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Abstract. For carbon dioxide concentration (XCO2) distribution, the improvement of spatial and temporal resolution is very 

important in some scientific studies (e.g., studies of the carbon cycle and assessment of carbon emissions based on top-down 

theory). However, carbon sniffing satellites based on passive theory (e.g., Gosat-2, OCO-2, and OCO-3) are susceptible to 

cloud and aerosol interference when the data are captured. Therefore, the data collected by carbon sniffing satellites have 

relatively low utilization, especially in some regions where data gaps exist. Here, we present the Carbon Dioxide Coverage 15 

(CDC) dataset, an innovative theory to obtain high spatial and temporal resolution maps of XCO2 distribution by combining 

spatial attributes and extracted temporal attributes from the GOSAT satellite series data. This theory is divided into the 

following three parts. Firstly, several background values in the raw GOSAT data were removed through data pre-processing, 

and for spatial attributes, GOSAT satellite data gap areas were filled by combining adjacent GOSAT data and empirical 

Bayesian kriging (EBK) theory in the study area. Secondly, for the temporal attributes, we constructed a time profile parameter 20 

library, based on the GOSAT data of the time series to extract the temporal parameters from a specific formula at each point 

of the study area. Finally, for the integration of temporal and spatial information, based on the GOSAT satellite data and the 

populated data based on spatial attributes, we assign the temporal parameter information from the time parameter library to 

each pixel location in the study area, combining the transfer component analysis (TCA) theory, and then combine the assigned 

parameters with specific formulas to complete the prediction of XCO2 distribution. For temporal resolution, both the 25 

GOSAT_FTS_L3_V2.95 and CDC datasets are monthly-averaged resolution datasets from 2010 to 2020. And for spatial 

resolution, the CDC dataset is 0.25° resolution with a significant improvement compared to GOSAT_FTS_L3_V2.95 which 

is 2.5° resolution. And the dataset contained 136 files. Besides, for the data validation part, we used OCO-2 satellite data from 

2009 to 2020 and TCCON data at mid and low latitudes, respectively. This CDC dataset and the original data from the TCCON 

sites were compared on a monthly-averaged scale. And the results showed that R2 was 0.9686, and RMSE was 1.3811 ppm. 30 

We also derived statistical monthly averaged XCO2 from OCO-2 data and compared it with the data set from our theory. And 

our evaluation index R was greater than 0.7, by comparison with OCO-2 during 2014-2020. Finally, to assess the accuracy of 
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the algorithm, we compared the predicted results with the input data for the period of 2009-2020. And the comparison results 

show that the mean value of R2 is 0.93 and the mean value of RMSE is 0.53 ppm during 2010-2020. Data gaps produced by 

sniffer satellites are disturbed by factors such as clouds and aerosols and can be filled by this mapping technique is mentioned 35 

in this paper. This technique improves the utilization of XCO2 and the accuracy and resolution of the CDC dataset is sufficient 

for scientific applications. And the CDC dataset is publicly available at https://doi.org/10.6084/m9.figshare.17826404.v4 

(Zhang et al., 2022), which is of significance for a multitude of scientific carbon research. 

1 Introduction 

Global climate change exerts increased risks and impacts on natural and human life, such as rising sea levels, heat waves, 40 

floods and droughts, erosion of food security, and slowing economic growth (Field et al., 2014; Diaz et al., 2017). The 

skyrocketing level of greenhouse gas in recent decades is the main cause of global climate change (Black et al., 2011). 

Therefore, monitoring the changes in spatiotemporal carbon dioxide concentration (XCO2) in the global atmosphere is crucial. 

The sniffer satellites in orbit at present are carrying passive detectors (Basilio et al., 2014; Nakajima et al., 2017), and the 

quality of the data collected is limited by several factors, such as cloud cover, lack of observations in high-latitude areas and 45 

at night, and sensitivity to aerosols. Therefore, the acquisition of spatio-temporal maps of XCO2 distribution with high accuracy 

and resolution is essential to facilitate the study of the carbon cycle, carbon sources, carbon sinks, carbon neutrality, and carbon 

emissions assessed through top-down theory. 

Scientists have conducted downscaling studies on carbon detection series satellite data. Tomasada et al. (2009;2008) and Liu 

et al. (2012) generated monthly-averaged CO2 distribution maps by using ordinary kriging interpolation of GOSAT Level 2 50 

(L2) products. Hammerling et al. (2012) obtained CO2 maps mainly by processing simulated satellite observations by using a 

moving kriging window. Mueller et al. (2008) reconstructed global monthly-averaged CO2 fluxes from ground observations 

by using the geostatistical inverse modeling theory. Moreover, Katzfuss et al. (2011;2012) completed spatiotemporal 

smoothing of global XCO2 data, the theory of which focused on a fully Bayesian hierarchical approach. Zeng et al. (2013) 

proposed a spatiotemporal kriging theory, applied it to model GOSAT data in China, and obtained the monthly-averaged 55 

distribution of XCO2.  

The interpolation method commonly used for satellite XCO2 observations is the conventional geostatistical spatial prediction 

method, which considers spatial autocorrelation only (Tomosada et al. 2009; Tomosada et al. 2008; Liu et al. 2012). This 

method requires a long time series of data so as to ensure sufficient data for stable variometric estimations, but it ignores the 

time structure in the data. In addition, on the basis of spatial interpolation, several scholars further integrated time information 60 

into the interpolation method and obtained good results (Zeng et al. 2013; Yang et al. 2020; Gribov et al. 2012; Ma et al. 2021). 

Although these methods produce good results from a mathematical point of view, in studies that utilized these methods, the 

prior time profile information of XCO2 was rarely considered, resulting in insufficient adjustment of the temporal information, 

as reflected by the large differences between the monthly-averaged XCO2 and the true value. Therefore, in this study, we 
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integrate the prior information of the original data into a new spatiotemporal interpolation theory that considers the time 65 

variation of concentration distribution to effectively improve data accuracy. In other words, we propose a new method to 

improve the utilization of XCO2 data. First, several background values in the raw GOSAT data were removed through data 

pre-processing, and for spatial attributes, GOSAT satellite data gap areas were filled by combining adjacent GOSAT data and 

empirical Bayesian kriging (EBK) theory in the study area. Secondly, for the temporal attributes, we constructed a time profile 

parameter library, based on the GOSAT data of the time series to extract the temporal parameters from a specific formula at 70 

each point of the study area. Finally, for the integration of temporal and spatial information, based on the GOSAT satellite 

data and the populated data based on spatial attributes, we assign the temporal parameter information from the time parameter 

library to each pixel location in the study area, combining the transfer component analysis (TCA) theory, and then combine 

the assigned parameters with specific formulas to complete the prediction of XCO2 distribution. 

The focus of this work is to provide a global dataset of the monthly-averaged XCO2 at 0.25° based on the theory presented in 75 

the paper and the discrete XCO2 measured by the GOSAT satellite. The CDC dataset extends from 2009 to 2020 and from 50° 

S to 50° N.  The validation of the CDC dataset will be performed by comparing it with those from OCO-2, TCCON, and the 

input GOSAT dataset (which was not involved in the generation of the CDC dataset). Namely, the accuracy validation of the 

CDC dataset is divided into the following parts in this paper. First, based on the theory proposed in this work and the 

GOSAT_L3 data, we compare the spatio-temporal prediction data generated in each TCCON site with the data from the 80 

corresponding TCCON site. Second, we derived statistical monthly-averaged XCO2 from OCO-2 data and compared it with 

the data set from our theory. Finally, to assess the accuracy of the algorithm, we compared the results of the model predictions 

with the input data for the period 2009-2020. 

The advantages of the global CDC dataset are (1) its large spatial coverage (From approximately 55° S to 55° N with a 

resolution of 0.25°) and (2) 12-year time series (Monthly-averaged XCO2 from 2009 to 2020). Thus, the CDC dataset can be 85 

used to study the global XCO2 at timescales ranging from seasons to decades and from cities to countries.  Besides, the XCO2 

data calculated by the model presented in this paper can be input into the atmospheric chemical transport model and can also 

contribute to the study of the carbon cycle. And the satellite data of global observations (such as OCO-2, OCO-3, GOSAT, 

GOSAT-2 and Tansat) have been widely used for the calculation of global carbon sources and sinks. Therefore, this technique 

improves the utilization of XCO2 and the accuracy and resolution of the CDC dataset is sufficient for scientific applications. 90 

Considering that GOSAT can help to obtain XCO2 at the globle scale, whose data is used as the primary dataset in this work. 

It enables the development of strategies to reduce XCO2 at the global scale. The dataset and related codes are publicly available 

at https://doi.org/10.6084/m9.figshare.17826404.v4 (Zhang et al., 2022), which are of significance for a multitude of scientific 

research and applications. 
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2 Materials and Methods 95 

2.1 Data description 

The time span of GOSAT satellite data (2009–2020) is longer than that of OCO-2, OCO-3, and Tansat. Thus, we selected the 

bias-corrected data of GOSAT_FTS_L3_V2.95. And the accuracy of the comparison between the GOSAT data product and 

the TCCON site was 0.56 ppm (Noël et al. 2021; Watanabe et al. 2015;). And the GOSAT orbits at an altitude of approximately 

666 km, with 10.5 km of spatial resolution and three-day temporal resolution. The time resolution of GOSAT-2 satellite is 6 100 

days, IFOV is 9.7km.  

The GOSAT and GOSAT-2 satellites have been operational since 2009 and 2018, respectively, and the data collected by the 

GOSAT-1/2 satellites have the potential to reveal new information on the carbon cycle. Studies of the carbon cycle have been 

carried out based on atmospheric chemistry models. Such models usually require input of measured XCO2 data to constrain 

the atmospheric chemistry model. However, the OCO-2_L2_Lite_FP9r provides data locations that are gradually shifted over 105 

time by satellite observations. And the GOSAT_L3 product only provides a long time series of cumulative observations for a 

fixed location, thus large vacant data areas exist in the global for the GOSAT_L3 product. Our proposed monthly-averaged 

XCO2 map can complete the carbon cycle input on a large scale spatially and over a long time series. Therefore, our monthly-

averaged XCO2 map is helpful for carbon cycle studies. Because the six data channels of the sensor carried by the GOSAT 

satellite operate in the near-infrared part of the solar spectrum, the GOSAT satellite cannot collect data when the Earth reflects 110 

little sunlight, such as in polar regions during winter. For additional instrument’s information, readers may refer to 

http://www.gosat.nies.go.jp/en/about_2_observe.html. Furthermore, the GOSAT-1/2 satellite provides column-averaged 

XCO2 by measuring the spectrum reflected by sunlight in the infrared region over a global scale. However, the interference of 

clouds and aerosols offen results in a sparse spatiotemporal coverage for XCO2 products of GOSAT.  

2.2 Validation data 115 

To evaluate the accuracy of the monthly-averaged XCO2 data from our algorithm, we used global data of the Total Carbon 

Column Observing Network (TCCON) during 2009-2020. TCCON ( Iraci et al. 2017; Dubey et al. 2017; Wennberg et al. 

2017; Dubey et al. 2017; Blumenstock et al. 2017; Feist et al. 2017; Warneke et al. 2017; Sussmann et al. 2017; Sussmann et 

al. 2017; Petri et al. 2017; Maziere et al. 2017; Morino et al. 2017; Goo et al. 2017; Shiomi et al. 2017; Morino et al. 2017; 

Morino et al. 2017; Griffith et al. 2017; Pollard et al. 2017; Sherlock et al. 2017; Liu et al. 2017; Wennberg et al. 2017; 120 

Wennberg et al. 2017;) is composed of ground-based Fourier transform spectrometers that record direct solar spectra in the 

near-infrared spectral region. And we show the global distribution of TCCON sites in Figure 1. The spectrometer used in 

TCCON can provide accurate and precise column-averaged abundances of CO2. And the results showed that R2 was 0.9686, 

and RMSE was 1.3811. We also collected the original XCO2 from OCO-2 for comparison and to obtain abundant observations 

of XCO2 from OCO-2 in a large range. And our evaluation index R was greater than 0.7, by comparison with OCO-2 during 125 

2014-2020. 
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2.3 Theoretical framework 

The framework in Figure 2 depicts the general methodology. The method is divided into three parts: Spatial Prediction Through 

EBK Theory, Prior Time Curve Parameter Library, and Integration of Temporal Attributes through TCA Theory, respectively. 

In the Spatial Prediction Through EBK Theory section, the XCO2 gaps are filled in the spatial attributes through EBK Theory. 130 

In the Prior Time Curve Parameter Library section, a time profile parameter library is constructed to express the temporal 

attributes. In the Integration of Temporal Attributes through TCA Theory section, temporal and spatial information is 

integrated based on TCA theory, and then combine the assigned parameters with specific formulas to complete the prediction 

of XCO2 distribution.   

2.3.1 Spatial Prediction Through EBK Theory 135 

To obtain the distributions of monthly-averaged XCO2 in the study area, we performed monthly-averaged calculations on the 

raw GOSAT_L3 data on the basis of a 0.25° grid for each month separately. Then, we used the existing EBK method to fill 

the areas not covered effectively and reasonably by the GOSAT data in each month. EBK can automatically perform the most 

difficult steps in the process of building an effective kriging model (Gribov et al. 2012; Krivoruchko et al.). The EBK can 

automatically calculate parameters through the process of constructing subsets and simulations, while the same type of Kriging 140 

interpolation requires manual adjustment of parameters to receive accurate results (Krivoruchko et al. 2012; Krivoruchko et 

al.2019). And weighted least squares is used to estimate the semi-variogram in the same type kriging interpolation method, 

but the parameters in EBK are estimated by the limited maximum likelihood method. And the EBK method differs from other 

kriging methods in that other kriging methods assume that the estimated semi-variograms is the true semi-variograms of the 

interpolated region, and use single variogram to predict the value of the unknown location. But the EBK method estimates the 145 

error of the semi-variograms. And the EBK theory will be more accurate compared to other kriging theories because it takes 

into account the uncertainty involved in the estimation of the semi-variogram (Pilz et al.2007). Therefore, we choose EBK 

interpolation method as the data processing method. 

2.3.2 Prior Time Curve Parameter Library 

To fill the region of data gaps in space, we use EBK theory in Section 2.3.1. However, this EBK theory only considers the 150 

adjacent XCO2 data in the current month at the data gap location. Then, using only a theory based on spatial attributes to fill 

the data gap locations would have a problem: the relationship between XCO2 data at adjacent times is cut off from a continuous 

time scale. Thus, based on EBK theory, data gap filling may result in the current month being anomalous relative to XCO2 at 

adjacent times.    

For this reason, we constructed a time profile parameter library, based on the GOSAT data of the time series to extract the 155 

temporal parameters from a specific formula at each point of the study area. We used GOSAT_L3 data as the input to build 

the time curve library because the data of GOSAT_L3 stably provide the monthly-averaged XCO2 data of successive months 
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at the global scale. Furthermore, we used Eq. (1) to express the time change of XCO2 and to fit the GOSAT_L3 data for 

obtaining the parameters a and b. 

𝐹(𝑡) = 𝑎 + 𝑏 ∗ 𝑡 + 𝑐 ∗ cos /!"#
$
0 + 𝑑 ∗ sin /!"#

$
0 +𝑒 ∗ cos /!"#

$
0 + 𝑔 ∗ sin /!"#

$
0 ,	        (1)   160 

where 𝑎 refers to the yearly averaged XCO2; 𝑐 , 𝑑, 𝑒, and 𝑔 are the coefficients of the seasonal component; 𝑏 is the coefficient 

of the interannual component; 𝑓 is the sampling frequency (𝑓 = 12 for a year); and 𝑡 is the sampling interval.   

2.3.3 Integration of Temporal Attributes through TCA Theory 

To fill the XCO2 gap region, we used the EBK theory based on spatial attributes in Section 2.3.1, and constructed a time profile 

parameter library based on temporal attributes in Section 2.3.2. But the problem is: how to merge the parameters representing 165 

temporal attributes in the time profile parameter library with the filled XCO2 gaps based on spatial attributes (namely, the EBK 

theory)? The TCA theory solves the allocation problem of parameters 𝑏 and 𝑐, which represent the XCO2 time profile of the 

whole research area in the time curve parameter library. First, TCA assumes the same conditional distribution of source and 

target domains. second, maps the data into high-dimensional reproducing kernel Hilbert space, and then uses maximum mean 

discrepancy to find a mapping matrix that minimizes the marginal distribution between different domains to increase the source 170 

domain the similarity with the target domain. finally, use the data of the source and target domains and the mapping matrix to 

train the classifier and complete the labeling of the target domain. The core of TCA is to find a mapping matrix that satisfies 

the conditions (Dong et al. 2021; Pan et al. 2010; Dong et al. 2020; Dong et al. 2017). 

In this study, for the spatial point locations corresponding to the temporal profile parameter library, the fitted data are set as 

the source domain based on Eq (1). And, the spatial interpolation data are set as the target domain based on EBK theory in 175 

the study area. Thus, each temporal profile was distributed from the source domain to the corresponding target domain based 

on TCA theory transfer learning. Each pixel was again fitted based on Equation 1, combined with the time-adjusted parameters 

𝑐 , 𝑑, 𝑒, and 𝑔, assigned by TCA theory in the target domain from the temporal profile parameter library, in order to obtain the 

remaining parameters 𝑎	and 𝑏. And the final fitted data represent the spatio-temporal interpolation data. 

2.4 Accuracy Assessment 180 

The accuracy verification process was divided into three main parts. First, this CDC dataset and the original data from the 

TCCON sites were compared on a monthly-averaged scale. Second, we derived statistical monthly-averaged XCO2 from OCO-

2 data and compared it with the data set from our theory. Finally, to assess the accuracy of the algorithm, we compared the 

results of the model predictions with the input data for the period 2009-2020. 

To quantify the rationality of the proposed theory in this paper, the coefficient of determination (R2) and the root mean square 185 

error (RMSE) are chosen in this manuscript. The R2 can be used to evaluate the linear correlation between the results and the 

actual values.  The RMSE is used to evaluate the bias of the prediction. The RMSE and R2 can be defined as follows： 
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RMSE = =%
&
∑ |𝑃' − 𝑅'|!&
'(% ,       (2) 

𝑦 = %
&
∑ 𝑃'&
'(% ,         (3) 

𝑅! = 1 −
) (+!,-!)"
#
!$%

) (+!,/)"
#
!$%

,               (4) 190 

where 𝑁 is the number of prediction locations, 𝑃' 	is the predicted value, and 𝑅' is the observed value. 

 3 Results 

3.1 Evaluation using TCCON observations 

The monthly-average XCO2 distribution of the CDC dataset products from 2010 to 2020 is presented from Figure 7 to Figure 

17. And the data dictionary corresponding to the products we show in Table 3. Considering the range of XCO2 predicted by 195 

the algorithm, we matched the predicted monthly-averaged XCO2 from our algorithm with the measured monthly-averaged 

XCO2 from TCCON sites at low- and mid-latitudes at the global scale from 2009 to 2020. Then, we used two mathematical 

indicators (R2 and RMSE) to quantitatively evaluate our algorithm. Table 1 lists the statistics for the predicted XCO2 and 

TCCON-observed XCO2. Our algorithm’s R2 is above 0.95, and its RMSE is below 1.5 in most of the individual TCCON sites. 

We also comprehensively analyzed the predicted data in 24 TCCON sites. The results showed that R2 was 0.9686, and RMSE 200 

was 1.3811. Pearson’s correlation coefficient was adopted to evaluate the relationship between the predicted XCO2 and the 

XCO2 from TCCON sites. We annotated P<0.01 in Table 1 to indicate that the data have a strong statistical correlation. Figure 

3 shows the predicted XCO2 and XCO2 observations at 23 TCCON sites. Compared with other similar works, the overall 

evaluation metric RMSE for our product data was 1.38 and improved by 22.9 % (Li et al. 2022; Zeng et al. 2014), and the 

spatial resolution (0.25°) became more refined compared with the mainstream spatial resolution of 1°. The time span of the 205 

data set is 12 years from 2009 to 2020. Therefore, our data set fully satisfies the calculations of carbon sources, sinks, and 

emissions in a long time series. 

3.2 Evaluation using OCO-2 observations 

To evaluate the accuracy of the algorithm’s predicted data at the global scale, we considered another greenhouse gas satellite, 

OCO-2, from the United States. OCO-2 and GOSAT satellites are XCO2 monitoring satellites that use the passive inversion 210 

mode. Although the sensors onboard the two satellites are different, the data from both are a measure of XCO2 columns. 

Several scholars have compared XCO2 data from OCO-2 and GOSAT-2 and concluded that the observed data values of the 

two satellites are consistent and smooth (Liang et al. 2017). For these reasons, we selected measured XCO2 data from OCO-2 

as a comparison for verification. By doing so, we can verify our products in a wider range and with more data than fixed 

TCCON sites. We removed bad data in accordance with the data quality label provided by OCO-2 and obtained the monthly- 215 
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averaged XCO2 data through statistics. The statistical results showed that all R values were greater than 0.7, and a significant 

correlation was observed at the 0.01 level (Table 2). OCO-2 data services were opened and closed in 2014 and 2020, 

respectively, and we could only obtain partial OCO-2 data. Therefore, our evaluation index (R) is relatively low in 2014 and 

2020 due to the insufficient data volume. Accordingly, a density scatter diagram of each year is drawn in Figure 4, and most 

of the data are distributed on the 1:1 line. The color change from blue to red in Figure 4 indicates a gradual increase in data 220 

overlap. Furthermore, the comparison results distributed near the 1:1 line are high-density data in Figure 4. The comparison 

of OCO-2 data during 2014–2020 revealed that our data have high accuracy and stability. We found multiple parts per million 

deviations present between the OCO-2 and algorithm products in Figure 4, which is due to the difference in revisit period. 

Compared to the revisit period of 16 days for OCO-2, the repeat period of GOSAT-2 satellite is 6 days. Therefore, GOSAT 

will can sample more data than OCO-2 in a month's time. Besides, the official algorithms of OCO-2 and GOSAT-2 products 225 

are different, so the model results generated based on GOSAT-2 data will produce multiple parts per million deviations 

compared to the OCO-2 product during 2015-2019 period. 

3.3 Evaluation using GOSAT_L3 observations  

To assess the accuracy of the algorithm, we compared the results of the model predictions with the input data for the period 

2009-2020. To validate evenly globally, we removed one column of GOSAT_L3 data for each 20° longitude interval. The 230 

removed data will be used as the validation set for validation. And this R2 and RMSE are used as evaluation metrics to evaluate 

the validation set and the predicted data. Besides, we show the validation results of the CDC dataset according to the year 

interval in Figure 5 from 2009 to 2020. And the comparison results show that the mean value of R2 is 0.93 and the mean value 

of RMSE is 0.53 ppm during 2010-2020. This indicates that the accuracy of our data products is recognized from the 

GOSAT_L3 input data. In Figure 6, we show the errors for each year of predicted data. And, the fluctuations of the error bands 235 

shaded in Figure 6 are small, which indicates that the errors of the data set are in a stable state from 2010 to 2020. Because of 

the data from June to December in 2009, the low precision metrics indicate that the model is not suitable for incomplete years. 

In general, products from our models can fill the vacant areas of XCO2 globally. As described in the theory section, our method 

required the input of 12 consecutive months of XCO2 data to make predictions, with the ideal data input period being from 

January to December. Because satellite observations are missing in some years (e.g., 2009, 2014, and 2015), we need to 240 

combine adjacent months to complete a continuous time period of data input. Therefore, the temporal structure of this data 

input may have an impact on the accuracy of the model. 

3.4 Evaluating Dataset Uncertainty 

We divided the data uncertainty into three categories. This label '1' indicates that there are no satellite observations at the 

location where the label is located, and that the spatial and temporal properties of this location are adjusted. In other words, 245 

the error of the data product at the position indicated by label '1' may be the largest in the three types of labels. This label '2' 

represents the presence of GOSAT-2_L3 observations at the location where the label is located, but with the temporal attribute 
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adjusted. That is, the error of the data product at the location indicated by label '2' may be small, and this kind of data has 

medium error in the three types of labels. This label ‘3’represents the presence of GOSAT-2_L3 data from satellite observations 

at the location where the label is located, and the data from this location are used to build the data for the time profile library. 250 

That is, the data product error at the position indicated by label '3' is minimal. Finally, we added a data layer 'uncertainty' to 

show the uncertainty in the latest dataset.   

4 Data and code availability  

Version 3 of the CDC Database is available in h5 format at https://doi.org/10.6084/m9.figshare.17826404.v4 (Zhang et al., 

2022). For the data extraction approach and the data dictionary of the CDC dataset, we provide the ReadMe.pdf file in the 255 

CDC dataset repository. For the introduction of data extraction in the ReadMe.pdf file, it contains Panoly and HDFView 

software as well as read examples through python platform. TCCON dataset can be accessed https://tccondata.org/. Because 

the CDC dataset range is covered at mid to low latitudes, we match the latitude range of the CDC dataset (namely, 

approximately from [55N, 55S]) with the corresponding TCOON site data on the TCCON website. Besides, the OCO-2 dataset 

can be accessed https://disc.gsfc.nasa.gov/datasets?page=1&keywords=OCO-2. And, the OCO-2 data version number used in 260 

the validation set is OCO2_L2_Lite_FP 9r. The compressed code has been uploaded to the repository and the file name is 

Code.zip in the RawDataAndCode folder of the data repository. 

5 Conclusions  

In this paper, we propose a new method to improve the utilization of XCO2 data (as shown in Figure 7). First, several 

background values in the raw GOSAT data were removed through data pre-processing, and for spatial attributes, GOSAT 265 

satellite data gap areas were filled by combining adjacent GOSAT data and empirical Bayesian kriging (EBK) theory in the 

study area. Secondly, for the temporal attributes, we constructed a time profile parameter library, based on the GOSAT data 

of the time series to extract the temporal parameters from a specific formula at each point of the study area. Finally, for the 

integration of temporal and spatial information, based on the GOSAT satellite data and the populated data based on spatial 

attributes, we assign the temporal parameter information from the time parameter library to each pixel location in the study 270 

area, combining the transfer component analysis (TCA) theory, and then combine the assigned parameters with specific 

formulas to complete the prediction of XCO2 distribution. 

Besides, we evaluated the accuracy of the algorithm through three parts. First, this CDC dataset and the original data from the 

TCCON sites were compared on a monthly-averaged scale. And the results showed that R2 was 0.9686, and RMSE was 1.3811; 

Second, we derived statistical monthly-averaged XCO2 from OCO-2 data and compared it with the data set from our theory. 275 

And our evaluation index R was greater than 0.7, by comparison with OCO-2 during 2014-2020; Finally, to assess the accuracy 
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of the algorithm, we compared the results of the model predictions with the input data for the period 2009-2020. And the 

comparison results show that the mean value of R2 is 0.93 and the mean value of RMSE is 0.53 ppm during 2010-2020. 

In general, we obtained XCO2 based on GOSAT-2 data that can accurately fill the XCO2 gap region in the global through the 

model presented in this paper from 2009 to 2020. And for the data coverage, our data area mainly covers the middle and low 280 

latitudes in the global. Besides, the XCO2 data calculated by the model presented in this paper can be input into the atmospheric 

chemical transport model and can also contribute to the study of the carbon cycle. And the satellite data of global observations 

(such as OCO-2, OCO-3, GOSAT, GOSAT-2 and Tansat) have been widely used for the calculation of global carbon sources 

and sinks. This mapping technique with high accuracy and resolution can fill the spatiotemporal gaps in satellite measurement, 

which can meet the needs of scientific applications. And the GOSAT is the primary dataset being used in this work. It enables 285 

the development of strategies to reduce XCO2 at the global scale.  
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Table 1. Geographic locations of TCCON sites used for validation and the statistics used to compare predicted XCO2 and 

TCCON XCO2 observations. 

Tccon sites (Site abbreviations) Longitude Latitude 𝑅! RMSE 

Jet Propulsion Laboratory (JC) -118.18 34.20 0.98** 1.07 

Caltech (CI) -118.13 34.14 0.97** 0.95 

Edwards (DF) -117.88 34.96 0.98** 0.82 

Four Corners (FC) -108.48 36.80 0.96** 0.31 

Lamont (OC) -97.49 36.60 0.98** 1.04 

Park Falls (PA) -90.27 45.94 0.98** 1.24 

Manaus (MA) -60.60 -3.21 0.88** 0.64 

Izana (IZ) -16.48 28.30 0.98** 1.18 

Ascension Island (AE) -14.33 -7.92 0.94** 0.93 

Orléans (OR) 2.11 47.97 0.99** 0.95 

Zugspitze (ZS) 10.98 47.42 0.92** 1.52 

Garmisch (GM) 11.06 47.48 0.98** 1.05 

Nicosia (NI) 33.38 35.14 0.93** 0.73 

Réunion Island (RA) 55.49 -20.90 0.96** 1.23 

Hefei (HF) 117.17 31.90 0.87** 1.51 

Burgos (BU) 120.65 18.53 0.89** 1.01 

Anmeyondo (AN) 120.65 36.54 0.90** 1.20 

Saga (JS) 130.29 33.24 0.97** 1.26 

Edwards (DB) 130.89 -12.43 0.99** 0.75 

Tsukuba (TK) 140.12 36.05 0.91** 1.89 

Rikubetsu (RJ) 143.77 43.46 0.95** 1.17 

Wollongong (WG) 150.88 -34.41 0.99** 0.82 

Lauder01&02&03 (LL) 169.68 -45.04 0.97** 1.44 

All sites - - 0.97** 1.38 

** At the 0.01 level (two-tailed), the correlation is significant. 440 

 

 

https://doi.org/10.5194/essd-2022-215
Preprint. Discussion started: 19 July 2022
c© Author(s) 2022. CC BY 4.0 License.



16 
 

 

 

 445 

 

 

 

Table 2. Statistics for predicted monthly-averaged XCO2 and OCO-2 monthly-averaged XCO2 observations. 

Year 𝑅 Nums 

2014 0.37** 129089 

2015 0.74** 586906 

2016 0.75** 789007 

2017 0.75** 641161 

2018 0.70** 768083 

2019 0.70** 768083 

2020 0.72** 28564 

** At the 0.01 level (two-tailed), the correlation is significant. 450 
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Table 3. The data dictionary for the CDC dataset 

Number field names Data type Unit Further description 

1 Latitude Matrix (Degrees, 

minute) 

Point of latitude 

2 Longitude Matrix (Degrees, 

minute) 

Point of longitude 

3 Spatial XCO2 Matrix ppm The result of spatial interpolation 

4 Spatiotemporal XCO2 Matrix ppm The result of spatio-temporal 

interpolation 

5 Parment a Matrix - Model parameter a 

6 Parment b Matrix - Model parameter b 

7 Parment c Matrix - Model parameter c 

8 Parment d Matrix - Model parameter d 

9 Parment e Matrix - Model parameter c 

10 Parment g Matrix - Model parameter g 

11 RMSE Matrix - Model evaluation index 

12 R Square Matrix - Model evaluation index 

13 Code Version Float - Code version 

14 Spatial Resolution Float - Spatial resolution 

15 Numbers of valid months Int - Number of valid months in a year 

16 Labels TCA Int - Label 

17 Uncertain Int - Uncertain label 

18 Time Curve Parameter Library Matrix - Spatial position coordinates in the 

time curve parameter library 
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Figure 1. Map showing the location of TCCON sites in global. 485 
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Figure 2. Framework of the proposed methodology. 
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 515 
Figure 3. Scatter plots of predicted XCO2 and XCO2 observations at 23 TCCON sites. P XCO2 is the predicted XCO2. T XCO2 

is the TCCON XCO2. 
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Figure 4. Density scatter plots of predicted XCO2 and observed one from OCO-2. 
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Figure 5. Scatter plots of predicted XCO2 and XCO2 observed from GOSAT_L3. P XCO2 is the predicted XCO2. T XCO2 is 

the GOSAT_L3 XCO2. The blue dots in the graph represent the raw data in different years. The yellow line represents the line 

where the original data was fitted. 545 
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 555 

 

 
Figure 6. Error with graph of predicted XCO2 from 2009 to 2020. PXCO2 is the predicted XCO2. The blue shading represents 

the standard deviation of the CDC data set for the screened locations in the corresponding year in the figure. The yellow dots 

represent the mean of the CDC data set for the screened locations in the corresponding year in the figure. 560 
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Figure 7. Product data from Our Algorithm in 2010. This CDC dataset covers approximately from 55°N to 55°S, with a spatial 

resolution of 0.25°. 575 
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 585 
Figure 8. Product data from Our Algorithm in 2011. This CDC dataset covers approximately from 55°N to 55°S, with a spatial 

resolution of 0.25°. 
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 595 
Figure 9. Product data from Our Algorithm in 2012. This CDC dataset covers approximately from 55°N to 55°S, with a spatial 

resolution of 0.25°. 
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Figure 10. Product data from Our Algorithm in 2013. This CDC dataset covers approximately from 55°N to 55°S, with a 610 

spatial resolution of 0.25°. 
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 620 

 
Figure 11. Product data from Our Algorithm in 2014. This CDC dataset covers approximately from 55°N to 55°S, with a 

spatial resolution of 0.25°. 
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Figure 12. Product data from Our Algorithm in 2015. This CDC dataset covers approximately from 55°N to 55°S, with a 

spatial resolution of 0.25°. 635 
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Figure 13. Product data from Our Algorithm in 2016. This CDC dataset covers approximately from 55°N to 55°S, with a 645 

spatial resolution of 0.25°. 
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Figure 14. Product data from Our Algorithm in 2017. This CDC dataset covers approximately from 55°N to 55°S, with a 

spatial resolution of 0.25°. 
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Figure 15. Product data from Our Algorithm in 2018. This CDC dataset covers approximately from 55°N to 55°S, with a 

spatial resolution of 0.25°. 670 
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Figure 16. Product data from Our Algorithm in 2019. This CDC dataset covers approximately from 55°N to 55°S, with a 

spatial resolution of 0.25°. 
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Figure 17. Product data from Our Algorithm in 2020. This CDC dataset covers approximately from 55°N to 55°S, with a 

spatial resolution of 0.25°. 695 
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