permutation importance?  

Response:  
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Thanks for your valuable suggestions.  

The evaluation of the permutation importance is to observe how much each feature 

contributes, and then compare the contributions between features by the average value. For a 

fitted predictive model, permutation importance can compute the reference score of the model 

on the dataset. The importance 𝑖𝑗 for each feature 𝑓𝑗 defined as: 

𝑖𝑗 = 𝑠 −
1

𝐾
∑𝑠𝑘,𝑗

𝐾

𝑘=1

 

where s is the reference score of the model, and 𝑘 is each repetition in input factors.  

The accuracy classifier 𝑠 is the spatial correlation coefficient (𝑅2), that is the reason why 

the spatial correlation can be presented by the weights of permutation importance. The 

permutation importance are applied in previous studies of deep learning for spatial analysis (Su 

et al., 2022; Li and Choi, 2021; Sheng et al., 2021). 

Li G, Choi Y. HPC cluster-based user-defined data integration platform for deep learning in geoscience applications[J]. 

Computers & Geosciences, 2021,155:104868. 

Sheng Y, Kong Q, Beroza G C. Network analysis of earthquake ground motion spatial correlation: a case study with the San 

Jacinto seismic nodal array[J]. Geophysical Journal International, 2021,225(3):1704-1713. 

Su Y, Li N, Yang H, Wang F, Sun C, Zhen Z, Zou Z, Ge X. A Feature Importance Analysis Based Solar Irradiance Mapping 

Model Using Multi-channel Satellite Remote Sensing Data: 2022 IEEE/IAS 58th Industrial and Commercial Power 

Systems Technical Conference (I&CPS), 2022. IEEE. 


