Supplement of "National CO₂ budgets (2015–2020) inferred from atmospheric CO₂ observations in support of the Global Stocktake"

Brendan Byrne¹, David F. Baker², Sourish Basu^{3,4}, Michael Bertolacci⁵, Kevin W. Bowman^{1,6}, Dustin Carroll^{7,1}, Abhishek Chatterjee¹, Frédéric Chevallier⁸, Philippe Ciais⁸, Noel Cressie^{5,1}, David Crisp¹, Sean Crowell⁹, Feng Deng¹⁰, Zhu Deng¹¹, Nicholas M. Deutscher¹², Manvendra K. Dubey¹³, Sha Feng¹⁴, Omaira E. García¹⁵, David W. T. Griffith¹², Benedikt Herkommer¹⁶, Lei Hu^{17,18}, Andrew R. Jacobson^{17,18}, Rajesh Janardanan¹⁹, Sujong Jeong²⁰, Matthew S. Johnson²¹, Dylan B. A. Jones¹⁰, Rigel Kivi²², Junjie Liu^{1,23}, Zhiqiang Liu²⁴, Shamil Maksyutov¹⁹, John B. Miller¹⁷, Scot M. Miller²⁵, Isamu Morino¹⁹, Justus Notholt²⁶, Tomohiro Oda^{27,28}, Christopher W. O'Dell², Young-Suk Oh²⁹, Hirofumi Ohyama¹⁹, Prabir K. Patra³⁰, Hélène Peiro⁹, Christof Petri²⁶, Sajeev Philip³¹, David F. Pollard³², Benjamin Poulter³, Marine Remaud⁸, Andrew Schuh², Mahesh K. Sha³³, Kei Shiomi³⁴, Kimberly Strong¹⁰, Colm Sweeney¹⁷, Yao Té³⁵, Hanqin Tian^{36,37}, Voltaire A. Velazco^{12,38}, Mihalis Vrekoussis^{39,26}, Thorsten Warneke²⁶, John R. Worden¹, Debra Wunch¹⁰, Yuanzhi Yao³⁶, Jeongmin Yun²⁰, Andrew Zammit-Mangion⁵, and Ning Zeng^{28,4}

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

²Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA

³NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, MD, USA

⁴Earth System Science Interdisciplinary Center, College Park, MD, USA

⁵School of Mathematics and Applied Statistics, University of Wollongong, Australia

⁶Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA

⁷Moss Landing Marine Laboratories, San José State University, Moss Landing, CA, USA

⁸Laboratoire des Sciences du Climat et de L'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

⁹University of Oklahoma, Norman, OK, USA

¹⁰Department of Physics, University of Toronto, Toronto, Ontario, Canada

¹¹Department of Earth System Science, Tsinghua University, Beijing, China

¹²Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia

¹³Earth System Observation, Los Alamos National Laboratory, Los Alamos, NM, USA

¹⁴Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA

¹⁵Izaña Atmospheric Research Center (IARC), State Meteorological Agency of Spain (AEMet), Tenerife, Spain

¹⁶Institut for Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ¹⁷NOAA Global Monitoring Laboratory, Boulder, CO, USA

¹⁸Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA

¹⁹Satellite Observation Center, Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan

²⁰Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea

²¹NASA Ames Research Center, Moffett Field, CA, USA

²²Space and Earth Observation Centre, Finnish Meteorological Institute, Sodankylä, Finland

²³Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

²⁴Laboratory of Numerical Modeling for Atmospheric Sciences & Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

²⁵Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America

²⁶Institute of Environmental Physics, University of Bremen, Bremen, Germany

²⁷Earth from Space Institute, Universities Space Research Association, Columbia, MD, USA

²⁸Department of Atmospheric and Oceanic Science, University of Maryland, USA

²⁹Global Atmosphere Watch Team, Climate Research Department, National Institute of Meteorological Sciences, Republic of Korea

³⁰Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236-0001, Japan

³¹Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India

³²National Institute of Water & Atmospheric Research Ltd (NIWA), Lauder, New Zealand

³³Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

³⁴Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan

³⁵Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA-IPSL), Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, 75005 Paris, France.

³⁶International Center for Climate and Global Change Research, College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL 36849, USA

³⁷Schiller Institute for Integrated Science and Society, and Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467, USA

³⁸Deutscher Wetterdienst (DWD), Hohenpeissenberg, Germany.

³⁹Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus

Correspondence: Brendan Byrne (brendan.k.byrne@jpl.nasa.gov)

Copyright statement. ©2022. California Institute of Technology, government sponsorship acknowledged.

1 Introduction

This supporting information contains one text section listing the countries within the regional groupings, and 12 supplementary figures.

5

Text S1. Regional groupings

- ASEAN: Brunei, Cambodia, Indonesia, Laos, Malaysia, Mayanmar, Philippines, Singapore, Thailand, Vietnam
- African Union (AU): Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Comoros, Democratic Republic of Congo, Djibouti, Egypt, Equatorial Guinea, Eritrea, Eswatini, Ethiopia, Gabon,
- 10

The Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Kenya, Lesotho, Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, The Congo, Rwanda, Western Sahara, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia, Zimbabwe

- AU North: Algeria, Egypt, Libya, Mauritania, Morocco, Western Sahara, Tunisia
- 15 - AU South: Angola, Botswana, Eswatini, Lesotho, Malawi, Mozambique, Namibia, South Africa, Zambia, Zimbabwe
 - AU West: Benin, Burkina Faso, The Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, Togo
 - AU East: Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Mauritius, Rwanda, Seychelles, Somalia, South Sudan, Sudan, Tanzania, Uganda
- 20 - AU Central: Burundi, Cameroon, Central African Republic, Chad, Democratic Republic of Congo, Equatorial Guinea, Gabon, The Congo
 - CELAC+Brazil: Antigua and Barbuda, Argentina, Bahamas, Belize, Bolivia, Chile, Columbia, Costa Rica, Cuba, Dominica, Dominican Republic, Ecuador, El Savador, Grenada, Guatemala, Guyana, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and Grenadines, Suriname, Trinidad and Tobago, Uruguay, Venezuela, Brazil
 - ECO: Afghanistan, Azerbaijan, Iran, Kazakhstan, Kyrgyzstan, Pakistan, Tajikistan, Turkey, Turkmenistan, Uzbekistan
 - European Union (EU): Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden
- 30 - SAARC: Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, Sri Lanka
 - North America: Canada, USA, Mexico
 - Middle East: Bahrain, Cyprus, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Palestine, Qatar, Saudi Arabia, Syria, Turkey, United Arab Emirates, Yemen
 - Europe: Albania, Andorra, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Moldova, Monaco, Montenegro, Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, San Marino, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, United Kingdom, The Vatican

25

35

Figure S1. 2015–2020 mean $F_{\text{rivers export}}$ for countries estimated by (top-left) the DLEM model, (top-right) Deng et al. (2022), (bottom-left) mean of these two estimates, and (bottom-right) the absolute difference between these two estimates

Figure S2. 2015–2019 mean $F_{\text{crop trade}}+F_{\text{wood trade}}$ and their uncertainty (assumed to be a 30% of the flux).

Figure S3. Monthly mean difference between retrieved and simulated X_{CO_2} for the v10 OCO-2 MIP median model (data minus model) at each TCCON site. Biases are shown for each experiment: (a) IS, (b) LNLG, (c) OG, (d) LNLGIS, and (e) LNLGOGIS. Dashed black lines demarcate 30° latitude bounds.

Figure S4. $1^{\circ} \times 1^{\circ}$ grid median and standard deviation of NCE (gCO₂ m⁻² yr⁻¹) over 2015–2020 from the v10 OCO-2 MIP for the (1st row) IS, (2nd row) LNLG, (3rd row) LNLGIS and (4th row) LNLGOGIS experiments.

Figure S5. Country level median and standard deviation of NCE ($gCO_2 m^{-2} yr^{-1}$) over 2015-2020 from the v10 OCO-2 MIP for the (1st row) IS, (2nd row) LNLG, (3rd row) LNLGIS and (4th row) LNLGOGIS experiments.

Figure S6. 2015–2020 mean annual net $\Delta C_{\rm loss}$ (gCO₂ m⁻² yr⁻¹), and their uncertainties.

Figure S7. 2015–2020 mean annual net $\Delta C_{\rm loss}$ (gCO₂ m⁻² yr⁻¹) and their uncertainties.

Figure S8. Bar plot of 2015–2020 median +/- standard deviation of FF, $F_{\text{rivers export}}$ (R), $F_{\text{crop trade}}$ + $F_{\text{wood trade}}$ (CW), ΔC_{loss} , and NCE for 28 countries. Note that different rows have different y-axis limits.

Figure S9. Bar plot of 2015–2020 median +/- standard deviation of FF, $F_{\text{rivers export}}$ (R), $F_{\text{crop trade}}$ + $F_{\text{wood trade}}$ (CW), ΔC_{loss} , and NCE for 14 regions composed of multiple countries.

Figure S10. Timeseries of NCE for 28 countries (median +/- standard deviation) for the IS, LNLG, LNLGIS, and LNLGOGIS inversions.

Figure S11. Timeseries of ΔC_{loss} for 28 countries (median +/- standard deviation) for the IS, LNLG, LNLGIS, and LNLGOGIS inversions.

Figure S12. Timeseries of NCE for 14 regions composed of multiple countries (median +/- standard deviation) for the IS, LNLG, LNLGIS, and LNLGOGIS inversions.

Figure S13. Timeseries of ΔC_{loss} for 14 regions composed of multiple countries (median +/- standard deviation) for the IS, LNLG, LNLGIS, and LNLGOGIS inversions.

References

Deng, Z., Ciais, P., Tzompa-Sosa, Z. A., Saunois, M., Qiu, C., Tan, C., Sun, T., Ke, P., Cui, Y., Tanaka, K., Lin, X., Thompson, R. L., Tian,

40 H., Yao, Y., Huang, Y., Lauerwald, R., Jain, A. K., Xu, X., Bastos, A., Sitch, S., Palmer, P. I., Lauvaux, T., d'Aspremont, A., Giron, C., Benoit, A., Poulter, B., Chang, J., Petrescu, A. M. R., Davis, S. J., Liu, Z., Grassi, G., Albergel, C., Tubiello, F. N., Perugini, L., Peters, W., and Chevallier, F.: Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions, Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, 2022.