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Abstract. Accurate accounting of emissions and removals of COs is critical for the planning and verification of emission reduc-
tion targets in support of the Paris Agreement. Here, we present a pilot dataset of country-specific net carbon exchange (NCE;
fossil plus terrestrial ecosystem fluxes) and terrestrial carbon stock changes aimed at informing countries’ carbon budgets.
These estimates are based on “top-down” NCE outputs from the v10 Orbiting Carbon Observatory (OCO-2) modeling inter-
comparison project (MIP), wherein an ensemble of inverse modeling groups conducted standardized experiments assimilating
OCO-2 column-averaged dry-air mole fraction (Xco,) retrievals (ACOS v10), in situ CO, measurements, or combinations of
these data. The v10 OCO-2 MIP NCE estimates are combined with “bottom-up” estimates of fossil fuel emissions and lateral
carbon fluxes to estimate changes in terrestrial carbon stocks, which are impacted by anthropogenic and natural drivers. These
flux and stock change estimates are reported annually (2015-2020) as both a global 1° x 1° gridded dataset and as a country-
level dataset. Across the v10 OCO-2 MIP experiments, we obtain increases in the ensemble median terrestrial carbon stocks
of 3.29-4.58 PgCO, yr—! (0.90-1.25 PgC yr—1). This is a result of broad increases in terrestrial carbon stocks across the
northern extratropics, while the tropics generally have stock losses but with considerable regional variability and differences
between v10 OCO-2 MIP experiments. We discuss the state of the science for tracking emissions and removals using top-down

methods, including current limitations and future developments towards top-down monitoring and verification systems.
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1 Introduction

To reduce the risks and impacts of climate change, the Paris Agreement aims to limit the global average temperature increase
to well below 2 °C above pre-industrial levels and pursue efforts to limit these increases to less than 1.5 °C. To this end, each
Party to the Paris Agreement agreed to prepare and communicate successive Nationally Determined Contributions (NDCs) of
greenhouse gas (GHG) emission reductions. Collective progress toward this goal of the Paris Agreement is evaluated in Global
Stocktakes (GSTs), which are conducted at five-year intervals; the first GST is scheduled in 2023. The outcome of each GST
is then used as input, or as a “ratchet mechanism”, for new NDCs that are meant to encourage greater ambition.

In support of the first GST, Parties to the Paris Agreement are compiling inventories-of-GHG-national GHG inventories
(UNFCCC) and inform their progress toward the emission-reduction targets in their individual NDCs. Fhese-inventoriesFor
these inventories, emissions and removals are generally estimated using “bottom-up” approaches, wherein CO, emission esti-

mates are based on activity data and emission factors while CO, removals by sinks are based on inventories of carbon stock

changes and models, following the methods specified in the 2006 IPCC Guidelines for National GHG Inventories (IPCC, 2006
. This approach allows for exphclt characterization of CO- emissions and removals into the-five-main-—seetors—speeified-in-the
ey-five categories: Energy; Industrial Pro-

cesses and Product Use (IPPU);-Agriculture; Forestry-and-Other Land-Use(AEOLE);-Waste;-and-Other; Agriculture; Land Use
Land-Use Change and Forestry (LULUCF); and Waste. Bottom-up methods can provide precise and accurate country-level

emission estimates when the activity data and emission factors are well quantified and understood (Petrescu et al., 2021), such
as for the fossil fuel combustion category of the energy sector in many countries. However, these estimates can alse-have con-

siderable uncertainty when the emission processes are challenging to quantify (such as for AEOEHagriculture, LULUCF, and

waste) or if the activity data are inaccurate or missing. For example, Grassi et al. (2022) and McGlynn et al. (2022) estimate

the uncertainty on the net LULUCF CO, flux to be roughly 35% for Annex I countries and 50% for non-Annex I countries.
In addition, these estimates do not capture carbon emissions and removals from unmanaged systems, which are not directly

considered in the Paris Agreement, but nevertheless-impact the global carbon budget and growth rate of atmospheric CO5.

As a complement to these accounting-based inventory efforts, an independent “top-down” assessment of net surface—
atmosphere COs, fluxes may be obtained from ground-based, airborne and space-based observations of atmospheric CO2 mole
fractions. These top-down methods have undergone rapid improvements in recent years, as recognized in the 2019 Refine-
ment to the 2006 IPCC Guidelines for National Greerheuse-Gas-GHG Inventories (IPCC, 2019). And, although these methods
were not deemed to be a standard tool for verification of conventional inventories, a number of countries (UK, Switzerland,
USA, and New Zealand) have adopted atmospheric inverse modeling as a verification system in national inventory reports.
Initially, these countries have focused on non-CO4 gasses (e.g., EPA, 2022), but top-down assessments of the CO» budget are
now underdevelopment in New Zealand (https://niwa.co.nz/climate/research-projects/carbon-watch-nz). Furthermore, signif-
icant investments towards building anthropogenic COs-emissions monitoring and verification support capacity are ongoing

within the European Commission’s Copernicus Program (see Sect. 9.2.1).
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In top-down COs, flux estimation, the net surface—atmosphere CO, fluxes are inferred from atmospheric CO2 observations
using state-of-the-art atmospheric CO4 inversion systems (e.g., Peiro et al., 2022). This approach provides spatially- and
temporally-resolved estimates of surface—atmosphere fluxes for land and ocean regions from which country-level annual land—
atmosphere CO- fluxes can be estimated. The impact of fossil fuel (and usually fire CO, emissions) on the observations are
accounted for in the inversions by prescribing maps of those emissions and assuming that they are perfectly known. Thus,
fossil fuel and fire CO2 emissions are not diagnosed yet by these inversions, but net surface—atmosphere CO, fluxes from
the terrestrial biosphere and oceans are. Terrestrial carbon stock changes can then be calculated by combining net surface—
atmosphere CO, fluxes with estimates of fossil fuel emissions and horizontal (“lateral”) fluxes occurring within the terrestrial
biosphere or between the land and ocean (Kondo et al., 2020). One example of a lateral flux is harvested agricultural products,
where carbon is sequestered from the atmosphere by photosynthesis in one region but then this carbon is harvested and exported
to another region as agricultural products. Similarly, carbon sequestered by photosynthesis in a forest can be leached away by
streams and rivers, and then exported to the ocean. These lateral carbon fluxes are not directly identifiable in atmospheric
CO, measurements, but accounting for their impact is required in order to convert net land fluxes into stock changes. These
estimated terrestrial carbon stock changes reflect the combined impact of direct anthropogenic activities and changes to both
managed and unmanaged ecosystems in response to rising CO», climate change, and disturbance events (such as fires).

The top-down budgets presented here extend several previous studies that have developed approaches to compare inversion

results to United-NationFramework-Convention-of Climate-Change (UNFCEC)-inventoriesNGHGIs. Ciais et al. (2021) pro-
posed a protocol for reporting bottom-up and top-down fluxes so that they can be compared consistently. Petrescu et al. (2021)

compared top-down fluxes with inventory estimates for the European Union and United Kingdom, including for an ensemble
of regional inversions over Europe (Monteil et al., 2020). Chevallier (2021) noted that inversion results for terrestrial CO5
fluxes should be restricted to managed lands and applied a managed land mask to the gridded fluxes of the CAMS-Copernicus
Atmosphere Monitoring Service (CAMS) CO, inversions for the comparison to UNFCCC values in ten large countries or
groups of countries. Deng et al. (2022) compared CO2, CH4 and N3O fluxes from inversion ensembles available from the
Global Carbon Project. For CO-, they used six CO5 flux estimates from inverse models that assimilated measurements from
the global air-sample network, filtered their results over managed lands and corrected them for CO, fluxes induced by lateral
processes to compare with carbon stock changes reported to the UNFCCC by a set of 12 countries. We expand upon these pre-
vious studies by providing top-down CO5 budgets from the v10 Orbiting Carbon Observatory Model Intercomparison Project
(v10 OCO-2 MIP), wherein an ensemble of inverse modeling groups conducted standardized experiments assimilating OCO-2
column-averaged dry-air mole fraction (Xco,) retrievals (retrieved with version 10 of the Atmospheric CO2 Observations
from Space (ACOS) full-physics retrieval algorithm), in situ CO, measurements, or combinations of these data. This allows
us to quantify the sensitivity of top-down carbon budget estimates to the inversion modeling system and the atmospheric CO4
dataset used to constrain flux estimates.

This paper is outlined as follows. The remainder of Sect. 1 describes the objectives of this work (Sect. 1.1) and provides
background information on both the global carbon cycle (Sect. 1.2) and top-down atmospheric CO; inversions (Sect. 1.3).

Section 2 defines the carbon cycle fluxes of interest. Section 3 describes the flux datasets and their uncertainties, including:
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fossil fuel emissions, the v10 OCO-2 MIP, riverine fluxes, wood fluxes, crop fluxes, and the net terrestrial carbon stock loss.
Section 4 provides an evaluation of the v10 OCO-2 MIP flux estimates. Section 5 presents two metrics for interpreting the
top-down constraints on the CO, budget. Section 6 gives a description of the dataset, Sect. 7 shows the characteristics of the

dataset, and Sect. 9 discusses current limitations and future directions. Finally, Sect. 10 gives the conclusions of this study.
1.1 Objectives

This is a pilot project designed to start a dialogue between the top-down research community, inventory compilers, and the
GHG assessment community to identify ways that top-down CO; flux estimates can help inform country-level carbon budgets
(see Worden et al. (2022) for a similar pilot methane dataset). To meet this objective, the primary goal of this work is to provide
two products: (1) annual net surface—atmosphere CO, fluxes and (2) annual changes in terrestrial carbon stocks. These products
are provided annually over the six-year period 2015-2020 on both a 1° x 1° global grid and as country-level totals with error
characterization.

These products are intended to be used to help inform inventory development and identify areas for future research in both
top-down and bottom-up approaches-Ineluding, including, informing strategies for operational top-down carbon cycle products
that can be used for tracking combined changes in managed and unmanaged carbon stocks and help quantify the impact of

emission reduction activities.

1.2 Overview of the carbon cycle

The burning of fossil fuels and cement production release geologic carbon to the atmosphere (40.0 + 3.3 PgCO2 yr~! or

10.9+0.9PgC yr’1 over 2010-2019; Canadell et al., 2021). On—-an—-annual-net-basisThese emissions, along with land use

activities, impact carbon cycling between atmospheric, oceanic, and biospheric reservoirs that make up a near-closed system
on annual timescales. As a result, roughly half of the emitted CO2 from anthropogenic sources is absorbed by terrestrial
ecosystems and oceans (Friedlingstein et al., 2022), reducing the rate of atmospheric CO5 increase (18.7 & 0.08 PgCO, yr—!
or 5.1+0.02PgC yr’1 over 2010-2019; Canadell et al., 2021). Here we briefly review the movement of carbon between the
reservoirs, and how these processes are modulated by human activities.

Fluxes of carbon between the atmosphere and ocean are driven by the difference in partial pressures of CO, between seawater
and air, resulting in roughly balancing fluxes from the ocean-to-atmosphere and atmosphere-to-ocean of ~ 293 PgCO, yr~1
(~ 80 PgCyr~1) each way (Ciais et al., 2013), with a residual net atmosphere-to-ocean flux due to increasing atmospheric COx
(9.24£2.2PgCO5 yr~t or 2.5 £ 0.6 PgC yr—! over 2010-2019; Canadell et al., 2021). Regional variations in the solubility and
saturation of CO; in ocean waters drive net fluxes, with net fluxes to the atmosphere in upwelling regions, such as the eastern
boundary of basins and in equatorial zones (McKinley et al., 2017). Meanwhile, there is net removals by the ocean in western
boundary currents and at extratropical latitudes (McKinley et al., 2017). Within the oceans, circulation patterns, mixing, and

biologic activity act to redistribute carbon.



On land, terrestrial ecosystems remove atmospheric carbon through photosynthesis, referred to as Gross Primary Production
(GPP) (Fig. 1). GPP draws roughly 440 PgCO, yr—! (120 PgC yr—") from the atmosphere (Anav et al., 2015). Roughly half
120 of this carbon is emitted back to the atmosphere by plants through autotrophic respiration, while the remaining carbon is used
to generate plant biomass and is referred to as Net Primary Production (NPP). On an annual basis, the carbon sequestered
through NPP is roughly balanced by carbon loss through a number of processes. The largest of these processes is heterotrophic
respiration, which is the respiratory emission of COs (from the dead organic matter and soil carbon pools) by heterotrophic
organisms, and accounts for 82-95% of NPP (Randerson et al., 2002). The combination of heterotrophic and authotrophic
125 respiration is called ecosystem respiration (Reco). The remaining processes have smaller magnitudes, but are still critical for
determining the carbon balance of ecosystems. Biomass burning, the emission of carbon to the atmosphere through combustion,
releases roughly 7.3 PgCO, yr—! (2 PgC yr—') to the atmosphere on an annual basis, but with considerable interannual
variability (van der Werf et al., 2017). Carbon can also be emitted from the terrestrial biosphere to the atmosphere in the form
of carbon monoxide (CO), methane (CHy4) and other biologic volatile organic compounds (BVOCs), which are oxidized to CO2
130 in the atmosphere. Rivers move carbon in the form of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and
particulate organic carbon (POC). This carbon of terrestrial origin is partly transported to the open ocean, partly released to the
atmosphere from inland waters and estuaries, and partly buried in aquatic or marine sediments. Finally, anthropogenic activities
such as harvesting of crop and wood products result in lateral transport of carbon, such that the removal of atmospheric CO5
through NPP and emission of atmospheric CO5 through respiration (e.g., decomposition in a landfill) or combustion (e.g.,
135 burning of biofuels) occurs in different regions. See Fig. 1 for an illustration of these fluxes.

Globally, there is a long-term net uptake of atmospheric CO, by the land (approximately -6.6 PgCOg yr~! or-1.8 PgCq yr—!
over 2010-2019; Canadell et al., 2021), which is the residual of an emission due to net land use change (5.9 + 2.6 PgCO, yr’1
or 1.6 0.7 PgC yr—"! over 2010-2019; Canadell et al., 2021) and removal by other terrestrial ecosystems (12.6 4 3.3 PgCOq yr—*
or 3.4+ 0.9PgCyr—! over 2010-2019; Canadell et al., 2021). This removal is partially driven by direct feedbacks between in-

140 creasing CO2 and the biosphere, such as COx, fertilization of photosynthesis and increased water use efficiency. Carbon-climate
feedbacks also lead to both increases and decreases in terrestrial carbon stocks: for example, warming at high latitudes leads to
a more productive biosphere but it also leads to increased plant and soil respiration (Kaushik et al., 2020; Walker et al., 2021;
Canadell et al., 2021; Crisp et al., 2022). In addition, the release of nitrogen through anthropogenic energy and fertilizer use may
also drive increased carbon sequestration by the terrestrial biosphere (Schulte-Uebbing et al., 2022; Liu et al., 2022; Lu et al., 2021)

145 . Regrowth of forests in previously cleared areas, especially in the extratropics, is also thought to be an important uptake term
(Kondo et al., 2018; Cook-Patton et al., 2020). Currently, the relative impact of each of these contributions to long-term terres-
trial carbon sequestration is poorly known, and likely varies between biomes and climates.

While the existence of a long-term global land sink is supported through a number of lines of evidence (Ballantyne et al.,
2012; Keeling and Graven, 2021), regional-scale emissions and removals are less well quantified. Regional-scale carbon se-

150 questration can differ substantially from the global mean and can be impacted by the regional climate, disturbance events

(Frank et al., 2015; Wang et al., 2021), and anthropogenic activities (Caspersen et al., 2000; Harris et al., 2012). The need to



Cement+ A BBCO,# GPP R
Fossil fuel CO, E%" g g E’
b &6 g 3
-5 -0 S5
a - «Q g
e & F g
-O & 8 g
. a8

b .

- ‘export to ocean
" R,, (excluding respired carbon from lateral fluxes)

LEGEND

I Fossil Fuel Ecosystem metabolism [ Biomass burning P B B eeain

Figure 1. CO> is removed from the atmosphere through photosynthesis (GPP) and then emitted back to the atmosphere through a number of
processes. Three processes move carbon laterally on Earth’s surface, such that emissions of CO2 occur in a different region than removals: (1)
Agriculture; harvested crops are transported to urban areas and to livestock, which are themselves exported to urban areas. COz is respired
to the atmosphere in livestock or urban areas. (2) Forestry; logged carbon is transported to urban and industrial areas, then emitted to through
decomposition in a landfill or combustion as a biofuel. (3) Water cycle; carbon is leached from soils into water bodies, such as lakes. The
carbon is then either deposited, released to the atmosphere, or transported to the ocean (Regnier et al., 2022). Arrows show carbon fluxes and
colors indicate whether the flux is associated with (grey) fossil fuel emissions, (dark green) ecosystem metabolism, (red) biomass burning,
(light green) forestry, (yellow) agriculture, or (blue) the water cycle. Semi-transparent arrows show fluxes that move between the surface
and atmosphere, while solid arrows show fluxes that move between land regions. Dashed arrows show surface—atmosphere fluxes of reduced

carbon species that are oxidized to COx in the atmosphere. For simplicity, a cement carbonation sink, volcano emissions, and a weathering

sink are not included in this figure.

better quantify regional-scale emissions and removals of carbon has motivated much of the recent expansion of in situ CO4

observing networks, the launch of space-based CO5 observing systems, and the development of CO5 inversion systems.
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1.3 Background on atmospheric CO; inversions

Atmospheric CO5 inversions estimate the underlying net surface—atmosphere CO- fluxes from atmospheric CO, observations,
and this is what is meant by the “top-down” approach (Bolin and Keeling, 1963; Tans et al., 1990; Enting et al., 1995; Gurney
et al., 2002; Peiro et al., 2022). In this approach, an atmospheric chemical transport model (CTM) is employed to relate
surface—atmosphere CO» fluxes to observed atmospheric CO2 mole fractions. As an inverse problem, the upwind CO5 fluxes
are estimated from the downwind observed CO, mole fractions. The surface CO5 fluxes are adjusted so that forward-simulated
CO; mole fractions better match the CO5 measurements while considering the uncertainty statistics on the observations,
transport, and prior surface fluxes.

The atmospheric CO; inversion problem is generally ill-posed, such that the solution is underdetermined by the observational
constraints. In this case, additional information is required to produce a unique solution and prevent overfitting of the data
(Lawson and Hanson, 1974; Tarantola, 2005). Typically, this is performed using Bayesian inference, where prior mean fluxes
and their uncertainties provide additional information required to estimate fluxes (Rayner et al., 2019). Prior mean fluxes of net
ecosystem exchange are usually obtained from dyramie-global-vegetation-medels-terrestrial biosphere models (such as CASA,
ORCHIDEE, and CARDAMOM), while prior mean air-sea fluxes are derived from surface water partial pressure of CO;
(pCOy) datasets or from ocean models (e.g., Peiro et al., 2022). The resulting posterior flux estimates combine the constraints
on surface fluxes from atmospheric CO, data with the prior knowledge of the fluxes. If there is a high density of assimilated
CO, observations, then the posterior fluxes will be more strongly impacted by the assimilated data, whereas, in regions with
sparse observational coverage, the posterior fluxes will generally remain similar to the prior fluxes (assuming similar prior flux
uncertainties across regions).

Measurements of atmospheric CO5 best inform diffuse biosphere—atmosphere fluxes on large spatial scales. This is because
CO; has a long atmospheric lifetime, such that the perturbation to atmospheric COy due to emissions and removals from
individual processes and locations gets mixed in the atmosphere (Gloor et al., 2001; Liu et al., 2015). For example, the mea-
surements of CO5 at Mauna Loa, Hawaii, provide a good estimate of the global-scale changes of CO, surface fluxes. Inferring
smaller-scale flux signals requires a high density of CO4 observations (to capture gradients in atmospheric CO5) and accurate
modeling of atmospheric transport (to relate the measurements with surface fluxes). The accuracy of flux estimates depend on a
number of factors, particularly the accuracy and precision of the data, transport model, and prior constraints. Stringent require-
ments on the accuracy of space-based column-averaged dry-air mole fraction (Xco,) retrievals are required to infer surface
fluxes (Chevallier et al., 2005a; Miller et al., 2007). Biases in X0, retrievals from the Orbiting Carbon Observatory (OCO-
2) related to spectroscopic errors, solar zenith angle, surface properties, and atmospheric scattering by clouds and aerosols
have been identified (Wunch et al., 2017b). However, intensive research has reduced retrieval errors over time (O’Dell et al.,
2018; Kiel et al., 2019). As will be shown in Sect. 4.1, biases in OCO-2 X0, retrievals over land are thought to be relatively
small, although regionally structured biases may be present. However, OCO-2 X0, retrievals over oceans may contain more

large-scale spatially coherent retrieval errors that can adversely impact flux estimates.
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Accurate atmospheric transport is critical for correctly relating surface—atmosphere fluxes to observations. Due to com-
putational constraints, CTMs are typically run offline with coarsened meteorological fields relative to the parent Numerical
Weather Prediction model, which has been shown to introduce systematic transport errors in some configurations (Yu et al.,
2018; Stanevich et al., 2020). In addition, these offline CTMs have been shown to have large-scale systematic differences in
transport associated with the implementation of transport algorithms (Schuh et al., 2019, 2022). These errors appear to be
of the same order as the retrieval biases, although the patterns in time and space are different. Systematic errors related to
model transport (and errors in prior information) can partially be accounted for by performing multiple inversions that differ
in CTM and prior constraints employed. This motivates inversion model intercomparison projects (MIPs), such as the OCO-2
MIP project (see Sect. 3.2; Crowell et al., 2019; Peiro et al., 2022). From these ensembles of inversions, estimates of both

systematic errors (accuracy) and random errors (precision) can be obtained from the model spread.

2 Definitions

In this work, we focus on the carbon budget of Earth’s land area, including aquatic systems such as rivers and lakes. In
particular, we consider fluxes of carbon between the land and the atmosphere, and lateral carbon transport processes on land
and between the land and ocean (Fig. 1). We define the following annual net carbon fluxes (see Fig. 2 for an schematic

representation of these fluxes):

Fossil fuel and cement emissions (FF): The burning of fossil fuels and release of carbon due to cement production,

representing a flux of carbon from the land surface (geologic reservoir) to the atmosphere.

— Net Biosphere exchange (NBE): Net flux of carbon from the terrestrial biosphere to the atmosphere due to biomass burn-
ing (BB) and ecosystemrespiration{R .o )-minus Gross Primary Production (GPP) (i.e., NBE = BB + Rec, — GPP). It
includes both anthropogenic processes (e.g., deforestation, reforestation, farming) and natural processes (e.g., climate-

variability-induced carbon fluxes, disturbances, recovery from disturbances).

— Terrestrial Net Carbon Exchange (NCE): Net flux of carbon from the surface to the atmosphere. For land, NCE can
be defined as:

NCE = NBE + FF (1)

— Lateral crop flux (F'c;op trade): The lateral flux of carbon in (positive) or out (negative) of a region due to agriculture.

— Lateral wood flux (F',04 trade): The lateral flux of carbon in (positive) or out (negative) of a region due to wood product

harvesting and usage.

— Lateral river flux (F'ivers export): The lateral flux of carbon in (positive) or out (negative) of a region transported by the

water cycle.
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— Net terrestrial carbon stock loss (AC.s): Positive values indicate a loss (decrease) of terrestrial carbon stocks (or-
ganic matter stored on land), including above- and below-ground biomass in ecosystems and biomass contained in

anthropogenic products (lumber, cattle, etc). This is calculated as:

AC'loss =NBE — Fcrop trade — Fwood trade — Frivers export (2)

- Net terrestrial carbon stock gain (AC,iy,): Positive values indicate a gain (increase) of terrestrial carbon stocks, and

is the negative of ACuss:

Acgain = _Acloss (3)

2.1 Country and regional aggregation

To aggregate gridded 1° x 1° flux estimates to country totals we use a country mask (Center for International Earth Science
Information Network - CIESIN - Columbia University, 2018). We also provide NCE and AC's5 estimates for several country
groupings. A number of regional intergovernmental organizations are included: the Association of Southeast Asian Nations
(ASEAN), the African Union (AU) and each of its sub-regions (North, South, West, East, and Central), the Community of Latin
American and Caribbean States plus Brazil (CELAC+Brazil), the Economic Cooperation Organization (ECO), the European
Union (EU or EU27), and the South Asian Association for Regional Cooperation (SAARC). We also include some geographic
regions, specifically North America, the Middle East and Europe. Countries included in these groupings are listed in the

supplementary materials (Text S1).

3 Flux datasets

Here, we describe the methodologies and datasets for estimating FF (Sect. 3.1), NCE (Sect. 3.2), eeuntry-tevel Frversexport
Seet—33Decountry-level L orop rradeand-eountry-level- I wosammaaec—and lateral carbon fluxes (Sect. 3:3:2)—Gridded-tateral
Huxes-are-estimated-usine—a-somewhat-differents ach _and ¢ o o Qa ; -we-deseribe-3.3), and how

these data are used to estimate AC'ss (Sect. 3.4).
3.1 Fossil fuel and cement emissions

Gridded 1° x 1° fossil CO, emissions, including those from cement production, are calculated as follows. Monthly gridded
emissions up to 2019 are taken from the 2020 version of the Open-source Data Inventory for Anthropogenic CO5 (ODIAC2020,
2000-2019) emission data product (Oda and Maksyutov, 2011; Oda et al., 2018). The 2020 emissions were not part of ODIAC,
but were projected using the Carbon Monitor (CM) emission data product (https://carbonmonitor.org/, downloaded 19th May
2021). For each month in 2020 and later, the ratio between that month’s emissions and the emissions from the same month in

2019 was calculated from the CM emission data. Since CM provides daily emissions per sector for a handful of major emitting
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Figure 2. Carbon fluxes for a given land region, such as a country. Boxes with solid backgrounds show reservoirs of carbon. Arrows with
hatched shading show fluxes between reservoirs. NCE is underlined to emphasize that this quantity is estimated from the atmospheric
CO> measurements using top-down methods. Italicized quantities are obtained from bottom-up datasets (F'F', F'crop trades F'wood trades

Frivers export)- Bold quantities are derived in this study from the top-down and bottom-up datasets (NBE, ACgain, ACioss).

countries and the globe, CM emissions are summed over sectors and days in each month to create monthly total emissions per
named country and the rest of the world (RoW). The ratio of each (post-2019) month’s emission to the same month in 2019 is
then calculated per named country and RoW, then distributed over a 1° x 1° grid assuming homogeneity of the ratio over each
named country and RoW. 2019 ODIAC emissions for that month are then multiplied by the ratio to generate 1° x 1° monthly
emissions after 2019. While this method loses the information of day-to-day variability provided by CM, this is a conscious
choice to be consistent over the entire inversion period. Finally, we impose day-of-week and hour-of-day variations on these
fluxes following the Temporal Improvements for Modeling Emissions by Scaling (TIMES) diurnal and day-of-week scaling

(Nassar et al., 2013). The 1° x 1° uncertainty map is based on the combination of the global level FF uncertainty (one-sigma
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of 4.2%, Andres et al., 2014) and the grid level emission differences due to the different disaggregation methods (Oda et al.,
2015). Note that these FF uncertainties are not considered in the inversions used for this product development.
Country-level fossil fuel emission estimates are obtained by aggregating the 1° x 1° estimates using the country mask.

Uncertainties on country-level estimates are calculated using the fractional uncertainties of Andres et al. (2014).
3.2 Net Carbon Exchange (NCE) and Net Biosphere Exchange (NBE)

We employ results from the v10 OCO-2 MIP, which is an international collaboration of atmospheric CO5 inversion modelers
that produces ensembles of CO; surface—atmosphere flux estimates by assimilating space-based OCO-2 retrievals of X0, and
in situ CO2 measurements. The v10 OCO-2 MIP is updated from the v9 OCO-2 MIP described in Peiro et al. (2022). Updates
to the v10 OCO-2 MIP are presented here with additional details available at https://gml.noaa.gov/ccgg/OCO2_v10mip/.

The v10 OCO-2 MIP consists of a number of inversion systems that perform a set of experiments following a standard
protocol. Here, we include fluxes from 11 of the 14 MIP models (Table 1; CMS-Flux and JHU were excluded due to time
constraints and LoFI was excluded because it employs a non-traditional inversion approach that does not follow the MIP
protocol). There are five v10 OCO-2 MIP experiments that each ensemble member performs, which differ by the data that is
assimilated (CO- datasets described in Sect. 3.2.1):

IS: assimilates in situ CO5 mole fraction measurements from an international observational network,

LNLG: ACOS v10 land nadir and land glint total column dry-air mole fractions (X¢o,) from OCO-2,

LNLGIS: assimilates both in situ and ACOS v10 OCO-2 land nadir and glint X, retrievals together,

OG: assimilates ACOS v10 OCO-2 ocean glint X0, retrievals

LNLGOGIS: assimilates all the above datasets together.

For each experiment, each inversion group imposes a common fossil fuel emission dataset identical to the one described
in Sect. 3.1. All other prior flux estimates were chosen independently by each modeling group and are listed in Table 1.
The inversions assimilate the standardized v10 OCO-2 and in situ data from 6 September 2014 through 31 March 2021 (see
Sect 3.2.1), with the length of spin-up period and in situ data assimilated during that period being left up to the discre-
tion of each group in the MIP. Each modeling group submitted net air—sea fluxes and NBE across 2015-2020, interpolated
from the native resolution to a 1° x 1° spatial grid at monthly resolution, which are publicly available for download from
https://gml.noaa.gov/ccgg/OCO,_v10mip/.

The performance of each atmospheric CO5 inversion was evaluated through comparisons of the posterior CO, mole-fraction
field (i.e., COs fields simulated forward with the posterior fluxes) against independent in situ CO; measurements and OCO-2
Xco, retrievals that were withheld from the assimilation for validation, as well as Xco, retrievals from the Total Column
Carbon Observing Network (TCCON; Wunch et al., 2011). The evaluation of the experiments is presented in Sect. 4, with
additional analysis available from the v10 OCO-2 MIP website.

12
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Figure 3. Assimilated observations for IS and LNLG v10 MIP experiments. Number of monthly (a) in situ CO2 measurements and (b)
ACOS v10 OCO-2 land nadir and land glint Xco, retrievals binned into 10 s averages, and (c) ACOS v10 OCO-2 ocean glint Xco,
retrievals binned into 10 s averages. Spatial distribution of (d) in situ (¢) ACOS v10 OCO-2 land X¢o, retrievals, and (f) ACOS v10 OCO-2
ocean Xco, retrievals over 2015-2020. Shipboard and aircraft in situ CO2 measurements are aggregated to a 2° x 2° spatial grid, surface

site measurements are shown as scattered points, and ACOS v10 OCO-2 Xco, retrievals are shown aggregated to a 2° x 2° spatial grid.

For this study, the best estimate of NCE is taken to be the ensemble median for each experiment (denoted NCEcxperiment
). The uncertainty in NCE is calculated as an estimate of-the-standard-deviation-(denoted oncg) of the distribution’s standard
deviation using the interquartile range (IQR) of the flux-inversion-ensemble-v10 OCO-2 MIP ensemble. It is a robust estimate

that requires only the middle 50% of the ensemble to be normally distributed (Hoaglin et al., 1985). Hence from the normal
tables, to two decimal places:

IQR(NCE)

1.35 4

ONCE =

For country-level fluxes, the NCE estimates are first aggregated to country totals for each ensemble member before calculating
the median and standard deviation. This is done because there are spatial covariances between 1° x 1° grid cells. Thus, first
aggregating regions for each ensemble member accurately propagates the aggregate differences between regions across the
ensemble members.

The NBE estimate is calculated by subtracting the ODIAC Fossil Fuel emissions from NCE. The variance in NBE is then
taken to be the sum of the variances of NCE and FF:

ONBE = OXCE + OF ®)
3.2.1 Atmospheric CO- data included in v10 OCO-2 MIP

In situ CO4 measurements (Fig. 3a,d) are drawn from five data collections made available in Obspack format (Masarie et al.,
2014). Those source ObsPacks and their references are listed in Table 2. These data include measurements from 55 international

laboratories at 460 sites around the world. The majority of data are from the openly available GLOBALVIEW+ program, but
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with some additional provisional data for 2020-21, and data from other programs not participating in the GLOBALVIEW+
project. CO» measurements are broadly divided into two categories: those measurements we identify as suitable for assimila-
tion, and other measurements not suitable for assimilation.

In CO,, inverse analyses, uncertainties ascribed to in situ measurements are a combination of the uncertainty in the measure-
ment and a representativeness error from the forward model inability to accurately simulate the measurement (due to aspects
like a coarse model grid). To characterize the representativeness error, we used an empirical scheme based on simulations
from the v7 OCO-2 MIP (Crowell et al., 2019). In situ CO5 measurements are simulated in a forward simulation, and then the
model-data mismatch statistics are calculated to characterize the representativeness errors at each measurement location and
for each season. Although this was the standard method for characterizing uncertainties for modeled in situ measurements,
each v10 OCO-2 MIP group was free to choose how to set the uncertainties in their specific set-ups.

Of the in situ measurements designated as being appropriate for assimilation, about 5% were withheld for cross-validation
purposes. These data were chosen to be as independent as possible from the measurements that were assimilated. For quasi-
continuous measurements, such as those taken every 15 minutes at NOAA tall towers, measurements were withheld for entire
days: we chose 5% of the days in the dataset, and we withheld every assimilable measurement on that day. This is also how COq
measurements on NIES ships were treated. Entire aircraft profiles in the NOAA light-aircraft profiling network are assumed to
consist of vertically correlated measurements, so entire profiles were withheld: we chose 5% of aircraft profiles to withhold.
Most flask sites have measurement sampling protocols intended to ensure independence; they are often taken at weekly or
biweekly intervals during meteorological conditions meant to allow regional background air masses to be sampled. Thus, we
chose to withhold 5% of assimilable flask measurements. We also verified that datasets at the same site were withheld on the
same days; aircraft profiles over tower sites were, for instance, withheld on the same days that tower data were withheld.

OCO-2 land (Fig. 3b,e) and ocean (Fig. 3c.f) Xco, retrievals are performed using version 10 of NASA’s Atmospheric CO»
Observations from Space (ACOS) full-physics retrieval algorithm (O’Dell et al., 2018). A common set of OCO-2 retrieval
“super-obs” data were derived from these retrievals and were assimilated by each modeling group. These “super-obs” are
obtained by aggregating retrievals into 10 s averages (which better match the coarse transport models grid cells used in the
inversions) following the same procedure as the v9 OCO-2 MIP (Peiro et al., 2022). Specifically, individual scenes within the
10 s span are weighted according to the inverse of the square of the X, uncertainty (standard deviations) produced by the
retrieval, and correlations of +0.3 for land scenes and +0.6 for ocean scenes are assumed when calculating the uncertainty on
the 10-second averages (see Sect. 3.2.1 of Baker et al., 2022); transport model errors are also considered (based on Schuh
et al., 2019). Only 10 s spans with 10 or more good quality retrievals were used (sparser data being thought to be more prone
to cloud-related biases). In the same vein as was done for the in situ data, Xco, data from 5% of the orbits (entire orbits were

withheld), chosen at random, were withheld for evaluation purposes.

33 rivers exportl.ateral carbon fluxes

Lateral carbon flux datasets include country-level F';

Sect. 3.3.2). Gridded lateral fluxes are estimated using a somewhat different approach, and are described in Sect. 3.3.3.

15




SYTHS  EST'SHO'T 788°€¥8°01 TVLIOL
(1202) 'Te 10 [N ro1'E 02-S0-120T 0" 1A so[yoxd sneuew [~ saroads-ninu yoedsqo
(1200) T2 10 10TEg 029°SS 8T-C1-020T 0 +A~2I0DIY [ 20D Yordsqo
(L102) T2 10 BIRN 4(S00T) '[e 10 vwilyol,  99.°C1 £96'91C 96181+ 01-11-020C 0 ¢A~PreoqdiyS™SHIN [~ 20D Yordsqo
(B1207) 'Te 12 Ip[nyos 966°C 11079 LLYSSL L1-S0-120T T'T'9A™ 1IN 1~ 20D dyordsqo
(91202) 'Te 32 pINYdS £87°8¢ 6L1°99L S60°T19°6 10-€0-120C 1'9A” SNAMATATVEOTO I~ 20D ydredsqo
QOUAIRYY PIUYNAL  PRIR[IWISSY  SJUAWINSBIN "ON [BI0], dwreu JoedsqO

-dyd-eyep/yoedsqo/3309/403 veou wig,/:sdny 18 9[qe[rear A[orqnd a1e yorym Jo [3oq ‘syoedsqO LN 0D Pue + MAIATVIO 1D

9U) WOIJ QWO SJUSWAINSEIW NIIS UL AY) JO 9,G6 UBY) QIO "polIad owres 9y Ul UONEPI[BA-SSOIO J0J P[OYYIIM PUE POIB[IWIISSE SJUSUWIAINSEIW JO SIOqUINU Y} pue

‘120T Arenuer | pue 10z 1oqueydos 9 U0aMIOq SJUSWIAINSEIW JO JOQUINU [810} Y} YIM [N Z-OD0 OTA 2} Ul Pasn SUOTIOS[[0D JUSWAINSBIW D) MIIS U] T QL

16



335

340

345

350

Table 3. Data sources for lateral flux estimates

Resolution  Flux Model / Data source Section

Dynamic Land Ecosystem Model (DLEM

National =~ Flrivers export. and Sect. 3.3.1

331 Country-level Frjversexport

Rivers transport carbon laterally across land regions (e.g., to a lake) and from the land to the ocean. This lateral transport
must be accounted for to quantify the total change in terrestrial carbon in a given region. However, there is considerable
uncertainty in lateral carbon flux by rivers. To account for this, we use two independent estimates of country-level totals:
one from the Dynamic Land Ecosystem Model (BEEM)}(DLEM; Tian et al., 2010, 2015a), and the other based on Deng et al.
(2022) who use the Global NEWS model (Mayorga et al., 2010) and observations across COastal Segmentation and related

CATchments {COSCEATs)-Meybeeck-et-al;2006)-that-inelude- PIC(COSCATSs; Meybeck et al., 2006) that include dissolved

inorganic carbon (DIC) of atmospheric originy;y POC-andPOEC, dissolved organic carbon (DOC) and particulate organic carbon
POC). These datasets cover 2015-2019. For 2020, we impose the 2015-2019 mean.

The DLEM is a process-based terrestrial ecosystem model that couples biophysical, soil biogeochemical, plant physiological
and riverine processes with vegetation and land-use dynamics to simulate and predict the vertical fluxes, lateral fluxes, and
storage of water, carbon, GHGs, and nutrient dynamics in terrestrial ecosystems and their interfaces with the atmosphere and
land-ocean continuum (Tian et al., 2010, 2015a). There are three major processes involved in simulating the export of water,
carbon, and nutrients from land surface to the coastal ocean: 1) the generation of runoff and leachates, 2) the leaching of
water, carbon and nutrients from land to river networks in the form of overland flow and base flow, and 3) transport of riverine
materials along river channels from upstream areas to coastal regions. The key processes and parameterization in the DLEM
have been described in previous publications regarding the water discharge (Liu et al., 2013; Tao et al., 2014), riverine carbon
fluxes (Ren et al., 2015, 2016; Tian et al., 2015b; Yao et al., 2021), and riverine nitrogen fluxes (Yang et al., 2015; Tian et al.,
2020) from the terrestrial ecosystem to coastal oceans. The newly improved DLEM aquatic module better addresses processes
within global small streams, which were recognized as hotpots of GHG emissions (Yao et al., 2020, 2021). DLEM produces
estimates of the land loadings of carbon species (DIC, DOC, and POC), CO4 degassing and carbon burial during transporting,
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and the exports of carbon (DIC, DOC, and POC) to the ocean for 105 basin-level segmentations (modified from COSCATS)
(Meybeck et al., 2006). To estimate country totals, we map the basin carbon loss across land by assuming that the net carbon
flux occurs uniformly across each basin. We then use the country mask to estimate the country totals for each region.

Deng et al. (2022) estimate the lateral carbon export by rivers to the coast minus the imports from rivers entering in each
country (for relevant cases), including DOC, POC and DIC of atmospheric origin. Estimates of DOC, POC and DIC are
obtained from the Global NEWS model (Mayorga et al., 2010), with a correction based on Resplandy et al. (2018) so that the
global total exported to the coastal ocean is 2.86 PgCO yr~! (0.78 PgC yr—1). Deng et al. (2022) perform a correction to the
Global NEWS estimates to remove the contribution of lithogenic carbon, using the methodology of Ciais et al. (2021).

For the analysis that follows, we estimate country-level totals of riverine lateral carbon fluxes by combining the estimates of
DLEM with those of Deng et al. (2022). We take the mean of the two estimates to be the best estimate and take the magnitude
of the difference between the estimates to be the one-sigma uncertainty. Figure S1 shows the 2015-2019 mean annual net
riverine lateral carbon fluxes. Fluxes are uniformly negative, implying a net flux of carbon from the land to the ocean and
reduction in stored carbon for all countries. Fluxes are most negative in tropical rainforest and tropical monsoon climates, and

they are smallest in more arid regions.

3'4 WOOo raae Ccrop trade

3.3.2 Country-level F’ t and F' ¢

Wood and crop products are traded between nations. We estimate the annual lateral fluxes of carbon due to this trade following
the approaches of Deng et al. (2022) and Ciais et al. (2021). This approach utilizes crop and wood trade data compiled by
the Food and Agriculture Organization of the United Nations (FAO, http://www.fao.org/faostat/en/#data). The crop flux was
estimated from the annual trade balance of 171 crop commodities calculated for each country. For wood products, we use the
bookkeeping model of Mason Earles et al. (2012) to calculate the fraction of imported carbon in wood products that is oxidized
in each of 270 countries during subsequent years. One-sigma uncertainties in country-level fluxes are assumed to be 30% of
the mean value. This dataset covers 2015-2019. For 2020, we assume fluxes equal to the 2015-2019 mean. The net crop and

wood lateral fluxes and their uncertainties are shown in Fig. S2.
34 31°-<3°]ateral-flux-estimates
3.3.3 12 x 17 lateral flux estimates

Lateral fluxes at a higher resolution (1° x 1°) follow similar principles to national values but were estimated separately with
different implementation choices. High-resolution proxy data (satellite-derived NPP, population or livestock maps, etc.) enabled

subnational disaggregation. This was done using national totals based on FAO statistics for F'yood trade and Fo, . For
Flrivers + these estimates were generated from Global NEWS and COSCATSs data (DLEM was only used for national

totals). For each 1° x 1° grid cell, we assume the standard deviation of the mean flux to be 30% for F'yo0d trade aNd Flerop trades
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and 60% for F'rivers export- LThese uncertainty estimates are based on expert opinion as a rigorous error budget has not yet been
developed for the 1° x 1° lateral flux estimates.

3.4 Estimate of carbon stock loss (ACoss)

Finally, we calculate AC)ss using Eqn. 2 with the datasets described above. Assuming that the components contributing to
AC) s are independent, we calculate the uncertainty on AC).¢s by combining the uncertainties (one standard deviations) from

the component fluxes in quadrature:

2 2 2 2 2
OACioee = ONBE T OF 0y iraae TC +o (6)

Fwood trade Frivers export

4 Evaluation of v10 OCO-2 MIP experiments

The performance of top-down CO, flux estimates can be impacted by a number of factors, including biases in the assimilated
data, model transport, prior constraints, and in the inversion architectures. Therefore, evaluating the performance of v10 OCO-2
MIP fluxes against independent observational datasets is critical for assuring high quality flux estimates. Here, we evaluate the
v10 OCO-2 MIP experiments in two ways. First, we compare the posterior CO,, fields against independent CO, measurements
(Sect. 4.1). Second, we compare the inferred air—sea CO» flux against estimates based on surface ocean CO, partial pressure

(pCO2) measurements (Sect. 4.2).
4.1 Evaluation of posterior CO., fields

We consider four atmospheric CO- datasets:

1. Withheld in situ CO5 measurements. These are measurements contained in the Obspack collection described in Sect. 3.2.1
but intentionally withheld for evaluation purposes. Independence from the assimilated data is ensured following the steps

described in Sect. 3.2.1.

2. Xco, retrievals from the TCCON. These data are acquired from a network of ground-based Fourier Transform Spec-
trometers measuring direct solar spectra from which Xco, is retrieved (Wunch et al., 2011). For this analysis, we include
30 TCCON sites listed in table Al. These data are filtered and aggregated following the method outlined in Appendix C
of Crowell et al. (2019).

3. Withheld OCO-2 land glint and land nadir X0, retrievals. These data could have been assimilated, but they are inten-
tionally withheld for evaluation purposes (Sect. 3.2.1).

4. Withheld OCO-2 ocean glint X0, retrievals. These data could have been assimilated, but they are intentionally withheld

for evaluation purposes (Sect. 3.2.1).

We first perform a simple check on the inversion results by comparing the atmospheric CO, growth rate estimated from the v10

OCO-2 MIP experiments to that derived directly from NOAA CO, measurements (Fig. 4). The growth rate is estimated from
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Figure 4. Mean 2015-2019 global mean CO4 growth rate estimated from NOAA site measurements and for the v10 OCO-2 MIP experiments.
The estimates of the CO2 growth rate for each experiment are computed by sampling the model CO- fields at the same times and locations
as those used to derive the NOAA measurement-based estimate. Each v10 OCO-2 MIP experiment is shown as a box plot, with the error
bars showing the full range, the shaded region showing the interquartile range, and the solid line showing the median ensemble member of

the ensemble.

CO5 measurements and model co-samples at “marine boundary layer” sites, which predominantly observe well-mixed marine
boundary layer air representative of a large volume of the atmosphere. A smooth curve is then fit to these data to estimate
the global growth rate (Thoning et al., 1989). This is the same method employed by NOAA to report the CO, growth rate
(gml.noaa.gov/ccgg/trends/). We estimate the uncertainty in the measurement-based growth rate from the difference between
the growth rate estimated here and that reported on the NOAA website. Differences between these estimates are primarily
driven by differences in measurement sampling used for the website relative to that used here (as we are limited to withheld
co-samples here). We calculate the uncertainty as the standard error of the mean for the differences between the growth rates
estimated here and by NOAA across 2015-2019. This gives an uncertainty on the 5-year growth rate of +0.053 ppm yr~1.
Note that NOAA reports the growth rate using the X2019 scale, whereas our estimates here are from the X2007 scale, which
may contribute to the differences. We find that the IS, LNLG, and LNLGIS experiments show good agreement with the NOAA
estimate over this period. However, both the OG and LNLGOGIS experiments are found to have a high bias. This suggests that
there may be a spurious trend in the v10 OCO-2 ocean glint X0, retrievals of 0.04—0.13 ppm yr~! (OG experiment bias) that
impacts flux estimates from both experiments that assimilate ocean glint data.

Second, we estimate the overall data—model-observation—model agreement as the root-mean-square (RMS) error for the the
withheld in situ CO3, TCCON X¢0,, withheld OCO-2 land X¢o,, and withheld OCO-2 ocean Xco, (Fig. 5). For the in situ
and OCO-2 data, the normalized RMS is shown, meaning that the data—model-observation—model difference is divided by
the observational uncertainty (one-sigma). Overall, we find reasonably good agreement between the evaluation datasets and

posterior fields for all experiments. The OG experiment gives the largest RMS errors against the withheld in situ CO5, TCCON
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Figure 5.2015-2020 root-mean-square (RMS) error between the v10 OCO-2 MIP experiments and (a) TCCON Xco, retrievals, (b) withheld
in situ CO2 measurements, (c) withheld OCO-2 land Xco, retrievals, and (d) withheld OCO-2 ocean Xco, retrievals. For the comparisons
with withheld in situ and OCO-2 observations, the normalized RMS estimate is plotted (that is, the data—medel-observation—model mismatch

is divided by the observational uncertainty). Note that and NIES IS and CSU co-samples are not available and not included in this plot.

Xco,, and OCO-2 land Xco,. This provides further evidence that the ocean glint data may have some residual biases that
adversely impact the flux estimates.

Finally, we examine the mean bias over 2015-2020 for 30° latitude bins (Fig. 6). Similar to previous comparisons, we find
that the OG experiment stands out as being more biased against the independent data-observations relative to the other exper-
iments. In particular, the data—medel-observation—model difference for the OG experiment tends to be low (higher modeled
CO-) than the evaluation datasets. This is particularly evident in the northern extratropics. Over 30°-60° N, where indepen-
dent data-is-observations are densest, we find that the OG ensemble median is biased by -0.69 ppm against TCCON, -0.74 ppm
against witheld-withheld in situ, and -0.48 ppm against witheld-withheld OCO-2 LNLG, suggesting a possible meridional bias
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Figure 6. Median bias (data minus model) over 30° latitude bins averaged over 2015-2020 for (a) TCCON Xco, retrievals, (b) withheld in
situ CO2 measurements, (c) withheld OCO-2 land Xco, retrievals, and (d) withheld OCO-2 ocean Xco, retrievals. Note that and NIES IS

and CSU co-samples are not available and not included in this plot.

(higher retrieved X, than independent observations) in the OCO-2 ocean Xco, retrievals. The IS, LNLG, and LNLGIS
experiments tend to show similar data—model-observation—model differences, suggesting limited ability to distinguish between
the performance of these inversions in large-scale features.

All experiments show some biases against TCCON sites. In particular, low biases (high modeled COs) are found for 0°—
30° S and 60°-90° N. The underlying cause for these differences is unknown. Figure S3 shows the monthly-mean data—medel
observation—model differences for each TCCON site and each experiment. The differences can be quite variable between sites,
but are generally similar between experiments (for IS, LNLG, and LNLGIS). Some of these differences may be related due to
representativeness errors, particularly for urban sites. For example, Caltech and JPL are within Los Angeles County and show
a large positive bias, while nearby Edwards is less impacted by urban emissions and shows a much smaller bias (Schuh et al.,
2021). However, other differences are harder to explain, such as a negative trend in the data—modet-observation—-model bias for
Park Falls and positive at Darwin during the 2015-2020 period. Site-to-site biases among TCCON sites may also contribute to
these differences.

Overall, this analysis finds that the OG experiment shows the poorest agreement against the evaluation datasets (excluding
the withheld ocean glint data). The LNLGOGIS experiment shows the second worst performance against evaluation datasets,
while the remaining experiments (IS, LNLG, and LNLGIS) all show good agreement against the evaluation data. These results

suggest that there may be residual biases in the OCO-2 ocean glint dataset that adversely impact the OG and LNLGOGIS

experiments.
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4.2 Comparison of air-sea fluxes with pCO-based estimates

The exchange of CO5 between the atmosphere and the ocean (air—sea flux) can be estimated from measurements of the surface

460 ocean partial pressure of COy (pCOs3). These pCO, data are extrapolated to global maps and combined with gas transfer
velocity parameterizations to infer global maps of the air—sea CO4 fluxes (Fay et al., 2021). Although significant uncertainties
remain, particularly in accurately representing the gas transfer velocity (Fay et al., 2021), comparisons between the pCOs-
based air—sea fluxes and v10 OCO-2 MIP experiments can inform possible biases between estimates and inform potential areas
for future research.

465 Here, we compare v10 OCO-2 MIP air—sea fluxes to an ensemble of air—sea flux estimates from SeaFlux (Fay et al., 2021;
Gregor and Fay, 2021). SeaFlux developed a standardized approach to harmonize and extend six air—sea CO2 flux products
from as many surface pCO5 products: JENA-MLS (Rodenbeck et al., 2013), MPI-SOMFEN (Landschiitzer et al., 2014, 2020),
CMEMS-FEN (Denvil-Sommer et al., 2019; Chau et al., 2022), CSIR-ML6 (Gregor et al., 2019), JIMA-MLR (lida et al.,
2021), and NIES-FNN (Zeng et al., 2014). For each pCO4 product, we examine the mean of three air—sea fluxes obtained

470 using different wind reanalysis datasets to estimate the gas transfer parameterization (ERAS, JRASS, and CCMP2). The spread
among these six estimates provides a measure of uncertainty in the extrapolation of pCO2 data to a global grid, but does not
account for errors in the gas transfer velocity formulation nor the uncertainties in the reanalysis winds used as input (Fay et al.,
2021). Note that the prior estimates of air—sea COs fluxes in v10 OCO-2 MIP experiments are generally pCOs-based flux
estimates, and therefore not independent from the SeaFlux datasets.

475 Figure 7 shows the 2015-2019 mean air—sea fluxes for each of the six SeaFlux products and for the v10 OCO-2 MIP exper-
iments across 30° latitude bands and large ocean regions. Over the global ocean, the pCOs-based air—sea fluxes tend to give
stronger removals (median = —10.0 PgCOs yr~! or —2.7 PgCyr—!, range = —0.2to — 12.9 PgCO, yr L or —3.5t0 — 2.5 PgCyr—1)
than the v10 OCO-2 MIP, which range from —7.94+1.9PgCOyyr—! (=2.1£0.5PgCyr~1) for the IS experiment to
—10.24+1.28 PgCOy yr—! (—2.8 4+ 0.4 PgC yr—1) for the OG experiment. On regional scales, the v10 OCO-2 MIP experi-

480 ments overlap with the pCOs-based estimates except for the northern high latitudes (60°-90° N), where pCO5-based estimates
suggest a systematically larger removals. Similarly, the pCO4-based estimates tend to give greater removals over the southern
midlatitudes (20°-50° S).

The different v10 OCO-2 MIP experiments tend to give similar air—sea fluxes, except for the OG experiment in the tropics.
Although not systematic, the OG experiment suggests weaker emissions in the tropics of 0.2 + 1.3 PgCO5 yr~! (0.05 4+ 0.34 PgCyr—1)

485 relative to the median pCO5-based estimate of 1.6 PgCOyr~! (0.43PgCyr—!) with a range of 0.4to1.8 PgCOqyr—!

(0.10t00.50 PgC yr~1). Thus, similar to the evaluation of posterior CO fields, the OG experiment is an outlier among the v10

OCO-2 MIP experiments, further supporting the possibility that residual biases may exist in the ocean glint X0, retrievals.

5 Metrics for interpreting country flux estimates

To aid users in interpreting top-down country-level flux estimates, we provide two metrics. The first metric is called the “Z

490 statistic” and quantifies the statistical agreement between the IS and LNLG NCE estimates, and thus gives an indication of
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Figure 7. (a) Zonal-mean air-sea CO2 flux (positive values represent flux towards atmosphere) for 30° increments of latitude based on
1° x 1° estimates averaged over 2015-2019. (b) air—sea CO» flux for six large ocean regions. Colored bars show the MIP experiment results

(median +/- one standard deviation) and the symbols show the pCO2-based air—sea fluxes from the six SeaFlux products.

how robust flux estimates are across the v10 OCO-2 MIP experiments (Sect. 5.1). The second metric is called the Fractional

Uncertainty Reduction (FUR) and informs the impact of the assimilated CO- data on the estimated fluxes (Sect. 5.2).
5.1 Z statistic

The Z statistic is defined as,

NCEpnLg — NCEss

7 statistic = 7
SMSHE = d(NCE NG — NCErg)’ ™

where the denominator represents the standard deviation in NCEpnp,g — NCEjg across the ensemble members. Differences

in NCE and AC)s between v10 OCO-2 MIP experiments can be considerable. As an example, Fig. 8a shows that differences

between NCE n1,¢c and NCEjg are notable for South America and Africa. The LNLG experiment gives more positive AC g5
(carbon loss from land) over northern sub-Saharan Africa and northeast South America, but more negative AC),ss over south-
ern tropical Africa, southern and eastern South America, and southeast Asia. We examine the Z statistic (Fig. 8b) to quantify
the statistical significance of these difference (magnitude greater than 1.96 indicates statistically significant differences at level

a = 0.05). Most countries do not have statistically significant differences, indicating relatively good agreement between the IS
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Figure 8. Difference between LNLG and IS experiments. (a) NCErn1,g minus NCEig, and (b) The Z statistic (Eqn. 7) indicating the

difference between LNLG and IS experiments.

and LNLG ensembles. Significant differences primarily occur in small to mid-sized tropical countries. Canada also shows a

systematic difference driven by small uncertainties in the IS and LNLG estimates.
5.2 Fractional uncertainty reduction (FUR)

Byrne et al. (2022) reports the uncertainty in NCE as the standard deviation across v10 OCO-2 MIP ensemble members
(estimated using Eqn. 4). This metric incorporates uncertainties related to model transport and aspects of the inversion config-
uration, such as optimization technique and a priori flux estimates. However, this metric is different to the uncertainty metric
usually computed in a Bayesian framework, that is, the Bayesian posterior uncertainty. That uncertainty quantifies the impact
of errors in the observations and prior constraints on the posterior flux estimates. The Bayesian posterior uncertainty is not
reported for practical reasons, as the majority of contributing models do not calculate this quantity, so it is not possible to
calculate this quantity across the ensemble.

In this section, we examine the posterior uncertainty estimates from two contributing inversion systems (CAMS and TM5-
4DVar) and compare these estimates to the ensemble-based uncertainty estimate provided with the dataset. Then, we define the
metric-of Fractional-Uncertainty Reduetion(FUR-)-FUR metric between the posterior and prior NCE estimates based on the
TM5-4DVar model (as CAMS does not estimate uncertainties for the LNLGIS and LNLGOGIS experiments), which can be
used to understand the relative impact of assimilated atmospheric CO- data on estimates of country-level NCE and AC) ;.

Both CAMS and TM5-4DVar estimate CO; fluxes using four-dimensional variational assimilation (4D-Var) and estimate
posterior uncertainty estimates using a Monte Carlo method derived by Chevallier et al. (2007). The realism of the prior and
posterior CAMS uncertainty estimates have already been the topic of several studies (see Chevallier, 2021, and references
therein). Figure 9 shows the ensemble-based uncertainty, prior/posterior uncertainty from CAMS (prior, IS and LNLG only)
and prior/posterior uncertainty from TMS5-4DVar for four countries. Notably, the magnitudes of the prior/posterior uncertainties

from CAMS and TM5-4DVar are quite different, with CAMS uncertainties being 2—8 times larger. Differences in prior/poste-
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Figure 9. (top) NCE and (bottom) o ¢ g for four countries in 2018. The v10 OCO-2 MIP ensemble spread-based error estimate is shown
in black, the TM5-4DVar Bayesian uncertainty estimate is shown in red, and the CAMS Bayesian uncertainty estimate is shown in green

(only for Prior, IS, and LNLG).

rior uncertainties of this magnitude are not unusual among inversion systems, and highlight the sensitivity of Bayesian uncer-
tainty estimates to choices about prior uncertainties. Both CAMS and TM5-4DVar posterior uncertainties are smaller relative
to their prior by similar amounts, driven by the assimilated CO5 data. The magnitude of the ensemble-based uncertainty tends
to fall in-between the CAMS and TM5-4DVar estimates. However, the CAMS and TMS5-4DVar posterior uncertainty estimates
decrease as more data are assimilated (as expected), while the ensemble spread does not. In fact, the ensemble spread increases
with data density in some cases (e.g., Australia LNLGIS). Thus, overall, we find that the ensemble-based uncertainty estimate
is of similar magnitude to the prior/posterior estimate, but that the magnitude of posterior uncertainty is quite dependent on the
assumed prior uncertainty.

We now calculate the FUR metric in NCE from the TM5-4DVar Bayesian uncertainties (note that we use TM5-4DVar only
because CAMS does not report LNLGIS or LNLGOGIS uncertainties). FUR is calculated from the prior flux standard deviation
(0prior) and posterior flux standard deviation (0 posterior) as:

FUR = | — Zpesterior @®)
Oprior

This quantity ranges between 0 and 1, with larger values indicating that the Bayesian uncertainties have decreased more

(relative to the prior) due to the observational constraints from assimilated data. This metric is useful for understanding how

the assimilation of data influences the NCE and AC',s estimates, which may not be captured by the ensemble spread. For

example, Saudi Arabia has a small NCE uncertainty estimate but this is largely driven by prior knowledge that biosphere CO2

fluxes and the atmospheric CO- data has little impact on the NCE estimate.
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Figure 10. Estimate of the Fractional Uncertainty Reduction (FUR) on the v10 OCO-2 MIP estimates for each experiment based on Bayesian

uncertainty estimates from the TM5-4DVar inversion.

Figure 10 shows FUR for the IS, LNLG, LNLGIS, and LNLGOGIS experiments. FUR is larger in regions with denser
observational coverage. For example, the IS FUR is close to 1 in the USA and parts of Europe, reflecting dense CO2 measure-
ments, but it remains small for many tropical countries, where sampling is sparse. Meanwhile, the LNLG experiment generally
has larger FUR values than the IS experiment in the tropics, reflecting denser sampling, but has lower values for some small

high-latitude countries, such as in Scandinavia.

6 Dataset description

The dataset described in this paper, Byrne et al. (2022), provides annual totals of country-level and 1° x 1° gridded AC)gs,
NBE, NCE, Fivers export, and the combined F'ciop trade + F'wood trade fluxes, as well as their uncertainties over 2015-2020. In
addition, the country-level Z statistic (Eqn. 7) and FUR (Eqn. 8) metrics are provided to help interpret the flux and stockchange
estimates. These data are provided for the v10 OCO-2 MIP IS, LNLG, LNLGIS, and LNLGOGIS experiments. The OG
experiment is excluded due to poor evaluation against independent CO, measurements and pCO5-based air—sea fluxes, likely
due to residual Xco, biases in the OCO-2 ocean glint X o, retrievals (Sect. 4). We note that biases in ocean glint Xco,

retrievals will also adversely impact flux estimates from the LNLGOGIS, and caution against using these data when they show
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differences from the IS, LNLG, and LNLGIS experiments. Future improvements to the OCO-2 X0, retrievals are expected
to reduce residual Xco, biases and thus the quality of the LNLGOGIS experiment is expected to improve in future OCO-2
MIP experiments.

For the 1° x 1° gridded dataset, we emphasize that caution is needed in interpreting these data. As discussed in Sect. 1.3,
atmospheric CO4 inversion analyses provide the best constraints on the largest spatial scales (e.g., continental-to-global). The
confidence in these top-down estimates decreases at smaller spatial scales. The minimum spatial resolution for robust flux
estimates is dependent on the density and precision of the measurements, and is challenging to quantify. However, scales
smaller than France or Germany in geographic extent are unlikely to be meaningfully constrained. Thus, we recommend
only using 1° x 1° CO; fluxes aggregated to larger spatial scales. In aggregating, we recommend propagating uncertainties
by assuming first 100% correlation (sum of the 1° x 1° uncertainties) and then 0% correlation (square root of the sum of
the squared uncertainties) between grid cells. We strongly encourage contacting the authors before using the gridded 1° x 1°
dataset.

These data are available for download from the Committee on Earth Observation Satellites’ (CEOS) website:
https://doi.org/10.48588/npf6-sw92. The country-level data are available for download as comma-separated values (CSV),
Network Common Data Form (NetCDF) and Microsoft Excel worksheet files. The 1° x 1° gridded dataset is available as a
NetCDF file.

7 Characteristics of the dataset

Globally, over 2015-2020, we report FF emissions of 35.79 4 1.50 PgCOg yr~! (9.76 = 0.41 PgCyr—1), Frivers export Of
—3.354+0.59 PgCO2yr~! (—0.9140.16 PgC yr~1), and globally balanced Fcrop trade @nd F'yood trade- Table 4 gives the
global annual mean changes in the atmospheric burden of CO2, AC,in and ocean sequestration. Across the experiments, the
median fraction of fossil fuel emissions remaining in the atmosphere is 55-56%, while 32-36% is sequestered by the ocean and
9-13% is sequestered by terrestrial ecosystems. Note that this omits land use change (LUC) emissions of ~ 3.85 PgCOq yr~1
(~ 1.05PgCyr—!, Friedlingstein et al., 2022), which are compensated for by additional carbon uptake by land. Of the com-
bined FF+LUC emissions, 50% remains in the atmosphere, 29-33% is sequestered by the ocean and 18-21% is sequestered
by terrestrial ecosystems. Relative to Global Carbon Budget 2021 (GCB 2021; Friedlingstein et al., 2022) we find 2.24—
3.53 PgCO5 yr~! (0.61-0.96 PgC yr—1) less removal by land (mean/median difference) but greater removal by the ocean of
0.87-2.24 PgCO, yr~! (0.24-0.61 PgCyr—1), however, these difference are consistent within one standard deviation of the
mean/median values. Interestingly, we report greater removals by the ocean than GCB 2021 but reduced air—sea flux relative
to SeaFlux. This can be explained by the fact that pCO5-based air—sea flux estimates generally give larger mean ocean carbon
uptake than model estimates (Fay and McKinley, 2021) and that we estimate a larger F'yivers export than GCB 2021.
Meridionally, NCE is largest in the northern extratropics, coinciding with the largest FF emissions (Fig. 11). However, the
northern extratropics also show negative AC',ss, implying increasing terrestrial carbon stocks, particularly between 30°-60° N.

NCE is less positive in the tropics, primarily due to lower FF emissions. However, this region tends to show neutral-to-positive
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Table 4. 2015-2020 global mean atmospheric increase, terrestrial carbon gain (ACain) and ocean carbon gain from the IS, LNLG, LNLGIS,
and LNLGOGIS experiments (mean/median £ one standard deviation). Positive values of ACz.in and ocean carbon gain indicate increases

in carbon stocks. GCB 2021 were obtained from the Global Carbon Budget 2021 (Friedlingstein et al., 2022) with ACgain calculated as the

difference between the land sink and land-use change emissions with errors propagated in quadrature.

Experiment Atmosphere ACgain Ocean carbon gain
S 19.734+0.19PgCOayr~ ' 4.584+2.44PgCO2yr~ ' 11.354+2.01 PgCO2yr !
(5.384+0.05PgCyr— 1) (1.254+0.66 PgCyr—1) (3.10+0.55PgCyr— 1)

LNLG 19.64+£0.09PgCOsyr~!  3.204+2.93PgCOyr~t  12.91+2.63PgCO, yr— !
(5.36+£0.02PgCyr—1) (0.90+0.80 PgCyr—1) (3.52+0.72PgCyr— 1)

LNLGIS 19.6440.06 PgCO2yr ' 4.1942.77PgCO2yr~ !  11.98+2.32PgCO, yr !
(5.36+£0.02PgCyr— 1) (1.14+0.75PgCyr 1) (3.27+0.64PgCyr— 1)
19.974+0.18 PgCOzyr ' 4.03+2.36 PgCO2yr~!  11.54+1.79 PgCO5 yr !
LNLGOGIS SR s 2yt g2yt
(5.45+0.05 PgCyr—1) (1.10+£0.64PgCyr1) (3.154+0.49PgCyr— 1)
19.84+0.73PgCO2yr~ ' 6.824+3.15PgCO2yr~ ! 10.67+1.83PgCO, yr*

GCB 2021 sy sV T g2y

(5.39+0.2PgCyr™)

(1.86 +0.86 PgCyr 1)

(2.91+0.5PgCyr™1)

ACss, Suggesting that terrestrial carbon stocks may be decreasing. The LNLG and IS results also differ most in the tropics,
with LNLG suggesting greater terrestrial carbon stock loss over 0°-30° N but less over 0°-30° S. The differences in CO-, fluxes
between these experiments are not well understood, and both experiments evaluate well against independent data-observations
(Sect. 4).

The spatial distribution of NCE over 2015-2020 at 1° x 1° and aggregated to country-scale for the LNLGIS experiment is
shown in Fig. 12. At 1° x 1° (Fig. 12a-b), localized fossil fuel emissions are visible, generally corresponding to urban areas
and industrialized regions. These emissions are interspersed over broad source and sink structures that are driven by biosphere
removals or emissions. Land biosphere removal is most evident across the northern mid-high latitudes. In contrast, tropical
removals and emissions are more regional. When NCE is aggregated to the country-scale (Fig. 12c-d), most countries are
net sources driven by fossil fuel emissions, particularly in the northern extratropics. Figure 12e-f shows the 2015-2020 mean
country-level ACoss for the LNLGIS experiment. Increasing terrestrial carbon stocks (negative ACss) is found for most
extratropical countries, while tropical countries can have gains or losses. Notably, the uncertainty in AC),gs is larger in the
tropics, particularly for mid-sized countries. Overall, small to mid-sized countries generally have uncertainties comparable to
the magnitude of AC0s, reflecting the fact that atmospheric CO2 measurements best constrain fluxes over large scales. Spatial
maps of NCE and AC, for each experiment are shown in the supplementary materials (Fig. S4-7).

Differences in NCE and AC)ss between the v10 OCO-2 MIP experiments can be considerable (the statistical significance of
these differences is quantified by the Z statistic, see Sect. 5.1). The underlying cause of differences between the v10 OCO-2 MIP
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Figure 11. Zonal-mean (a) NCE, (b) FF + lateral fluxes, and (c) AC|oss for 30° increments of latitude based on 1° x 1° estimates averaged
over 2015-2020. IS, LNLG, LNLGIS and LNLGOGIS median estimates are shown by solid lines and one-sigma uncertainties are shown by

the shaded region.

experiments are not well understood, but the differences are likely impacted by the different spatial and temporal distribution
of LNLG and IS measurements (see SeeSect. 5.2), model transport errors (Stephens et al., 2007; Schuh et al., 2019, 2022)
and residual retrieval biases in the OCO-2 X, retrievals (Peiro et al., 2022). Unfortunately, the regions showing the largest
differences in fluxes generally have few independent atmospheric CO, measurements for validation, limiting our ability to
distinguish between different causes. Thus, we believe that NCE and AC.s estimates are most reliable when agreement is
found across the v10 OCO-2 MIP experiments.

We will now show examples of carbon budgets for four countries from this dataset. Figure 13 shows the 2015-2020 mean
FF, Frivers exports £ crop trades F'wood trades AC'10ss, and NCE fluxes for the USA, India, Indonesia, and Australia. All of the
CO., fluxes on the left of the dashed line combine to give the NCE flux constrained by the v10 OCO-2 MIP experiments. We
find that FF is the strongest contributor to NCE for all countries, but that AC.ss also plays a strong modulating role. For
example, negative ACs (increasing terrestrial carbon stocks) for the USA reduces NCE to be less than would be expected
given the FF emissions. Conversely, Indonesia has positive AC',ss (decreasing terrestrial carbon stocks), resulting in increased
NCE relative to FF. Some countries also show differences in AC,5s between v10 OCO-2 MIP experiments. For example, the
LNLG and LNLGIS experiments suggest negative AC'ss for India, while the IS suggest AC' s is roughly neutral. Figures of

carbon budgets for 28 additional countries (Fig. S8) and 14 regions (Fig. S9) are shown in the supplementary materials.
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Figure 12. Median (NCE) and one standard deviation (oncg) of NCE on a (a-b) 1° x 1° grid and (c-d) aggregated to country-scale for the
v10 OCO-2 MIP LNLGIS experiment averaged over 2015-2020. (e-f) Median and one standard deviation of country-scale AC'ss averaged
over 2015-2020 derived from the LNLGIS v10 OCO-2 MIP experiment.

The carbon budgets can also be examined for individual years (Fig. 14). Both Indonesia and Australia show considerable

variations in AC)gs that drive variations in NCE over this period. Indonesia has a large positive AC|yss in 2015, driven
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Figure 13. CO; budget for the USA, India, Indonesia, and Australia averaged over 2015-2020. Bars show the median +/- one standard
deviation of FF, Fiivers export (R), Flerop tradetF'wood trade (CW), AC10ss, and NCE (note that these quantities are related through Eqn. 2).

by warm-dry weather and fires during 2015 El Nifio (Yin et al., 2016). Australia showed strong negative AC)oss (except
for IS) during 2016, which was the 15th wettest year on record (precipitation 17% above average; Bureau Of Meteorology,
2017). Australia also showed anomalous positive AC)ss during 2019, which was the warmest and driest year on record, with
considerable terrestrial carbon loss related to biomass burning in the southeast (Byrne et al., 2021). Variations in NCE are also
625 found related to FF emissions. In particular, a reduction in NCE is found for 2019 and 2020 in the USA that is primarily linked
to a reduction in FF emissions rather than AC',ss. Timeseries of NCE and AC'4 for 28 additional countries (Fig. S10, S11)

and 14 regions (Fig. S12, S13) are shown in the supplementary materials.

8 Comparison with national inventories

Here we demonstrate how the dataset presented here can be compared with NGHGISs reported under the UNFCCC, which were
630 downloaded from https://di.unfccc.int/flex_annex1. We also refer the reader to Chapter 6.10.2 in Volume 1 of IPCC (2019) for
additional discussion of comparing top-down estimates with NGHGIs. The fossil fuel emissions in Byrne et al. (2022
compared with the combined emissions from the energy and IPPU (Energy+IPPU) categories. In both cases, these estimates
account for anthropogenic CO, emissions from the burning of fossil fuels and production of cement and other materials. We
expect these estimates to generally be in good agreement, as they are similarly based on bottom-up accounting for national
635 totals. However, the estimates may diverge when there is missing activity data, particularly in non-annex 1 countries and more
recent years (Andrew, 2020).
AC10ss can be compared to the combined emissions and removals from the agriculture, LULUCF, and waste (Agr+LULUCF+Waste)
categories. These quantities are not identical, with the most important difference being that NGHGISs are only for managed land,

while AC includes both managed and unmanaged lands. Therefore, caution is needed for parties with large unmanaged
., Canada or the Russian Federation). Another difference from NGHGISs is that AC

can be

640 land areas (e. . implicitly includes
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Figure 14. Timeseries of the carbon budget for the USA, India, Indonesia, and Australia. Solid lines show the median estimates and shaded

areas show +/- one standard deviation.

deposition of carbon in water body sediments within a country (such as lakes). However, this is expected to be a small

contribution. Similarly, volcanic CO5 emissions are implicitly included in A ('« but are also believed to be small contributions
—1 Fischer et al., 2019). It is worth noting that NGHGIs require

lobal subaerial volcanic CO, emissions are ~ 0.05 PeCO

estimates of turnover times for wood products in producing countries, as these can have lifetimes of decades to centuries

645 (see Appendix 3a.1 of Penman et al., 2003). No such estimate is needed for the top-down methods as emissions from decaying
wood products will be implicitly incorporated in NCE. Therefore, top-down methods only need to account for the lateral
movement of wood products from the region where the carbon is sequestered to the region where the wood products are used
and decompose.
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For this_analysis, we compare NGHGIs and our dataset for three entities: the USA. European Union plus the United
Kingdom (EU27+UK), and Australia. These were chosen for two reasons. First, NCE is better constrained by atmospheric
€O data over these relatively large regions. This is reflected in the FUR metric, which gives values of 0.76-0.91 for the USA
meaning a 76-91% uncertainty reduction), 0.38-0.51 for EU27, and 0.45-0.78 for Australia. Second, each of these entities
has small unmanaged land areas, making this more of an apples-to-apples comparison. 95% of the USA is managed, with most
unmanaged land being in the state of Alaska (Ogle et al,, 2018). Similarly, all land in the EU27+UK is considered managed
except for 5% of France’s territory (Petrescu et al., 2021).

Figure 15 shows timeseries of emissions and removals from NGHGIs and Byrne et al. (2022) over 2015-2020. We focus
our analysis on the 2015-2020 mean estimates, as top-down methods are expected to be more sensitive to TAV in the carbon
cycle than NGHGI methods for individual years. Strong agreement is found between the NGHGI Energy+IPPU emissions and
the fossil fuel emissions in Bymne et al. (2022), while larger differences are found between Agr+LULUCFE+Waste and AC/oss.
Averaged over the 2015-2020 period, we obtain statistically significant differences between AgrLULUCE+Waste and ACoss.
for the USA and EU27+UK for each experiment (based on student t-test at 0.03 significance level). In each case the top-down
estimates suggest greater carbon sequestration by land. with mean differences of 0.59-0.91 Pg CO, _yr™" for the USA and
0.99-1.79 Pg CO, _yr~" for the EU27+UK. The reasons for these differences are unclear but are not expected to be explained
by removals in unmanaged lands. It is possible that NGHGI methods miss or underestimate sink processes and/or that there are
biases affecting the top-down estimates (see. Sect. 9 for remaining challenges in top-down estimates). We encourage further
research and comparison between the NGHGI and top-down research communities to better understand the sources of these

differences.

9 Discussion

Here we discuss the current limitations of top-down country-level CO» budgets and activities that can improve these estimates.
Sect. 9.1 discusses current CO4 observing systems and possible future expansions. Sect. 9.2 discusses current atmospheric COz
inversion systems, planned developments, and opportunities for improvement. Finally, Sect. 9.3 discusses remaining challenges

in estimating carbon stock changes from atmospheric CO» inversions.
9.1 Observations

In the context of global inversion analyses, measurements of atmospheric CO best inform annual-mean biosphere—atmosphere
CO-, fluxes over large spatial scales (e.g., continental-to-global) due to rapid mixing in the atmosphere and gaps in current
measurement coverage. The confidence in these top-down estimates decreases as we move to smaller spatial scales, with the
minimum spatial scale being dependent on the density, precision and sensitivity of the measurements. Future refinements in
top-down CO2 budgets will depend on increasing observational density (Sect. 9.1.1) , improved validation (Sect. 9.1.2), and

data harmonization (Sect. 9.1.3).
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Figure 15. Emissions and removals of CO5 from the (a-c) Energy and IPPU categories and (d-f) Agriculture, LULUCF and waste categories

reported in NGHGIs and AC' s for four OCO-2 MIP experiments (IS, LNLG, LNLGIS, LNLGOGIS). Values are provided for individual
ears and the 2015-2020 mean.

9.1.1 Expanding observations

An expanding network of CO, observing systems provides an opportunity to reduce uncertainties in top-down estimates of
NCE. Across much of the globe, country-level estimates of NCE have been limited by the observational coverage of in situ
CO3 measurements and Xco, retrievals. However, there are a number of planned expansions in observing systems that will
help fill data gaps.

The first-generation of space-based COs systems currently in operation (GOSAT, GOSAT-2, OCO-2, OCO-3, TanSat) were
designed primarily as proof-of-concept missions to demonstrate that space-based measurements could yield Xco, retrievals
with the precision and accuracy required to quantify emissions and removals of COs. Planned future missions will expand
and improve upon current observing systems. MicroCarb, a France-UK mission, is expected to start operations in 2023 with
an additional spectral band to better characterize the light path for the estimation of Xco, (Bertaux et al., 2020). Japan’s
GOSAT-GW mission (https://gosat-gw.nies.go.jp/en/), which will be launched in early 2024, will also incorporate improved
capabilities for CO5 as well as CHy. Soon after, NASA plans to launch the GeoCarb mission (https://www.ou.edu/geocarb),
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which will be hosted on a commercial communications satellite in geostationary orbit at a longitude around 85° W. From that
vantage point, GeoCarb can return the data needed to estimate the column average dry air mole fraction of CO,, CH, and
carbon monoxide (CO) over most of North and South America at a spatial resolution of 5 to 10 km every day. In 2025, the
European Copernicus program will begin to deploy the first operational CO5 and CH,4 monitoring constellation, CO2M (Pinty
et al., 2017; Janssens-Maenhout et al., 2020). The CO2M constellation will eventually include up to three satellites, flying in
formation to collect measurements at 2 km by 2 km resolution over the entire globe at weekly intervals. In addition, a follow-on
to the Chinese TanSat mission is currently under development (Yang et al., 2018).

Most current and planned space-based CO- observing systems are passive, in that they rely on reflected sunlight to retrieve
Xco,- Active satellite missions, which use lidars for their light source, could provide coverage when reflected sunlight is not
available or of insufficient intensity, such as at night and at high latitudes in the winter hemisphere when solar zenith angles
are large. These systems also have the potential to better characterize systematic errors in current passive instruments by using
pulse timing information to get a better estimate of path length and to filter out scattered light from clouds and aerosols (Abshire
et al., 2010).

As space-based CO5 observing systems expand, sub-orbital discrete air sampling (i.e., flask) and continuous CO- observing
systems will remain critical for developing top-down CO; budgets. These in situ observations are the global standard for
GHG measurements, because they can undergo direct calibration relative to the WMO-World Meteorological Organization
(WMO) COq-in-air mole fraction scale, which is SI-traceable (Hall et al., 2021). ;-In contrast, open-path remote sensing
measurements (both TCCON and satellite) can not be calibrated using standard gasses; they can only be compared to in
situ vertical profile observations made relative to the WMO scale, with the differences used to adjust the remote sensing
observations (e.g., Wunch et al., 2011). As such, in situ data are critical for linking remote sensing observations of CO; to the
accepted trace gas scales. In situ data also provide complementary observational coverage to space-based observing systems
(Byrne et al., 2017). Space-based measurements have broad spatial coverage but with seasonal variations driven by sunlight,
and have data gaps in persistently cloudy regions. In contrast, flask and in situ data can be deployed year-round and regardless
of cloud cover. Additionally, in situ observations most typically represent the planetary boundary layer where flux signals in
atmospheric CO, are larger than the signal as expressed in the column mean (Feng et al., 2019). Thus, these data play a critical
role for improving carbon cycle constraints, especially in high latitude and persistently cloudy regions (such as the tropics),
and we encourage an expansion of these systems in these undersampled regions. Regular measurements of CO, using light
aircraft above several sites in Amazonia exist (e.g., Gatti et al., 2021; Miller et al., 2021), but these measurement records, as
well as a nascent aircraft program in Uganda, have been so far funded using short-term grants.

Measurements of stable- (*3C/'2C) and radio- (**C/C) isotope ratios of carbon in CO, provide powerful tools for source
attribution. Radiocarbon is absent from fossil fuels making it ideal for distinguishing fossil versus biologic carbon fluxes, and
inversions using measurements of CO5 and 14C/C have been used to provide top-down constraints on national-scale fossil CO5
emissions (Basu et al., 2020). Atmospheric '3C/'2C ratios provide insight into ecosystem stress and its relation to climate via
constraint of ecosystem water use efficiency (photosynthesis relative to water loss by transpiration) and has been used in box

models (Keeling et al., 2017) and inversions (Peters et al., 2018). Atmospheric '>C/*2C ratio data are generally available where
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discrete air samples are collected by various networks, but 1#C/C ratio data are more limited as they tend to require larger
samples and measurement costs are greater. Other tracers closely related to COs, such as Os/Ns (Keeling and Graven, 2021)
and Carbonyl Sulphide (e.g., Hu et al., 2021; Remaud et al., 2022) are also limited yet provide valuable information on global
ocean/NBE and regional-scale photosynthesis/respiration partitioning, respectively. Increasing the temporal and spatial density
of these data, particularly across poorly sampled regions, will allow for more diagnostic power of carbon cycle processes than

is possible with CO; alone.
9.1.2 Data validation

Validation of X ¢, retrievals is critical for ensuring that retrieval biases do not strongly impact flux estimates. Current gaps in
coverage of ground-based and airborne measurements have limited our confidence in flux inferences from space-based data.
For example, large COy emissions over northern Sub-Saharan Africa are a robust feature of the inversions that assimilate
satellite X, retrievals (Palmer et al., 2019), but there are few independent COy measurements to confirm whether this
inference is a real signal or an artifact of regional retrieval biases. Increased validation of space-based observations will also
provide critical support for improved space-based inferences. Space-based measurements rely on validation against ground
based Xco, retrievals from the TCCON (Wunch et al., 2011) and the COllaborative Carbon Column Observing Network
(COCCON, Frey et al., 2019). In turn, these sites rely on in situ COy measurements from aircraft profiles and AirCore (Karion
etal., 2010) to tie their measurements to the WMO scale (Wunch et al., 2010; Messerschmidt et al., 2011). These data have been
critical for validating and improving Xco, retrievals (Wunch et al., 2017b; O’Dell et al., 2018; Kiel et al., 2019). Continued
funding of these activities will be crucial for improving top-down CO, flux estimates and expansion of these observing systems
into undersampled regions, such as the tropics and high latitudes, will also be important for identifying and addressing residual
Xco, retrieval biases. In addition, efforts to cross-calibrate TCCON and COCCON sites will be helpful for minimizing site-to-
site biases and identifying spurious drifts in Xco,. We encourage future campaigns aimed at site-to-site comparisons similar
to the FRM4GHG campaign that deployed total column GHG traveling standard instruments at several TCCON sites as part
of ESA’s FRM4GHG-2 project (Sha et al., 2020).

9.1.3 Data harmonization

Further advancements in top-down flux estimates will be possible through combining the observational constraints from the
constellation space-based sensors and ground-based instruments. Assimilating these data concurrently within inversion systems
will increase our ability to recover net fluxes over smaller regions. However, these instruments must be cross-calibrated against
common standards to use these data together, as small inter-calibration differences could potentially strongly impact flux

estimates. We encourage support of these critical cross-calibration activities, as are outlined in Crisp et al. (2018).
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9.2 Atmospheric CO5 inversions

Atmospheric CO inversion analyses are a critical tool for estimating surface fluxes from observations of atmospheric COs.
Expanding observational coverage provides both opportunities and challenges for inversion systems. By addressing the current
limitations of our inversion systems, we will be able to take full advantage of increasing observations to improve country-level
top-down estimates of NCE and AC).ss. Here we discuss ongoing and planned developments (Sect. 9.2.1), improving model

transport (Sect. 9.2.2), missing processes and required assumptions (Sect. 9.2.3), and uncertainty quantification (Sect. 9.2.4).
9.2.1 Ongoing and planned developments

To date, there are four operational or quasi-operational atmospheric CO, inversion systems: CarbonTracker (Jacobson et al.,
2020), CAMS (Chevallier et al., 2005b), Jena CarboScope (Rédenbeck et al., 2018) and CMS-Flux (Liu et al., 2021a) that
are regularly updated on annual or quarterly timescales. These systems produce NBE and air-sea flux estimates from either in
situ CO2 measurements (CarbonTracker, Jena CarboScope), OCO-2 X0, retrievals (CMS-Flux) or both (CAMS). Similarly,
there are seven inversion models (including the aforementioned models) that update CO5 flux estimates annually for the Global
Carbon Budget (Friedlingstein et al., 2022), including CAMS (Chevallier et al., 2005b), CarbonTracker Europe (CTE van der
Laan-Luijkx et al., 2017), Jena CarboScope (Rodenbeck et al., 2018), UoE in situ (Feng et al., 2016), NISMON-CO2 (Niwa
et al., 2017), MIROC4-ACTM (Saeki and Patra, 2017; Chandra et al., 2021), and CMS-Flux (Liu et al., 2021a).

The OCO-2 MIP activities have semi-regularly performed ensemble inversion experiments (Crowell et al., 2019; Peiro
et al., 2022). To date, OCO-2 MIP experiments have been linked to new versions of the ACOS retrieval algorithm, with
major improvements to the quality of X0, retrievals occurring during each update. However, as the quality of retrievals have
improved (particularly for ACOS v10 onwards), updates to the ACOS retrieval algorithm are becoming less of a driver for new
OCO-2 MIP experiments. In the future, OCO-2 MIP activities could become more regular with annual updates.

The first top-down CO; system for use in inventory development is CarbonWatch-NZ, under development in New Zealand
(https://miwa.co.nz/climate/research-projects/carbon-watch-nz). This program includes expanded CO, measurement sites and
the development of a regional atmospheric CO- inverse system to quantify the carbon budgets of New Zealand’s forest,
grassland and urban environments. Initial results suggest stronger uptake by intact forests than estimated through bottom-
up estimates (Steinkamp et al., 2017). This system may serve as an example for other nations through the Integrated Global
Greenhouse-Gas-GHG Information System (IG3IS) framework.

Beyond existing activities, there are a number of planned projects. The European Commission’s Copernicus program
(https://www.copernicus.eu) has a number of developments ongoing and planned, particularly in building anthropogenic COq
emissions monitoring and verification support capacity (CO2MVS; Janssens-Maenhout et al., 2020), which is directly linked to
the development and launch of the new CO2M mission and is expected to be operational from 2026 onwards. Further, there are a
number of recently completed, ongoing, and planned projects to develop and improve inversion systems to develop operational
capacity. Examples include the recently completed CO2 Human Emissions (CHE) project (https://www.che-project.eu/) and

follow-up CoCO?2 project (https://coco2-project.eu/) that is ongoing, as-well as the VERIFY project (https://verify.lsce.ipsl.ft/).
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These projects are developing and refining inversion systems to estimate anthropogenic fossil fuel emissions as well as emis-

790 sions and removals from the AFOEU-seetoragriculture, LULUCEF, and waste categories. Future planned projects include devel-
oping approaches to utilize co-emitted species and auxiliary observations (}*C, solar induced fluorescence, Carbonyl Sulfide,
and others) in order to isolate some of the CO5 budget components and improve our understanding of the carbon cycle. For ex-
ample, multiple data streams could be used together to optimize the dynamic global vegetation model parameters (e.g., Peylin
et al., 2016).

795 In contrast to recent European efforts, there is no mandate for an operational top-down carbon flux-attribution system
in the US. Nevertheless, efforts at NOAA centered around CarbonTracker (Jacobson et al., 2020) have been able to pro-
duce NBE estimates with relatively low latency harnessing the Agency’s substantial flask and in situ CO2 network. In ad-
dition, NOAA has developed a higher spatial resolution North American regional inverse system, CarbonTracker-Lagrange
(https://gml.noaa.gov/ccgg/carbontracker-lagrange/; Hu et al., 2019). In anticipation of the launch of OCO in 2009, NASA has

800 supported research and development efforts needed to prototype an operational flux estimation system. In particular, the Carbon
Monitoring System program (https://carbon.nasa.gov/) has led to the development of both low-latency (2 month) atmospheric
COs reanalysis (Weir et al., 2021) and approaches to combine top-down NCE estimates with other trace gas measurements
(e.g., CO) and non-atmospheric carbon data (e.g., above-ground biomass) to provide improved understanding of carbon cycle
processes (Liu et al., 2017; Byrne et al., 2020, 2021; Bloom et al., 2020). There is substantial technical capacity to build an

805 operational system but requires a coordinated effort between federal agencies, academia, and private interests.

In Canada, a prototype operational regional inverse modeling system, the Environment and Climate Change Canada (ECCC)
National Carbon Flux Inversion System (ENCIS), is being developed to provide quantitative information on CO5 (and CHy)
flux estimates over Canada from national to provincial scales, as well as to understand the carbon cycle in Canada such as CO2
flux in boreal managed and unmanaged forests, wetland emissions of CH4, and GHG emissions over a potentially thawing

810 permafrost in response to the climate change. ENCIS is a regional inverse modeling system based on Lagrangian approach and
driven by metrology from the Global Environmental Multiscale (GEM) model (Girard et al., 2014) and is expected to have
1° x 1° spatial resolution.

Finally, there are ongoing internationally organized activities. Phase 2 of the Regional Carbon Cycle Assessment and

Processes project (RECCAP-2), coordinated by the Global Carbon Project (https://www.globalcarbonproject.org/reccap/), has

815 aimed to characterize regional carbon budgets. This included investigating how different data sources — including atmospheric

inversion analyses — can contribute to this goal (Bastos et al., 2022; Deng et al., 2022). In addition, the WMO has hosted

workshops and symposiums with the GHG monitoring community to develop a framework for sustained, internationall

coordinated global GHG monitoring (e.

., https://community. wmo.int/meetings/wmo-international-greenhouse-gas-monitoring-symposiun

820 9.2.2 Improving CTM transport

Errors in the representation of atmospheric transport by CTMs has long been recognized as a major source of error in atmo-

sphere CO, inversion analyses (Law et al., 1996; Law and Simmonds, 1996; Denning et al., 1995, 1999a, b; Baker et al.,
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2006a; Stephens et al., 2007). Improvements to model transport will provide critical improvements to NCE and AC ¢ €s-
timates. Systematic errors in model transport limit our ability to relate surface fluxes and CO- observations, and can lead to
incorrect inferences of surface fluxes (Yu et al., 2018; Schuh et al., 2019; Stanevich et al., 2020). Improving model transport
will require work in two areas: (1) improving model parameterizations of unresolved transport, particularly in coarse off-
line CTMs (like GEOS-Chem run at 4° x 5° in this ensemble) where the spatial and temporal coarsening of meteorological
fields can “average-out” vertical transport that is resolved in the parent model (Yu et al., 2018; Stanevich et al., 2020); and
(2) increasing spatial and temporal resolution in model simulations, which can better resolve atmospheric transport processes
(Agusti-Panareda et al., 2019; Schuh et al., 2019). However, it should be noted that there are limitations to the improvements
that can come from increased model resolution in the global inversion context due to underlying meteorological uncertainties
(Liu et al., 2011; Polavarapu et al., 2016, 2018; McNorton et al., 2020). Computational cost is also a significant challenge in
inversion systems, because transport models usually scale poorly on supercomputers, for example because of the volume of
meteorological data required as input.

As transport models are refined, it will be critical to periodically test their ability to represent large scale atmospheric
dynamics. This can be tested using long-lived trace gas species, including sulfur hexafluoride (Schuh et al., 2019), idealized
age of air tracer (Krol et al., 2018), and beryllium-7 (Stanevich et al., 2020). Simulations of these trace species are critical in
the context of inversion MIPs to gauge inter-model variability and average model bias (Schuh et al., 2019). Similarly, Rn 222 is
a useful short lived gas species that enables modelers to evaluate the vertical mixing within the column (Remaud et al., 2018).
In addition, model intercomparison studies have proven useful for diagnosing transport errors (e.g., Gaubert et al., 2019; Zhang
et al., 2022), and we recommend further activities, such as within the Atmospheric Tracer Transport Model Intercomparison

Project (TRANSCOM) framework.
9.2.3 Missing processes and required assumptions

The flux estimates provided here do not explicitly account for the atmospheric-chemical production of atmospheric COo,
which occurs from the oxidation of reduced carbon gasses. Instead, these fluxes are either prescribed as surface—atmosphere
fluxes (e.g., for FF CO emissions) or neglected from the prior fluxes. This can cause inverse modeling systems to implicitly
incorporate the atmospheric COy source in optimized surface-atmosphere emissions and removals (i.e. air—sea fluxes and
NBE), which can be far from the actual source of the reduced gas. For example, FF CO emissions are largely emitted in the
northern extratropics but largely oxidized to COs in the tropical troposphere. These incorrectly located emissions of CO; are
large enough to impact top-down inversions (Enting and Mansbridge, 1991; Suntharalingam et al., 2005; Nassar et al., 2010;
Wang et al., 2020). Future studies that aim to incorporate an atmospheric source of CO2 would help correct for this current
spatial bias (Ciais et al., 2022).

A critical assumption in the top-down CO- budgets estimated here has been that FF emissions are known and unbiased.
Uncertainties in inventory-based FF emission estimates at global and country levels (e.g., Andres et al., 2014) are smaller than
top-down NCE estimates; however, inventory-based emission estimates are prone to systematic biases due to the nature of the

estimation approach (Guan et al., 2012; Oda et al., 2019) and FF uncertainties could bias the partitioning of NCE between FF
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and NBE (and propagate into AC's) over countries with large emissions and lower reliability of statistical data collection
system, such as China. For example, Saeki and Patra (2017) show that an inferred increase in removals of CO5 by the biosphere

over China during 2001-2010 are likely to be an artifact imposed by an error in the trend of anthropogenic CO4 emissions.
9.2.4 Uncertainty quantification

The uncertainty in NCE reported here is an estimate of the standard deviation of the v10 OCO-2 MIP ensemble members.
This is meant to characterize uncertainties originating from the inversion configuration (such as the transport model, inversion
method, and prior constraints). However, there are also limitations to this method. First, there is only a small ensemble of
11 MIP ensemble members included in this analysis, and an over-representation of inversions using two transport models:
TMS5 (3) and GEOS-Chem (5), which makes uncertainty quantification challenging. Future approaches that employ “borrowing
strength” (Mearns and et al., 2007; Cressie and Kang, 2016) could be employed to better characterize ensemble uncertainty.
Second, the ensemble-based tneertainty-estimate does not capture some sources of uncertainty. In particular, Bayesian posterior
uncertainties are not considered here (see Sect. 5.2), due to the fact that many of the inversion systems participating in the
v10 OCO-2 MIP do not calculate this uncertainty. In addition, we find that the ensemble members that produce Bayesian
uncertainties show large differences in magnitude. Thus, this is an area of future improvement for MIP activities, and we
recommend more work into characterizing this error component in ensemble inversion experiments. We also note that using an
analytic framework, posterior uncertainties and their sensitivities to prior information could be further examined, as has been

done for methane (Worden et al., 2022).
9.3 Stockchange estimates

AFOEY-Agriculture and LULUCF emissions and removals are generally quantified as terrestrial carbon stockchanges in man-
aged lands. A number of challenges remain in estimating this quantity from top-down methods. Firstly, lateral fluxes of carbon
remain quite uncertain (and associated uncertainty estimates are themselves quite uncertain). The best constrained lateral fluxes
are annual country-level F'y 04 trade aNd Fywood trades Which are reported to the UN Food and Agriculture Organization. These
fluxes are more uncertain on sub-national scales and sub-annual timescales. Meanwhile, I \ivers export 18 best quantified on
basin scales, where stream gauge measurements inform carbon fluxes. Improving sub-national and sub-annual estimates of lat-
eral fluxes would have several benefits: first, this would allow for better sub-national attribution, where regional fluxes could be
better quantified. Second, this would allow for incorporating the atmospheric imprint of these carbon fluxes as prior information
within atmospheric CO; inversion analyses, which may improve flux estimates on sub-national scales.

The Global-Stoektake-GST and Paris Agreement do not consider emissions and removals from unmanaged lands. Separating
managed lands from unmanaged lands is top-down NCE remains a major challenge, given the smoothed large-scale CO5 flux
constraints provided by these top-down methods and the fact that both managed and unmanaged lands can experience consid-
erable stock changes driven by interannual climate variations (e.g., El Nifio) and in response to rising CO and climate change.

In addition, separating managed and unmanaged lands is further complicated by the fact that there is considerable ambiguity
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in the definitions managed lands, which can also vary by country (Grassi et al., 2018; Chevallier, 2021). We recommend that

each party provide a mask to unambiguously define the plots considered as managed from year to year (Chevallier, 2021).

10 Conclusions

We introduced a pilot top-down CO5 budget dataset (Byrne et al., 2022) intended to start a dialogue between research com-
munities and to identify ways that top-down flux estimates can inform country-level carbon budgets. This dataset provides
annual country-level and 1° x 1° gridded top-down NCE and AC',ss over 2015-2020, in addition to bottom-up FF and lateral
fluxes. These data are provided for four experiments from the v10 OCO-2 MIP that differ in the data used in the assimilation:
IS, LNLG, LNLGIS, and LNLGOGIS. In addition, we provide two metrics for interpreting country-level estimates: (1) the
Z-statistic (Sect. 5.1), which quantifies the agreement between IS and LNLG NCE estimates, and (2) the FUR (Sect. 5.2),
which quantifies the impact of atmospheric CO2 data in reducing flux uncertainties.

Country-level flux estimates generally show robust signals for large extratropical countries (e.g., USA, Russia, China).
Agreement between the experiments generally decreases for mid-sized countries (e.g., Turkey), particularly in regions with
sparse observational coverage for the in situ network (such as the tropics). Large divergences between the IS and LNLG
experiments occur in some regions, particularly northern Sub-Saharan Africa, and could be related to the sparsity of in situ
CO; measurements or biases in OCO-2 retrievals. However, the sparsity of independent CO» measurements in these regions
precludes definitive conclusions. We urge caution in interpreting the 1° x 1° gridded results and suggest collaborating with
with experts in atmospheric CO5 inversion systems when using those data.

The accuracy of top-down NCE estimates were characterized through comparisons against independent atmospheric CO4
datasets, and through comparisons against pCO2-based air—sea CO; fluxes. Overall, the IS, LNLG, and LNLGIS were found
to show the best agreement against independent CO- measurements, and we recommend using these experiments for analysis.
Poorer agreement for experiments assimilating OCO-2 ocean glint X0, retrievals, suggesting that residual retrieval biases
adversely impact the LNLGOGIS experiment and we urge caution in interpreting these data.

For future GSTs, top-down NCE estimates will be refined as new space-based X, observing systems expand and retrieval
algorithms are improved. Complementary expansions of ground-based and aircraft-based CO2 measurements in under-sampled
regions will similarly fill critical observational gaps in regions with large uncertainties and susceptibility to retrieval biases.
Improvements to atmospheric CO5 inversion systems, including reductions to systematic transport errors and improved error
characterization, will be critical for refining top-down CO- budgets. And improved estimates of lateral carbon fluxes and

managed lands maps will refine estimates of AFOEU-agriculture, LULUCEF, and waste emissions and removals.

11 Data availability

Top-down CO4 budgets (Byrne et al., 2022) are available from the Committee on Earth Observation Satellites’ (CEOS) website:
https://doi.org/10.48588/npf6-sw92. Griddled NBE and air-sea fluxes from the OCO-2 MIP are available at
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920 https://gml.noaa.gov/ccgg/OCO;_v10mip/. Fossil fuel emissions prescribed in the inversions can be downloaded from
https://zenodo.org/record/4776925#. YNX96hNK;j2U. The ODIAC2020 emission data product can be downloaded from the
Global Environmental Database hosted by the Center for Global Global Environmental Research at NIES
(https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2020.html). SeaFlux pCOs-based air—sea fluxes were downloaded from
https://zenodo.org/record/5482547#.Yowg18ZID1I, accessed 23 May 2022.

43



925 Appendix A: TCCON sites

Table A1. TCCON sites used for evaluation of posterior COx fields of the v10 OCO-2 MIP experiments.

TCCON site Country Latitude  Longitude Reference
Eureka Canada 80.05° N  86.42°W Strong et al. (2019)
Ny-Alesund Norway 78.9° N 119 °E Notholt et al. (2019b)
Sodankyld Finland 67.4° N 26.6 °E Kivi et al. (2014)
East Trout Lake Canada 54.4° N 105.0 °W Waunch et al. (2017a)
Bremen Germany 53.10° N 8.85 °E Notholt et al. (2019a)
Karlsruhe Germany 49.1° N 8.4 °E Hase et al. (2014)
Paris France 48.8° N 24°E Te et al. (2014)
Orléans France 479° N 2.1°E Warneke et al. (2019)
Garmisch Germany 47.5° N 11.1 °E Sussmann and Rettinger (2018a)
Zugspitze Germany 473°N 11.0 °E Sussmann and Rettinger (2018b)
Park Falls USA 459° N 90.3 °W Wennberg et al. (2017)
Rikubetsu Japan 43.5° N 143.8 °E Morino et al. (2014)
Lamont USA 36.6° N 97.5°W Wennberg et al. (2016b)
Anmeyondo Korea 36.5° N 126.3 °E Goo et al. (2014)
Tsukuba Japan 36.1° N 140.1 °E Morino et al. (2018a)
Nicosia Cyprus 35.1° N 334 °E Petri et al. (2020)
Edwards USA 34.2° N 118.2°W Iraci et al. (2016)
JPL USA 342°N 1182 °W Wennberg et al. (2016a)
Caltech USA 34.1° N 118.1 °W Wennberg et al. (2014)
Saga Japan 332°N 130.3 °E Kawakami et al. (2014)
Hefei China 31.9°N 117.2°E Liu et al. (2018)
Izaiia Spain 28.3° N 16.5°W Blumenstock et al. (2017)
Burgos Philippines 18.5° N 120.7 °E Morino et al. (2018b)
Manaus Brazil 32°N 60.6 °W Dubey et al. (2014)
Ascension Island UK 7.9°S 14.3°W Feist et al. (2014)
Darwin Australia 12.4° S 130.9 °E Griffith et al. (2014a);
Réunion island France 20.9° S 55.5°W De Mazicere et al. (2017)
Wollongong Australia 34.4°S 1509 °E Gritfith et al. (2014b)
Lauder 125HR New Zealand 45.0° S 169.7 °E Sherlock et al. (2014)

44



930

935

940

945

950

955

Author contributions. The study was conceived of by DC, and designed by BB, DB, SB, KWB, AC, FC, PC, NC, DC, LH, ARJ, JL, JBM,
TO, PKP, BP, AS, CS, and JRW. The v10 OCO-2 MIP experiments were performed by DFB, SB, MB, FC, NC, SC, FD, ARJ, RJ, MSJ,
DBAJ, JL, ZL, SM, SMM, RM, AS, AZM, and NZ. Lateral flux estimates were performed by FC, PC, ZD, HT, and YY. FF emissions
estimates were performed by TO and SB. TCCON data were collected by NMD, MKD, OEG, BH, RK, IM, JN, YSO, HO, CP, KS, KS, YT,
VAV, MV, TW and DW. Evaluation of v10 OCO-2 MIP against co-samples was performed by BB, SB, AC, and ARJ. BB wrote the paper

and prepared the figures, with contributions from all co-authors.

Competing interests. no competing interests are present

Acknowledgements. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Administration (80NM0018D004). The v10 OCO-2 MIP activity was supported by the NASA
OCO Science Team program. BB and JL were supported by the NASA OCO2/3 science team program NNH17ZDAO0IN-OCO2. ARJ, AS,
and DFB were funded by NASA award 8ONSSC21K1080. AS was also supported by the NASA grant NNX15AG93G. SC acknowledge
from the NASA OCO Science Team grant 80NSSC21K1077. The research of NC, AZM, and MB was supported by Australian Research
Council Discovery Project DP190100180 and by NASA ROSES grant 20-OCOST20-0004. AZM is also supported by the Australian Re-
search Council Discovery Early Career Research Award DE180100203. Contribution of AC was supported by NASA ROSES Grant numbers
80ONSSC20K0006 and SONSSC21K1068. MSJ acknowledges the internal funding from NASA’s Earth Science Research and Analysis Pro-
gram. The contributions of FC and MR were supported by the Copernicus Atmosphere Monitoring Service, implemented by the European
Centre for Medium-Range Weather Forecasts on behalf of the European Commission (grant no. CAMS73), and by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 958927 (Prototype system for a Copernicus CO2 service).
It was granted access to the HPC resources of TGCC under the allocation A0110102201 made by GENCI. SF at PNNL is supported
by the NASA Carbon Monitoring Program (Grant number: 80HQTR21T0069). The Pacific Northwest National Laboratory is operated
by Battelle Memorial Institute under contract DE-AC05-76RL01830. NZ acknowledges support from NOAA (NA18OAR4310266) and
NASA (80NSSC18K0908). PKP is partly supported by Environment Research and Technology Development Fund (JPMEERF21S20800)
of the Environmental Restoration and Conservation Agency of Japan. SMM was supported by the NASA grants 8ONSSC18K0976 and
80NSSC21K1073. NMD was funded by ARC Future Fellowship FT180100327

The TCCON Nicosia site has received additional support from the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 856612 /EMME-CARE), the Cyprus Government, and the University of Bremen. The TCCON Anmyeondo stie has
been funded by the Korea Meteorological Administration Research and Development Program “Developing Technology for Integrated Cli-
mate Change Monitoring and Analysis” under grant(KMA2018-00320). TCCON sites at Tsukuba, Rikubetsu and Burgos are supported in
part by the GOSAT series project. Burgos is supported in part by the Energy Development Corp. Philippines. The Eureka TCCON mea-
surements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) by the Canadian Network for the Detection of
Atmospheric Change (CANDAC), primarily supported by the Natural Sciences and Engineering Research Council of Canada, Environment
and Climate Change Canada, and the Canadian Space Agency. The TCCON site at Réunion Island has been operated by the Royal Bel-
gian Institute for Space Aeronomy with financial support since 2014 by the EU project ICOS-Inwire and the ministerial decree for ICOS
(FR/35/IC1 to FR/35/C6) and local activities supported by LACy/UMR8105 and by OSU-R/UMS3365 — Université de La Réunion. Darwin

45



960 and Wollongong TCCON stations are supported by ARC grants DP160100598, LE0668470, DP140101552, DP110103118 and DP0879468
and NASA grants NAG512247 and NNG0O5GDO7G.
We thank Robert J. Andres for providing uncertainty estimates for CDIAC fossil fuel emission estimates. We thank the data providers of
the SeaFlux ensemble for making their pCO2-based air—sea CO2 fluxes publicly available. We are grateful for the leadership of Annemarie
Eldering and Mike Gunson of the OCO-2 mission, whose hard work has made this dataset possible.

46



965

970

975

980

985

990

995

References

Abshire, J. B., Riris, H., Allan, G. R., Weaver, C. J., Mao, J., Sun, X., Hasselbrack, W. E., Kawa, S. R., and Biraud, S.: Pulsed airborne lidar
measurements of atmospheric CO5 column absorption, Tellus B, 62, 770-783, https://doi.org/10.1111/j.1600-0889.2010.00502.x, 2010.

Agusti-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muiloz Sabater, J., Barré, J., Curcoll, R., Engelen, R., Langerock, B., Law,
R. M., Loh, Z., Morgui, J. A., Parrington, M., Peuch, V.-H., Ramonet, M., Roehl, C., Vermeulen, A. T., Warneke, T., and Wunch, D.:
Modelling CO2 weather — why horizontal resolution matters, Atmos. Chem. Phys., 19, 7347-7376, https://doi.org/10.5194/acp-19-7347-
2019, 2019.

Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, P., Piao, S.,
Sitch, S., Nicolas, V., Andy, W., and Zhao, M.: Spatiotemporal patterns of terrestrial gross primary production: A review, Rev. Geophys.,
53, 785-818, https://doi.org/10.1002/2015RG000483, 2015.

Andres, R. J., Boden, T. A., and Higdon, D.: A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon
dioxide emission, Tellus B, 66, 23 616, https://doi.org/10.3402/tellusb.v66.23616, 2014.

Andrew, R. M.: A comparison of estimates of global carbon dioxide emissions from fossil carbon sources, Earth System Science Data, 12,
1437-1465, https://doi.org/10.5194/essd-12-1437-2020, 2020.

Baier, B., Sweeney, C., Tans, P., Newberger, T., Higgs, J., and Wolter, S.: NOAA AirCore atmospheric sampling system profiles (Version
20210813), https://doi.org/https://doi.org/10.15138/6AV0O-M Y81, 2021.

Baker, D., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P, Denning, A., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P, et al.: TransCom
3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003, Global
Biogeochem. Cy., 20, https://doi.org/10.1029/2004GB 002439, 2006a.

Baker, D., Bosch, H., Doney, S., O’Brien, D., and Schimel, D.: Carbon source/sink information provided by column CO> measurements
from the Orbiting Carbon Observatory, Atmos. Chem. Phys., 10, 4145-4165, https://doi.org/10.5194/acp-10-4145-2010, 2010.

Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation for atmospheric CO2, Tellus B, 58, 359-365,
https://doi.org/10.5194/acp-10-4145-2010, 2006b.

Baker, D. F, Bell, E., Davis, K. J., Campbell, J. F,, Lin, B., and Dobler, J.: A new exponentially decaying error correlation model for
assimilating OCO-2 column-average CO» data using a length scale computed from airborne lidar measurements, Geosci. Model Deyv., 15,
649-668, https://doi.org/10.5194/gmd-15-649-2022, 2022.

Ballantyne, A. P., Alden, C. B., Miller, J. B, Tans, P. P., and White, J.: Increase in observed net carbon dioxide uptake by land and oceans
during the past 50 years, Nature, 488, 70-72, https://doi.org/10.1038/nature11299, 2012.

Bastos, A., Ciais, P, Sitch, S., Aragdo, L. E., Chevallier, F., Fawcett, D., Rosan, T. M., Saunois, M., Giinther, D., Perugini, L., et al.: On the
use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stocktake process: lessons
learned from ESA-CCI RECCAP2, Carbon balance and management, 17, 1-16, 2022.

Basu, S., Lehman, S. J., Miller, J. B., Andrews, A. E., Sweeney, C., Gurney, K. R., Xu, X., Southon, J., and Tans, P. P.: Estimating US fossil
fuel CO5 emissions from measurements of **C in atmospheric CO2, Proceedings of the National Academy of Sciences, 117, 13 300—

13307, https://doi.org/10.1073/pnas.1919032117, 2020.

47


https://doi.org/10.1111/j.1600-0889.2010.00502.x
https://doi.org/10.5194/acp-19-7347-2019
https://doi.org/10.5194/acp-19-7347-2019
https://doi.org/10.5194/acp-19-7347-2019
https://doi.org/10.1002/2015RG000483
https://doi.org/10.3402/tellusb.v66.23616
https://doi.org/10.5194/essd-12-1437-2020
https://doi.org/https://doi.org/10.15138/6AV0-MY81
https://doi.org/10.1029/2004GB002439
https://doi.org/10.5194/acp-10-4145-2010
https://doi.org/10.5194/acp-10-4145-2010
https://doi.org/10.5194/gmd-15-649-2022
https://doi.org/10.1038/nature11299
https://doi.org/10.1073/pnas.1919032117

1000

1005

1010

1015

1020

1025

1030

1035

Bertaux, J.-L., Hauchecorne, A., Lefevre, F., Bréon, F.-M., Blanot, L., Jouglet, D., Lafrique, P., and Akaev, P.: The use of the 1.27 um
O3 absorption band for greenhouse gas monitoring from space and application to MicroCarb, Atmos. Meas. Tech., 13, 3329-3374,
https://doi.org/10.5194/amt-13-3329-2020, 2020.

Bloom, A. A., Bowman, K. W., Liu, J., Konings, A. G., Worden, J. R., Parazoo, N. C., Meyer, V., Reager, J. T., Worden, H. M., Jiang, Z.,
Quetin, G. R., Smallman, T. L., Exbrayat, J.-F,, Yin, Y., Saatchi, S. S., Williams, M., and Schimel, D. S.: Lagged effects regulate the
inter-annual variability of the tropical carbon balance, Biogeosciences, 17, 6393-6422, https://doi.org/10.5194/bg-17-6393-2020, 2020.

Blumenstock, T., Hase, F., Schneider, M., Garcia, O. E., and Sepulveda, E.. TCCON data from Izana (ES), Release GGG2014.R1,
https://doi.org/10.14291/TCCON.GGG2014.IZANAO1.R1, 2017.

Bolin, B. and Keeling, C.: Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide, J.
Geophys. Res., 68, 3899-3920, https://doi.org/0.1029/JZ068i013p03899, 1963.

Bureau Of Meteorology: Annual climate statement 2016, http://www.bom.gov.au/climate/current/annual/aus/2016, accessed: 10 June 2022,
2017.

Byrne, B., Jones, D. B. A., Strong, K., Zeng, Z.-C., Deng, F., and Liu, J.: Sensitivity of CO2 Surface Flux Constraints to Observational
Coverage, J. Geophys. Res.-Atmos, 112, 6672—-6694, https://doi.org/10.1002/2016JD026164, 2017.

Byrne, B., Liu, J., Bloom, A. A., Bowman, K. W., Butterfield, Z., Joiner, J., Keenan, T. F., Keppel-Aleks, G., Parazoo, N. C., and Yin, Y.:
Contrasting regional carbon cycle responses to seasonal climate anomalies across the east-west divide of temperate North America, Global
Biogeochem. Cy., 34, e2020GB006 598, https://doi.org/10.1029/2020GB006598, 2020.

Byrne, B., Liu, J., Lee, M., Yin, Y., Bowman, K. W., Miyazaki, K., Norton, A. J., Joiner, J., Pollard, D. F., Griffith, D. W., Velazco, V. A,
Deutscher, N. M., Jones, N. B., and Paton-Walsh, C.: The carbon cycle of southeast Australia during 2019-2020: Drought, fires, and
subsequent recovery, AGU Advances, 2, €2021AV000 469, https://doi.org/10.1029/2021AV000469, 2021.

Byrne, B., Baker, D. F,, Basu, S., Bertolacci, M., Bowman, K. W., Carroll, D., Chatterjee, A., Chevallier, F., Ciais, P., Cressie, N., Crisp,
D., Crowell, S., Deng, F., Deng, Z., Deutscher, N. M., Dubey, M. K., Feng, S., Garcia, O. E., Herkommer, B., Hu, L., Jacobson, A. R.,
Janardanan, R., Jeong, S., Johnson, M. S., Jones, D. B. A., Kivi, R., Liu, J., Liu, Z., Maksyutov, S., Miller, J. B., Miller, S. M., Morino, L.,
Notholt, J., Oda, T., O’Dell, C. W., Oh, Y.-S., Ohyama, H., Patra, P. K., Peiro, H., Petri, C., Philip, S., Pollard, D. F., Poulter, B., Remaud,
M., Schuh, A., Sha, M. K., Shiomi, K., Strong, K., Sweeney, C., T¢é, Y., Tian, H., Velazco, V. A., Vrekoussis, M., Warneke, T., Worden,
J. R., Wunch, D., Yao, Y., Yun, J., Zammit-Mangion, A., and Zeng, N.: Pilot top-down CO> Budget constrained by the v10 OCO-2 MIP
Version 1, Committee on Earth Observing Satellites, https://doi.org/10.48588/npf6-sw92, Version 1.0, 2022.

Canadell, J. G., Monteiro, P. M., Costa, M. H., Da Cunha, L. C., Cox, P. M., Alexey, V., Henson, S., Ishii, M., Jaccard, S., Koven,
C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global Carbon and other Biogeo-
chemical Cycles and Feedbacks, pp. 673-816, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/9781009157896.007, 2021.

Caspersen, J. P, Pacala, S. W., Jenkins, J. C., Hurtt, G. C., Moorcroft, P. R., and Birdsey, R. A.: Contributions of land-use history to carbon
accumulation in US forests, Science, 290, 1148-1151, https://doi.org/10.1126/science.290.5494.114, 2000.

Center for International Earth Science Information Network - CIESIN - Columbia University: Gridded Population of the World, Version
4 (GPWv4) National Identifier Grid, Revision 11., https://sedac.ciesin.columbia.edu/data/set/gpw-v4-national-identifier-grid-rev11, ac-
cessed 3 March 2021, 2018.

48


https://doi.org/10.5194/amt-13-3329-2020
https://doi.org/10.5194/bg-17-6393-2020
https://doi.org/10.14291/TCCON.GGG2014.IZANA01.R1
https://doi.org/0.1029/JZ068i013p03899
http://www.bom.gov.au/climate/current/annual/aus/2016
https://doi.org/10.1002/2016JD026164
https://doi.org/10.1029/2020GB006598
https://doi.org/10.1029/2021AV000469
https://doi.org/10.48588/npf6-sw92
https://doi.org/10.1017/9781009157896.007
https://doi.org/10.1126/science.290.5494.114
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-national-identifier-grid-rev11

1040

1045

1050

1055

1060

1065

1070

Chandra, N., Patra, P. K., Niwa, Y., Ito, A., Iida, Y., Goto, D., Morimoto, S., Kondo, M., Takigawa, M., Hajima, T., and Watanabe, M.:
Estimated regional CO2 flux and uncertainty based on an ensemble of atmospheric CO» inversions, Atmos. Chem. Phys. Discussions,
2021, 1-50, https://doi.org/10.5194/acp-2021-1039, 2021.

Chau, T. T. T., Gehlen, M., and Chevallier, F.: A seamless ensemble-based reconstruction of surface ocean pCO2 and air—sea CO» fluxes over
the global coastal and open oceans, Biogeosciences, 19, 1087-1109, https://doi.org/10.5194/bg-19-1087-2022, 2022.

Chen, Z., Huntzinger, D. N., Liu, J., Piao, S., Wang, X., Sitch, S., Friedlingstein, P., Anthoni, P., Arneth, A., Bastrikov, V., Goll, D. S., Haverd,
V., Jain, A. K., Joetzjer, E., Kato, E., Lienert, S., Lombardozzi, D. L., McGuire, P. C., Melton, J. R., Nabel, J. E. M. S., Pongratz, J., Poulter,
B., Tian, H., Wiltshire, A. J., Zaehle, S., and Miller, S. M.: Five years of variability in the global carbon cycle: comparing an estimate from
the Orbiting Carbon Observatory-2 and process-based models, Environ. Res. Lett., 16,054 041, https://doi.org/10.1088/1748-9326/abfac1,
2021a.

Chen, Z., Liu, J., Henze, D. K., Huntzinger, D. N., Wells, K. C., Sitch, S., Friedlingstein, P., Joetzjer, E., Bastrikov, V., Goll, D. S., Haverd,
V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D. L., McGuire, P. C., Melton, J. R., Nabel, J. E. M. S., Poulter, B., Tian, H., Wiltshire,
A.J., Zaehle, S., and Miller, S. M.: Linking global terrestrial CO> fluxes and environmental drivers: inferences from the Orbiting Carbon
Observatory 2 satellite and terrestrial biospheric models, Atmos. Chem. Phys., 21, 6663—-6680, https://doi.org/10.5194/acp-21-6663-2021,
2021b.

Chevallier, F.: Fluxes of Carbon Dioxide From Managed Ecosystems Estimated by National Inventories Compared to Atmospheric Inverse
Modeling, Geophys. Res. Lett., 48, €2021GL093 565, https://doi.org/10.1029/2021GL093565, 2021.

Chevallier, F., Engelen, R. J., and Peylin, P.: The contribution of AIRS data to the estimation of CO2 sources and sinks, Geophys. Res. Lett.,
32, https://doi.org/10.1029/2005GL024229, 2005a.

Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F.-M., Chédin, A., and Ciais, P.: Inferring CO2 sources and sinks
from satellite observations: Method and application to TOVS data, J. Geophys. Res.-Atmos., 110, https://doi.org/10.1029/2005JD006390,
2005b.

Chevallier, F., Breon, F.-M., and Rayner, P. J.: Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks:
Theoretical study in a variational data assimilation framework, J. Geophys. Res., 112, https://doi.org/10.1029/2006JD007375, 2007.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré,
C., Myneni, R., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, pp. 465-570, Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CB0O9781107415324.015, 2013.

Ciais, P, Yao, Y., Gasser, T., Baccini, A., Wang, Y., Lauerwald, R., Peng, S., Bastos, A., Li, W., Raymond, P. A., Canadell, J. G., Peters, G. P,
Andres, R. J., Chang, J., Yue, C., Dolman, A. J., Haverd, V., Hartmann, J., Laruelle, G., Konings, A. G., King, A. W., Liu, Y., Luyssaert,
S., Maignan, F., Patra, P. K., Peregon, A., Regnier, P., Pongratz, J., Poulter, B., Shvidenko, A., Valentini, R., Wang, R., Broquet, G., Yin,
Y., Zscheischler, J., Guenet, B., Goll, D. S., Ballantyne, A. P, Yang, H., Qiu, C., and Zhu, D.: Empirical estimates of regional carbon
budgets imply reduced global soil heterotrophic respiration, Nat. Sci. Rev., 8, nwaal45, https://doi.org/10.1093/nsr/nwaal45, 2021.

Ciais, P., Bastos, A., Chevallier, F., Lauerwald, R., Poulter, B., Canadell, J. G., Hugelius, G., Jackson, R. B., Jain, A., Jones, M., Kondo,
M., Luijkx, L. T., Patra, P. K., Peters, W., Pongratz, J., Petrescu, A. M. R., Piao, S., Qiu, C., Von Randow, C., Regnier, P., Saunois, M.,
Scholes, R., Shvidenko, A., Tian, H., Yang, H., Wang, X., and Zheng, B.: Definitions and methods to estimate regional land carbon fluxes
for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2), Geoscientific Model Development,
15, 1289-1316, https://doi.org/10.5194/gmd-15-1289-2022, 2022.

49


https://doi.org/10.5194/acp-2021-1039
https://doi.org/10.5194/bg-19-1087-2022
https://doi.org/10.1088/1748-9326/abfac1
https://doi.org/10.5194/acp-21-6663-2021
https://doi.org/10.1029/2021GL093565
https://doi.org/10.1029/2005GL024229
https://doi.org/10.1029/2005JD006390
https://doi.org/10.1029/2006JD007375
https://doi.org/10.1017/CBO9781107415324.015
https://doi.org/10.1093/nsr/nwaa145
https://doi.org/10.5194/gmd-15-1289-2022

1075

1080

1085

1090

1095

1100

1105

1110

Cook-Patton, S. C., Leavitt, S. M., Gibbs, D., Harris, N. L., Lister, K., Anderson-Teixeira, K. J., Briggs, R. D., Chazdon, R. L., Crowther,
T. W, Ellis, P. W., Griscom, H. P., Herrmann, V., Holl, K. D., Houghton, R. A., Larrosa, C., Lomax, G., Lucas, R., Madsen, P., Malhi,
Y., Paquette, A., Parker, J. D., Paul, K., Routh, D., Roxburgh, S., Saatchi, S., van den Hoogen, J., Walker, W. S., Wheeler, C. E., Wood,
S. A., Xu, L., and Griscom, B. W.: Mapping carbon accumulation potential from global natural forest regrowth, Nature, 585, 545-550,
https://doi.org/10.1038/s41586-020-2686-x, 2020.

Cressie, N. and Kang, E. L.: Hot enough for you? A spatial exploratory and inferential analysis of North American climate-change projec-
tions, Math. Geosci., 48, 107-121, https://doi.org/10.1007/s11004-015-9607-9, 2016.

Crisp, D., Meijer, Y., Munro, R., Bowman, K., Chatterjee, A., Baker, D., Chevallier, F., Nassar, R., Palmer, P. 1., Agusti-Panareda, A., Al-
Saadi, J., Ariel, Y., Basu, S., Bergamaschi, P., Boesch, H., Bousquet, P., Bovensmann, H., Bréon, F.-M., Brunner, D., Buchwitz, M.,
Buisson, F., Burrows, J. P., Butz, A., Ciais, P., Clerbaux, C., Counet, P., Crevoisier, C., Crowell, S., DeCola, P. L., Deniel, C., Dowell, M.,
Eckman, R., Edwards, D., Ehret, G., Eldering, A., Engelen, R., Fisher, B., Germain, S., Hakkarainen, J., Hilsenrath, E., Holmlund, K.,
Houweling, S., Hu, H., Jacob, D., Janssens-Maenhout, G., Jones, D. B. A., Jouglet, D., Kataoka, F., Kiel, M., Kulawik, S. S., Kuze, A.,
Lachance, R. L., Lang, R., Landgraf, J., Liu, J., Liu, Y., Maksyutov, S., Matsunaga, T., McKeever, J., Moore, B., Nakajima, M., Natraj,
V., Nelson, R. R., Niwa, Y., Oda, T., O’Dell, C. W., Ott, L., Patra, P, Pawson, S., Payne, V., Pinty, B., Polavarapu, S. M., Retscher, C.,
Rosenberg, R., Schuh, A., Schwandner, F. M., Shiomi, K., Su, W., Tamminen, J., Taylor, T. E., Veefkind, P., Veihelmann, B., Wofsy, S.,
Worden, J., Wunch, D., Yang, D., Zhang, P., and Zehner, C.: A constellation architecture for monitoring carbon dioxide and methane from
space, Tech. rep., 32nd Committee on Earth Observation Satellites 2018 Plenary, Brussels, Belgium, October 16-18, 2018, 2018.

Crisp, D., Dolman, H., Tanhua, T., McKinley, G. A., Hauck, J., Bastos, A., Sitch, S., Eggleston, S., and Aich, V.: How Well Do We Understand
the Land-Ocean-Atmosphere Carbon Cycle?, Rev. Geophys., 60, €2021RG000 736, https://doi.org/10.1029/2021RG000736, 2022.

Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., Feng, L., McKain, K., Chatterjee, A., Miller,
J. B., Stephens, B. B., Eldering, A., Crisp, D., Schimel, D., Nassar, R., O’Dell, C. W., Oda, T., Sweeney, C., Palmer, P. 1., and Jones,
D. B. A.: The 2015-2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19, 9797-9831,
https://doi.org/10.5194/acp-19-9797-2019, 2019.

De Maziere, M., Sha, M. K., Desmet, F., Hermans, C., Scolas, F., Kumps, N., Metzger, J.-M., Duflot, V., and Cammas, J.-P.: TCCON data
from Réunion Island (RE), Release GGG2014.R1, https://doi.org/10.14291/TCCON.GGG2014.REUNIONO1.R1, 2017.

Deng, F, Jones, D. B. A., Henze, D. K., Bousserez, N., Bowman, K. W., Fisher, J. B., Nassar, R., O’Dell, C., Wunch, D., Wennberg,
P. O., Kort, E. A., Wofsy, S. C., Blumenstock, T., Deutscher, N. M., Griffith, D. W. T., Hase, F., Heikkinen, P., Sherlock, V., Strong, K.,
Sussmann, R., and Warneke, T.: Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO3 data, Atmos. Chem. Phys.,
14, 3703-3727, https://doi.org/10.5194/acp-14-3703-2014, 2014.

Deng, F.,, Jones, D., O’Dell, C. W., Nassar, R., and Parazoo, N. C.: Combining GOSAT Xco, observations over land and ocean to improve
regional CO3 flux estimates, J. Geophys. Res.-Atmos., 121, 1896-1913, https://doi.org/10.1002/2015JD024157, 2016.

Deng, Z., Ciais, P., Tzompa-Sosa, Z. A., Saunois, M., Qiu, C., Tan, C., Sun, T., Ke, P., Cui, Y., Tanaka, K., Lin, X., Thompson, R. L., Tian,
H., Yao, Y., Huang, Y., Lauerwald, R., Jain, A. K., Xu, X., Bastos, A., Sitch, S., Palmer, P. I., Lauvaux, T., d’ Aspremont, A., Giron, C.,
Benoit, A., Poulter, B., Chang, J., Petrescu, A. M. R., Davis, S. J., Liu, Z., Grassi, G., Albergel, C., Tubiello, F. N., Perugini, L., Peters, W.,
and Chevallier, F.: Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions, Earth
Syst. Sci. Data, 14, 1639-1675, https://doi.org/10.5194/essd-14-1639-2022, 2022.

Denning, A. S., Fung, I. Y., and Randall, D.: Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota, Nature, 376,
240, https://doi.org/10.1038/376240a0, 1995.

50


https://doi.org/10.1038/s41586-020-2686-x
https://doi.org/10.1007/s11004-015-9607-9
https://doi.org/10.1029/2021RG000736
https://doi.org/10.5194/acp-19-9797-2019
https://doi.org/10.14291/TCCON.GGG2014.REUNION01.R1
https://doi.org/10.5194/acp-14-3703-2014
https://doi.org/10.1002/2015JD024157
https://doi.org/10.5194/essd-14-1639-2022
https://doi.org/10.1038/376240a0

1115

1120

1125

1130

1135

1140

1145

Denning, A. S., Holzer, M., Gurney, K. R., Heimann, M., Law, R. M., Rayner, P. J., Fung, I. Y., Fan, S.-M., Taguchi, S., Friedlingstein, P.,
Balkanski, Y., Taylor, J., Maiss, M., and Levin, I.: Three-dimensional transport and concentration of SF2 A model intercomparison study
(TransCom 2), Tellus B, 51, 266-297, https://doi.org/10.3402/tellusb.v51i2.16286, 1999a.

Denning, A. S., Takahashi, T., and Friedlingstein, P.: Can a strong atmospheric CO> rectifier effect be reconciled with a “reasonable” carbon
budget?, Tellus B, 51, 249-253, https://doi.org/10.3402/tellusb.v51i2.16277, 1999b.

Denvil-Sommer, A., Gehlen, M., Vrac, M., and Mejia, C.: LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface
ocean pCOz over the global ocean, Geosci. Model Dev., 12, 2091-2105, https://doi.org/10.5194/gmd-12-2091-2019, 2019.

Dubey, M., Henderson, B., Green, D., Butterfield, Z., Keppel-Aleks, G., Allen, N., Blavier, J.-F.,, Roehl, C., Wunch, D., and
Lindenmaier, R.: TCCON data from Manaus (BR), Release GGG2014R0, TCCON data archive, hosted by CaltechDATA,
https://doi.org/10.14291/tccon.ggg2014.manaus01.R0/1149274, 2014.

Enting, I. and Mansbridge, J.: Latitudinal distribution of sources and sinks of COx2: Results of an inversion study, Tellus B, 43, 156-170,
https://doi.org/10.3402/tellusb.v43i2.15261, 1991.

Enting, L., Trudinger, C., and Francey, R.: A synthesis inversion of the concentration and § 13.C of atmospheric CO2, Tellus B, 47, 35-52,
https://doi.org/10.1034/j.1600-0889.47 .issuel.5.x, 1995.

EPA: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020. U.S. Environmental Protection Agency, EPA 430-R-22-003,
https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse- gas-emissions-and-sinks-1990-2020, 2022.

Fay, A. R. and McKinley, G. A.: Observed Regional Fluxes to Constrain Modeled Estimates of the Ocean Carbon Sink, Geophys. Res. Lett.,
48, €2021GL095 325, https://doi.org/10.1029/2021GL095325, 2021.

Fay, A. R., Gregor, L., Landschiitzer, P., McKinley, G. A., Gruber, N., Gehlen, M., lida, Y., Laruelle, G. G., Rédenbeck, C., Roobaert, A.,
and Zeng, J.: SeaFlux: harmonization of air—sea CO2 fluxes from surface pCO2 data products using a standardized approach, Earth Syst.
Sci. Data, 13, 4693-4710, https://doi.org/10.5194/essd-13-4693-2021, 2021.

Feist, D. G., Arnold, S. G., John, N., and Geibel, M. C.: TCCON data from Ascension Island (SH), Release GGG2014R0, TCCON data
archive, hosted by CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.ascension01.R0/1149285, 2014.

Feng, L., Palmer, P. I, Parker, R. J., Deutscher, N. M., Feist, D. G., Kivi, R., Morino, 1., and Sussmann, R.: Estimates of European uptake
of CO, inferred from GOSAT Xco, retrievals: sensitivity to measurement bias inside and outside Europe, Atmos. Chem. Phys., 16,
1289-1302, https://doi.org/10.5194/acp-16-1289-2016, 2016.

Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., Schuh, A. E., Liu, J., and Baker, I.: Seasonal characteristics of model
uncertainties from biogenic fluxes, transport, and large-scale boundary inflow in atmospheric CO> simulations over North America, J.
Geophys. Res.-Atmos., 124, 14 325-14 346, https://doi.org/10.1029/2019JD031165, 2019.

Fischer, T. P., Arellano, S., Carn, S., Aiuppa, A., Galle, B., Allard, P., Lopez, T., Shinohara, H., Kelly, P., Werner, C., et al.: The emissions of
COz and other volatiles from the world’s subaerial volcanoes, Scientific reports, 9, 1-11, 2019.

Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D., Smith, P., Van der Velde, M., Vicca, S., Babst, F., Beer,
C., Buchmann, N., Canadell, J. G., Ciais, P., Cramer, W., Ibrom, A., Miglietta, F., Poulter, B., Rammig, A., Seneviratne, S. 1., Walz, A.,
Wattenbach, M., Zavala, M. A., and Zscheischler, J.: Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and
potential future impacts, Global Change Biology, 21, 2861-2880, https://doi.org/10.1111/gcb.12916, 2015.

Frey, M., Sha, M. K., Hase, F., Kiel, M., Blumenstock, T., Harig, R., Surawicz, G., Deutscher, N. M., Shiomi, K., Franklin, J. E., Bosch,
H., Chen, J., Grutter, M., Ohyama, H., Sun, Y., Butz, A., Mengistu Tsidu, G., Ene, D., Wunch, D., Cao, Z., Garcia, O., Ramonet, M.,
Vogel, F., and Orphal, J.: Building the COllaborative Carbon Column Observing Network (COCCON): long-term stability and ensemble

51


https://doi.org/10.3402/tellusb.v51i2.16286
https://doi.org/10.3402/tellusb.v51i2.16277
https://doi.org/10.5194/gmd-12-2091-2019
https://doi.org/10.14291/tccon.ggg2014.manaus01.R0/1149274
https://doi.org/10.3402/tellusb.v43i2.15261
https://doi.org/10.1034/j.1600-0889.47.issue1.5.x
https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020
https://doi.org/10.1029/2021GL095325
https://doi.org/10.5194/essd-13-4693-2021
https://doi.org/10.14291/tccon.ggg2014.ascension01.R0/1149285
https://doi.org/10.5194/acp-16-1289-2016
https://doi.org/10.1029/2019JD031165
https://doi.org/10.1111/gcb.12916

1150

1155

1160

1165

1170

1175

1180

performance of the EM27/SUN Fourier transform spectrometer, Atmos. Meas. Tech., 12, 1513-1530, https://doi.org/10.5194/amt-12-
1513-2019, 2019.

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters, W., Pongratz,
J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M., Bellouin, N., Bopp, L., Chau, T.
T. T., Chevallier, F., Chini, L. P., Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M., Dou, X., Evans, W., Feely, R. A., Feng,
L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Giirses, O., Harris, 1., Houghton, R. A., Hurtt, G. C., lida,
Y., llyina, T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Kortzinger,
A., Landschiitzer, P., Lauvset, S. K., Leféevre, N., Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J. R., Munro, D. R., Nabel,
J. E. M. S., Nakaoka, S.-I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rodenbeck, C., Rosan,
T. M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans, P. P, Tian, H., Tilbrook, B., Tubiello,
F., van der Werf, G. R., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X,
Zaehle, S., and Zeng, J.: Global Carbon Budget 2021, Earth Syst. Sci. Data, 14, 1917-2005, https://doi.org/10.5194/essd-14-1917-2022,
2022.

Gatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Gatti Domingues, L., Cassol, H. L., Tejada, G., Aragdo, L. E., Nobre, C., Peters, W., Marani,
L., Arai, E., Sanches, A. H., Corréa, S. M., Anderson, L., Randow, C. V., Correia, C. S. C., Crispim, S. P, and Neves, R. A. L.: Amazonia
as a carbon source linked to deforestation and climate change, Nature, 595, 388—393, https://doi.org/10.1038/s41586-021-03629-6, 2021.

Gaubert, B., Stephens, B. B., Basu, S., Chevallier, F., Deng, F., Kort, E. A., Patra, P. K., Peters, W., Rodenbeck, C., Saeki, T., Schimel, D.,
Van der Laan-Luijkx, I., Wofsy, S., and Yin, Y.: Global atmospheric CO> inverse models converging on neutral tropical land exchange,
but disagreeing on fossil fuel and atmospheric growth rate, Biogeosciences, 16, 117-134, https://doi.org/10.5194/bg-16-117-2019, 2019.

Girard, C., Plante, A., Desgagné, M., McTaggart-Cowan, R., Coté, J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A.,
Roch, M., Spacek, L., Tanguay, M., Vaillancourt, P. A., and Zadra, A.: Staggered vertical discretization of the Canadian Envi-
ronmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type, Mon. Weather Rev., 142, 1183-1196,
https://doi.org/10.1175/MWR-D-13-00255.1, 2014.

Gloor, M., Bakwin, P., Hurst, D., Lock, L., Draxler, R., and Tans, P.: What is the concentration footprint of a tall tower?, J. Geophys.
Res.-Atmos., 106, 17 831-17 840, https://doi.org/10.1029/2001JD900021, 2001.

Goo, T.-Y., Oh, Y.-S., and Velazco, V. A.: TCCON data from Anmeyondo (KR), Release GGG2014R0, TCCON data archive, hosted by
CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.anmeyondo01.R0/1149284, 2014.

Grassi, G., House, J., Kurz, W. A., Cescatti, A., Houghton, R. A., Peters, G. P, Sanz, M. J., Viiias, R. A., Alkama, R., Arneth, A., Bondeau,
A., Dentener, F., Fader, M., Federici, S., Friedlingstein, P., Jain, A. K., Kato, E., Koven, C. D., Lee, D., Nabel, J. E. M. S., Nassikas, A. A.,
Perugini, L., Rossi, S., Sitch, S., Viovy, N., Wiltshire, A., and Zaehle, S.: Reconciling global-model estimates and country reporting of
anthropogenic forest COz sinks, Nat. Clim. Change, 8, 914-920, https://doi.org/10.1038/s41558-018-0283-x, 2018.

Grassi, G., Conchedda, G., Federici, S., Abad Viiias, R., Korosuo, A., Melo, J., Rossi, S., Sandker, M., Somogyi, Z., Vizzarri, M., and
Tubiello, F. N.: Carbon fluxes from land 2000-2020: bringing clarity to countries’ reporting, Earth System Science Data, 14, 4643—-4666,
https://doi.org/10.5194/essd-14-4643-2022, 2022.

Gregor, L. and Fay, A.: SeaFlux: Air-sea CO» fluxes for surface pCO: data products using a standardised approach,
https://doi.org/10.5281/zenodo.5078404, version 2021.02, 2021.

52


https://doi.org/10.5194/amt-12-1513-2019
https://doi.org/10.5194/amt-12-1513-2019
https://doi.org/10.5194/amt-12-1513-2019
https://doi.org/10.5194/essd-14-1917-2022
https://doi.org/10.1038/s41586-021-03629-6
https://doi.org/10.5194/bg-16-117-2019
https://doi.org/10.1175/MWR-D-13-00255.1
https://doi.org/10.1029/2001JD900021
https://doi.org/10.14291/tccon.ggg2014.anmeyondo01.R0/1149284
https://doi.org/10.1038/s41558-018-0283-x
https://doi.org/10.5194/essd-14-4643-2022
https://doi.org/10.5281/zenodo.5078404

1185

1190

1195

1200

1205

1210

1215

1220

Gregor, L., Lebehot, A. D., Kok, S., and Scheel Monteiro, P. M.: A comparative assessment of the uncertainties of global surface ocean CO2
estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) — have we hit the wall?, Geoscientific Model Development, 12,
5113-5136, https://doi.org/10.5194/gmd-12-5113-2019, 2019.

Griffith, D. W., Deutscher, N. M., Velazco, V. A., Wennberg, P. O., Yavin, Y., Aleks, G. K., Washenfelder, R. a., Toon, G. C,
Blavier, J.-F., Murphy, C., Jones, N., Kettlewell, G., Connor, B. J., Macatangay, R., Roehl, C., Ryczek, M., Glowacki, J., Cul-
gan, T., and Bryant, G.: TCCON data from Darwin (AU), Release GGG2014R0, TCCON data archive, hosted by CaltechDATA,
https://doi.org/10.14291/tccon.ggg2014.darwin01.R0/1149290, 2014a.

Griffith, D. W., Velazco, V. A., Deutscher, N. M., Murphy, C., Jones, N., Wilson, S., Macatangay, R., Kettlewell, G., Buchholz, R. R.,
and Riggenbach, M.: TCCON data from Wollongong (AU), Release GGG2014R0, TCCON data archive, hosted by CaltechDATA,
https://doi.org/10.14291/tccon.ggg2014.wollongong01.R0/1149291, 2014b.

Guan, D., Liu, Z., Geng, Y., Lindner, S., and Hubacek, K.: The gigatonne gap in China’s carbon dioxide inventories, Nat. Clim. Change, 2,
672675, https://doi.org/10.1038/nclimate 1560, 2012.

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, 1. Y.,
Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J.,
Sarmiento, J., Taguchi, S., Takahashi, T., and Yuen, C.-W.: Towards robust regional estimates of CO2 sources and sinks using atmospheric
transport models, Nature, 415, 626—630, https://doi.org/10.1038/415626a, 2002.

Hall, B. D., Crotwell, A. M., Kitzis, D. R., Mefford, T., Miller, B. R., Schibig, M. F., and Tans, P. P.: Revision of the World Me-
teorological Organization Global Atmosphere Watch (WMO/GAW) CO; calibration scale, Atmos. Meas. Tech., 14, 3015-3032,
https://doi.org/10.5194/amt-14-3015-2021, 2021.

Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas, W., Hansen, M. C., Potapov, P. V., and Lotsch, A.: Baseline map of
carbon emissions from deforestation in tropical regions, Science, 336, 1573-1576, https://doi.org/10.1126/science.1217962, 2012.

Hase, F., Blumenstock, T., Dohe, S., Gross, J., and Kiel, M.: TCCON data from Karlsruhe (DE), Release GGG2014R 1, TCCON data archive,
hosted by CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.karlsruhe01.R1/1182416, 2014.

Hoaglin, D. C., Mosteller, F., and Tukey, J. W.: Exploring data tables, trends, and shapes, John Wiley & Sons, 1985.

Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak, A. M., Dlugokencky, E., Tans, P. P, Shiga, Y. P., Mountain,
M., Nehrkorn, T., Montzka, S. A., McKain, K., Kofler, J., Trudeau, M., Michel, S. E., Biraud, S. C., Fischer, M. L., Worthy, D. E. J.,
Vaughn, B. H., White, J. W. C., Yadav, V., Basu, S., and van der Velde, 1. R.: Enhanced North American carbon uptake associated with El
Nifio, Science advances, 5, eaaw0076, https://doi.org/10.1126/sciadv.aaw0076, 2019.

Hu, L., Montzka, S. A., Kaushik, A., Andrews, A. E., Sweeney, C., Miller, J., Baker, I. T., Denning, S., Campbell, E., Shiga, Y. P., Tans,
P, Siso, M. C., Crotwell, M., McKain, K., Thoning, K., Hall, B., Vimont, I., Elkins, J. W., Whelan, M. E., and Suntharalingam, P.:
COS-derived GPP relationships with temperature and light help explain high-latitude atmospheric CO2 seasonal cycle amplification,
Proceedings of the National Academy of Sciences, 118, €2103423 118, https://doi.org/10.1073/pnas.2103423118, 2021.

Iida, Y., Takatani, Y., Kojima, A., and Ishii, M.: Global trends of ocean CO3 sink and ocean acidification: an observation-based reconstruction
of surface ocean inorganic carbon variables, J. Oceanogr., 77, 323-358, https://doi.org/10.1007/s10872-020-00571-5, 2021.

IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme,
IGES, Japan, 2006.

IPCC: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, IPCC, Switzerland, 2019.

53


https://doi.org/10.5194/gmd-12-5113-2019
https://doi.org/10.14291/tccon.ggg2014.darwin01.R0/1149290
https://doi.org/10.14291/tccon.ggg2014.wollongong01.R0/1149291
https://doi.org/10.1038/nclimate1560
https://doi.org/10.1038/415626a
https://doi.org/10.5194/amt-14-3015-2021
https://doi.org/10.1126/science.1217962
https://doi.org/10.14291/tccon.ggg2014.karlsruhe01.R1/1182416
https://doi.org/10.1126/sciadv.aaw0076
https://doi.org/10.1073/pnas.2103423118
https://doi.org/10.1007/s10872-020-00571-5

Iraci, L. T., Podolske, J., Hillyard, P. W., Roehl, C., Wennberg, P. O., Blavier, J.-F,, Allen, N., Wunch, D., Osterman, G. B.,
and Albertson, R.: TCCON data from Edwards (US), Release GGG2014R1, TCCON data archive, hosted by CaltechDATA,
https://doi.org/10.14291/tccon.ggg2014.edwards01.R1/1255068, 2016.

1225 Jacobson, A. R., Schuldt, K. N., Miller, J. B., Oda, T., Tans, P., Arlyn Andrews, Mund, J., Ott, L., Collatz, G. J., Aalto, T., Afshar, S.,
Aikin, K., Aoki, S., Apadula, F., Baier, B., Bergamaschi, P., Beyersdorf, A., Biraud, S. C., Bollenbacher, A., Bowling, D., Brailsford,
G., Abshire, J. B., Chen, G., Huilin Chen, Lukasz Chmura, Sites Climadat, Colomb, A., Conil, S., Cox, A., Cristofanelli, P., Cuevas,
E., Curcoll, R., Sloop, C. D., Davis, K., Wekker, S. D., Delmotte, M., DiGangi, J. P, Dlugokencky, E., Ehleringer, J., Elkins, J. W.,
Emmenegger, L., Fischer, M. L., Forster, G., Frumau, A., Galkowski, M., Gatti, L. V., Gloor, E., Griffis, T., Hammer, S., Haszpra, L.,
1230 Hatakka, J., Heliasz, M., Hensen, A., Hermanssen, O., Hintsa, E., Holst, J., Jaffe, D., Karion, A., Kawa, S. R., Keeling, R., Keronen,
P, Kolari, P., Kominkova, K., Kort, E., Krummel, P., Kubistin, D., Labuschagne, C., Langenfelds, R., Laurent, O., Laurila, T., Lauvaux,
T., Law, B., Lee, J., Lehner, 1., Leuenberger, M., Levin, ., Levula, J., Lin, J., Lindauer, M., Loh, Z., Lopez, M., Luijkx, I. T., Myhre,
C. L., Machida, T., Mammarella, 1., Manca, G., Manning, A., Manning, A., Marek, M. V., Marklund, P., Martin, M. Y., Matsueda, H.,
McKain, K., Meijer, H., Meinhardt, F., Miles, N., Miller, C. E., Molder, M., Montzka, S., Moore, F., Josep-Anton Morgui, Morimoto,
1235 S., Munger, B., Jaroslaw Necki, Newman, S., Nichol, S., Niwa, Y., O’Doherty, S., Mikaell Ottosson-Lofvenius, Paplawsky, B., Peischl,
J., Peltola, O., Jean-Marc Pichon, Piper, S., Plass-Dolmer, C., Ramonet, M., Reyes-Sanchez, E., Richardson, S., Riris, H., Ryerson, T.,
Saito, K., Sargent, M., Sasakawa, M., Sawa, Y., Say, D., Scheeren, B., Schmidt, M., Schmidt, A., Schumacher, M., Shepson, P., Shook,
M., Stanley, K., Steinbacher, M., Stephens, B., Sweeney, C., Thoning, K., Torn, M., Turnbull, J., Tgrseth, K., Bulk, P. V. D., Dinther,
D. V., Vermeulen, A., Viner, B., Vitkova, G., Walker, S., Weyrauch, D., Wofsy, S., Worthy, D., Dickon Young, and Miroslaw Zimnoch:
1240 CarbonTracker CT2019B, https://doi.org/10.25925/20201008, 2020.

Janssens-Maenhout, G., Pinty, B., Dowell, M., Zunker, H., Andersson, E., Balsamo, G., Bézy, J.-L., Brunhes, T., Bosch, H., Bojkov, B.,
Brunner, D., Buchwitz, M., Crisp, D., Ciais, P., Counet, P., Dee, D., Denier van der Gon, H., Dolman, H., Drinkwater, M. R., Dubovik,
O., Engelen, R., Fehr, T., Fernandez, V., Heimann, M., Holmlund, K., Houweling, S., Husband, R., Juvyns, O., Kentarchos, A., Landgraf,
J., Lang, R., Loscher, A., Marshall, J., Meijer, Y., Nakajima, M., Palmer, P. 1., Peylin, P, Rayner, P., Scholze, M., Sierk, B., Tamminen,

1245 J., and Veefkind, P.: Toward an Operational Anthropogenic CO2 Emissions Monitoring and Verification Support Capacity, B. A. Meterol.
Soc., 101, E1439-E1451, https://doi.org/10.1175/BAMS-D-19-0017.1, 2020.

Karion, A., Sweeney, C., Tans, P., and Newberger, T.: AirCore: An innovative atmospheric sampling system, J. Atmos Ocean Tech., 27,
1839-1853, https://doi.org/10.1175/2010JTECHA1448.1, 2010.

Kaushik, A., Graham, J., Dorheim, K. R., Kramer, R., Wang, J., and Byrne, B.: The future of the carbon cycle in a changing climate, Eos,

1250 101, https://doi.org/https://doi.org/10.1029/2020E0140276, 2020.

Kawakami, S., Ohyama, H., Arai, K., Okumura, H., Taura, C., Fukamachi, T., and Sakashita, M.: TCCON data from Saga (JP), Release
GGG2014R0, TCCON data archive, hosted by CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.saga01.R0/1149283, 2014.

Keeling, R. F. and Graven, H. D.: Insights from Time Series of Atmospheric Carbon Dioxide and Related Tracers, Annual Review of
Environment and Resources, 46, 85110, https://doi.org/10.1146/annurev-environ-012220-125406, 2021.

1255 Keeling, R. F,, Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., Sun, Y., Bollenbacher, A., and Meijer, H. A.: Atmospheric
evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis, Proceedings of the National Academy of

Sciences, 114, 10361-10366, 2017.

54


https://doi.org/10.14291/tccon.ggg2014.edwards01.R1/1255068
https://doi.org/10.25925/20201008
https://doi.org/10.1175/BAMS-D-19-0017.1
https://doi.org/10.1175/2010JTECHA1448.1
https://doi.org/https://doi.org/10.1029/2020EO140276
https://doi.org/10.14291/tccon.ggg2014.saga01.R0/1149283
https://doi.org/10.1146/annurev-environ-012220-125406

1260

1265

1270

1275

1280

1285

1290

Kiel, M., O’Dell, C. W., Fisher, B., Eldering, A., Nassar, R., MacDonald, C. G., and Wennberg, P. O.: How bias correction goes wrong:
measurement of Xco, affected by erroneous surface pressure estimates, Atmos. Meas. Tech., 12, 2241-2259, https://doi.org/10.5194/amt-
12-2241-2019, 2019.

Kivi, R., Heikkinen, P., and Kyro, E.: TCCON data from Sodankyla (FI), Release GGG2014R0, TCCON data archive, hosted by Caltech-
DATA, https://doi.org/10.14291/tccon.ggg2014.sodankyla01.R0/1149280, 2014.

Kondo, M., Ichii, K., Patra, P. K., Poulter, B., Calle, L., Koven, C., Pugh, T. A., Kato, E., Harper, A., Zaehle, S., et al.: Plant regrowth as a
driver of recent enhancement of terrestrial CO2 uptake, Geophys. Res. Lett., 45, 4820—4830, 2018.

Kondo, M., Patra, P. K., Sitch, S., Friedlingstein, P., Poulter, B., Chevallier, F., Ciais, P., Canadell, J. G., Bastos, A., Lauerwald, R., et al.:
State of the science in reconciling top-down and bottom-up approaches for terrestrial CO2 budget, Global change biology, 26, 1068—-1084,
https://doi.org/10.1111/gcb.14917, 2020.

Krol, M., de Bruine, M., Killaars, L., Ouwersloot, H., Pozzer, A., Yin, Y., Chevallier, F., Bousquet, P., Patra, P., Belikov, D., Maksyutov, S.,
Dhomse, S., Feng, W., and Chipperfield, M. P.: Age of air as a diagnostic for transport timescales in global models, Geosci. Model Dev.,
11, 3109-3130, https://doi.org/10.5194/gmd-11-3109-2018, 2018.

Landschiitzer, P., Gruber, N., Bakker, D. C., and Schuster, U.: Recent variability of the global ocean carbon sink, Global Biogeochem. Cy.,
28, 927-949, https://doi.org/10.1002/2014GB004853, 2014.

Landschiitzer, P., Gruber, N., and Bakker, D. C. E.: An observation-based global monthly gridded sea surface pCO2 product from 1982
onward and its monthly climatology (NCEI Accession 0160558). Version 5.5., https://doi.org/10.7289/V5Z899N6, 2020.

Law, R. and Simmonds, I.: The sensitivity of deduced CO2 sources and sinks to variations in transport and imposed surface concentrations,
Tellus B, 48, 613-625, https://doi.org/10.1034/j.1600-0889.1996.t01-4-00001.x, 1996.

Law, R., Rayner, P.,, Denning, A., Erickson, D., Fung, 1., Heimann, M., Piper, S., Ramonet, M., Taguchi, S., Taylor, J., et al.: Variations
in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions, Global Biogeochem. Cy., 10, 783-796,
https://doi.org/10.1029/96GB01892, 1996.

Lawson, C. L. and Hanson, R.: Linear least squares with linear inequality constraints, Solving least squares problems, pp. 158-173, 1974.

Liu, C., Wang, W., and Sun, Y.: TCCON data from Hefei(PRC), Release GGG2014.R0, TCCON data archive, hosted by CaltechDATA,
https://doi.org/10.14291/tccon.ggg2014.hefei01.R0, 2018.

Liu, J., Fung, L., Kalnay, E., and Kang, J.-S.: CO2 transport uncertainties from the uncertainties in meteorological fields, Geophys. Res. Lett.,
38, https://doi.org/10.1029/2011GL047213, 2011.

Liu, J., Bowman, K. W., and Henze, D. K.: Source-receptor relationships of column-average CO2 and implications for the impact of obser-
vations on flux inversions, J. Geophys. Res.-Atmos., 120, 5214-5236, https://doi.org/10.1002/2014JD022914, 2015.

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., Bloom, A. A., Wunch, D., Frankenberg, C., Sun, Y., O’Dell, C. W.,
Gurney, K. R., Menemenlis, D., Gierach, M., Crisp, D., and Eldering, A.: Contrasting carbon cycle responses of the tropical continents to
the 2015-2016 EI Nifio, Science, 358, https://doi.org/10.1126/science.aam5690, 2017.

Liu, J., Baskaran, L., Bowman, K., Schimel, D., Bloom, A. A., Parazoo, N. C., Oda, T., Carroll, D., Menemenlis, D., Joiner, J., Commane,
R., Daube, B., Gatti, L. V., McKain, K., Miller, J., Stephens, B. B., Sweeney, C., and Wofsy, S.: Carbon Monitoring System Flux Net
Biosphere Exchange 2020 (CMS-Flux NBE 2020), Earth Syst. Sci. Data, 13, 299-330, https://doi.org/10.5194/essd-13-299-2021, 2021a.

Liu, M., Tian, H., Yang, Q., Yang, J., Song, X., Lohrenz, S. E., and Cai, W.-J.: Long-term trends in evapotranspiration and runoff over the
drainage basins of the Gulf of Mexico during 1901-2008, Water Resour. Res., 49, 1988-2012, https://doi.org/10.1002/wrcr.20180, 2013.

55


https://doi.org/10.5194/amt-12-2241-2019
https://doi.org/10.5194/amt-12-2241-2019
https://doi.org/10.5194/amt-12-2241-2019
https://doi.org/10.14291/tccon.ggg2014.sodankyla01.R0/1149280
https://doi.org/10.1111/gcb.14917
https://doi.org/10.5194/gmd-11-3109-2018
https://doi.org/10.1002/2014GB004853
https://doi.org/10.7289/V5Z899N6
https://doi.org/10.1034/j.1600-0889.1996.t01-4-00001.x
https://doi.org/10.1029/96GB01892
https://doi.org/10.14291/tccon.ggg2014.hefei01.R0
https://doi.org/10.1029/2011GL047213
https://doi.org/10.1002/2014JD022914
https://doi.org/10.1126/science.aam5690
https://doi.org/10.5194/essd-13-299-2021
https://doi.org/10.1002/wrcr.20180

1295

1300

1305

1310

1315

1320

1325

1330

Liu, Y., Piao, S., Makowski, D., Ciais, P., Gasser, T., Song, J., Wan, S., Pefiuelas, J., and Janssens, I. A.: Data-driven quantification of nitrogen
enrichment impact on Northern Hemisphere plant biomass, Environmental Research Letters, 17, 074 032, https://doi.org/10.1088/1748-
9326/ac7b38, 2022.

Liu, Z., Zeng, N., Liu, Y., Kalnay, E., Asrar, G., Wu, B., Cai, Q., Liu, D., and Han, P.: Improving the joint estimation of CO2 and
surface carbon fluxes using a Constrained Ensemble Kalman Filter in COLA (v1.0), Geosci. Model Dev. Discussions, 2021, 1-25,
https://doi.org/10.5194/gmd-2021-375, 2021b.

Lu, X., Vitousek, P. M., Mao, Q., Gilliam, F. S., Luo, Y., Turner, B. L., Zhou, G., and Mo, J.: Nitrogen deposition ac-
celerates soil carbon sequestration in tropical forests, Proceedings of the National Academy of Sciences, 118, 2020790118,
https://doi.org/10.1073/pnas.2020790118, 2021.

Maksyutov, S., Oda, T., Saito, M., Janardanan, R., Belikov, D., Kaiser, J. W., Zhuravlev, R., Ganshin, A., Valsala, V. K., Andrews, A.,
Chmura, L., Dlugokencky, E., Haszpra, L., Langenfelds, R. L., Machida, T., Nakazawa, T., Ramonet, M., Sweeney, C., and Worthy, D.:
Technical note: A high-resolution inverse modelling technique for estimating surface CO2 fluxes based on the NIES-TM-FLEXPART
coupled transport model and its adjoint, Atmos. Chem. Phys., 21, 1245-1266, https://doi.org/10.5194/acp-21-1245-2021, 2021.

Masarie, K., Peters, W., Jacobson, A., and Tans, P.: ObsPack: a framework for the preparation, delivery, and attribution of atmospheric
greenhouse gas measurements, Earth Syst. Sci. Data, 6, 375-384, https://doi.org/10.5194/essd-6-375-2014, 2014.

Mason Earles, J., Yeh, S., and Skog, K. E.: Timing of carbon emissions from global forest clearance, Nat. Clim. Change, 2, 682—685,
https://doi.org/10.1038/nclimate 1535, 2012.

Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H., Bouwman, A., Fekete, B. M., Kroeze, C., and Van Drecht, G.:
Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation, Environ. Modell. Softw., 25, 837-853,
https://doi.org/10.1016/j.envsoft.2010.01.007, 2010.

McGlynn, E., Li, S., F Berger, M., Amend, M., and L Harper, K.: Addressing uncertainty and bias in land use, land use change, and forestry
greenhouse gas inventories, Climatic Change, 170, 1-25, 2022.

McKinley, G. A., Fay, A. R., Lovenduski, N. S., and Pilcher, D. J.: Natural variability and anthropogenic trends in the ocean carbon sink,
Annu. Rev. Mar. Sci., 9, 125-150, https://doi.org/10.1146/annurev-marine-010816-060529, 2017.

McNorton, J. R., Bousserez, N., Agusti-Panareda, A., Balsamo, G., Choulga, M., Dawson, A., Engelen, R., Kipling, Z., and Lang, S.:
Representing model uncertainty for global atmospheric CO2 flux inversions using ECMWF-IFS-46R 1, Geosci. Model Dev., 13, 2297-
2313, https://doi.org/10.5194/gmd-13-2297-2020, 2020.

Mearns, L. and et al.: The North American Regional Climate Change Assessment Program dataset, https://doi.org/10.5065/D6RN35ST,
2007.

Messerschmidt, J., Geibel, M. C., Blumenstock, T., Chen, H., Deutscher, N. M., Engel, A., Feist, D. G., Gerbig, C., Gisi, M., Hase, F,,
Katrynski, K., Kolle, O., Lavri¢, J. V., Notholt, J., Palm, M., Ramonet, M., Rettinger, M., Schmidt, M., Sussmann, R., Toon, G. C,,
Truong, F., Warneke, T., Wennberg, P. O., Wunch, D., and Xueref-Remy, I.: Calibration of TCCON column-averaged CO2: the first
aircraft campaign over European TCCON sites, Atmos. Chem. Phys., 11, 10765-10777, https://doi.org/10.5194/acp-11-10765-2011,
2011.

Meybeck, M., Diirr, H. H., and Vorosmarty, C. J.: Global coastal segmentation and its river catchment contributors: A new look at land-ocean
linkage, Global Biogeochem. Cy., 20, https://doi.org/10.1029/2005GB002540, 2006.

Miller, C., Crisp, D., DeCola, P., Olsen, S., Randerson, J. T., Michalak, A. M., Alkhaled, A., Rayner, P., Jacob, D. J., Suntharalingam, P.,
et al.: Precision requirements for space-based Xco, data, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2006JD007659, 2007.

56


https://doi.org/10.1088/1748-9326/ac7b38
https://doi.org/10.1088/1748-9326/ac7b38
https://doi.org/10.1088/1748-9326/ac7b38
https://doi.org/10.5194/gmd-2021-375
https://doi.org/10.1073/pnas.2020790118
https://doi.org/10.5194/acp-21-1245-2021
https://doi.org/10.5194/essd-6-375-2014
https://doi.org/10.1038/nclimate1535
https://doi.org/10.1016/j.envsoft.2010.01.007
https://doi.org/10.1146/annurev-marine-010816-060529
https://doi.org/10.5194/gmd-13-2297-2020
https://doi.org/10.5065/D6RN35ST
https://doi.org/10.5194/acp-11-10765-2011
https://doi.org/10.1029/2005GB002540
https://doi.org/10.1029/2006JD007659

1335

1340

1345

1350

1355

1360

1365

1370

Miller, J. B., Martins, G. A., de Souza, R. A., and Schuldt, K. N.: Manaus Aircraft profile data for the period 2017-2020; obspack_multi-
species_1_manaus_profiles_v1.0_2021-05-19, https://doi.org/10.25925/20210519, 2021.

Miller, S. M., Saibaba, A. K., Trudeau, M. E., Mountain, M. E., and Andrews, A. E.: Geostatistical inverse modeling with very large datasets:
an example from the Orbiting Carbon Observatory 2 (OCO-2) satellite, Geosci. Model Dev., 13, 1771-1785, https://doi.org/10.5194/gmd-
13-1771-2020, 2020.

Monteil, G., Broquet, G., Scholze, M., Lang, M., Karstens, U., Gerbig, C., Koch, E-T., Smith, N. E., Thompson, R. L., Luijkx, I. T.,
White, E., Meesters, A., Ciais, P., Ganesan, A. L., Manning, A., Mischurow, M., Peters, W., Peylin, P., Tarniewicz, J., Rigby, M., Ro-
denbeck, C., Vermeulen, A., and Walton, E. M.: The regional European atmospheric transport inversion comparison, EUROCOM: first
results on European-wide terrestrial carbon fluxes for the period 2006-2015, Atmospheric Chemistry and Physics, 20, 12063-12091,
https://doi.org/10.5194/acp-20-12063-2020, 2020.

Morino, 1., Yokozeki, N., Matzuzaki, T., and Horikawa, M.: TCCON data from Rikubetsu (JP), Release GGG2014R1, TCCON data archive,
hosted by CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.rikubetsu01.R1/1242265, 2014.

Morino, 1., Matsuzaki, T., and Horikawa, M.: TCCON data from Tsukuba (JP), 125HR, Release GGG2014.R2,
https://doi.org/10.14291/TCCON.GGG2014. TSUKUBAO02.R2, 2018a.

Morino, 1., Velazco, V. A., Akihiro, H., Osamu, U., and Griffith, D. W. T.. TCCON data from Burgos, Ilocos Norte (PH), Release
GGG2014.R0O, TCCON data archive, hosted by CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.burgos01.R0, 2018b.

Nara, H., Tanimoto, H., Tohjima, Y., Mukai, H., Nojiri, Y., and Machida, T.: Emission factors of CO2, CO and CH4 from Sumatran peatland
fires in 2013 based on shipboard measurements, Tellus B, 69, 1399 047, https://doi.org/10.1080/16000889.2017.1399047, 2017.

Nassar, R., Jones, D. B. A., Suntharalingam, P., Chen, J. M., Andres, R. J., Wecht, K. J., Yantosca, R. M., Kulawik, S. S., Bowman, K. W.,
Worden, J. R., Machida, T., and Matsueda, H.: Modeling global atmospheric CO2 with improved emission inventories and CO2 production
from the oxidation of other carbon species, Geosci. Model Dev., 3, 689, https://doi.org/10.5194/gmd-3-689-2010, 2010.

Nassar, R., Napier-Linton, L., Gurney, K. R., Andres, R. J., Oda, T., Vogel, F. R., and Deng, F.: Improving the temporal
and spatial distribution of CO> emissions from global fossil fuel emission data sets, J. Geophys. Res.-Atmos., 118, 917-933,
https://doi.org/10.1029/2012JD018196, 2013.

Niwa, Y., Fujii, Y., Sawa, Y., lida, Y., Ito, A., Satoh, M., Imasu, R., Tsuboi, K., Matsueda, H., and Saigusa, N.: A 4D-Var inversion sys-
tem based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) — Part 2: Optimization scheme and identical twin experiment of
atmospheric CO3 inversion, Geosci. Model Dev., 10, 2201-2219, https://doi.org/10.5194/gmd-10-2201-2017, 2017.

Notholt, J., Petri, C., Warneke, T., Deutscher, N. M., Palm, M., Buschmann, M., Weinzierl, C., Macatangay, R. C., and Grupe, P.: TCCON
data from Bremen (DE), Release GGG2014.R1, https://doi.org/10.14291/TCCON.GGG2014.BREMENO1.R1, 2019a.

Notholt, J., Warneke, T., Petri, C., Deutscher, N. M., Weinzierl, C., Palm, M., and Buschmann, M.: TCCON data from Ny Alesund, Spits-
bergen (NO), Release GGG2014.R1, https://doi.org/10.14291/TCCON.GGG2014.NYALESUNDO1.R1, 2019b.

Oda, T. and Maksyutov, S.: A very high-resolution (1 km x 1 km) global fossil fuel CO2 emission inventory derived using a point source
database and satellite observations of nighttime lights, Atmos. Chem. Phys., 11, 543-556, https://doi.org/10.5194/acp-11-543-2011, 2011.

Oda, T., Ott, L., Topylko, P., Halushchak, M., Bun, R., Lesiv, M., Danylo, O., and Horabik-Pyzel, J.: Uncertainty associated with fossil fuel
carbon dioxide (CO2) gridded emission datasets, 2015.

Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global
monthly fossil fuel CO; gridded emissions data product for tracer transport simulations and surface flux inversions, Earth Syst. Sci. Data,

10, 87-107, https://doi.org/10.5194/essd-10-87-2018, 2018.

57


https://doi.org/10.25925/20210519
https://doi.org/10.5194/gmd-13-1771-2020
https://doi.org/10.5194/gmd-13-1771-2020
https://doi.org/10.5194/gmd-13-1771-2020
https://doi.org/10.5194/acp-20-12063-2020
https://doi.org/10.14291/tccon.ggg2014.rikubetsu01.R1/1242265
https://doi.org/10.14291/TCCON.GGG2014.TSUKUBA02.R2
https://doi.org/10.14291/tccon.ggg2014.burgos01.R0
https://doi.org/10.1080/16000889.2017.1399047
https://doi.org/10.5194/gmd-3-689-2010
https://doi.org/10.1029/2012JD018196
https://doi.org/10.5194/gmd-10-2201-2017
https://doi.org/10.14291/TCCON.GGG2014.BREMEN01.R1
https://doi.org/10.14291/TCCON.GGG2014.NYALESUND01.R1
https://doi.org/10.5194/acp-11-543-2011
https://doi.org/10.5194/essd-10-87-2018

1375

1380

1385

1390

1395

1400

1405

Oda, T., Bun, R., Kinakh, V., Topylko, P., Halushchak, M., Marland, G., Lauvaux, T., Jonas, M., Maksyutov, S., Nahorski, Z., et al.: Errors and
uncertainties in a gridded carbon dioxide emissions inventory, Mitig. Adapt. Strat. Gl., 24, 1007-1050, https://doi.org/10.1007/s11027-
019-09877-2, 2019.

O’Dell, C. W, Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., Mandrake, L.,
Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B., Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F., Chang, A.,
McDuffie, J., Smyth, M., Baker, D. F,, Basu, S., Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. 1., Dubey, M., Garcia, O. E., Griffith,
D. W. T, Hase, F, Iraci, L. T., Kivi, R., Morino, 1., Notholt, J., Ohyama, H., Petri, C., Roehl, C. M., Sha, M. K., Strong, K., Sussmann,
R., Te, Y., Uchino, O., and Velazco, V. A.: Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8
ACOS algorithm, Atmos. Meas. Tech., 11, 6539-6576, https://doi.org/10.5194/amt-11-6539-2018, 2018.

Ogle, S. M., Domke, G., Kurz, W. A., Rocha, M. T., Huffman, T., Swan, A., Smith, J. E., Woodall, C., and Krug, T.: Delineating managed land
for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change, Carbon
balance and management, 13, 1-13, 2018.

Palmer, P. I, Feng, L., Baker, D., Chevallier, F., Bosch, H., and Somkuti, P.: Net carbon emissions from African biosphere dominate pan-
tropical atmospheric CO2 signal, Nat. commun., 10, 1-9, https://doi.org/10.1038/s41467-019-11097-w, 2019.

Peiro, H., Crowell, S., Schuh, A., Baker, D. F., O’Dell, C., Jacobson, A. R., Chevallier, F., Liu, J., Eldering, A., Crisp, D., Deng, F., Weir, B.,
Basu, S., Johnson, M. S., Philip, S., and Baker, I.: Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2
(OCO-2) version 9 and in situ data and comparison to OCO-2 version 7, Atmos. Chem. Phys., 22, 1097-1130, https://doi.org/10.5194/acp-
22-1097-2022, 2022.

Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., et al.: Good practice
guidance for land use, land-use change and forestry., Good practice guidance for land use, land-use change and forestry., 2003.

Peters, W., van der Velde, 1. R., Van Schaik, E., Miller, J. B., Ciais, P, Duarte, H. F., van der Laan-Luijkx, I. T., van der Molen, M. K.,
Scholze, M., Schaefer, K., et al.: Increased water-use efficiency and reduced CO uptake by plants during droughts at a continental scale,
Nat. Geosci., 11, 744-748, https://doi.org/10.1038/s41561-018-0212-7, 2018.

Petrescu, A. M. R., McGrath, M. J., Andrew, R. M., Peylin, P., Peters, G. P, Ciais, P., Broquet, G., Tubiello, F. N., Gerbig, C., Pongratz, J.,
Janssens-Maenhout, G., Grassi, G., Nabuurs, G.-J., Regnier, P., Lauerwald, R., Kuhnert, M., Balkovic, J., Schelhaas, M.-J., Denier van der
Gon, H. A. C,, Solazzo, E., Qiu, C., Pilli, R., Konovalov, 1. B., Houghton, R. A., Giinther, D., Perugini, L., Crippa, M., Ganzenmiiller,
R., Luijkx, I. T., Smith, P., Munassar, S., Thompson, R. L., Conchedda, G., Monteil, G., Scholze, M., Karstens, U., Brockmann, P., and
Dolman, A. J.: The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom:
1990-2018, Earth System Science Data, 13, 2363-24006, https://doi.org/10.5194/essd-13-2363-2021, 2021.

Petri, C., Vrekoussis, M., Rousogenous, C., Warneke, T., Sciare, J., and Notholt, J.: TCCON data from Nicosia, Cyprus (CY), Release
GGG2014.RO, TCCON data archive, hosted by CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.nicosia01.R0, 2020.

Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P., and Prunet,
P.: A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle,
Geosci. Model Dev., 9, 3321-3346, https://doi.org/10.5194/gmd-9-3321-2016, 2016.

Philip, S., Johnson, M. S., Potter, C., Genovesse, V., Baker, D. F., Haynes, K. D., Henze, D. K., Liu, J., and Poulter, B.: Prior bio-
sphere model impact on global terrestrial CO> fluxes estimated from OCO-2 retrievals, Atmos. Chem. Phys. Discuss., 2019, 1-29,
https://doi.org/10.5194/acp-2018-1095, 2019.

58


https://doi.org/10.1007/s11027-019-09877-2
https://doi.org/10.1007/s11027-019-09877-2
https://doi.org/10.1007/s11027-019-09877-2
https://doi.org/10.5194/amt-11-6539-2018
https://doi.org/10.1038/s41467-019-11097-w
https://doi.org/10.5194/acp-22-1097-2022
https://doi.org/10.5194/acp-22-1097-2022
https://doi.org/10.5194/acp-22-1097-2022
https://doi.org/10.1038/s41561-018-0212-7
https://doi.org/10.5194/essd-13-2363-2021
https://doi.org/10.14291/tccon.ggg2014.nicosia01.R0
https://doi.org/10.5194/gmd-9-3321-2016
https://doi.org/10.5194/acp-2018-1095

1410

1415

1420

1425

1430

1435

1440

Philip, S., Johnson, M. S., Baker, D. F., Basu, S., Tiwari, Y. K., Indira, N. K., Ramonet, M., and Poulter, B.: OCO-2 Satellite-
Imposed Constraints on Terrestrial Biospheric CO2 Fluxes Over South Asia, J. Geophys. Res.-Atmos., 127, €2021JD035 035,
https://doi.org/10.1029/2021JD035035, 2022.

Pinty, B., Janssens-Maenhout, G., Dowell, M., Zunker, H., Brunhes, T., Ciais, P, Dee, D., van der Gon, H. D., Dolman, H.,
Drinkwater, M., Engelen, R., Heimann, M., Holmlund, K., Husband, R., Kentarchos, A., Meijer, Y., Palmer, P., and Scholze, M.:
An operational anthropogenic CO2 emissions monitoring and verification support capacity. Baseline requirements, model compo-
nents and functional architecture, Tech. rep., European Commission Joint Research Centre, Brussels, http://resolver.tudelft.nl/uuid:
832e87d0-0ed8-44b2-8867-8714cebdedcb, 2017.

Polavarapu, S. M., Neish, M., Tanguay, M., Girard, C., Grandpré, J. d., Semeniuk, K., Gravel, S., Ren, S., Roche, S., Chan, D., et al.:
Greenhouse gas simulations with a coupled meteorological and transport model: the predictability of CO2, Atmos. Chem. Phys., 16,
12 005-12 038, https://doi.org/10.5194/acp-16-12005-2016, 2016.

Polavarapu, S. M., Deng, F., Byrne, B., Jones, D. B. A., and Neish, M.: A comparison of posterior atmospheric CO» adjustments obtained
from in situ and GOSAT constrained flux inversions, Atmos. Chem. Phys., 18, 12 011-12 044, https://doi.org/10.5194/acp-18-12011-2018,
2018.

Randerson, J., Chapin, F., Harden, J., Neff, J., and Harmon, M.: Net ecosystem production: a comprehensive measure of net carbon accu-
mulation by ecosystems, Ecological applications, 12, 937-947, https://doi.org/10.1890/1051-0761(2002)012[0937:NEPACM]2.0.CO;2,
2002.

Rayner, P. J., Michalak, A. M., and Chevallier, F.: Fundamentals of data assimilation applied to biogeochemistry, Atmos. Chem. Phys., 19,
13911-13 932, https://doi.org/10.5194/acp-19-13911-2019, 2019.

Regnier, P., Resplandy, L., Najjar, R. G., and Ciais, P.: The land-to-ocean loops of the global carbon cycle, Nature, 603, 401-410,
https://doi.org/10.1038/s41586-021-04339-9, 2022.

Remaud, M., Chevallier, F., Cozic, A., Lin, X., and Bousquet, P.: On the impact of recent developments of the LMDz atmospheric general
circulation model on the simulation of COsz transport, Geosci. Model Dev., 11, 4489-4513, https://doi.org/10.5194/gmd-11-4489-2018,
2018.

Remaud, M., Chevallier, F., Maignan, F., Belviso, S., Berchet, A., Parouffe, A., Abadie, C., Bacour, C., Lennartz, S., and Peylin, P.: Plant
gross primary production, plant respiration and carbonyl sulfide emissions over the globe inferred by atmospheric inverse modelling,
Atmos. Chem. Phys., 22, 2525-2552, https://doi.org/10.5194/acp-22-2525-2022, 2022.

Ren, W., Tian, H., Tao, B., Yang, J., Pan, S., Cai, W.-J., Lohrenz, S. E., He, R., and Hopkinson, C. S.: Large increase in dissolved inorganic
carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century, J. Geophys.
Res. - Biogeo., 120, 724-736, https://doi.org/10.1002/2014JG002761, 2015.

Ren, W., Tian, H., Cai, W.-J., Lohrenz, S. E., Hopkinson, C. S., Huang, W.-J., Yang, J., Tao, B., Pan, S., and He, R.: Century-long increasing
trend and variability of dissolved organic carbon export from the Mississippi River basin driven by natural and anthropogenic forcing,
Global Biogeochem. Cy., 30, 1288-1299, https://doi.org/10.1002/2016GB005395, 2016.

Resplandy, L., Keeling, R., Rodenbeck, C., Stephens, B., Khatiwala, S., Rodgers, K., Long, M., Bopp, L., and Tans, P.: Revision of global
carbon fluxes based on a reassessment of oceanic and riverine carbon transport, Nat. Geosci., 11, 504-509, https://doi.org/10.1038/s41561-

018-0151-3, 2018.

59


https://doi.org/10.1029/2021JD035035
http://resolver.tudelft.nl/uuid:832e87d0-0ed8-44b2-8867-8714cebde4cb
http://resolver.tudelft.nl/uuid:832e87d0-0ed8-44b2-8867-8714cebde4cb
http://resolver.tudelft.nl/uuid:832e87d0-0ed8-44b2-8867-8714cebde4cb
https://doi.org/10.5194/acp-16-12005-2016
https://doi.org/10.5194/acp-18-12011-2018
https://doi.org/10.1890/1051-0761(2002)012[0937:NEPACM]2.0.CO;2
https://doi.org/10.5194/acp-19-13911-2019
https://doi.org/10.1038/s41586-021-04339-9
https://doi.org/10.5194/gmd-11-4489-2018
https://doi.org/10.5194/acp-22-2525-2022
https://doi.org/10.1002/2014JG002761
https://doi.org/10.1002/2016GB005395
https://doi.org/10.1038/s41561-018-0151-3
https://doi.org/10.1038/s41561-018-0151-3
https://doi.org/10.1038/s41561-018-0151-3

1445

1450

1455

1460

1465

1470

1475

1480

Rodenbeck, C., Keeling, R. F.,, Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., and Heimann, M.: Global surface-ocean pCO2 and sea—air
CO. flux variability from an observation-driven ocean mixed-layer scheme, Ocean Sci., 9, 193-216, https://doi.org/10.5194/0s-9-193-
2013, 2013.

Rodenbeck, C., Zaehle, S., Keeling, R., and Heimann, M.: How does the terrestrial carbon exchange respond to inter-annual climatic varia-
tions? A quantification based on atmospheric CO2 data, Biogeosciences, 15, 2481-2498, https://doi.org/10.5194/bg-15-2481-2018, 2018.

Saeki, T. and Patra, P. K.: Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion,
Geoscience Letters, 4, 1-10, https://doi.org/10.1186/s40562-017-0074-7, 2017.

Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K., Chevallier, E,, Crowell, S., Davis, K. J., Deng, F., et al.:
Quantifying the impact of atmospheric transport uncertainty on CO, surface flux estimates, Global Biogeochem. Cy., 33, 484-500,
https://doi.org/10.1029/2018GB006086, 2019.

Schuh, A. E., Otte, M., Lauvaux, T., and Oda, T.: Far-field biogenic and anthropogenic emissions as a dominant source of variability in
local urban carbon budgets: A global high-resolution model study with implications for satellite remote sensing, Remote Sensing of
Environment, 262, 112473, https://doi.org/https://doi.org/10.1016/j.rse.2021.112473, 2021.

Schuh, A. E., Byrne, B., Jacobson, A. R., Crowell, S. M. R., Deng, F., Baker, D. F., Johnson, M. S., Philip, S., and Weir, B.: On the role of at-
mospheric model transport uncertainty in estimating the Chinese land carbon sink, Nature, 603, E13-E14, https://doi.org/10.1038/s41586-
021-04258-9, 2022.

Schuldt, K. N., Jacobson, A. R., Aalto, T., Andrews, A., Bakwin, P, Bergamaschi, P., Biermann, T., Biraud, S. C., Chen, H., Colomb, A.,
Conil, S., Cristofanelli, P., De Maziere, M., De Wekker, S., Delmotte, M., Dlugokencky, E., Emmenegger, L., Fischer, M. L., Hatakka, J.,
Heliasz, M., Hermanssen, O., Holst, J., Jaffe, D., Karion, A., Kazan, V., Keronen, P., Kominkova, K., Kubistin, D., Laurent, O., Laurila,
T., Lee, J., Lehner, 1., Leuenberger, M., Lindauer, M., Lopez, M., Mammarella, 1., Manca, G., Marek, M. V., McKain, K., Miller, J. B.,
Miller, C. E., Myhre, C. L., Mdlder, M., Miiller-Williams, J., Piacentino, S., Pichon, J. M., Plass-Duelmer, C., Ramonet, M., Scheeren,
B., Schumacher, M., Sha, M. K., Sloop, C. D., Smith, P., Steinbacher, M., Sweeney, C., Tans, P., Thoning, K., Trisolino, P., Tgrseth, K.,
Viner, B., Vitkova, G., and di Sarra, A. G.: Multi-laboratory compilation of atmospheric carbon dioxide data for the years 2020-2021;
obspack_co2_1_NRT_v6.1.1_2021-05-17, https://doi.org/10.25925/20210517, 2021a.

Schuldt, K. N., Mund, J., Luijkx, I. T., Aalto, T., Abshire, J. B., Aikin, K., Andrews, A., Aoki, S., Apadula, F., Baier, B., Bakwin, P., Bartyzel,
J., Bentz, G., Bergamaschi, P., Beyersdorf, A., Biermann, T., Biraud, S. C., Boenisch, H., Bowling, D., Brailsford, G., Chen, G., Chen, H.,
Chmura, L., Clark, S., Climadat, S., Colomb, A., Commane, R., Conil, S., Cox, A., Cristofanelli, P., Cuevas, E., Curcoll, R., Daube, B.,
Davis, K., Maziere, M. D., De Wekker, S., Della Coletta, J., Delmotte, M., DiGangi, J. P., Dlugokencky, E., Elkins, J. W., Emmenegger,
L., Fang, S., Fischer, M. L., Forster, G., Frumau, A., Galkowski, M., Gatti, L. V., Gehrlein, T., Gerbig, C., Gheusi, F., Gloor, E., Gomez-
Trueba, V., Goto, D., Griffis, T., Hammer, S., Hanson, C., Haszpra, L., Hatakka, J., Heimann, M., Heliasz, M., Hensen, A., Hermanssen,
O., Hintsa, E., Holst, J., Jaffe, D., Joubert, W., Karion, A., Kawa, S. R., Kazan, V., Keeling, R., Keronen, P., Kolari, P., Kominkova, K.,
Kort, E., Kozlova, E., Krummel, P., Kubistin, D., Labuschagne, C., Lam, D. H., Langenfelds, R., Laurent, O., Laurila, T., Lauvaux, T.,
Law, B., Lee, O. S., Lee, J., Lehner, 1., Leppert, R., Leuenberger, M., Levin, 1., Levula, J., Lin, J., Lindauer, M., Loh, Z., Lopez, M.,
Machida, T., Mammarella, I., Manca, G., Manning, A., Manning, A., Marek, M. V., Martin, M. Y., Matsueda, H., McKain, K., Meijer, H.,
Meinhardt, F., Merchant, L., Mihalopoulos, N., Miles, N., Miller, C. E., Miller, J. B., Mitchell, L., Montzka, S., Moore, F., Morgan, E.,
Morgui, J.-A., Morimoto, S., Munger, B., Myhre, C. L., Mdlder, M., Obersteiner, F., M uller-Williams, J., Necki, J., Newman, S., Nichol,
S., Niwa, Y., O’Doherty, S., Paplawsky, B., Peischl, J., Peltola, O., Pichon, J. M., Piper, S., Plass-Duelmer, C., Ramonet, M., Ramos, R.,
Reyes-Sanchez, E., Richardson, S., Riris, H., Rivas, P. P,, Ryerson, T., Saito, K., Sargent, M., Sasakawa, M., Sawa, Y., Say, D., Scheeren,

60


https://doi.org/10.5194/os-9-193-2013
https://doi.org/10.5194/os-9-193-2013
https://doi.org/10.5194/os-9-193-2013
https://doi.org/10.5194/bg-15-2481-2018
https://doi.org/10.1186/s40562-017-0074-7
https://doi.org/10.1029/2018GB006086
https://doi.org/https://doi.org/10.1016/j.rse.2021.112473
https://doi.org/10.1038/s41586-021-04258-9
https://doi.org/10.1038/s41586-021-04258-9
https://doi.org/10.1038/s41586-021-04258-9
https://doi.org/10.25925/20210517

1485

1490

1495

1500

1505

1510

1515

B., Schuck, T., Schumacher, M., Seifert, T., Sha, M. K., Shepson, P., Shook, M., Sloop, C. D., Smith, P., Steinbacher, M., Stephens, B.,
Sweeney, C., Tans, P., Thoning, K., Timas, H., Torn, M., Trisolino, P., Turnbull, J., Tgrseth, K., Vermeulen, A., Viner, B., Vitkova, G.,
Walker, S., Watson, A., Wofsy, S., Worsey, J., Worthy, D., Young, D., Zahn, A., Zimnoch, M., van Dinther, D., and van den Bulk, P.: Multi-
laboratory compilation of atmospheric carbon dioxide data for the period 1957-2019; obspack_co2_1_GLOBALVIEWplus_v6.1_2021-
03-01, https://doi.org/10.25925/20201204, 2021b.

Schulte-Uebbing, L. E., Ros, G. H., and de Vries, W.: Experimental evidence shows minor contribution of nitrogen deposition to global forest
carbon sequestration, Global Change Biology, 28, 899-917, https://doi.org/10.1111/gcb.15959, 2022.

Sha, M. K., De Maziére, M., Notholt, J., Blumenstock, T., Chen, H., Dehn, A., Griffith, D. W. T., Hase, F., Heikkinen, P., Hermans, C.,
Hoffmann, A., Huebner, M., Jones, N., Kivi, R., Langerock, B., Petri, C., Scolas, F., Tu, Q., and Weidmann, D.: Intercomparison of low-
and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of COq,
CHy, and CO, Atmospheric Measurement Techniques, 13, 4791-4839, https://doi.org/10.5194/amt-13-4791-2020, 2020.

Sherlock, V., Connor, B. J., Robinson, J., Shiona, H., Smale, D., and Pollard, D.: TCCON data from Lauder (NZ), 120HR, Release
GGG2014R0, TCCON data archive, hosted by CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.1auder01.R0/1149293, 2014.

Stanevich, 1., Jones, D. B. A., Strong, K., Parker, R. J., Boesch, H., Wunch, D., Notholt, J., Petri, C., Warneke, T., Sussmann, R., Schneider,
M., Hase, F.,, Kivi, R., Deutscher, N. M., Velazco, V. A., Walker, K. A., and Deng, F.: Characterizing model errors in chemical transport
modeling of methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model, Geosci. Model Dev.,
13, 3839-3862, https://doi.org/10.5194/gmd-13-3839-2020, 2020.

Steinkamp, K., Mikaloff Fletcher, S. E., Brailsford, G., Smale, D., Moore, S., Keller, E. D., Baisden, W. T., Mukai, H., and Stephens, B. B.:
Atmospheric CO2 observations and models suggest strong carbon uptake by forests in New Zealand, Atmos. Chem. Phys., 17, 47-76,
https://doi.org/10.5194/acp-17-47-2017, 2017.

Stephens, B. B., Gurney, K. R., Tans, P. P, Sweeney, C., Peters, W., Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P., Nakazawa,
T., et al.: Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO», Science, 316, 1732-1735,
https://doi.org/10.1126/science.1137004, 2007.

Strong, K., Roche, S., Franklin, J., Mendonca, J., Lutsch, E., Weaver, D., Fogal, P, Drummond, J., Batchelor, R., and Linden-
maier, R.: TCCON data from Eureka (CA), Release GGG2014.R3 (Version R3), TCCON data archive, hosted by CaltechDATA,
https://doi.org/10.14291/TCCON.GGG2014.EUREKAO01.R3, 2019.

Suntharalingam, P., Randerson, J. T., Krakauer, N., Logan, J. A., and Jacob, D. J.: Influence of reduced carbon emissions
and oxidation on the distribution of atmospheric COz: Implications for inversion analyses, Global Biogeochem. Cy., 19,
https://doi.org/10.1029/2005GB 002466, 2005.

Sussmann, R. and Rettinger, M.: TCCON data from Garmisch (DE), Release GGG2014.R2,
https://doi.org/10.14291/TCCON.GGG2014.GARMISCHO1.R2, 2018a.

Sussmann, R. and Rettinger, M.: TCCON data from Zugspitze (DE), Release GGG2014R1, TCCON data archive, hosted by CaltechDATA,
https://doi.org/10.14291/tccon.ggg2014.zugspitzeO1.R1, 2018b.

Tans, P. P, Fung, 1. Y., and Takahashi, T.: Observational contrains on the global atmospheric CO2 budget, Science, 247, 1431-1438,
https://doi.org/10.1126/science.247.4949.1431, 1990.

Tao, B., Tian, H., Ren, W., Yang, J., Yang, Q., He, R., Cai, W., and Lohrenz, S.: Increasing Mississippi river discharge through-
out the 21st century influenced by changes in climate, land use, and atmospheric CO2, Geophys. Res. Lett., 41, 4978-4986,
https://doi.org/10.1002/2014GL060361, 2014.

61


https://doi.org/10.25925/20201204
https://doi.org/10.1111/gcb.15959
https://doi.org/10.5194/amt-13-4791-2020
https://doi.org/10.14291/tccon.ggg2014.lauder01.R0/1149293
https://doi.org/10.5194/gmd-13-3839-2020
https://doi.org/10.5194/acp-17-47-2017
https://doi.org/10.1126/science.1137004
https://doi.org/10.14291/TCCON.GGG2014.EUREKA01.R3
https://doi.org/10.1029/2005GB002466
https://doi.org/10.14291/TCCON.GGG2014.GARMISCH01.R2
https://doi.org/10.14291/tccon.ggg2014.zugspitze01.R1
https://doi.org/10.1126/science.247.4949.1431
https://doi.org/10.1002/2014GL060361

1520

1525

1530

1535

1540

1545

1550

1555

Tarantola, A.: Inverse problem theory and methods for model parameter estimation, SIAM, 2005.

Te, Y., Jeseck, P., and Janssen, C.: TCCON data from Paris (FR), Release GGG2014R0, TCCON data archive, hosted by CaltechDATA,
https://doi.org/10.14291/tccon.ggg2014.paris01.R0/1149279, 2014.

Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC
data, 1974-1985, J. Geophys. Res.-Atmos., 94, 8549-8565, 1989.

Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., and Lu, C.: Spatial and temporal patterns of CH4 and N2O fluxes in terres-
trial ecosystems of North America during 1979-2008: application of a global biogeochemistry model, Biogeosciences, 7, 2673-2694,
https://doi.org/10.5194/bg-7-2673-2010, 2010.

Tian, H., Ren, W., Yang, J., Tao, B., Cai, W.-J., Lohrenz, S. E., Hopkinson, C. S., Liu, M., Yang, Q., Lu, C., et al.: Climate extremes
dominating seasonal and interannual variations in carbon export from the Mississippi River Basin, Global Biogeochem. Cy., 29, 1333—
1347, 2015a.

Tian, H., Yang, Q., Najjar, R. G., Ren, W., Friedrichs, M. A., Hopkinson, C. S., and Pan, S.: Anthropogenic and climatic influences on carbon
fluxes from eastern North America to the Atlantic Ocean: A process-based modeling study, J. Geophys. Res. - Biogeo., 120, 757-772,
2015b.

Tian, H., Xu, R., Pan, S., Yao, Y., Bian, Z., Cai, W.-J., Hopkinson, C. S., Justic, D., Lohrenz, S., Lu, C., et al.: Long-term trajectory of
nitrogen loading and delivery from Mississippi River Basin to the Gulf of Mexico, Global Biogeochem. Cy., 34, e2019GB006 475, 2020.

Tohjima, Y., Mukai, H., Machida, T., Nojiri, Y., and Gloor, M.: First measurements of the latitudinal atmospheric Oz and CO3 distributions
across the western Pacific, Geophys. Res. Lett., 32, 2005.

van der Laan-Luijkx, I. T., van der Velde, I. R., van der Veen, E., Tsuruta, A., Stanislawska, K., Babenhauserheide, A., Zhang, H. F., Liu, Y.,
He, W., Chen, H., Masarie, K. A., Krol, M. C., and Peters, W.: The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation
and global carbon balance 2001-2015, Geosci. Model Dev., 10, 2785-2800, https://doi.org/10.5194/gmd-10-2785-2017, 2017.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C.,
Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997-2016, Earth Syst. Sci. Data, 9, 697-720,
https://doi.org/10.5194/essd-9-697-2017, 2017.

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. E., McMahon, S. M., Medlyn, B. E., Moore, D. J.,
Norby, R. J., et al.: Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2, New Phytol., 229, 2413—
2445, 2021.

Wang, J. A., Baccini, A., Farina, M., Randerson, J. T., and Friedl, M. A.: Disturbance suppresses the aboveground carbon sink in North
American boreal forests, Nat. Clim. Change, 11, 435-441, 2021.

Wang, J. S., Oda, T., Kawa, S. R., Strode, S. A., Baker, D. E, Ott, L. E., and Pawson, S.: The impacts of fossil fuel emission uncertainties
and accounting for 3-D chemical CO> production on inverse natural carbon flux estimates from satellite and in situ data, Environ. Res.
Lett., 15, 085002, 2020.

Warneke, T., Messerschmidt, J., Notholt, J., Weinzierl, C., Deutscher, N. M., Petri, C., and Grupe, P.. TCCON data from Orléans (FR),
Release GGG2014.R1, https://doi.org/10.14291/TCCON.GGG2014.0RLEANSO1.R1, 2019.

Weir, B., Crisp, D., O’Dell, C. W., Basu, S., Chatterjee, A., Kolassa, J., Oda, T., Pawson, S., Poulter, B., Zhang, Z., et al.: Regional impacts
of COVID-19 on carbon dioxide detected worldwide from space, Science advances, 7, eabf9415, 2021.

Wennberg, P. O., Wunch, D., Roehl, C., Blavier, J.-F., Toon, G. C., and Allen, N.: TCCON data from Caltech (US), Release GGG2014R1,
TCCON data archive, hosted by CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.pasadena01.R1/1182415, 2014.

62


https://doi.org/10.14291/tccon.ggg2014.paris01.R0/1149279
https://doi.org/10.5194/bg-7-2673-2010
https://doi.org/10.5194/gmd-10-2785-2017
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.14291/TCCON.GGG2014.ORLEANS01.R1
https://doi.org/10.14291/tccon.ggg2014.pasadena01.R1/1182415

1560

1565

1570

1575

1580

1585

1590

1595

Wennberg, P. O., Roehl, C., Blavier, J.-F., Wunch, D., Landeros, J., and Allen, N.: TCCON data from Jet Propulsion Laboratory (US), 2011,
Release GGG2014R1, TCCON data archive, hosted by CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.jpl02.R1/1330096, 2016a.

Wennberg, P. O., Wunch, D., Roehl, C., Blavier, J.-F, Toon, G. C., Allen, N., Dowell, P, Teske, K., Martin, C.,
and Martin., J.: TCCON data from Lamont (US), Release GGG2014R1, TCCON data archive, hosted by CaltechDATA,
https://doi.org/10.14291/tccon.ggg2014.lamont01.R1/1255070, 2016b.

Wennberg, P. O., Roehl, C. M., Wunch, D., Toon, G. C., Blavier, J.-F., Washenfelder, R., Keppel-Aleks, G., Allen, N. T., and Ayers, J.:
TCCON data from Park Falls (US), Release GGG2014.R1, https://doi.org/10.14291/TCCON.GGG2014.PARKFALLSO01.R1, 2017.

Worden, J. R., Cusworth, D. H.,, Qu, Z., Yin, Y., Zhang, Y., Bloom, A. A., Ma, S., Byme, B. K., Scarpelli,
T., Maasakkers, J. D., Crisp, D., Duren, R., and Jacob, D. J.: The 2019 methane budget and uncertain-
ties at 1° resolution and each country through Bayesian integration Of GOSAT total column methane data
and a priori inventory estimates, Atmos. Chem. Phys., 22, 6811-6841, https://doi.org/10.5194/acp-22-6811-2022, 2022.

Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P., Biraud,
S. C., Blavier, J.-F. L., Boone, C., Bowman, K. P, Browell, E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher, N. M., Diao,
M., Elkins, J. W., Gerbig, C., Gottlieb, E., Griffith, D. W. T., Hurst, D. F., Jiménez, R., Keppel-Aleks, G., Kort, E. A., Macatangay, R.,
Machida, T., Matsueda, H., Moore, F., Morino, 1., Park, S., Robinson, J., Roehl, C. M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka,
T., and Zondlo, M. A.: Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmos. Meas. Tech., 3,
1351-1362, https://doi.org/10.5194/amt-3-1351-2010, 2010.

Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W., Sherlock, V., and Wennberg, P. O.:
The Total Carbon Column Observing Network, Philos. T. Roy. Soc. A, 369, 2087-2112, https://doi.org/10.1098/rsta.2010.0240, 2011.
Wunch, D., Mendonca, J., Colebatch, O., Allen, N., Blavier, J.-F. L., Roche, S., Hedelius, J. K., Neufeld, G., Springett, S., Worthy, D.
E. J.,, Kessler, R., and Strong, K.: TCCON data from East Trout Lake (CA), Release GGG2014R1, TCCON data archive, hosted by

CaltechDATA, https://doi.org/10.14291/tccon.ggg2014.easttroutlake01.R1, 2017a.

Wunch, D., Wennberg, P. O., Osterman, G., Fisher, B., Naylor, B., Roehl, C. M., O’Dell, C., Mandrake, L., Viatte, C., Kiel, M., Griffith, D.
W. T., Deutscher, N. M., Velazco, V. A., Notholt, J., Warneke, T., Petri, C., De Maziere, M., Sha, M. K., Sussmann, R., Rettinger, M.,
Pollard, D., Robinson, J., Morino, I., Uchino, O., Hase, F., Blumenstock, T., Feist, D. G., Arnold, S. G., Strong, K., Mendonca, J., Kivi,
R., Heikkinen, P., Iraci, L., Podolske, J., Hillyard, P. W., Kawakami, S., Dubey, M. K., Parker, H. A., Sepulveda, E., Garcia, O. E., Te, Y.,
Jeseck, P., Gunson, M. R, Crisp, D., and Eldering, A.: Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) X co, measurements
with TCCON, Atmos. Meas. Tech., 10, 2209-2238, https://doi.org/10.5194/amt-10-2209-2017, 2017b.

Yang, D., Liu, Y., Cai, Z., Wang, M., Qiu, L., Yin, Z., Tian, L., and TanSat-2 team: The next generation of Chinese greenhouse gas monitoring
satellite mission, 14th International Workshop on Greenhouse Gas Measurements from Space IWGGMS-14), 2018.

Yang, Q., Tian, H., Friedrichs, M. A., Hopkinson, C. S., Lu, C., and Najjar, R. G.: Increased nitrogen export from eastern North America to
the Atlantic Ocean due to climatic and anthropogenic changes during 1901-2008, J. Geophys. Res. - Biogeo., 120, 1046-1068, 2015.
Yao, Y., Tian, H., Shi, H., Pan, S., Xu, R., Pan, N., and Canadell, J. G.: Increased global nitrous oxide emissions from streams and rivers in

the Anthropocene, Nat. Clim. Change, 10, 138-142, 2020.

Yao, Y., Tian, H., Pan, S., Najjar, R. G., Friedrichs, M. A., Bian, Z., Li, H.-Y., and Hofmann, E. E.: Riverine carbon cycling over the past
century in the Mid-Atlantic region of the United States, J. Geophys. Res. - Biogeo., 126, e2020JG005 968, 2021.

Yin, Y., Ciais, P., Chevallier, F., Van der Werf, G. R., Fanin, T., Broquet, G., Boesch, H., Cozic, A., Hauglustaine, D., Szopa, S., et al.:

Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Nifio, Geophys. Res. Lett., 43, 10-472, 2016.

63


https://doi.org/10.14291/tccon.ggg2014.jpl02.R1/1330096
https://doi.org/10.14291/tccon.ggg2014.lamont01.R1/1255070
https://doi.org/10.14291/TCCON.GGG2014.PARKFALLS01.R1
https://doi.org/10.5194/acp-22-6811-2022
https://doi.org/10.5194/amt-3-1351-2010
https://doi.org/10.1098/rsta.2010.0240
https://doi.org/10.14291/tccon.ggg2014.easttroutlake01.R1
https://doi.org/10.5194/amt-10-2209-2017

1600

Yu, K., Keller, C. A., Jacob, D. J., Molod, A. M., Eastham, S. D., and Long, M. S.: Errors and improvements in the use of archived
meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology, Geosci.
Model Dev., 11, 305-319, https://doi.org/10.5194/gmd-11-305-2018, 2018.

Zammit-Mangion, A., Bertolacci, M., Fisher, J., Stavert, A., Rigby, M., Cao, Y., and Cressie, N.: WOMBAT v1.0: A Fully Bayesian Global
Flux-Inversion Framework, Geosci. Model Dev., 15, 45-73, https://doi.org/10.5194/gmd-15-45-2022, 2022.

Zeng, J., Nojiri, Y., Landschiitzer, P., Telszewski, M., and Nakaoka, S.-1.: A global surface ocean fCQO- climatology based on a feed-forward
neural network, J. Atmos. Ocean Tech., 31, 1838-1849, 2014.

Zhang, L., Davis, K. J., Schuh, A. E., Jacobson, A. R., Pal, S., Cui, Y. Y., Baker, D., Crowell, S., Chevallier, F., Remaud, M., et al.: Multi-
Season Evaluation of CO2 Weather in OCO-2 MIP Models, J. Geophys. Res.-Atmos., 127, €2021JD035 457, 2022.

64


https://doi.org/10.5194/gmd-11-305-2018
https://doi.org/10.5194/gmd-15-45-2022

