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Abstract. A multitude of physical and biological processes on which ecosystems and human societies depend are governed 

by climate, and understanding how these processes are altered by climate change is central to mitigation efforts. We developed 

a set of climate-related variables at yet unprecedented spatiotemporal detail as a basis for environmental and ecological 

analyses. We downscaled time series of near-surface relative humidity (hurs) and cloud area fraction (clt), under the 

consideration of orography and wind, as well as near-surface wind speed (sfcWind) using the delta-change method. Combining 15 

these grids with mechanistically downscaled information on temperature, precipitation, and solar radiation, we then calculated 

vapour pressure deficit (vpd), surface downwelling shortwave radiation (rsds), potential evapotranspiration (pet), climate 

moisture index (cmi), and site water balance (swb), at a monthly temporal and 30 arcsec. spatial resolution globally, from 1980 

until 2018 (time-series variables). At the same spatial resolution, we further estimated climatological normals of frost change 

frequency (fcf), snow cover days (scd), potential net primary productivity (npp), growing degree days (gdd), and growing 20 

season characteristics for the periods 1981-2010, 2011-2040, 2041-2070, and 2071-2100, considering three shared 

socioeconomic pathways (SSP126, SSP370, SSP585) and five Earth system models (projected variables). Time-series 

variables showed high accuracy when validated against observations from meteorological stations, and when compared to 

alternative products. Projected variables were also highly correlated to observations, although some variables showed notable 

biases, e.g., snow cover days. Together, the CHELSA-BIOCLIM+ data set presented here 25 

(https://doi.org/10.16904/envidat.332, Brun et al., 2022) allows improving our understanding of patterns and processes that 

are governed by climate, including the impact of recent and future climate changes on the world’s ecosystems and associated 

services to societies. 
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1 Introduction 30 

Climate change is impacting multiple facets of the Earth system with consequences on the functioning of natural ecosystems, 

on the persistence of biological diversity, and on human societies (IPCC, 2022; IPBES, 2018). Climate regulates a broad 

variety of processes on Earth. It feeds, for example, rivers with precipitation and it generates wind, which is critical for 

renewable energy production (IPCC, 2011), and it fuels ecosystem and agricultural productivity (Howden et al., 2007), which 

sustain nearly all life on Earth, including humans (Bellard et al., 2012; Araújo and Rahbek, 2006; Willis and Bhagwat, 2009). 35 

Many of these processes react sensibly to climate change (IPCC, 2022) and in order to mitigate negative impacts, a sound 

understanding of the underlying relationships is key. Among the impacts of climate change are, for example, recent droughts 

and associated disturbances, such as forest diebacks (Allen et al., 2010), which have fostered studies that attempted to identify 

and characterise the responsible climate signatures (Seneviratne et al., 2012; Zscheischler et al., 2018). Most of these disruptive 

events can only be detected and analysed at high spatial and/or temporal resolutions and within a restricted area and period 40 

(Easterling et al., 2000). In many regions of the world, existing climate time series lack such high resolution, and thus only to 

a limited degree allow establishing an understanding of how climate interacts with the natural and human system  (Easterling 

et al., 2016). By the end of the 21st century climate change is expected to lead to profound changes in the distribution ranges 

of species and ecosystems (Thuiller et al., 2005, 2019). A reasonable anticipation of such changes must rely on sound 

information on climate-related variables, considering different climate-change scenarios at an informative spatial and temporal 45 

resolution. The availability of relevant climate-related data at high spatiotemporal resolution for current conditions and for the 

decades ahead of us is therefore crucial to fill the gaps in our understanding of climate-change impact on the Earth system.  

 

A popular repository for climate data is hosted by the climatologies at high resolution for the Earth’s land surface areas 

(CHELSA) initiative (Karger et al., 2017, 2020, 2021b), which provides information on temperature and precipitation globally 50 

at kilometre resolution. Originally, the CHELSA initiative offered climate data primarily as climatologies, i.e., as monthly and 

seasonal statistics typically averaged over a representative period of 30 years or longer (Arguez and Vose, 2011), initially from 

1979-2013. A key set of such climatologies are the 19 bioclimatic variables (Hijmans et al., 2005) that represent seasonal and 

annual statistics of precipitation and temperature and are widely used as predictors in macroecology (Fourcade et al., 2018). 

However, while these original data may be relevant for many applications, they have three primary limitations: they only (1) 55 

include variables that independently summarise either temperature or precipitation, (2) represent long-term climatic conditions, 

and (3) represent the recent past. 

 

For a sound understanding of how physical and biological processes are driven by climate, information on temperature and 

precipitation alone is not sufficient. Assessing the potential for solar energy production, for example, is impossible without 60 

knowing how much shortwave solar radiation (rsds) reaches a location of interest. Similarly, precipitation may measure the 

amount of water that reaches the surface, but across the globe this is an inaccurate proxy for the amount of water that is 
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available to plants: 300 kg m-2 annual precipitation, for instance, can be found in the Alaskan taiga, in the Mongolian steppe, 

or in the Pakistani desert (Karger et al., 2017), where the dominant vegetation exhibits large differences in the ability to cope 

with water stress. Across these systems a much more accurate indicator of water stress is the climate moisture index (cmi, 65 

Hogg, 1997), i.e., the difference between precipitation and potential evapotranspiration (pet), as pet differs by a factor of three 

between the Alaskan taiga and the Pakistani desert (Singer et al., 2021). The popularity of the 19 bioclimatic variables to 

summarise climate therefore appears to result rather from the lack of relevant alternatives with kilometre-resolution than from 

their imminent relevance. 

 70 

Time-series data on climate-related variables are indispensable to understand the drivers of the many important Earth system 

processes that vary with time. Resolving how the primary weather patterns unfold, for example, allows for a much deeper 

understanding of the control of spatiotemporal patterns of ecosystem productivity (Hartman et al., 2020). Similarly, time-series 

of pet and cmi can be used to understand the country-wide temporal dynamics in crop yield (Zhang et al., 2015; Santini et al., 

2022). Modelling crop yields based on sound pet and cmi data may, in turn, allow for a better anticipation of shortages in food 75 

production and agricultural planning. Moreover, extreme weather anomalies such as droughts can be identified at large scales 

and better linked to consequential disturbances like wildfires and forest diebacks. While for temperature and precipitation such 

time series of high temporal (daily) resolution data have recently been published (Karger et al., 2020, 2021b), global time-

series at kilometre resolution are hardly available for additional climate-related variables relevant to understand ecosystems 

processes. 80 

 

In order to anticipate and mitigate the manifold impacts of climate change until the end of this century, future projections of 

meaningful climate-related variables are required. Climate change is expected to continue or even accelerate in the coming 

decades and its impacts on ecosystems and human societies are likely becoming stronger (IPCC, 2022). Crop yields, for 

example, are expected to change, tracking their optimal climate (Leng and Hall, 2019; IPCC, 2022): in high latitudes, harvests 85 

may become bigger due to warming, whereas elsewhere irrigation may become necessary to keep growing traditional crops 

(Liu et al., 2021; Masia et al., 2021). In certain areas some crops will likely have to be abandoned entirely and replaced with 

better adapted alternatives (Sloat et al., 2020). Such agricultural system changes are costly, take time, and are only efficient if 

the expected changes can be reasonably-well anticipated. Similarly, coping with the ongoing biodiversity crisis requires a rapid 

establishment of an optimally-designed global network of protected areas (Elsen et al., 2020; Hannah, 2008; Pollock et al., 90 

2017). Yet, finding the most sustainable way to create such a network requires knowledge on the expected changes in climate 

and their impacts on the distribution ranges of species. For temperature and precipitation, high-resolution future climatologies 

have been made available (Karger et al., 2017), but this is generally not the case for other climate-related variables that are 

more directly linked to ecosystem processes. 

 95 
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Here, we present the CHELSA-BIOCLIM+ (climatologies at high resolution for the Earth’s land surface areas – bioclimatic 

variables plus) dataset of global kilometre-resolution time series and climatologies for 15 climate-related variables. We 

compiled input data from CHELSA V.2.1 (Karger et al., 2021a) and other high-quality sources and used state-of-the art 

approaches to generate two groups of biologically relevant climate-related variables: for one group of variables we created 

time-series covering 39 years of the recent past (hereafter: time-series variables), and for the other group we created 100 

climatologies for current and expected future conditions (hereafter: projected variables). Time-series variables are available 

for the period of 1980-2018 and include near-surface relative humidity (hurs), cloud area fraction (clt), near-surface wind 

speed (sfcWind), vapour pressure deficit (vpd), surface downwelling shortwave (solar) radiation (rsds), potential 

evapotranspiration (pet), and climate moisture index (cmi), each of which containing 468 monthly layers at a 30 arcsec 

resolution (i.e., less than 1 km), and an annual statistic, i.e., site water balance (swb), containing 38 annual layers. For all of 105 

these variables but site water balance, we further calculated climatologies monthly, annually, and for annual ranges and 

extrema for the period 1981-2010, which is the climate-normal period recommended by the World Meteorological 

Organization (Arguez and Vose, 2011). Projected variables include frost change frequency (fcf), snow cover days (scd), 

potential net primary productivity (npp), growing degree days (gdd), growing season length (gsl), growing season temperature 

(gst), and growing season precipitation (gsp), for which we calculated climatological means for the same kilometre-resolution 110 

grid for the periods 1981-2010, 2011-2040, 2041-2070, and 2071-2100. For the latter three periods, climatological values were 

generated for each combination of three shared socio-economic pathways (SSPs, O’Neill et al., 2014) and five Earth system 

models. To demonstrate the robustness of these variables, we validated them, where feasible, against global sets of observations 

from meteorological stations and we compared them with existing products. Together, our layers of climate-related variables 

allow the characterisation of each pixel of the life-supporting landmass on Earth far more comprehensively than would be 115 

possible from temperature and precipitation alone: for the recent decades with monthly resolution and until the end of this 

century as projected climatologies.  
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2 Material and Methods 

We developed 15 climate-related variables that complement and build on existing products of the CHELSA initiative (Karger 120 

et al., 2017). We classified these variables into five orders, representing increasing degrees of abstraction from in situ 

measurements (Fig. 1). First-order variables are directly measurable properties, including near-surface temperature (daily 

means and extrema), precipitation rates, near-surface relative humidity, cloud area fraction, solar radiation, and near-surface 

wind speed. While downscaled climatologies and time-series of temperature and precipitation rates have been made available 

previously (Karger et al., 2017, 2020, 2021b), here we downscaled corresponding layers for the remaining first-order variables 125 

total cloud cover (clt), near-surface (10m) wind speed (sfcWind), and near-surface relative humidity (hurs). Directly based on 

these first-order variables, we have generated time series and climatologies for five biologically meaningful second-order 

variables, including frost change frequency (fcf), snow cover days (scd), potential net primary productivity (npp), and vapour 

pressure deficit (vpd). In addition, we aggregated daily high-resolution time series of surface downwelling shortwave radiation 

(rsds), that have been developed in a related study (Karger et al. in prep.). Similarly, we have generated time series and 130 

climatologies of four third-order climate variables (based on first and second order variables), including growing season length 

(gsl), growing season precipitation (gsp), and growing season temperature (gst), and potential evapotranspiration (pet), as well 

as one fourth and one fifth order variable, i.e., climate moisture index (cmi) and site water balance (swb), respectively. 

 

Figure 1: Input data, analyses, and output variables generated. tasmin represents daily minimum near-surface air temperature; 135 
tasmax represents daily maximum near-surface air temperature; pr represents precipitation rates; tas represents near-surface daily 

average air temperature; hurs represents near-surface relative humidity; clt represents cloud area fraction; rsdscs surface 

downwelling shortwave radiation assuming clear sky; orog represents orography; fcf represents frost change frequency; scd 
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represents snow cover days; npp represents potential net primary productivity; gdd represents growing degree days; vpd represents 

vapour pressure deficit; rsds represents surface downwelling shortwave radiation corrected for atmospheric transmissivity and 140 
topography; sfcWind represents near-surface wind speed; sfcWE represents near-surface wind speed from ERA5; windG represents 

wind speed from Global Wind Atlas; rlus represents surface upwelling longwave radiation; gsl represents growing season length; 

gsp represents growing season precipitation; gst represents growing season temperature; pet represents potential 

evapotranspiration; cmi represents climatic moisture index; awc represents available soil water capacity; and swb represents site 

water balance. Green squares represent climate variables for which monthly time series are available for the period 1980-2018; 145 
orange squares represent variables for which future projections of climatologies exist; hashed squares represent variables with both 

time series for the recent past and future projections. Squares with border lines are part of the data set presented. 

2.1. Input data 

Data on near-surface air temperature (tasmin, tasmax, tas), as well as precipitation rates (pr) and surface downwelling 

shortwave radiation (rsds) have been taken from CHELSA V2.1 (Karger et al., 2021b). For past conditions, forcing from 150 

ERA5 (Hersbach et al., 2020) with a GPCC bias correction (Ziese et al., 2018) was used, as well as an air temperature algorithm 

that builds on an atmospheric lapse rate-based downscaling (Karger et al., 2017). Precipitation rates (pr) are based on a 

mechanistic downscaling that takes orographic effects into account (Karger et al., 2021b). Surface downwelling shortwave 

radiation (rsds) in CHELSA V2.1 is based on a terrain-specific, mechanistic model (Böhner and Antonic, 2009). For tasmin, 

tasmax, tas, and pr we also used data on projected monthly climatologies for the periods 2011-2040, 2041-2070, and 2071-155 

2100 from CHELSA V2.1. Such climatologies were generated for three official SSPs (O’Neill et al., 2016, 2017): SSP126 is 

an optimistic emission scenario, assuming that the world shifts gradually to a more sustainable path, resulting in additional 

radiative forcing of 2.6 W m-2 by 2100, relative to preindustrial levels; SSP370 is an intermediate-to-pessimistic scenario, 

assuming that international fragmentation and regional rivalry hamper efficient implementations of globally sustainable 

solutions, leading to additional radiative forcing of 7.0 W m-2 by 2100; SSP585 is a pessimistic emission scenario, assuming 160 

that developing countries follow the trajectories of first world countries in rapid economic development that hardly relies on 

greenhouse gas-efficient technologies. It assumes additional radiative forcing of 8.5 W m-2 by 2100. For each of these SSPs, 

we used global simulations of five Earth system models that were prepared for the Intersectoral Impact Model Intercomparison 

Project round 3b (ISIMIP3b, https://www.isimip.org/) to generate future climatic anomalies of precipitation and temperature. 

Earth system models were chosen based on the availability of all needed climate variables and model performance following 165 

ISIMIP3b (Lange, 2021) and included GFDL-ESM4 (Held et al., 2019), IPSL-CM6A-LR (Boucher et al., 2020), MPI-ESM 

1-2-HR (Gutjahr et al., 2019), MRI-ESM2-0 (Yukimoto et al., 2019), and UKESM1-0-LL (Sellar et al., 2019). In a first step, 

for each variable (tasmin, tasmax, tas, and pr) the dynamic model outputs were used to generate monthly climatologies for the 

3 periods × 3 SSPs × 5 Earth system models. In addition, for each Earth system model and climate variable, one climatology 

was generated for the period 1981-2010. Then, each of these climatologies was downscaled to 30 arcsec using the delta-change 170 

method (Hay et al., 2000). 

 

In addition, we compiled data for orography (orog), wind speed (𝑤𝑖𝑛𝑑𝐺, sfcWE), relative humidity (hur), total cloud cover 

(tcc), surface upwelling longwave radiation (rlus), and available soil water content (awc). Orography data originated from the 
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Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010; Danielson and Gesch, 2011) at a resolution of 30 arcsec. 175 

We obtained two types of wind speed data: long-term averages at high spatial resolution (9 arcsec), and monthly time-series 

at coarser spatial resolution. Wind speed averages for the period 2008-2017 at ten (𝑤𝑖𝑛𝑑𝐺10) and 50 (𝑤𝑖𝑛𝑑𝐺50) metres above 

surface were obtained from the Global Wind Atlas 3.0, a free, web-based application developed, owned and operated by the 

Technical University of Denmark (https://globalwindatlas.info). From these layers, we derived roughness length as 

𝑧0 = 𝑒
𝑤𝑖𝑛𝑑𝐺10𝑙𝑛(50)−𝑤𝑖𝑛𝑑𝐺50𝑙𝑛(10)

𝑤𝑖𝑛𝑑𝐺10−𝑤𝑖𝑛𝑑𝐺50 ,          (1) 180 

Then, we aggregated 𝑤𝑖𝑛𝑑𝐺10 and roughness length from the original 9 arcsec resolution to 30 arcsec, using a two-step 

approach. First, we aggregated to 27 arcsec (factor of three) by median, and then we resampled to 30 arcsec, using cell area-

weighted means. Finally, in order to keep aggregated roughness length estimates in a realistic range and to remove a few 

outliers, we bounded them by the typical values for the open sea (0.0002) as minimum and city centres with 

skyscrapers/mountain tops (4) as maximum (WMO, 2018). Monthly time-series of wind speed 10 m above the surface were 185 

obtained from the ERA5 global reanalysis product (sfcWE, Hersbach et al., 2020) released by the European Centre for Medium-

Range Weather Forecasts (ECMWF), and covered the period 1979-2020 with a horizontal resolution of 0.25°. From ERA5, 

we also used relative humidity (hur) and total cloud cover (tcc) at 0.25° resolution monthly for the period 1980-2018. Monthly 

information on the surface upwelling longwave radiation needed for the calculation of pet was obtained from the ERA5-Land 

reanalysis product (Muñoz Sabater, 2019; Muñoz‐Sabater, 2021) that is also maintained by the ECMWF. It covered the period 190 

1979-2020 with a horizontal resolution of 0.1°. Information on available soil water capacity (awc) was obtained from SoilGrids 

(Hengl et al., 2014, 2017) with a horizontal resolution of 30 arcsec and a vertical resolution of six soil layers. From these data, 

we calculated one layer of available water volume by integrating over the soil profiles. A summary of all input data used is 

provided in Table 1. 

Table 1: Input data used to generate the CHELSA-BIOCLIM+ data set 195 

Variable 

name 

Description Spatial 

resolution 

Temporal 

resolution 

Time period Source 

tasmin 
Daily minimum near-surface air 

temperature 

30 arcsec 
monthly 

1979-2019 Karger et al. 2017 

0.5° 2011-2100 ISIMIP3b 

tasmax 
Daily maximum near-surface air 

temperature 

30 arcsec 
monthly 

1979-2019 Karger et al. 2017 

0.5° 2011-2100 ISIMIP3b 

tas 
Mean near-surface air 

temperature 

30 arcsec 
monthly 

1979-2019 Karger et al. 2017 

0.5° 2011-2100 ISIMIP3b 

pr Precipitation rate 
30 arcsec 

monthly 
1979-2018 Karger et al. 2017 

0.5° 2011-2100 ISIMIP3b 
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rsds Surface downwelling shortwave 

radiation 

30 arcsec daily 1980-2018 Karger et al. in prep. 

orog Orography 30 arcsec - - Danielson and Gesch 

(2011) 

hur Relative humidity 0.25° monthly 1980-2018 ERA5 

tcc Total cloud cover 0.25° monthly 1980-2018 ERA5 

sfcWE Wind speed at 10 m above the 

surface 

0.25° monthly 1979-2020 ERA5 

rlus Surface upwelling longwave 

radiation 

0.1° monthly 1979-2020 ERA5-Land 

windG10 Wind speed at 10 m above the 

surface 

9 arcsec - 2008-2017 Global Wind Atlas 3.0 

windG50 Wind speed at 50 m above the 

surface 

9 arcsec - 2008-2017 Global Wind Atlas 3.0 

awc Available soil water capacity 30 arcsec - - SoilGrids 

 

2.2 Generating raster layers 

2.2.1 First-order climate layers 

Near-surface relative humidity (hurs) 

Near-surface relative humidity (hurs) controls the biologically important variable vapour pressure deficit (see below) as well 200 

as fog formation (at hurs = 100 %), which can be a critical water source for vegetation in certain coastal ecosystems (e.g., in 

the California redwood forest; Dawson, 1998). We calculated hurs from atmospheric hur at pressure levels z. We used all 

pressure levels from ERA5 and horizontally B-spline (Sxy) interpolated hur at pressure levels zi=1…zn to a 30 arcsec resolution, 

using longitude (x) and latitude (y) as predictors and hur as response, so that: 

 205 

𝑆𝑥𝑦(ℎ𝑢𝑟) = 𝑓(𝑥, 𝑦)            (2) 

 

From the resulting spline-interpolated values Sxy(hur) for each pressure level z, we then calculated a vertical spline interpolation 

separately for each 30 arcsec grid cell, using the geopotential height of each layer divided by the gravitational constant 

g=9.80665 m s-2 as predictor, and the values given by the function Sxy(hur) as response so that: 210 
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𝑆𝑧(ℎ𝑢𝑟) = 𝑆 (𝑆𝑥𝑦(ℎ𝑢𝑟)) = 𝑓(𝑧)           (3) 

 

We then used the vertical spline 𝑆𝑧(ℎ𝑢𝑟) to calculate a first approximation of hursorog at the 30 arcsec, with orog referring to 

surface elevation. This first approximation of the relative humidity at the surface, however, does not include orographic effects 215 

such as increased hurs at windward and lower hurs on leeward sides of an orographic barrier. Moist air is raising on the 

windward side of an orographic barrier, potentially losing moisture and cooling with a wet-adiabatic lapse rate, and sinking on 

its leeward side, usually warming with a higher, dry-adiabatic lapse rate. This effect of differing adiabatic lapse rates and 

consequently temperature changes affects relative humidity. To include these orographic effects into the estimation of hurs, 

we use: 220 

 

ℎ𝑢𝑟𝑠 =
1

(1+𝑒𝑥𝑝(−1⋅ℎ))
,           (4) 

 

with 

 225 

ℎ =
ℎ𝑡⋅(𝐻+(𝐻𝑐−𝐻)(1−𝐻𝑐))

𝐻𝑐
,           (5) 

 

and ht being the logit-transformed version of hursorog: 

 

ℎ𝑡 = 𝑙𝑜𝑔 (
ℎ𝑢𝑟𝑠𝑜𝑟𝑜𝑔

1−ℎ𝑢𝑟𝑠𝑜𝑟𝑜𝑔
),           (6) 230 

 

H being the windward leeward index at 30 arcsec resolution calculated following the same parametrization as used in Karger 

et al., (2021b), and Hc being the spline-interpolated mean of all H values that overlap with the respective 0.25° grid cell from 

ERA5. We calculated hurs monthly for the period 1980-2018. For the period 1981-2010, we derived monthly climatologies 

and climatological means, annual ranges and extrema. All hurs data are reported as percentages. 235 

 

Cloud area fraction (clt) 

The cloud area fraction (clt) represents the fraction of a grid cell that is covered by clouds across the entire atmospheric column, 

as seen from the Earth’s surface or the top of the atmosphere. It includes both large-scale and convective clouds. Cloud area 

fraction determines the amount of downwelling solar radiation that reaches the Earth’s surface and is an important constraint 240 

to productivity in tropical ecosystems (Nemani et al., 2003). Moreover, low-hanging clouds can be a key water source, and 

thus in mountain regions clt can be an important determinant of the distribution of tropical cloud forests (Karger et al., 2021c). 

We calculated clt monthly for the period 1980-2018 based on tcc, and following the procedure described in (Karger et al., 
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submitted to ESSD). Unlike all other variables presented here, we downscaled clt to a cruder spatial resolution of 1.5 arcmin. 

This resolution was chosen, because it is similar to the resolution at which orographic wind effects for precipitation are 245 

calculated (Karger et al., 2021b), and because it avoids over-representing terrain effects (Daly et al., 1997). For the period 

1981-2010, we derived monthly climatologies and climatological means, annual ranges and extrema. All clt data are reported 

as percentages. 

 

Near-surface wind speed (sfcWind) 250 

Numerous direct and indirect effects of wind speed on terrestrial ecosystems exist, including gas and heat exchange, dispersal 

of pollen, seeds, pests or pollutants, and wind throw (Nobel, 1981). The impact of wind exposure on microclimate and 

vegetation patterns are particularly evident, for example, in the polar and subpolar zones (Schultz, 2005). We estimated 

monthly averages of near-surface (10 m) wind speed (sfcWind) at 30 arcsec resolution by downscaling and bias-correcting the 

ERA5 time-series (sfcWE), using an aggregation of the Global Wind Atlas product (𝑤𝑖𝑛𝑑𝐺10; see subsection Input data). In a 255 

first step, we averaged sfcWE for the period 2008-2017, for which the Global Wind Atlas is representative. Then, we estimated 

the average deviation between sfcWE and 𝑤𝑖𝑛𝑑𝐺10 . This deviation raster contained information about both small-scale 

deviations from the ERA5 cell mean due to topography and bias in long-term estimates of wind speed. Next, we added this 

difference layer to each monthly ERA5 layer (from 1979-2019), after log-transforming all layers. Our approach therefore 

corresponded to the delta-change method (Hay et al., 2000), except that we applied it on log-transformed wind speed estimates. 260 

This was done because wind speed follows a Weibull distribution (Weibull, 1951), which can be related to the normal 

distribution through a log link function. Finally, we back-transformed the two-layer sums by exponentiating them. For the 

period 1981-2010, we derived monthly climatologies of sfcWind and climatological means, annual ranges and extrema. All 

sfcWind data are reported in metres per second. 

2.2.2 Second-order climate layers 265 

Frost change frequency (fcf) 

Frost change frequency (fcf) describes the number of days per year with temperature minima below 0 °C and maxima above 0 

°C. Coping with frost requires adapted behaviours or elaborate physiological adaptations for both ecto- and endothermal 

organisms, and especially for non-migrating life forms that cannot escape, such as plants. Frost change frequency carries 

information about the occurrence frequency of freezing and thawing events and - indirectly - about their duration, both of 270 

which are crucial constraints determining the best-suited adaptation strategies, see e.g., Hufkens et al. (2012). We used a B-

spline interpolation S(tasmax, t) and S(tasmin, t) to get both daily minimum (tasmini) and maximum (tasmaxi) near-surface 2 

m air temperatures from monthly values, with t the sequence of Julian days marking the middle of each month, i.e., 

[349,15,45,74,105,135,166,196,227,258,288,319,349,15]. As B-spline interpolations cannot predict values outside their 

bounding knots, we first extended the sequence of knots to start at Dec. 15 (Julian day 349), and end at Jan. 15 (Julian day 15), 275 

and cut the interpolated sequence to range from Jan. 1 and Dec. 31 in a second step. A frost change event was then defined by 
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tasmini < 0 °C and tasmaxi > 0 °C. We calculated fcf from the monthly climatologies of tasmin and tasmax for the periods 

1981-2010, 2011-2040, 2041-2070, and 2071-2100 for all combinations of SSPs and Earth System models (see subsection 

Input data). fcf is reported as the number of days per year with frost change events. 

Snow cover days (scd) 280 

Snow cover days (scd) are the number of days per year on which the ground is covered with snow. Snow cover affects local 

climate, hydrology, and ecosystems in complex ways (Callaghan et al., 2011; Schultz, 2005), by insulating the soil from 

temperature minima during winter months (Zhang, 2005), by determining Arctic vegetation patterns (Evans et al., 1989), or 

by providing hiding opportunities form predators for small mammals (Callaghan et al., 2011). We used a B-spline interpolation 

S(tas, t) to get from monthly to daily estimates of tas, with t being a vector of Julian days marking the middle of each month, 285 

i.e., [349,15,45,74,105,135,166,196,227,258,288,319,349,15], and tas being the mean of near-surface 2 m air temperature 

for the respective month. We used a stepwise interpolation of monthly precipitation rates to daily precipitation rates following 

(Paulsen and Körner, 2014). The daily precipitation rate (pr) in this approach is directly coupled to the near-surface air 

temperature as follows: 

 290 

𝑝𝑟 =

{
 
 

 
 5𝑘𝑔 ∙ 𝑚

−2 ∙ 𝑑𝑎𝑦−1 𝑖𝑓𝑡𝑎𝑠 < 5°𝐶

10𝑘𝑔 ∙ 𝑚−2 ∙ 𝑑𝑎𝑦−1 𝑖𝑓5°𝐶 ≤ 𝑡𝑎𝑠 < 10°𝐶

15𝑘𝑔 ∙ 𝑚−2 ∙ 𝑑𝑎𝑦−1 𝑖𝑓10°𝐶 ≤ 𝑡𝑎𝑠 < 15°𝐶

20𝑘𝑔 ∙ 𝑚−2 ∙ 𝑑𝑎𝑦−1 𝑖𝑓15°𝐶 ≤ 𝑡𝑎𝑠

        (7) 

 

The total amount of pr is distributed to as many rainfall events as are necessary to obtain the monthly amount of precipitation, 

with events being evenly distributed across the month. Precipitation is solid (snow) when tas < 0 °C and accumulates as long 

as tas remains below 0 °C. If tas > 0 °C it melts by a rate of 0.84 kg m-2 day-1 K-1 (Paulsen and Körner, 2014). When liquid 295 

precipitation falls on an existing snow layer, it cools to 0 °C and the thermal energy released (4.186 kJ kg-1 K-1) is assumed to 

melt snow (Körner et al., 2011). The number of snow cover days (scd) is then given by the days of the year on which a snow 

layer with a snow water content of ≥ 1 kg m-2 existed. We calculated scd from the monthly climatologies of tas and pr for the 

periods 1981-2010, 2011-2040, 2041-2070, and 2071-2100 for all combinations of SSPs and Earth System models (see 

subsection Input data). scd is reported as the number of days per year with snow cover. 300 

Potential net primary productivity (npp) 

Potential net primary productivity (npp) is the potential difference between the rate at which carbon is fixed by photoautotrophs 

and the rate at which carbon is emitted through cell respiration, if only climate was limiting. Primary productivity is the main 

way through which carbon dioxide is removed from the atmosphere and biomass is produced and thus a key ecosystem function 

(Schimel, 1995). Here, we used the Miami model (Lieth, 1975) to estimate npp solely based on climatic constraints, resulting 305 

in a potential estimate that is independent of the existing vegetation on the ground. The unit of npp is given as g m-2 yr-1, where 

g stands grams of dry matter. The estimates are based on mean annual near-surface 2 m air temperature in °C and annual 
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precipitation rates in kg m-2 yr-1. The Miami model assumes that npp increases asymptotically with both increasing temperature 

and increasing precipitation, approaching an upper limit of 3000 g m-2 yr-1. The precipitation component to npp is given as 

𝑛𝑝𝑝𝑝𝑟 = 3000 × (1 − 𝑒𝑥𝑝(−0.000664 × 𝑝𝑟)),         (8) 310 

and the air temperature component is given as 

𝑛𝑝𝑝𝑡𝑎𝑠 = 3000 × (1 + 𝑒𝑥𝑝(1.315 − 0.119 × 𝑡𝑎𝑠))−1       (9) 

Based on these two components, npp is either limited by temperature or precipitation, and determined by the minimum estimate 

of npp from either the temperature or the precipitation component: 

𝑛𝑝𝑝 = 𝑚𝑖𝑛(𝑛𝑝𝑝𝑡𝑎𝑠 , 𝑛𝑝𝑝𝑝𝑟)           (10) 315 

We calculated npp from the monthly climatologies of tas and pr for the periods 1981-2010, 2011-2040, 2041-2070, and 2071-

2100 for all combinations of SSPs and Earth System models (see subsection Input data).  

Growing degree days (gdd) 

Growing degree days (gdd) are a measure of heat accumulation over a specific time period. It has been used to understand the 

phenology of plants and animals for centuries in agronomy (Anandhi, 2016), and for a shorter period in ecology (Cayton et 320 

al., 2015). It has been shown that the heat sum above a critical threshold accumulated through time better explains e.g. plant 

phenology than a threshold temperature alone (Larcher, 1994). The gdd threshold temperature ascertains that cool periods, 

during which phenological progress stagnates, are omitted. The threshold temperature is species-specific, and varies e.g. 

between 0 °C for cold-adapted plants (Larcher, 1994) to 5 or 5.5 °C for many temperate to boreal tree species (Prentice et al., 

1992; Lenihan, 1993), while tropical plants are limited by temperatures below 10 °C and even much higher (Larcher, 1994). 325 

Growing degree days are calculated by first assessing whether daily mean near-surface 2 m air temperatures surpass a baseline 

threshold temperature 𝑡𝑎𝑠𝑏  (e.g., 5 °C), and then summing all the surpluses. To obtain daily estimates of near-surface 2 m air 

temperature from monthly values we have used the same approach of B-spline interpolation as for snow cover days. The 

growing degree sum is then given as the sum: 

𝑔𝑑𝑑𝑏 = ∑ (max (𝑡𝑎𝑠𝑖 − 𝑡𝑎𝑠𝑏 , 0)),
365
𝑖=1          (11) 330 

where 𝑡𝑎𝑠𝑏  is the baseline temperature and 𝑖 represents Julian day. We calculated gdd for three baseline temperatures (0 °C, 5 

°C, and 10 °C) from the monthly climatologies of tas for the periods 1981-2010, 2011-2040, 2041-2070, and 2071-2100 for 

all combinations of SSPs and Earth System models (see subsection Input data). However, here we only report the results for 

gdd with the 5 °C baseline (gdd5). All gdd data are reported as degree days (°C day). 

Vapour pressure deficit (vpd) 335 
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Vapour pressure deficit (vpd) is the difference between the actual amount of moisture in the air and the maximum amount of 

moisture the air can hold at a given temperature. vpd is a key meteorological property for terrestrial biomes, determining plant 

functioning and drought-induced mortality (Grossiord et al., 2020). Moreover, the distributions of animals prone to dessication 

such as small arthropods are limited by vpd (Hauser et al., 2018; Ouisse et al., 2016). Near-surface vpd can be calculated from 

near-surface relative humidity (hurs), considered as unitless fraction, and near-surface air temperature (tas) in °C as   340 

𝑣𝑝𝑑 = 𝑒𝑠𝑎𝑡(𝑡𝑎𝑠) × (1 − ℎ𝑢𝑟𝑠),          (12) 

where 𝑒𝑠𝑎𝑡(𝑡𝑎𝑠) is the saturation vapour pressure. In order to approximate 𝑒𝑠𝑎𝑡(𝑡𝑎𝑠), we used the Magnus equation with the 

coefficients of Sonntag (Sonntag, 1990), 

𝑒𝑠𝑎𝑡(𝑡𝑎𝑠) = 0.6112 × 𝑒
17.62∗𝑡𝑎𝑠

(243.12+𝑡𝑎𝑠),          (13) 

vpd was calculated in the R environment (R Development Core Team, 2008), using the package bigleaf (Knauer et al., 2018). 345 

We calculated vapour pressure deficit monthly for the period 1980-2018. For the period 1981-2010, we derived monthly 

climatologies and climatological means, annual ranges and extrema. All vpd data are reported in Pascal (Pa). 

Surface downwelling shortwave radiation (rsds) 

Surface downwelling shortwave radiation (rsds) is the amount of direct and diffuse shortwave radiation that reaches the Earth’s 

surface, considering the filtering effects of air and clouds throughout the atmosphere, as well as the effects of the local 350 

topography. rsds describes the amount of solar energy available. It can critically affect local climate and vegetation patterns 

in high-latitude environments (Andrade et al., 2018; Schultz, 2005). In the tropics with year-round rain, where temperature 

and precipitation are not limiting, it can constrain primary productivity (Nemani et al., 2003). To calculate rsds, surface 

downwelling solar radiation under clear sky conditions (rsdscs) is first calculated by computing 30-arcsec clear-sky radiation 

using the method described in (Böhner and Antonic, 2009) for each day of the year. Then daily estimates of rsdscs and clt are 355 

combined through the following relationship:  

 

𝑟𝑠𝑑𝑠 = 𝑟𝑠𝑑𝑠𝑐𝑠 ∙ 1 − 0.75 ∙ 𝑐𝑙𝑡3.4          (14) 

 

This way, daily estimates of rsds from 1980 to 2018 were generated in a related project (Karger et al., submitted to ESSD). 360 

Here, we summarised these estimates to monthly means, and for the period 1981-2010 we derived monthly climatologies and 

climatological means, annual ranges and extrema. All rsds data are reported as MJ m-2 day-1. 

2.2.3 Third-order climate layers 

Growing season-related predictors 

The growing season is the annual period, during which conditions are favourable for vegetation growth. Growing season length 365 

(gsl) indicates the amount of time available for plant growth, which is an important determinant of life-history traits and 
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productivity (Paulsen and Körner, 2014). As gdd, gsl is species specific and can vary considerably between plants adapted to 

different biomes. Here, we estimate gsl for tree species forming treelines, i.e., growing at the cold/dry boundary of forested 

biomes worldwide. Under such conditions gsl can be defined as the number of days per year with temperatures > 0.9 °C, with 

no snow cover being present, and with sufficient water available in the soil (Paulsen and Körner, 2014). Daily precipitation 370 

rates and near-surface 2 m air temperature averages were calculated in the same way as for snow cover. In addition, potential 

evapotranspiration was estimated, using the Hargreaves equation and tasmin and tasmax as input (Hargreaves and Samani, 

1985). Note that this estimate of pet is specific to the estimate growing season-related predictors and independent of the more 

sophisticated approach presented below. Water balance in the soil was calculated by a two-layer bucket model. The upper 

layer is assumed to be able to hold 30 kg of liquid water per square metre at maximum. For the lower layer we used empirical 375 

data on water holding capacity awc (see Input data). Liquid precipitation or snow melt fills the upper layer first. If the soil 

water content of the upper layer (swc1) exceeds 30 kg m-2, water flows to the lower layer until saturated. If the second layer is 

saturated, the remaining flux is assumed to be lost as runoff. If water is present in the upper layer, actual evapotranspiration 

(aet) is equal to pet. We used a square-root correction for the estimation of the actual daily evapotranspiration from deeper 

layers as soon as the upper layer was empty: aet = pet × (swc2/awc)1/2 in kg m-2 day-1, with soil water given in kg m-2. A 380 

growing season day is defined as a day on which swc1 > 0 & tas > 0.9 °C & snow < 1 kg m-2. Growing season length is then 

the number of days per year on which this condition holds true, growing season precipitation (gsp) is the amount of 

precipitation that falls during the days on which the condition is true, and growing season temperature (gst) is the mean near-

surface air temperature during days on which the condition is true. We calculated gsl, gsp, and gst from the monthly 

climatologies of tasmin, tasmax, tas, pr, and from the scd estimates described above for the periods 1981-2010, 2011-2040, 385 

2041-2070, and 2071-2100 for all combinations of SSPs and Earth System models (see subsection Input data).  

Potential evapotranspiration (pet) 

Potential evapotranspiration (pet) is defined as the amount of water per area and time that could evaporate at the soil surface 

or be transpired through plants if soil water availability was not limiting. Evapotranspiration is a crucial part of the water cycle 

and strongly interacts with vegetation traits such as leaf area (Irmak, 2008). We calculated pet with the Penman-Monteith 390 

equation (Monteith, 1965) as implemented in the R package bigleaf (function ‘potential.ET’). This function builds on the 

following equation (Knauer et al., 2018): 

 

𝜆𝐸𝑝𝑜𝑡 =
𝛥(𝑅𝑛−𝐺−𝑆)+𝜌×𝑐𝑝×𝑣𝑝𝑑×𝐺𝑎

𝛥+𝛾(1+
𝐺𝑎

𝐺𝑠𝑝𝑜𝑡
)

,          (15) 

 395 

where 𝛥 is the slope of the saturation vapour pressure curve [kPa K-1] that is approximated with equation 3; 𝑅𝑛 is net radiation 

[W m-2]; G is the ground heat flux [W m-2]; S is the sum of all storage fluxes [W m-2]; 𝜌 is the mean air density [kg m-3]; 𝑐𝑝 is 

the specific heat of the air [J K-1 kg-1]; 𝛾 is the psychrometric constant [kPa K-1], 𝐺𝑎 is the aerodynamic conductance [m s-1]; 

and 𝐺𝑠𝑝𝑜𝑡  is the potential surface conductance [mol m-2 s-1]. To calculate pet with the bigleaf framework, information on the 
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following general environmental conditions is required: tas, vpd, 𝑅𝑛, pressure, G, and S. For tas, we used monthly layers of 400 

the CHELSA tas product (see Input data). For vpd, we used the layers calculated here. 𝑅𝑛 was calculated as the difference 

between surface downwelling shortwave radiation (rsds) calculated here, and surface upwelling longwave radiation (rlus) from 

ERA5-Land, following (Singer et al., 2021). Since these radiation layers had different spatial resolutions (30 arcsec and 0.1°, 

respectively), we used the grid calculus tool of the System for Automated Geoscientific Analyses (SAGA, Conrad et al., 2015) 

to calculate the differences on the fine grid, using bilinear interpolation to downscale the coarse grid of rlus. In a few pixels 405 

(in rugged terrain) estimates of 𝑅𝑛 could be negative, in which case we manually set them to zero. Pressure was calculated 

with the function ‘pressure.from.elevation’ of the R package bigleaf (Knauer et al., 2018), considering orography, tas, and vpd 

as driving factors. Ground heat flux (G) was assumed to correspond to 10 % of 𝑅𝑛 (Allen et al., 1998; Singer et al., 2021) and 

storage fluxes (S) were assumed to sum to zero.  

In addition to general environmental conditions, information on aerodynamic and potential surface conductance were needed 410 

to calculate pet with the Penman-Monteith equation, and these metrics depend on the property of the surface considered. We 

estimated conductances for a reference crop of 12 cm height, using the simplified relationships provided by (Allen et al., 1998). 

𝐺𝑎 was estimated as 
𝑤2∗

208
 , with 𝑤2∗ being wind speed two metres above roughness length [m s-1]. We derived 𝑤2∗ from our 

monthly estimates of sfcWind (which are estimated 10 m above the surface) in the following way: 

 415 

𝑤2∗ = 𝑠𝑓𝑐𝑊𝑖𝑛𝑑 ×
𝑙𝑛(

𝑧0+2

𝑧0
)

𝑙𝑛(
10

𝑧0
)

,         (16) 

 

where 𝑧0 is roughness length (see subsection Input data). 𝐺𝑠𝑝𝑜𝑡  was calculated assuming a constant surface resistance of 70 s 

m-1 (Allen et al., 1998) and considering local tas and pressure (using the bigleaf function ‘ms.to.mol’). We calculated pet 

monthly from 1979 to 2019. For the period 1981-2010, we derived monthly climatologies of pet and climatological means, 420 

annual ranges and extrema. All pet data are reported as kg m-2 month-1. 

2.2.4 Fourth-order climate layers 

Climate moisture index (cmi) 

Climate moisture index (cmi) is the difference between precipitation and potential evapotranspiration (Hogg, 1997). cmi 

informs about the moisture regime and has been related to biome boundaries, and drought impact on tree health and 425 

regeneration (Hogg et al., 2017; Hogg, 1997). We calculated cmi for each month of the period 1980-2018, using the CHELSA 

pr layers and the pet layers generated in this study. For the period 1981-2010, we derived monthly climatologies of cmi and 

climatological means, annual ranges and extrema. All cmi data are reported as kg m-2 month-1. 
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2.2.5 Fifth-order climate layers 

Site water balance (swb) 430 

Site water balance (swb) is an estimate of the water available to plants during a year, which considers soil parameters in 

addition to climate variables. swb has been shown to tightly correlate with functional plant traits such as leaf area (Grier and 

Running, 1977; Gholz, 1982), and it is considered one of the main determinants of plant distribution (Neilson, 1995; 

Woodward, 1987). We used an approach similar to that of (Grier and Running, 1977) to calculate site water balance. From the 

cmi climatologies, we identified the start of the hydrological year, i.e., either the first month after the arid period (with negative 435 

cmi) or the month after the one with the lowest cmi. Then, monthly estimates of cmi are summed over the hydrological year, 

whereby the running sum is never allowed to exceed the available water volume of the soil (approximated here by awc, see 

Input data), and excess water is assumed to run off. When pet exceeds precipitation (negative cmi) the difference is subtracted 

from the water balance, which often leads to distinctly negative values over the course of a hydrological year. We calculated 

swb for each year of the period 1980-2018, i.e., choosing 1981 as the first representative year and allowing hydrological years 440 

to start in 1980 already. For the period 1981-2010, we derived climatological means. All swb data are reported as kg m-2 year-

1. 

2.3 Validation 

2.3.1 Station data 

We validated nine of the 15 climate-related variables at three levels of temporal aggregation, using global sets of station 445 

measurements. We validated primarily variables that could either be measured directly or derived readily from measurements, 

using three different data sources. hurs, sfcWind, fcf, scd, gdd5, and vpd were validated against station measurements from the 

Global Surface Summary of Day (GSOD) database (Global Surface Summary of Day (GSOD), 2022), containing 

measurements of weather conditions of >28’000 stations globally, with a focus on the northern hemisphere. We used the R 

package GSODR (Sparks et al., 2017) to download and quality control daily averages from 1979 to 2020, and to calculate 450 

saturation vapour pressure, actual vapour pressure, and relative humidity from measured properties, using the improved 

August-Roche-Magnus approximation (Alduchov and Eskridge, 1996). For each station, we then calculated vapour pressure 

deficit as the difference between saturation vapour pressure and actual vapour pressure, defined frost change days as days with 

maximum temperature >0 °C and minimum temperature <0 °C, defined daily growing degree days as average temperature 

minus 5°C if the average temperature was >5 °C and 0 °C otherwise, and defined snow cover days as days with measured 455 

snow depth. To validate clt, we used station measurements from the HadISD (v.3.2.0.2021f) global sub-daily database (Dunn, 

2019), provided by the UK Met Office Hadley Centre (https://www.metoffice.gov.uk/hadobs/hadisd/). For each station, we 

aggregated all 1979-to-2020 hourly, non-flagged measurements of total cloud cover to daily averages and converted the 

original eight-level scale to percent. Station measurements for pet and cmi were obtained from the World-wide Agroclimate 

Data of FAO (FAOCLIM; FAO, 2001). This agro-climatic database contains data for 28,800 stations and 14 observed and 460 
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computed agro-climatic parameters. For validation, we used monthly climatologies provided by FAOCLIM version 2, which 

cover the period 1961-1990, and thus only partially overlap with our 1981-2010 climatologies. For potential evapotranspiration 

these values were available directly, while for climate moisture index we calculated them station-wise, considering only 

stations that simultaneously reported potential evapotranspiration and precipitation. 

 465 

We aggregated station measurements temporally to three levels. Firstly, we aggregated data on hurs, clt, sfcWind, fcf, scd, 

gdd5, and vpd by month. For hurs, clt, sfcWind, and vpd, we calculated monthly means for each combination of station and 

month for which 25 or more daily averages were available. For fcf, scd, and gdd5, we calculated monthly sums when 25 or 

more daily estimates were available (for scd, we thereby considered temperature measurements, as snow depth was only 

reported when snow was present). If estimates were missing for some days, we multiplied the sum with the inverse of the 470 

fraction of days covered. Secondly, we aggregated hurs, clt, sfcWind, and vpd to monthly climatologies. To this end, we first 

filtered for measurements made between 1981 and 2010 and counted for each combination of month and station, how many 

years were available. When data for more than 15 years existed, we calculated monthly climatological means. Finally, we 

calculated annual climatological means. For hurs, clt, sfcWind, vpd, pet, and cmi, we did this by station-wise averaging monthly 

climatologies, considering stations for which estimates were missing for no more than one month. For fcf, scd, and gdd5, we 475 

first derived yearly sums from 1981 to 2010, expecting 12 monthly sums per station and year. For, scd we did this for all 

combinations of stations and years with at least one observation of snow depth per year, and we further considered 

combinations of stations and years with daily temperature minima consistently above °C as having zero snow cover days. 

Then, we calculated climatological means for stations with more than 15 yearly sums. 

2.3.2 Gridded data 480 

In addition to station measurements, we compared CHELSA-BIOCLIM+ variables to gridded data from station-based 

interpolation and from a weather research and forecasting (WRF) model simulation. Gridded data from station-based 

interpolations originated or were built from WorldClim v2.0 (Fick and Hijmans, 2017) and from the Global Aridity Index and 

Potential Evapotranspiration Database version 3 (Zomer et al., 2022), and had a global coverage and spatial resolution of 30 

arcsec. We calculated annual climatologies from WorldClims’ monthly wind speed and solar-radiation climatologies and from 485 

the monthly climatology of from Global-AI_PET’s potential evapotranspiration. Moreover, we derived estimates for relative 

humidity, vapor pressure deficit, and climate moisture index. We calculated relative humidity and vapor pressure using 

WorldClim’s vapor pressure, maximum temperature, and minimum temperature, following the procedure described in Zomer 

et al. (2022). For climate moisture index, we subtracted Global-AI_PET’s potential evapotranspiration from WorldClim’s 

precipitation. Derived variables were first calculated for each climatological month and then averaged to annual climatologies. 490 

Note that these climatologies are representative for the period 1970-2000 and thus only partially overlap with the CHELSA-

BIOCLIM+ climatologies.  
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For a second comparison, we considered outputs of the High Asia Refined analysis version 1 (Maussion et al., 2011, 2014) 

that were generated through dynamical downscaling using the WRF model version 3.3.1 (Skamarock and Klemp, 2008). 

Simulated layers have a resolution of 10 km and are representative for the period 2000-2014, which only partially overlaps 495 

with the CHELSA-BIOCLIM+ climatologies. From these simulations, we used wind speed 10 meters above the surface, 

downward shortwave flux at ground surface (compared to rsds) after converting the units. Relative humidity and vapour 

pressure deficit were derived from daily estimates of water vapour mixing ratio (q), temperature at 2 m (tas), and surface 

pressure (p). To this end, we first calculated saturation vapour pressure from temperature, using equation 13, and actual vapour 

pressure according to the formula 500 

𝑒𝑎 =
𝑞∗𝑝

𝑞∗(1−𝑀𝑊𝑟𝑎𝑡𝑖𝑜)+𝑀𝑊𝑟𝑎𝑡𝑖𝑜
,          (17) 

where 𝑀𝑊𝑟𝑎𝑡𝑖𝑜 is the ratio of molecular weights of water vapour and dry air and equals to 0.622. Relative humidity was then 

calculated by dividing actual vapour pressure by saturation vapour pressure and vapour pressure deficit was calculated as the 

difference between saturation vapour pressure and actual vapour pressure. Daily estimates of relative humidity and vapour 

pressure deficit were aggregated to 2000-2014 averages. Potential evaporation was converted from Watts per square meter to 505 

kilograms per square meter per year, using a linear approximation of the temperature dependency of the energy needed to 

vaporize water (∆𝐻𝑣𝑎𝑝 in J kg-1) 

∆𝐻𝑣𝑎𝑝 = 3.148 ∗ 106 − 2370 ∗ 𝑡𝑎𝑠,         (18) 

whereby the 2000-2014 averages of potential evaporation and tas were used. Finally, climate moisture index was calculated 

as the difference between potential evaporation and precipitation. 510 

2.3.2 Summary statistics and visualizations 

We matched station measurements with CHELSA-BIOCLIM+ layers and station-based interpolations at the different levels 

of temporal aggregation, and calculated summary statistics. For the various combinations of variable, origin (CHELSA-

BIOCLIM+ or station-based interpolation), and temporal aggregation (monthly, monthly climatology, and annual 

climatology), we matched station-based measurements with gridded data, and we converted variables to the same units as the 515 

CHELSA-BIOCLIM+ layers. Then, we derived the number of stations for which both measurements and corresponding 

gridded data existed and calculated Pearson correlation coefficients (r), mean absolute error (MAE), root mean squared error 

(RMSE), absolute bias, as well as the average across station measurements. Moreover, for annual climatologies we plotted 

MAE in space, and we calculated and visualized r for each time step, for validated time-series variables (hurs, clt, sfcWind, 

and vpd) and for validated monthly climatologies (hurs, clt, sfcWind, vpd, pet, and cmi). 520 

 

In addition to these validation results, we present detailed visualizations of spatial and temporal patterns for each variable. We 

show global maps as well as fine-scale patterns for one of two selected regions. For time-series variables, we report seasonal 

and long-term variations for different biomes, as defined by Schultz (2005), and for projected variables we show differences 
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between the climatological means for 1981-2010 and 2071-2100, assuming an SSP370 pathway and considering the MPI-525 

ESM 1-2-HR model. Finally, for the Himalaya region, we visually compare the fine-scale patterns for hurs, sfcWind, rsds, 

vpd, pet, and cmi between CHELSA-BIOCLIM+, station-based interpolations, and WRF outputs. 

2.4 Output format and file organization 

All downscaled layers are provided as georeferenced tiff files (GeoTIFF). GeoTIFF is a public domain metadata standard 

which allows georeferencing information to be embedded within a TIFF file. Identical to the CHELSA layers (Karger et al., 530 

2017), maps are projected in World Geodetic System 1984 (EPSG 4326), and have a west extent of −180.0001388888°, a 

south extent of −90.0001388888°, an east extent of 179.9998611111° and a north extent of 83.9998611111°. Their resolution 

is 0.0083333333° (30 arcsec), resulting in raster sizes of 20’880×43’200 cells. All GeoTIFF files are saved as integers with 

the compression option ‘deflate’, and an internal scale and offset (see Technical Specifications document on the CHELSA 

website). In order to read offset and scale correctly the geospatial data abstraction library (GDAL, https://gdal.org) version 2.2 535 

or higher is needed, otherwise they may have to be applied manually. All variables are time-averages either representing the 

periods 1981-2010, 2011-2040, 2041-2070, or 2071-2100 (in case of climatologies) or individual year-month combinations 

(in case of time series-data). Monthly time series range at least from 1980 to 2018, while the annual time series of swb ranges 

from 1981 to 2018. Climate variable and time period, as well as SSP and Earth system model (if applicable) are encoded in 

the file names. 540 

2.5 Software used 

For the generation and validation of the climate layers, we relied on three open-source software environments. Most raster 

operations, such as averaging or calculating extrema were executed with SAGA V.8.1 (Conrad et al., 2015); output GeoTIFFs 

were created with GDAL (https://gdal.org); and validation, visualisation, as well as complex raster operations were 

implemented in the R environment (R Development Core Team, 2008). R packages used, in addition to those indicated above, 545 

included sp (Pebesma and Bivand, 2005), raster (Hijmans, 2019), and magick (Ooms, 2020). 
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3 Results 

3.1 Spatiotemporal patterns 

3.1.1 First-order climate layers 550 

Near-surface relative humidity (hurs) was highest in polar regions and - to a lesser extent - at the equator, and lowest in parts 

of the subtropics including northern Africa, the Arabian Peninsula and northwest Australia (Figure 2a). The seasonal variation 

of hurs was most pronounced in the far north, for example in northern Canada, but also along an east-west belt in subtropical 

Africa, roughly from the southern tip of the Red Sea to the Atlantic Ocean. (Figure 2b). In terms of northern-hemisphere 

biomes, hurs was lowest in the dry tropics and subtropics, especially in May and June, and highest in the polar and subpolar 555 

zone, especially in January and February (Figure 2c). Over the past forty years, annual means of hurs varied in all northern-

hemisphere biomes with consistent and clear trends of decreasing hurs (Figure 2d). In the northeastern boundary region of the 

Andes, hurs tended to be higher at the northern edge of the Andes and around the eastern mountain tops than in the eastern 

lowlands and on the Andean plateau (Figure 2e). 

 560 

Figure 2: Overview over the spatiotemporal distribution of near-surface relative humidity (hurs): a, global map of the climatological 

mean for the period 1981-2010; b, global map of the range (max - min) of monthly hurs means for the period 1981-2010; c, seasonal 

cycle of hurs in the biomes of the northern hemisphere for the period 1981-2010. Polygons indicate the range from the fortieth to the 

sixtieth percentile, lines indicate medians. d, temporal change of annual mean hurs by biome. Shown are deviations in percent of the 

long-term (1979-2018) annual mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue 565 
(C) represents dry midlatitudes; green (D) represents temperate midlatitudes; purple (E) represents subtropics with year-round 
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rain; orange (F) represents subtropics with winter rain; brown (G) represents dry tropics and subtropics; pink (H) represents tropics 

with summer rain; and grey (I) represents tropics with year-round rain. e, an exemplary high-resolution map of the climatological 

mean of hurs for the northeastern boundary region of the Andes. For exact location see inset in panel (a). 

Cloud area fraction (clt) was highest in polar regions and in some equatorial regions, such as Indonesia, and lowest in parts of 570 

the subtropics, including northern and South Africa and the Arabian Peninsula (Figure 3a). The seasonal variation of clt was 

most pronounced in subtropical and monsoon regions, for example on the Indian subcontinent (Figure 3b). In terms of northern-

hemisphere biomes, clt was lowest in the dry tropics and subtropics, especially from June to August, and highest in the polar 

and subpolar zone, especially in May and October (Figure 3c). For the past forty years, substantial variations in annual mean 

clt are mapped in most northern-hemisphere biomes with more (e.g., temperate midlatitudes) or less (e.g., dry tropics and 575 

subtropics) apparent negative trends (Figure 3d). In the northeastern boundary region of the Andes clt tended to be higher at 

the northern edge of the Andes and around the eastern mountain tops than in inner alpine valleys and on the Andean plateau 

(Figure 3e). 

 

Figure 3: Overview over the spatiotemporal distribution of cloud area fraction (clt): a, global map of the climatological mean for the 580 
period 1981-2010; b, global map of the range (max - min) of monthly clt means for the period 1981-2010; c, seasonal cycle of clt in 

the biomes of the northern hemisphere for the period 1981-2010. Polygons indicate the range from the fortieth to the sixtieth 

percentile, lines indicate medians. d, temporal change of annual mean clt by biome. Shown are deviations in percent of the long-term 

(1979-2019) annual mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) represents 

dry midlatitudes; green (D) represents temperate midlatitudes; purple (E) represents subtropics with year-round rain; orange (F) 585 
represents subtropics with winter rain; brown (G) represents dry tropics and subtropics; pink (H) represents tropics with summer 

rain; and grey (I) boundary region of the Andes. e, an exemplary high-resolution map of the climatological mean of clt for the 

northeastern boundary region of the Andes. For exact location see inset in panel (a). 
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Near-surface wind speed (sfcWind) was comparably high in the high latitudes, in coastal regions, in deserts and in mountain 

systems and lowest at the equator (Figure 4a). In general, seasonal variations were relatively small, with notable exceptions of 590 

seasonally variable sfcWind regions in a few, scattered regions such as Greenland and the horn of Africa (Figure 4b). In terms 

of northern-hemisphere biomes, sfcWind was lowest in the tropics with year-round rain and highest in the polar and subpolar 

zone (Figure 4c). For the past forty years, substantial variations in annual mean sfcWind are mapped in northern-hemisphere 

biomes (Figure 4d). They show few persistent changes besides a slight increasing trend in the dry tropics and subtropics and a 

slight decreasing trend in the temperate midlatitudes. In the northeastern boundary region of the Andes, sfcWind tended to be 595 

highest on mountain tops, in the mideastern lowlands around the city of Santa Cruz de la Sierra, and above the lakes in the 

northern lowlands of the Amazon basin (Figure 4e). 

 

Figure 4: Overview over the spatiotemporal distribution of near-surface wind speed (sfcWind): a, global map of the climatological 

mean for the period 1981-2010; b, global map of the range (max - min) of monthly sfcWind means for the period 1981-2010; c, 600 
seasonal cycle of sfcWind in the biomes of the northern hemisphere for the period 1981-2010. Polygons indicate the range from the 

fortieth to the sixtieth percentile, lines indicate medians. d, temporal change of long-term (1980-2018) annual mean sfcWind by 

biome. Shown are deviations in percent of the annual mean. Red (A) represents the polar and subpolar zone; yellow (B) represents 

the boreal zone; blue (C) represents dry midlatitudes; green (D) represents temperate midlatitudes; purple (E) represents subtropics 

with year-round rain; orange (F) represents subtropics with winter rain; brown (G) represents dry tropics and subtropics; pink (H) 605 
represents tropics with summer rain; and grey (I) represents tropics with year-round rain. e, an exemplary high-resolution map of 

the climatological mean of sfcWind for the northeastern boundary region of the Andes. For exact location see inset in panel (a). 
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3.1.2 Second-order climate layers 

Frost change frequency (fcf) was highest along a circumpolar belt in the temperate-to-high latitudes of the northern hemisphere 

(Figure 5a), as well as in some mountain systems such as the Andes, while it was zero across most of the subtropics and tropics. 610 

Until 2071-2100 fcf is expected to decrease in particular in global mountain systems and across much of the northern half of 

the contiguous United States, central and eastern Europe, and southwest Asia, while increasing frost change frequencies are 

expected for southeastern Canada, the Baltic countries, Belarus, Ukraine, and in Mongolia, and parts of Northern and 

Northeastern China and, such as the Hengduan mountains (Figure 5b), indicating an increase in thawing events in these areas. 

In the western Himalayas, fcf was highest at intermediate elevations, and it showed a tendency to decrease towards valley 615 

bottoms as well as towards mountain peaks (Figure 5c). 

 

Figure 5: Overview over the spatiotemporal distribution of frost change frequency (fcf): a, global map of the climatological mean of 

fcf for the period 1981-2010; b, global map of the difference between climatological means of 2071-2100 and 1981-2010, assuming 

anthropogenic emissions to follow the shared socio-economic pathway SSP370 and building on projections of the Max Planck 620 
Institute Earth System Model (MPI-ESM 1-2-HR); c, an exemplary high-resolution map of the climatological mean for the western 

edge of the Himalayas. For exact location see inset in panel (a). 

Snow cover days (scd) increased with latitude, with zero scd occurring across most of the subtropics and tropics, except for 

some mountain systems, e.g., the Himalayas (Figure 6a). Until 2071-2100 scd are expected to decrease in all regions of the 

world that currently have snow cover days, except for Greenland and Antarctica. Strongest declines are expected for the 625 
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northeastern contiguous United States and for eastern and northern Europe (Figure 6b). In the western Himalayas scd was 

positively associated with elevation (Figure 6c).  

 

Figure 6: Overview over the spatiotemporal distribution of snow cover days (scd): a, global map of the climatological mean of scd 

for the period 1981-2010; b, global map of the difference between climatological means of 2071-2100 and 1981-2010, assuming 630 
anthropogenic emissions to follow the shared socio-economic pathway SSP370 and building on projections of the Max Planck 

Institute Earth System Model (MPI-ESM 1-2-HR); c, an exemplary high-resolution map of the climatological mean for the western 

edge of the Himalayas. For exact location see inset in panel (a). 

Potential net primary productivity (npp) was highest in the tropics, for example in the Amazon Basin, and lowest close to the 

poles and in arid regions, such as northern Africa (Figure 7a). Until 2071-2100 npp is expected to increase across much of the 635 

northern high latitudes, in high mountain systems, and in the northwest of the Indian subcontinent. Decreasing npp is expected 

for the islands and the southern coast of the Caribbean Sea, Central America, and for the coasts of the Mediterranean Sea 

(Figure 7b). In the northeastern boundary region of the Andes, npp was highest in the northern lowlands of the Amazon Basin 

and lowest on the bottoms of dry inner-alpine valleys (Figure 7c).  
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Figure 7: Overview over the spatiotemporal distribution of net primary productivity (npp): a, global map of the climatological mean 

of npp for the period 1981-2010; b, global map of the difference between climatological means of 2071-2100 and 1981-2010, assuming 

anthropogenic emissions to follow the shared socio-economic pathway SSP370 and building on projections of the Max Planck 

Institute Earth System Model (MPI-ESM 1-2-HR); c, an exemplary high-resolution map of the climatological mean for the 

northeastern boundary region of the Andes. For exact location see inset in panel (a). 645 

Growing degree days with 5 °C baseline temperature (gdd5) were highest in the tropics and subtropics and decreased towards 

the high latitudes (Figure 8a). Until 2071-2100 gdd5 is expected to increase in all regions of the world, except for Greenland 

and Antarctica. Strongest increases are expected for northern Africa and the Arabian Peninsula, Mexico, and western Australia 

(Figure 8b). In the northeastern boundary region of the Andes, gdd5 were highest in the northern lowlands of the Amazon basin 

and in some inner alpine valleys, while they were lowest on high mountain peaks and the Andean plateau (Figure 8c). 650 
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Figure 8: Overview over the spatiotemporal distribution of growing degree days with 5 °C baseline temperature (gdd5): a, global 

map of the climatological mean of gdd5 for the period 1981-2010; b, global map of the difference between climatological means of 

2071-2100 and 1981-2010, assuming anthropogenic emissions to follow the shared socio-economic pathway SSP370 and building on 

projections of the Max Planck Institute Earth System Model (MPI-ESM 1-2-HR); c, an exemplary high-resolution map of the 655 
climatological mean for the northeastern boundary region of the Andes. For exact location see inset in panel (a). 

The climatological mean of vapour pressure deficit (vpd) was highest in dry subtropical regions, for example northern Africa, 

the Arabian Peninsula, and Central and Western Australia. It was lowest in high mountain systems, such as the Himalayas, 

and polar regions (Figure 9a). The spatial patterns of seasonal variation in vpd were similar to those of the climatological mean 

(Figure 9b). In terms of northern-hemisphere biomes, vpd was lowest in the polar and subpolar zone, primarily from November 660 

to March, and highest in the dry tropics and subtropics, especially around June (Figure 9c). Over the past forty years annual 

mean vpd showed clearly increasing trends in all northern-hemisphere biomes (Figure 9d). In the northeastern boundary region 

of the Andes vpd showed a primary negative association with elevation, with highest vpd in the lowlands and in some inner 

alpine valleys and lowest vpd on mountain peaks and on the Andean plateau (Figure 9e). 
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Figure 9: Overview over the spatiotemporal distribution of vapour pressure deficit (vpd): a, global map of the climatological mean 

for the period 1981-2010; b, global map of the range (max - min) of monthly vpd means for the period 1981-2010; c, seasonal cycle 

of vpd in the biomes of the northern hemisphere for the period 1981-2010. Polygons indicate the range from the fortieth to the sixtieth 

percentile, lines indicate medians. d, temporal change of annual mean vpd by biome. Shown are deviations in percent of the long-

term (1980-2018) annual mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) 670 
represents dry midlatitudes; green (D) represents temperate midlatitudes; purple (E) represents subtropics with year-round rain; 

orange (F) represents subtropics with winter rain; brown (G) represents dry tropics and subtropics; pink (H) represents tropics 

with summer rain; and grey (I) represents tropics with year-round rain. e, an exemplary high-resolution map of the climatological 

mean of vpd for the northeastern boundary region of the Andes. For exact location see inset in panel (a). 

Surface downwelling shortwave radiation (rsds) was highest in the subtropics and tropics, for example northern Africa and the 675 

Arabian Peninsula, and decreased towards higher latitudes (Figure 10a). The seasonal variation in rsds showed approximately 

opposite patterns, with lowest seasonal variations in the tropics, and highest variations in Antarctica and Greenland (Figure 

10b). In terms of northern-hemisphere biomes, rsds was lowest in the polar and subpolar zone, from November to January, 

and highest in the dry tropics and subtropics, especially around June (Figure 10c). Over the past forty years, annual mean rsds 

showed variable trends across northern-hemisphere biomes: in several biomes, for example in the tropics with year-round rain 680 

and in particular in the subtropics with year-round rain, rsds tended to increase (Figure 10d) whereas in the polar and subpolar 

zone rsds tended to decrease. In the northeastern boundary region of the Andes rsds tended to be highest on the Andean plateau 

and high-elevation mountain peaks and lowest on the northern edge of the Andes on the western slopes on the western edge 

of the Andes (Figure 10e). 
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Figure 10: Overview over the spatiotemporal distribution of surface downwelling shortwave (rsds): a, global map of the 

climatological mean for the period 1981-2010; b, global map of the range (max - min) of monthly rsds means for the period 1981-

2010; c, seasonal cycle of rsds in the biomes of the northern hemisphere for the period 1981-2010. Polygons indicate the range from 

the fortieth to the sixtieth percentile, lines indicate medians. d, temporal change of annual mean rsds by biome. Shown are deviations 

in percent of the long-term (1979-2019) annual mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the 690 
boreal zone; blue (C) represents dry midlatitudes; green (D) represents temperate midlatitudes; purple (E) represents subtropics 

with year-round rain; orange (F) represents subtropics with winter rain; brown (G) represents dry tropics and subtropics; pink (H) 

represents tropics with summer rain; and grey (I) represents tropics with year-round rain. e, an exemplary high-resolution map of 

the climatological mean of rsds for the northeastern boundary region of the Andes. For exact location see inset in panel (a). 

3.1.3 Third-order climate layers 695 

Growing season length (gsl) was highest in the tropics, where it typically covered the entire year, and lowest in polar areas, in 

particular in Greenland and Antarctica, in arid areas, e.g., northern Africa, and in high mountain systems such as the Himalayas, 

the Rockies or the high Andes (Figure 11a). In the western Himalayas gsl was negatively associated with elevation (Figure 

11b). Until 2071-2100 gsl is expected to increase across most of the temperate-to-high latitudes of the northern hemisphere 

and in the greater Himalaya region, but also in parts of northern Australia and central-to-eastern Africa, such as Kenya and 700 

Ethiopia. Declining growing season lengths are expected for Mexico and the southwestern US, across much of tropical South 

America, Spain, Morocco, and southern Australia (Figure 11c). 
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Figure 11: Overview over the spatiotemporal distribution of growing season length (gsl): a, global map of the climatological mean 

of gsl for the period 1981-2010; b, global map of the difference between climatological means of 2071-2100 and 1981-2010, assuming 705 
anthropogenic emissions to follow the shared socio-economic pathway SSP370 and building on projections of the Max Planck 

Institute Earth System Model (MPI-ESM 1-2-HR); c, an exemplary high-resolution map of the climatological mean for the western 

edge of the Himalayas. For exact location see inset in panel (a). 

Growing season precipitation (gsp) was highest in the tropics and in the Monsoon region of Southern China, and comparably 

low in desert regions around the globe and in the higher latitudes, except for some coastal areas such as western North America 710 

(Figure 12a). Until 2071-2100 gsp is expected to increase along the coasts of western and eastern North America, across most 

of Eurasia, in Oceania and in northern Australia. Decreases are expected in particular in central and tropical America in the 

Mediterranean region, in western Africa, and in southern Australia (Figure 12b). In the northeastern boundary region of the 

Andes, gsp was highest in the northern lowlands of the Amazon Basin and in particular at the northern edge of the Andes, 

while it was lowest on the Andean Plateau (Figure 12c).  715 
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Figure 12: Overview over the spatiotemporal distribution of growing season precipitation (gsp): a, global map of the climatological 

mean of gsp for the period 1981-2010; b, global map of the difference between climatological means of 2071-2100 and 1981-2010, 

assuming anthropogenic emissions to follow the shared socio-economic pathway SSP370 and building on projections of the Max 

Planck Institute Earth System Model (MPI-ESM 1-2-HR); c, an exemplary high-resolution map of the climatological mean for the 720 
northeastern boundary region of the Andes. For exact location see inset in panel (a). 

Growing season temperature (gst) was highest in the tropics and subtropics and decreased towards the high latitudes (Figure 

13a). Until 2071-2100 gst is expected to increase in almost all regions of the world with growing seasons, with steepest 

increases for example in Mauritania. Decreasing growing season temperatures are expected, for example, from southern 

Sweden, over southern Ukraine to Kazakhstan (Figure 13b). In the northeastern boundary region of the Andes, gst was highest 725 

in the lowlands and in some inner-alpine valleys, while it was lowest on high-elevation mountain peaks and on the Andean 

Plateau (Figure 13c).  
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Figure 13: Overview over the spatiotemporal distribution of growing season temperature (gst): a, global map of the climatological 

mean of gst for the period 1981-2010; b, global map of the difference between climatological means of 2071-2100 and 1981-2010, 730 
assuming anthropogenic emissions to follow the shared socio-economic pathway SSP370 and building on projections of the Max 

Planck Institute Earth System Model (MPI-ESM 1-2-HR); c, an exemplary high-resolution map of the climatological mean for the 

northeastern boundary region of the Andes. For exact location see inset in panel (a). 

Potential evapotranspiration (pet) was highest in the subtropics, such as northern Africa, and decreased towards higher 

latitudes, and - to a lesser extent - towards the tropics (Figure 14a). The seasonal variation of pet was also highest in the 735 

subtropics, but its minimum was in the tropics, and in the polar region it was intermediate (Figure 14b). In terms of northern-

hemisphere biomes, pet was lowest in the polar and subpolar zone, from December to February, and highest in the dry tropics 

and subtropics, especially from May to July (Figure 14c). For the past forty years, an increasing trend of annual mean pet is 

mapped in all northern-hemisphere biomes (Figure 14d). In the northeastern boundary region of the Andes pet showed negative 

association with elevation, with lowest pet on high-elevation mountain peaks and on the Andean plateau and highest values in 740 

some inner alpine valleys and in the mideastern lowlands around the city of Santa Cruz. However, pet was also relatively low 

in the lowlands at the northern edge of the Andes, where clt and hurs were high and sfcWind and rsds were low (Figure 14e). 
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Figure 14: Overview over the spatiotemporal distribution of potential evapotranspiration (pet): a, global map of the climatological 

mean for the period 1981-2010; b, global map of the range (max - min) of monthly pet means for the period 1981-2010; c, seasonal 745 
cycle of pet in the biomes of the northern hemisphere for the period 1981-2010. Polygons indicate the range from the fortieth to the 

sixtieth percentile, lines indicate medians. d, temporal change of annual mean pet by biome. Shown are deviations in percent of the 

long-term (1980-2018) annual mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue 

(C) represents dry midlatitudes; green (D) represents temperate midlatitudes; purple (E) represents subtropics with year-round 

rain; orange (F) represents subtropics with winter rain; brown (G) represents dry tropics and subtropics; pink (H) represents tropics 750 
with summer rain; and grey (I) represents tropics with year-round rain. e, an exemplary high-resolution map of the climatological 

mean of pet for the northeastern boundary region of the Andes. For exact location see inset in panel (a). 

3.1.4 Fourth-order climate layers 

Climate moisture index (cmi) was highest in parts of the tropics and in some mountain systems, especially in those located 

close to the coasts, and lowest in northern Africa and the Arabian Peninsula (Figure 15a). The seasonal variation in cmi was 755 

highest in the tropics and subtropics and in some coastal mountain systems such as the Pacific Northwest of North America, 

while in high-latitude lowlands variation was comparably low (Figure 15b). In terms of northern-hemisphere biomes, cmi was 

lowest in the dry tropics and subtropics, from May to July, and highest in the tropics with year-round rain, especially in May 

and June (Figure 15c). For the past forty years, substantial variations in annual mean cmi were observed in northern-hemisphere 

biomes, without clear temporal trends (Figure 15d). However, cmi showed a tendency to decrease in the dry tropics and 760 

subtropics. In the northeastern boundary region of the Andes cmi was mostly negative, in particular in inner alpine valleys, 

although at the northern edge of the Andes and in the lowlands of the Amazon basin cmi was mostly positive (Figure 15e). 
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Figure 15: Overview over the spatiotemporal distribution of climate moisture index (cmi): a, global map of the climatological mean 

for the period 1981-2010; b, global map of the range (max-min) of monthly cmi means for the period 1981-2010; c, seasonal cycle of 765 
cmi in the biomes of the northern hemisphere for the period 1981-2010. Polygons indicate the range from the fortieth to the sixtieth 

percentile, lines indicate medians. d, temporal change of annual mean cmi by biome. Shown are deviations in percent of the long-

term (1980-2018) annual mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) 

represents dry midlatitudes; green (D) represents temperate midlatitudes; purple (E) represents subtropics with winter rain; orange 

(F) represents subtropics with year-round rain; brown (G) represents dry tropics and subtropics; pink (H) represents tropics with 770 
summer rain; and grey (I) represents tropics with year-round rain. e, an exemplary high-resolution map of the climatological mean 

of cmi for the northeastern boundary region of the Andes. For exact location see inset in panel (a). 

3.1.5 Fifth-order climate layers 

Site water balance (swb) was typically neutral to positive in the tropics and in temperate-to-high latitudes while it was mostly 

negative elsewhere, most distinctly so in northern Africa and the Arabian Peninsula (Figure 16a). For the past forty years, 775 

substantial variations in annual mean swb are mapped in northern-hemisphere biomes, mostly without clear temporal trends 

(Figure 16b). However, swb did show a tendency to decrease in the dry tropics and subtropics. In the northeastern boundary 

region of the Andes and the surrounding lowlands, swb was mostly negative, in particular in inner alpine valleys, while it was 

slightly positive close to the northern edge of the Andes (Figure 16c). 
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Figure 16: Overview over the spatiotemporal distribution of site water balance (swb): a, global map of the climatological mean of 

swb for the period 1981-2010; b, temporal change of annual mean swb by biome. Shown are deviations in percent of the long-term 

(1980-2018) annual mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) represents 

dry midlatitudes; green (D) represents temperate midlatitudes; purple (E) represents subtropics with winter rain; orange (F) 

represents subtropics with year-round rain; brown (G) represents dry tropics and subtropics; pink (H) represents tropics with 785 
summer rain; and grey (I) represents tropics with year-round rain. c, an exemplary high-resolution map of the climatological mean 

of swb for the northeastern boundary region of the Andes. For exact location see inset in panel (a). 

3.2. Validation and comparisons 

3.2.1 Station data 

CHELSA-BIOCLIM+ layers showed a good fit with the station measurements, especially in the case of gdd5, vpd, hurs, fcf, 790 

and cmi (Table 2). Pearson correlation coefficients (r) were high (r > 0.85), across all temporal aggregations evaluated, for 

scd, gdd5, vpd, and cmi, and at least reasonably high (r > 0.80) for hurs and fcf. For sfcWind, correlations were lowest, yet still 

acceptable, with r ≥ 0.74. For most evaluated variables, r was similar when evaluated for monthly and annual climatologies, 

with highest differences found for pet (r equalled 0.79 and 0.87 for annual and monthly climatologies, respectively). When 

estimated from monthly match-ups, r was generally lower. Over the evaluated stations, biases for annual climatologies ranged 795 

between ± 2-to-25% of the station means, except for clt (on average 18% too low, in absolute terms), and in particular scd (on 

average 38 days too high). MAE and RMSE were rather low for variables with comparably high r and low bias, such as hurs 
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(MAE of 10.81% for annual climatologies), and comparably high especially for variables with high bias, such as scd (MAE of 

42.78 days). 

Compared to station-based interpolations, CHELSA-BIOCLIM+ variables showed similar or higher performance for hurs, 800 

vpd, pet, and cmi, and somewhat lower performance for sfcWind (Table 2). For annual climatologies of sfcWind, CHELSA-

BIOCLIM+ grids showed lower correlation (r equalled 0.77 compared to 0.84 for station-based interpolations) and higher 

error (MAE equalled 0.72 compared to 0.53 for station-based interpolations). For hurs, vpd, pet, and cmi, on the other hand, 

MAE estimates for CHELSA-BIOCLIM+ layers were lower (-17.72%, -338.17 Pa, -11.86 kg m-2 mt-1, and -8.73 kg m-2 mt-1, 

respectively), and r was similar or higher (+0.24, +0.06, +0.13, and -0.01, respectively) compared to corresponding metrics 805 

for station-based interpolations. 

 

Table 2: Validation results for nine evaluated variables. r represents Pearson correlation coefficient; MAE stands for mean absolute 

error; RMSE stands for root mean squared error; Mean indicates the averages of station measurements; Bias represents the average 

difference between gridded estimates and station measurements. Units are as reported in the methods. 810 

Variable Aggregation Origin Validation data r MAE RMSE Mean Bias Stations 

hurs Climat. mean† This study GSOD 0.90 10.81  11.84 69.62 -10.00 4412 

hurs Climat. month This study GSOD 0.88 11.45 12.71 69.68 -10.03 5702 

hurs Monthly This study GSOD 0.84 11.91 13.45 69.72 -10.03 17’316 

hurs Climat.† mean Station-based‡ GSOD 0.66 28.53 30.44 69.11 28.51 4143 

clt Climat.† mean  This study HadISD 0.87 18.07 19.21 55.76 -18.03 5095 

clt Climat.† month  This study HadISD 0.86 18.12 19.70 55.87 -17.94 5989 

clt Monthly  This study HadISD 0.79 18.01 20.66 55.09 -17.00 8323 

sfcWind Climat.† mean  This study GSOD 0.77 0.72 0.94 3.38 0.05 4482 

sfcWind Climat.† month  This study GSOD 0.78 0.76 1.00 3.37 0.06 5782 

sfcWind Monthly  This study GSOD 0.74 0.87 1.17 3.33 0.14 17’385 

sfcWind Climat.† mean  Station-based‡ GSOD 0.84 0.53 0.74 3.28 -0.01 4223 

fcf Climat.† mean  This study GSOD 0.82 19.76 27.26 50.99 -4.59 4101 

scd  Climat.† mean  This study GSOD 0.91 42.78 62.01 50.69 38.09 2283 

gdd5 Climat.† mean  This study GSOD 0.99 159.14 239.16 3358.40 -67.00 4085 

vpd Climat.† mean  This study GSOD 0.91 177.01 219.18 582.36 135.59 4143 

vpd Climat.† month  This study GSOD 0.93 194.56 255.94 599.04 194.56 5702 

vpd Monthly  This study GSOD 0.92 205.82 278.16 598.43 134.80 17’316 
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vpd Climat.† mean  Station-based‡ GSOD 0.85 515.18 579.60 595.40 -515.04 4143 

pet Climat.† mean This study FAOCLIM 0.79 19.84 24.12 120.77 6.18 4247 

pet Climat.† month This study FAOCLIM 0.87 21.70 27.03 120.77 6.18 4206 

pet Climat.† mean Station-based‡ FAOCLIM 0.66 31.70 37.04 121.16 20.30 4050 

cmi Climat.† mean  This sutdy FAOCLIM 0.88 27.35 40.50 -27.78 -2.94 4207 

cmi Climat.† month  This study FAOCLIM 0.91 34.24 55.07 -21.78 -2.94 4166 

cmi Climat.† mean  Station-based‡ FAOCLIM 0.89 36.08 45.71 -23.74 -21.01 4011 

† climatology for the period 1981-2010; ‡ derived from WorldClim v2.0 and the Global Aridity Index and Potential Evapotranspiration 

Database version 3 (Fick and Hijmans, 2017; Zomer et al., 2022) 

Mean absolute error of CHELSA-BIOCLIM+ variables showed variable distributions in space. For hurs, MAE was high in 

Europe and Southeast Asia, and comparably low in western North America and temperate-to-boreal Asia (Figure 17a). For fcf, 

MAE was particularly high for an area extending from southeast Europe eastwards into central Asia, while it was low for the 815 

subtropics and tropics (Figure 17d). For gdd5, elevated MAE was mainly found in the subtropics and tropics, especially in 

northern Mexico and at the northern edge of the Andes (Figure 17f). For clt, sfcWind, pet, and cmi, the patterns were roughly 

uniform, although some regions showed a somewhat elevated error, for example Niger for clt or Mongolia for pet and cmi 

(Figure 17b,c,h,i). For scd and vpd, which had a comparably high bias (Table 2), MAE showed a latitudinal pattern that was 

roughly proportional to the primary pattern of the variable (Figure 17e,g).   820 
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Figure 17: Spatial distribution of validation errors: global maps of mean absolute errors between 1981-2010 climatological means 

of nine CHELSA-BIOCLIM+ variables and corresponding averages of station estimates. Note that for pet (h) and cmi (i) station 

data is representative for the period 1961-1990, and thus time periods only partially overlap. 

Pearson correlation coefficients between station measurements and evaluated CHELSA-BIOCLIM+ variables varied with 825 

season and between years. Seasonal variations were particularly pronounced for hurs, where r was below 0.8 for January and 

December, and above 0.9 from April to October (Figure 18a). For sfcWind and pet, a clear seasonal signal in r also existed, 

but highest correlations (r > 0.8 and r > 0.9, respectively) were found from November to February, and lowest correlations in 

July, for sfcWind (r = 0.72), and August, for pet (r = 0.78). For vpd and cmi, on the other hand, seasonal variations were 

comparably small. Inter-annual variations in Pearson correlation coefficients were pronounced for clt and sfcWind while they 830 

were relatively small for vpd and hurs (Figure 18b). Apart from the seasonal variations, r for clt and sfcWind remained 

relatively stable between 1980 and 1995 (average 1980-1995 r was 0.74 and 0.82 for sfcWind and clt, respectively). Between 

1995 and the early two-thousands, r declined for both variables, before it started increasing again until about 2010. After that, 
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r for both variables declined a second time until the end of the time series (average 2010-to-time series end r equalled 0.72 

and 0.76, for sfcWind and clt, respectively). 835 

 

Figure 18: Seasonal and inter-annual distribution of correspondence: a, Person correlation coefficients between CHELSA-

BIOCLIM+ variables and corresponding averages of station measurements for hurs, clt, sfcWind, vpd, pet, and cmi for each 1981-

2010 climatological month. Note that for pet (purple) and cmi (yellow) station data is representative for the period 1961-1990, and 

thus time periods only partially overlap. b, Person correlation coefficients between CHELSA-BIOCLIM+ variables and 840 
corresponding averages of station measurements for hurs, clt, sfcWind, and vpd for each month in the time series. Same colors are 

used as in panel a. 

3.2.2 Gridded data 

In the Himalaya region, the spatial patterns of CHELSA-BIOCLIM+ variables were generally similar to those of corresponding 

layers from station-based interpolations and weather research and forecasting simulations, although some exceptions existed. 845 

The spatial patterns of hurs were comparably variable among products, with highest correlation between CHELSA-

BIOCLIM+ and WRF (r = 0.68, Figure 19a-c). For sfcWind, the large-scale patterns were quite similar, especially between 

CHELSA-BIOCLIM+ and WRF, but the fine-scale structures were resolved in higher detail in the CHELSA-BIOCLIM+ 

layers explaining why the correlation between station-based interpolations and WRF was highest for wind speed (Figure 19d-

f). For vapour pressure deficit, the patterns between all products were very similar (Figure 19g-i). In the case of rsds, the 850 

CHELSA-BIOCLIM+ layer showed the most pronounced fine-scale patterns, and its large-scale patterns were similar to those 

in the WRF layer (r = 0.73 between CHELSA-BIOCLIM+ and WRF). The patterns of WorldClim’s solar radiation, on the 

other hand, were strikingly different compared to the former two products (r < 0 for both comparisons, Figure 19j-l). For pet, 

large-scale patterns between the three products were generally similar, although absolute values were somewhat lower for 

CHELSA-BIOCLIM+ and more fine-scale structures were visible (Figure 19m-o). In the case of cmi the patterns were 855 

generally similar (Figure 19m-o). Along the southern edge of the Himalayas, the large-scale patterns between CHELSA-

BIOCLIM+ and WRF were somewhat more similar than those between CHELSA-BIOCLIM+ and station-based 

interpolations. 
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Figure 19: Spatial patterns in a data-poor region - a comparison with existing products. CHELSA-BIOCLIM+ variables are 860 
compared with equivalents from station-based interpolation and form a weather research and forecasting (WRF) model for hurs (a-

c), sfcWind (d-f), vpd (g-i), rsds (j-l), pet (m-o), and cmi (p-r) in the Himalaya region (see inset map on the top right). On the left, for 

each variable pairwise Pearson correlation coefficients are shown for the mapped area, between CHELSA-BIOCLIM+ (CB+), the 

weather research and forecasting model (WRF), and station-based interpolations (S-B). Station-based interpolations are derived 

from WorldClim v2.0 and the Global Aridity Index and Potential Evapotranspiration Database version 3 (Fick and Hijmans, 2017; 865 
Zomer et al., 2022); the WRF simulation considered was the High Asia Refined analysis v1 (Maussion et al., 2014, 2011). 
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4 Discussion 

Climate data at high spatiotemporal resolution for current conditions and for the decades ahead of us are crucial to fill the gaps 870 

in our understanding of climate-change impacts on the Earth system. Here, we provide a dataset of biologically meaningful, 

essential climate and environmental variables, combining state-of-the-art input data with a mechanistic downscaling 

methodology. The provided gridded layers offer unprecedented spatiotemporal resolution and high validation accuracy. 

Characterizing bioclimate comprehensively beyond temperature and precipitation, makes our data set particularly relevant to 

study biological processes (Bojinski et al., 2014; Woodward, 1987; Neilson, 1995). The open-access dataset CHELSA-875 

BIOCLIM+ will stimulate research on climate-change impact on physical and ecological processes. 

 

Comprehensive information on climate beyond temperature and precipitation enables better characterisation of various Earth 

system processes, and biological processes in particular, where the balance between water supply and energy demand is central 

(Woodward, 1987). Our time-series variables related to water availability (hurs, vpd, pet, cmi) and incoming solar energy (clt, 880 

rsds) matched particularly well with validation data. Moreover, they showed low error in comparison to estimates derived 

from station-based interpolations. They can thus provide valuable inputs to a variety of downstream analyses such as analysing 

the distribution of leaf area (Grier and Running, 1977; Iio et al., 2014), primary productivity (Gholz, 1982; Aguilos et al., 

2021) or of plant functional type-based biomes (Neilson, 1995; Schultz, 2005). For swb, suitable data for direct validation are 

scarce. However, given that only an additional estimate of soil water bucket size went into the calculation of this variable, we 885 

can expect that its performance is comparable to the input variables it was computed from. rsds was not validated here, but 

Karger et al. (submitted to ESSD) demonstrated that, on a daily basis, global rsds estimates matched very well with in situ 

measurements (r = 0.89). Moreover, in the Himalaya region matched the spatial pattern of rsds matched well with dynamically 

downscaled WRF outputs (Figure 19). A key strength of the CHELSA-BIOCLIM+ product therefore lies in the provision of 

accurate, high-resolution, global time-series of climate-related variables describing the true availability of water and solar 890 

energy.  

 

Combining input data from reanalysis with mechanistic downscaling approaches allows for robust estimates in particular in 

remote areas. So far, climate data used in macroecological analyses often relied on station-based interpolations (Bobrowski et 

al., 2021). While such data may be accurate in regions that have a dense network of field stations, such as Europe and North 895 

America (Hijmans et al., 2005), they are much less reliable in remote areas, and/or in complex terrain (Karger et al., 2017). 

The CHELSA approach, on the other hand, uses gridded reanalysis data that account for physical mesoscale atmospheric 

processes and physical consistency (Hersbach et al., 2020), and further considers major orographic effects such as the shading 

of terrain or wind exposure (e.g., for hurs, clt, and pet, see methods). Given the lack of field stations in remote areas, the extent 

of these improvements is likely not fully mirrored in the validation results, although our comparison among different products 900 

in the Himalaya region highlights that CHELSA-BIOCLIM+ layers generally compare well to alternative products. Moreover, 
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CHELSA-based estimates of temperature and precipitation, which fully or partially underlie most variables presented here, 

have repeatedly been shown to be better-suited than station-based interpolations for ecological modelling in the remote 

Himalayas (Datta et al., 2020; Suwal et al., 2018). It may therefore be expected that the CHELSA-BIOCLIM+ product is 

particularly advantageous in remote areas. 905 

 

Generating a comprehensive global set of high-resolution climate-related variables requires making generalising assumptions 

that can compromise the accuracy of some estimates. Specifically, our projected variables providing current and future 

estimates are sensitive to bias, since simple models were preferred to make robust projections (Levins, 1966). As highlighted 

by the validation, our estimates of scd overestimated station-based measurements by about one month in regions with snow. 910 

These differences may arise from generating estimates of daily tas, tasmin, tasmax, and pr from monthly averages by means 

of spline interpolation, which results in a more gradual seasonal evolution of temperature and precipitation than observed in 

natural weather patterns. Moreover, for the computation of scd, contributing factors such as solar radiation were ignored. 

Similarly, the model to generate estimates for gsl, gsp, and gst only contained a simplistic implementation of soil water 

processes (Paulsen and Körner, 2014) and the Miami model to generate estimates for npp ignored soil conditions and solar 915 

radiation entirely. However, the approaches used to generate projected variables were not primarily selected for their accuracy, 

but for their generalism (Levins, 1966) to be applicable under current and projected future conditions and to avoid overfitting. 

Despite significant advances during the past years (Kawamiya et al., 2020) Earth system models are still not capable of fully 

resolving mesoscale weather processes and thus they are primarily suited to study long-term changes in climate rather than 

possible weather patterns (Held et al., 2019; Yukimoto et al., 2019; Gutjahr et al., 2019; Boucher et al., 2020). Relative to our 920 

time-series variables, our projected variables may therefore not offer the same high accuracy for the recent past, but they 

approximate climate-change impact on fundamental biological and ecological quantities, such as potential net primary 

productivity, and make them directly comparable for a variety of possible future conditions, building on the most accurate 

global prognoses that are currently available (Eyring et al., 2016). 

 925 

The validation also revealed inaccuracies for the time-series variable sfcWind. Although in the remote Himalaya region the 

sfcWind grids of CHELSA-BIOCLIM+ compared well to dynamically downscaled sfcWind from WRF, the correspondence to 

station measurements was weaker than for gridded data from station-based interpolations. Moreover, the monthly Pearson 

correlation coefficients between grids and station measurements declined somewhat for recent years. A reason for the higher 

correlation of the station-based interpolations might be that the station measurements we used here for validation largely 930 

overlap with their input data (Fick and Hijmans, 2017), and thus they are expected to perform well in our validation. 

Downscaling wind fields form ERA5, on the other hand, is challenging, as wind inherently contains a high variance that can 

be reconstructed to a limited degree even with the most sophisticated downscaling approaches (Pryor and Hahmann, 2019). 

Perhaps even more importantly, wind fields from reanalysis by themselves are of limited accuracy. Global meteorological 

stations indicate that wind speed has been declining from the 1980s until around 2010 and has recovered afterwards. In 935 
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reanalysis products, however, this striking pattern is hardly reproduced (Zeng et al., 2019). We will keep updating and 

improving the CHELSA family of climate data products, and this is especially true for sfcWind, should better input data become 

available.  

 

In conclusion, CHELSA-BIOCLIM+ is a comprehensive spatial and temporal data set of 15 climate-related variables including 940 

both, time-series for the past forty years and future projections building on several SSPs and Earth system models. Besides the 

climatological statistics provided, these data may be used to compute additional summaries, for example interannual 

variabilities of cmi, which are important factors determining ecosystem structure in the dry midlatitudes, subtropics and tropics 

(Schultz, 2005). Moreover, the downscaling pipeline developed here opens new perspectives to develop near real-time risk 

assessments when regularly updated and combined with machine learning and increasingly available global phenomenological 945 

datasets. The higher temporal resolution and the more proximal variables included in the CHELSA-BIOCLIM+ product will 

allow for a more detailed characterization of climate-related conditions and, in turn, a deeper understanding of their impact on 

key environmental processes.  

Data availability 

The CHELSA-BIOCLIM+ data set consists of 4006 single-layer GeoTIFF files, representing averages, extrema, and ranges 950 

of the 15 climate-related variables for different time points (1979 to 2100) and periods (monthly to 30-year-averages). The 

GeoTIFF files are stored on a S3 cloud server that can be accessed over EnviDat (https://doi.org/10.16904/envidat.332; (Brun 

et al., 2022),  by clicking on the ‘CHELSA-BIOCLIM+’ box in the ‘Data and resources’ tab, and over www.chelsa-climate.org, 

by clicking on ‘Version 2.1’ under ‘Downloads’. This file browser contains the four folders ‘annual’, ‘daily’, ‘monthly’, and  

‘climatologies’ within which the CHELSA-BIOCLIM+ data are organized in the following way:  955 

• The folder ‘annual’ contains the subfolder ‘swb’, which contains annual layers of swb. 

• The folder ‘daily’ contains no data of the CHELSA-BIOCLIM+ data set. 

• The folder ‘monthly’ contains (among folders from other data sets) the subfolders ‘clt’, ‘cmi’, ‘hurs’, ‘pet’, ‘rsds’, 

‘sfcWind’, and ‘vpd’ which contain monthly layers for clt, cmi, hurs, pet, rsds, sfcWind, and vpd, respectively. 

• The folder ‘climatologies’ contains four subfolders, ‘1981-2010’, ‘2011-2040’, ‘2041-2070’, and ‘2071-2100’, that 960 

represent the different time periods for which climatologies are representative.  

o In the subfolder ‘1981-2010’ the sub-subfolders ‘clt’, ‘cmi’, ‘hurs’, ‘pet’, ‘rsds’, ‘sfcWind’, and ‘vpd’ 

contain 1981-2010 averages of clt, cmi, hurs, pet, rsds, sfcWind, and vpd, respectively, for each month. The 

sub-subfolder ‘bio’ contains (among files from other data sets) climatological means, maxima, minima and 

annual ranges for clt, cmi, hurs, pet, rsds, sfcWind, and vpd, and climatological means for fcf, gdd (with 0 965 

°C, 5 °C, and 10 °C baseline temperature, i.e., ‘gdd0’, ‘gdd5’, ‘gdd10’, respectively), gsl, gsp, gst, npp, scd, 

and swb.  
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o The subfolders ‘2010-2040’, ‘2041-2070’, and ‘2071-2100’ each contain one sub-subfolder per Earth system 

model considered (i.e., the sub-subfolders ‘GFDL-ESM4’, ‘IPSL-CM6A-LR’, ‘MPI-ESM1-2-HR’, ‘MRI-

ESM2-0’, ‘UKESM1-0-LL’). Each of these combinations between period and Earth system model contains 970 

three sub-sub-subfolders representing the three SSPs (i.e., the sub-sub-subfolders ‘ssp126’, ‘ssp370’, and 

‘ssp585’); and each of these combinations between period, Earth system model, and SSP, contains a sub-

sub-sub-subfolder ‘bio’ that contains (among files from other data sets) climatological means for fcf, gdd 

(with 0 °C, 5 °C, and 10 °C baseline temperature), gsl, gsp, gst, npp, and scd. 

More information on naming and settings of the GeoTIFF files (grid structure, unit, scale and offset parameters) can be 975 

found in the subsection ‘2.4 Output format and file organization’ and in the Technical Documentation PDF that can be 

found on https://doi.org/10.16904/envidat.332 in the ‘CHELSA-BIOCLIM+ Technical Documentation’ box in the ‘Data 

and resources’ tab. Monthly and annual layers of the time-series variables will occasionally be added to the CHELSA-

BIOCLIM+ data set, to extend the time period covered to the most recent years.  

 980 

 

Author contribution 

PB, DNK, NEZ, and LP conceived the general idea of the paper. PB and DNK generated the data set. CH conducted the 

validation with support of PB and DNK. PB led the writing of the manuscript. All authors significantly contributed to writing 

and editing. 985 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 

DNK, LP & NEZ acknowledge funding from: the WSL internal grant exCHELSA, the 2019–2020 BiodivERsA joint call for 

research proposals, under the BiodivClim ERA-Net COFUND program, with the funding organisations Swiss National Science 990 

Foundation SNF (project: FeedBaCks, 193907), as well as the Swiss Data Science Project: SPEEDMIND. PB, DNK & NEZ 

the Swiss Data Science Project: COMECO. DNK acknowledges funding to the ERA-Net BiodivERsA - Belmont Forum, with 

the national funder Swiss National Science Foundation (20BD21_184131), part of the 2018 Joint call BiodivERsA-Belmont 

Forum call (project ‘FutureWeb’), as well as the WSL internal grant ClimEx. We thank Babek Dabagchian for valuable support 

in data management and preparation.   995 



44 

 

References 

Aguilos, M., Sun, G., Noormets, A., Domec, J.-C., McNulty, S., Gavazzi, M., Prajapati, P., Minick, K. J., Mitra, B., and King, 

J.: Ecosystem Productivity and Evapotranspiration Are Tightly Coupled in Loblolly Pine (Pinus taeda L.) Plantations along 

the Coastal Plain of the Southeastern U.S., 12, 1123, https://doi.org/10.3390/f12081123, 2021. 

Alduchov, O. A. and Eskridge, R. E.: Improved Magnus Form Approximation of Saturation Vapor Pressure, J. Appl. Meteorol., 1000 

35, 601–609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. 

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., 

Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., 

Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging 

climate change risks for forests, For. Ecol. Manage., 259, 660–684, https://doi.org/10.1016/j.foreco.2009.09.001, 2010. 1005 

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration —guidelines for computing crop water 

requirements, FAO Irrig. Drain. Pap., 56, 1998. 

Anandhi, A.: Growing degree days – Ecosystem indicator for changing diurnal temperatures and their impact on corn growth 

stages in Kansas, Ecol. Indic., 61, 149–158, https://doi.org/10.1016/j.ecolind.2015.08.023, 2016. 

Andrade, A. M. De, Michel, R. F. M., Bremer, U. F., Schaefer, C. E. G. R., and Simões, J. C.: Relationship between solar 1010 

radiation and surface distribution of vegetation in Fildes Peninsula and Ardley Island, Maritime Antarctica, Int. J. Remote 

Sens., 39, 2238–2254, https://doi.org/10.1080/01431161.2017.1420937, 2018. 

Araújo, M. B. and Rahbek, C.: How Does Climate Change Affect Biodiversity?, Science (80-. )., 313, 1396–1397, 

https://doi.org/10.1126/science.1131758, 2006. 

Arguez, A. and Vose, R. S.: The Definition of the Standard WMO Climate Normal: The Key to Deriving Alternative Climate 1015 

Normals, Bull. Am. Meteorol. Soc., 92, 699–704, https://doi.org/10.1175/2010BAMS2955.1, 2011. 

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F.: Impacts of climate change on the future of 

biodiversity, Ecol. Lett., 15, 365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x, 2012. 

Bobrowski, M., Weidinger, J., and Schickhoff, U.: Is New Always Better? Frontiers in Global Climate Datasets for Modeling 

Treeline Species in the Himalayas, Atmosphere (Basel)., 12, 543, https://doi.org/10.3390/atmos12050543, 2021. 1020 

Böhner, J. and Antonic, O.: Land-Surface Parameters Specific to Topo-Climatology, in: GEOMORPHOMETRY: 

CONCEPTS, SOFTWARE, APPLICATIONS, 195–226, https://doi.org/10.1016/S0166-2481(08)00008-1, 2009. 

Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and Zemp, M.: The Concept of Essential Climate 

Variables in Support of Climate Research, Applications, and Policy, Bull. Am. Meteorol. Soc., 95, 1431–1443, 

https://doi.org/10.1175/BAMS-D-13-00047.1, 2014. 1025 

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, 

L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D’Andrea, F., Davini, 

P., Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J., Dupont, E., Éthé, C., Fairhead, L., Falletti, 

L., Flavoni, S., Foujols, M., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J., Guenet, B., Guez, Lionel, E., Guilyardi, E., 

Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, 1030 

N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J., Maignan, F., Marchand, 

M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, 



45 

 

N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, 

J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the IPSL‐CM6A‐LR Climate Model, J. Adv. Model. Earth 

Syst., 12, https://doi.org/10.1029/2019MS002010, 2020. 1035 

Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L., and Karger, D. N.: CHELSA-BIOCLIM+ A novel set of global climate-

related predictors at kilometre-resolution, https://doi.org/10.16904/envidat.332, 2022. 

Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Y., Labba, N., Radionov, V., Bradley, R. S., Blangy, S., Bulygina, 

O. N., Christensen, T. R., Colman, J. E., Essery, R. L. H., Forbes, B. C., Forchhammer, M. C., Golubev, V. N., Honrath, R. 

E., Juday, G. P., Meshcherskaya, A. V., Phoenix, G. K., Pomeroy, J., Rautio, A., Robinson, D. A., Schmidt, N. M., Serreze, 1040 

M. C., Shevchenko, V. P., Shiklomanov, A. I., Shmakin, A. B., Sköld, P., Sturm, M., Woo, M., and Wood, E. F.: Multiple 

Effects of Changes in Arctic Snow Cover, Ambio, 40, 32–45, https://doi.org/10.1007/s13280-011-0213-x, 2011. 

Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E., and Ries, L.: Do growing degree days predict phenology across 

butterfly species?, Ecology, 96, 1473–1479, https://doi.org/10.1890/15-0131.1, 2015. 

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System 1045 

for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-

1991-2015, 2015. 

Daly, C., Taylor, G. H., and Gibson, W. P.: The PRISM approach to mapping precipitation and temperature, in: Proc 10th 

AMS Conf Appl. Climatol., 20–23, 1997. 

Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data 2010 (GMTED2010), 1050 

https://doi.org/10.5066/F7J38R2N, 2011. 

Datta, A., Schweiger, O., and Kühn, I.: Origin of climatic data can determine the transferability of species distribution models, 

59, 61–76, https://doi.org/10.3897/neobiota.59.36299, 2020. 

Dawson, T. E.: Fog in the California redwood forest: ecosystem inputs and use by plants, Oecologia, 117, 476–485, 

https://doi.org/10.1007/s004420050683, 1998. 1055 

Dunn, R. J. H.: HadISD version 3: monthly updates, 2019. 

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., and Mearns, L. O.: Climate Extremes: 

Observations, Modeling, and Impacts, Science (80-. )., 289, 2068–2074, https://doi.org/10.1126/science.289.5487.2068, 2000. 

Easterling, D. R., Kunkel, K. E., Wehner, M. F., and Sun, L.: Detection and attribution of climate extremes in the observed 

record, Weather Clim. Extrem., 11, 17–27, https://doi.org/10.1016/j.wace.2016.01.001, 2016. 1060 

Elsen, P. R., Monahan, W. B., Dougherty, E. R., and Merenlender, A. M.: Keeping pace with climate change in global 

terrestrial protected areas, Sci. Adv., 6, https://doi.org/10.1126/sciadv.aay0814, 2020. 

Evans, B. M., Walker, D. A., Benson, C. S., Nordstrand, E. A., and Petersen, G. W.: Spatial interrelationships between terrain, 

snow distribution and vegetation patterns at an arctic foothills site in Alaska, Ecography (Cop.)., 12, 270–278, 

https://doi.org/10.1111/j.1600-0587.1989.tb00846.x, 1989. 1065 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled 

Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, 

https://doi.org/10.5194/gmd-9-1937-2016, 2016. 



46 

 

FAO: FAOCLIM 2: world-wide agroclimatic data, 2001. 

Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas, Int. J. 1070 

Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017. 

Fourcade, Y., Besnard, A. G., and Secondi, J.: Paintings predict the distribution of species, or the challenge of selecting 

environmental predictors and evaluation statistics, Glob. Ecol. Biogeogr., 27, 245–256, https://doi.org/10.1111/geb.12684, 

2018. 

Gholz, H. L.: Environmental Limits on Aboveground Net Primary Production, Leaf Area, and Biomass in Vegetation Zones 1075 

of the Pacific Northwest, Ecology, 63, 469–481, https://doi.org/10.2307/1938964, 1982. 

Grier, C. G. and Running, S. W.: Leaf Area of Mature Northwestern Coniferous Forests: Relation to Site Water Balance, 

Ecology, 58, 893–899, https://doi.org/10.2307/1936225, 1977. 

Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., and McDowell, 

N. G.: Plant responses to rising vapor pressure deficit, New Phytol., 226, 1550–1566, https://doi.org/10.1111/nph.16485, 2020. 1080 

Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max 

Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), 

Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019. 

Hannah, L.: Protected Areas and Climate Change, Ann. N. Y. Acad. Sci., 1134, 201–212, 

https://doi.org/10.1196/annals.1439.009, 2008. 1085 

Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration from Temperature, Appl. Eng. Agric., 1, 96–99, 

https://doi.org/10.13031/2013.26773, 1985. 

Hartman, M. D., Parton, W. J., Derner, J. D., Schulte, D. K., Smith, W. K., Peck, D. E., Day, K. A., Del Grosso, S. J., Lutz, 

S., Fuchs, B. A., Chen, M., and Gao, W.: Seasonal grassland productivity forecast for the U.S. Great Plains using Grass‐Cast, 

11, https://doi.org/10.1002/ecs2.3280, 2020. 1090 

Hauser, G., Rais, O., Morán Cadenas, F., Gonseth, Y., Bouzelboudjen, M., and Gern, L.: Influence of climatic factors on 

Ixodes ricinus nymph abundance and phenology over a long-term monthly observation in Switzerland (2000–2014), Parasit. 

Vectors, 11, 289, https://doi.org/10.1186/s13071-018-2876-7, 2018. 

Hay, L. E., Wilby, R. L., and Leavesley, G. H.: A COMPARISON OF DELTA CHANGE AND DOWNSCALED GCM 

SCENARIOS FOR THREE MOUNTAINOUS BASINS IN THE UNITED STATES 1, JAWRA J. Am. Water Resour. Assoc., 1095 

36, 387–397, https://doi.org/10.1111/j.1752-1688.2000.tb04276.x, 2000. 

Held, I. M., Guo, H., Adcroft, A., Dunne, J. P., Horowitz, L. W., Krasting, J., Shevliakova, E., Winton, M., Zhao, M., Bushuk, 

M., Wittenberg, A. T., Wyman, B., Xiang, B., Zhang, R., Anderson, W., Balaji, V., Donner, L., Dunne, K., Durachta, J., 

Gauthier, P. P. G., Ginoux, P., Golaz, J. ‐C., Griffies, S. M., Hallberg, R., Harris, L., Harrison, M., Hurlin, W., John, J.,  Lin, 

P., Lin, S. ‐J., Malyshev, S., Menzel, R., Milly, P. C. D., Ming, Y., Naik, V., Paynter, D., Paulot, F., Ramaswamy, V., Reichl, 1100 

B., Robinson, T., Rosati, A., Seman, C., Silvers, L. G., Underwood, S., and Zadeh, N.: Structure and Performance of GFDL’s 

CM4.0 Climate Model, J. Adv. Model. Earth Syst., 11, 3691–3727, https://doi.org/10.1029/2019MS001829, 2019. 

Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., 

Leenaars, J. G. B., Walsh, M. G., and Gonzalez, M. R.: SoilGrids1km — Global Soil Information Based on Automated 

Mapping, PLoS One, 9, e105992, https://doi.org/10.1371/journal.pone.0105992, 2014. 1105 



47 

 

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., 

Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, 

J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on 

machine learning, PLoS One, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, 1110 

D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, 

G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., 

Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., 

Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, 

https://doi.org/10.1002/qj.3803, 2020. 1115 

Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, https://cran.r-project.org/package=raster, 2019. 

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for 

global land areas, Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005. 

Hogg, E. H.: Temporal scaling of moisture and the forest-grassland boundary in western Canada, Agric. For. Meteorol., 84, 

115–122, https://doi.org/10.1016/S0168-1923(96)02380-5, 1997. 1120 

Hogg, E. H., Michaelian, M., Hook, T. I., and Undershultz, M. E.: Recent climatic drying leads to age-independent growth 

reductions of white spruce stands in western Canada, Glob. Chang. Biol., 23, 5297–5308, https://doi.org/10.1111/gcb.13795, 

2017. 

Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., and Meinke, H.: Adapting agriculture to climate 

change, Proc. Natl. Acad. Sci., 104, 19691–19696, https://doi.org/10.1073/pnas.0701890104, 2007. 1125 

Hufkens, K., Friedl, M. A., Keenan, T. F., Sonnentag, O., Bailey, A., O’Keefe, J., and Richardson, A. D.: Ecological impacts 

of a widespread frost event following early spring leaf-out, Glob. Chang. Biol., 18, 2365–2377, https://doi.org/10.1111/j.1365-

2486.2012.02712.x, 2012. 

Iio, A., Hikosaka, K., Anten, N. P. R., Nakagawa, Y., and Ito, A.: Global dependence of field-observed leaf area index in 

woody species on climate: a systematic review, Glob. Ecol. Biogeogr., 23, 274–285, https://doi.org/10.1111/geb.12133, 2014. 1130 

IPBES: The IPBES regional assessment report on biodiversity and ecosystem services for Europe and Central Asia., edited 

by: Rounsevell, M., Fischer, M., Torre-Marin Rando, A., and Mader, A., Secretariat of the Intergovernmental Science-Policy 

Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 892 pp., 2018. 

IPCC: Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate 

Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., 1135 

Eickemeier, P., Hansen, G., Schlömer, S., and von Stechow, C., Cambridge University Press, Cambridge, 2011. 

IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., 

Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., 

Cambridge University Press, United Kingdom, 1140 

https://doi.org/https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_Chapter13.pdf, 2022. 

Irmak, S.: Evapotranspiration, in: Encyclopedia of Ecology, Elsevier, 1432–1438, https://doi.org/10.1016/B978-008045405-

4.00270-6, 2008. 



48 

 

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and 

Kessler, M.: Climatologies at high resolution for the earth’s land surface areas, Sci. Data, 4, 170122, 1145 

https://doi.org/10.1038/sdata.2017.122, 2017. 

Karger, D. N., Schmatz, D. R., Dettling, G., and Zimmermann, N. E.: High-resolution monthly precipitation and temperature 

time series from 2006 to 2100, Sci. Data, 7, 248, https://doi.org/10.1038/s41597-020-00587-y, 2020. 

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and 

Kessler, M.: Climatologies at high resolution for the earth’s land surface areas, https://doi.org/10.16904/envidat.228.v2.1, 1150 

2021a. 

Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E., and Jetz, W.: Global daily 1 km land surface precipitation 

based on cloud cover-informed downscaling, Sci. Data, 8, 307, https://doi.org/10.1038/s41597-021-01084-6, 2021b. 

Karger, D. N., Kessler, M., Lehnert, M., and Jetz, W.: Limited protection and ongoing loss of tropical cloud forest biodiversity 

and ecosystems worldwide, Nat. Ecol. Evol., 5, 854–862, https://doi.org/10.1038/s41559-021-01450-y, 2021c. 1155 

Karger, D. N., Lange, S., Hari, C., Reyer, C. P. O., Conrad, O., Zimmermann, N. E., and Frieler, K.: CHELSA-W5E5: Daily 

1 km meteorological forcing data for climate impact studies, submitted to Earth System Science Data on Nov 3, 2022. 

 

Kawamiya, M., Hajima, T., Tachiiri, K., Watanabe, S., and Yokohata, T.: Two decades of Earth system modeling with an 

emphasis on Model for Interdisciplinary Research on Climate (MIROC), Prog. Earth Planet. Sci., 7, 64, 1160 

https://doi.org/10.1186/s40645-020-00369-5, 2020. 

Knauer, J., El-Madany, T. S., Zaehle, S., and Migliavacca, M.: Bigleaf—An R package for the calculation of physical and 

physiological ecosystem properties from eddy covariance data, PLoS One, 13, e0201114, 

https://doi.org/10.1371/journal.pone.0201114, 2018. 

Körner, C., Paulsen, J., and Spehn, E. M.: A definition of mountains and their bioclimatic belts for global comparisons of 1165 

biodiversity data, Alp. Bot., 121, 73, https://doi.org/10.1007/s00035-011-0094-4, 2011. 

Lange, S.: ISIMIP3b bias adjustment fact sheet, 40 pp., 2021. 

Larcher, W.: Ökophysiologie der Pflanzen: Leben und Stressbewältigung der Pflanzen in ihrer Umwelt., 5th ed., Verlag Eugen 

Ulmer, Stuttgart, 394 pp., 1994. 

Leng, G. and Hall, J.: Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the 1170 

future, Sci. Total Environ., 654, 811–821, https://doi.org/10.1016/j.scitotenv.2018.10.434, 2019. 

Lenihan, J. M.: Ecological response surfaces for North American boreal tree species and their use in forest classification, J. 

Veg. Sci., 4, 667–680, https://doi.org/10.2307/3236132, 1993. 

Levins, R.: THE STRATEGY OF MODEL BUILDING IN POPULATION BIOLOGY, Am. Sci., 54, 421–431, 1966. 

Lieth, H.: Modeling the Primary Productivity of the World, 237–263, https://doi.org/10.1007/978-3-642-80913-2_12, 1975. 1175 

Liu, W., Ye, T., Jägermeyr, J., Müller, C., Chen, S., Liu, X., and Shi, P.: Future climate change significantly alters interannual 

wheat yield variability over half of harvested areas, Environ. Res. Lett., 16, 094045, https://doi.org/10.1088/1748-9326/ac1fbb, 

2021. 



49 

 

Masia, S., Trabucco, A., Spano, D., Snyder, R. L., Sušnik, J., and Marras, S.: A modelling platform for climate change impact 

on local and regional crop water requirements, Agric. Water Manag., 255, 107005, 1180 

https://doi.org/10.1016/j.agwat.2021.107005, 2021. 

Maussion, F., Scherer, D., Finkelnburg, R., Richters, J., Yang, W., and Yao, T.: WRF simulation of a precipitation event over 

the Tibetan Plateau, China – an assessment using remote sensing and ground observations, Hydrol. Earth Syst. Sci., 15, 1795–

1817, https://doi.org/10.5194/hess-15-1795-2011, 2011. 

Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and Finkelnburg, R.: Precipitation Seasonality and Variability over 1185 

the Tibetan Plateau as Resolved by the High Asia Reanalysis*, J. Clim., 27, 1910–1927, https://doi.org/10.1175/JCLI-D-13-

00282.1, 2014. 

Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205–234, 1965. 

Neilson, R. P.: A Model for Predicting Continental-Scale Vegetation Distribution and Water Balance, Ecol. Appl., 5, 362–

385, https://doi.org/10.2307/1942028, 1995. 1190 

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.: 

Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999, Science (80-. )., 300, 1560–1563, 

https://doi.org/10.1126/science.1082750, 2003. 

Nobel, P. S.: Wind as an Ecological Factor, in: Physiological Plant Ecology I, Springer Berlin Heidelberg, Berlin, Heidelberg, 

475–500, https://doi.org/10.1007/978-3-642-68090-8_16, 1981. 1195 

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., and van Vuuren, D. P.: A new 

scenario framework for climate change research: the concept of shared socioeconomic pathways, Clim. Change, 122, 387–

400, https://doi.org/10.1007/s10584-013-0905-2, 2014. 

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-

F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project 1200 

(ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. 

O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., 

Birkmann, J., Kok, K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared socioeconomic pathways describing 

world futures in the 21st century, Glob. Environ. Chang., 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017. 

Ooms, J.: magick: Advanced Graphics and Image-Processing in R, https://cran.r-project.org/package=magick, 2020. 1205 

Ouisse, T., Bonte, D., Lebouvier, M., Hendrickx, F., and Renault, D.: The importance of relative humidity and trophic 

resources in governing ecological niche of the invasive carabid beetle Merizodus soledadinus in the Kerguelen archipelago, J. 

Insect Physiol., 93–94, 42–49, https://doi.org/10.1016/j.jinsphys.2016.08.006, 2016. 

Paulsen, J. and Körner, C.: A climate-based model to predict potential treeline position around the globe, Alp. Bot., 124, 1–

12, https://doi.org/10.1007/s00035-014-0124-0, 2014. 1210 

Pebesma, E. J. and Bivand, R. S.: Classes and methods for spatial data in {R}, R News, 5, 9–13, 2005. 

Pollock, L. J., Thuiller, W., and Jetz, W.: Large conservation gains possible for global biodiversity facets, Nature, 546, 141–

144, https://doi.org/10.1038/nature22368, 2017. 



50 

 

Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: Special Paper: A Global 

Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate, J. Biogeogr., 19, 117, 1215 

https://doi.org/10.2307/2845499, 1992. 

Pryor, S. C. and Hahmann, A. N.: Downscaling Wind, in: Oxford Research Encyclopedia of Climate Science, Oxford 

University Press, https://doi.org/10.1093/acrefore/9780190228620.013.730, 2019. 

R Development Core Team: R: A Language and Environment for Statistical Computing, http://www.r-project.org, 2008. 

Santini, M., Noce, S., Antonelli, M., and Caporaso, L.: Complex drought patterns robustly explain global yield loss for major 1220 

crops, Sci. Rep., 12, 5792, https://doi.org/10.1038/s41598-022-09611-0, 2022. 

Schimel, D. S.: Terrestrial ecosystems and the carbon cycle, Glob. Chang. Biol., 1, 77–91, https://doi.org/10.1111/j.1365-

2486.1995.tb00008.x, 1995. 

Schultz, J.: The Ecozones of the World, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/3-540-28527-

X, 2005. 1225 

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O’Connor, F. M., Stringer, M., Hill, R., Palmieri, 

J., Woodward, S., Mora, L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E.,  Walton, J., Abraham, N. 

L., Andrews, M. B., Andrews, T., Archibald, A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J.,  

Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., 

Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, 1230 

R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.: UKESM1: Description and Evaluation of the U.K. Earth System Model, 

J. Adv. Model. Earth Syst., 11, 4513–4558, https://doi.org/10.1029/2019MS001739, 2019. 

Seneviratne, S. I., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., 

Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and their impacts on the natural physical 

environment, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: 1235 

Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., 

Allen, S. K., Tignor, M., and Midgley, P. M., A Special Report of Working Groups I and II of the Intergovernmental Panel on 

Climate Change (IPCC), Cambridge, UK and New York, NY, USA, 109–230, https://doi.org/10.7916/d8-6nbt-s431, 2012. 

Singer, M. B., Asfaw, D. T., Rosolem, R., Cuthbert, M. O., Miralles, D. G., MacLeod, D., Quichimbo, E. A., and Michaelides, 

K.: Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present, Sci. Data, 8, 224, 1240 

https://doi.org/10.1038/s41597-021-01003-9, 2021. 

Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting 

applications, J. Comput. Phys., 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008. 

Sloat, L. L., Davis, S. J., Gerber, J. S., Moore, F. C., Ray, D. K., West, P. C., and Mueller, N. D.: Climate adaptation by crop 

migration, Nat. Commun., 11, 1243, https://doi.org/10.1038/s41467-020-15076-4, 2020. 1245 

Sonntag, D.: Important new values of the physical constants of 1986, vapor pressure formulations based on the ITS-90 and 

psychrometric formulae, Zeitschrift fuer Meteorol., 70, 340–344, 1990. 

Sparks, A. H., Hengl, T., and Nelson, A.: GSODR: Global Summary Daily Weather Data in R, J. Open Source Softw., 2, 177, 

https://doi.org/10.21105/joss.00177, 2017. 

Suwal, M. K., Huettmann, F., Regmi, G. R., and Vetaas, O. R.: Parapatric subspecies of Macaca assamensis show a marginal 1250 



51 

 

overlap in their predicted potential distribution: Some elaborations for modern conservation management, Ecol. Evol., 8, 9712–

9727, https://doi.org/10.1002/ece3.4405, 2018. 

Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., and Prentice, I. C.: Climate change threats to plant diversity in Europe, 

Proc. Natl. Acad. Sci., 102, 8245–8250, https://doi.org/10.1073/pnas.0409902102, 2005. 

Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., and Zimmermann, N. E.: Uncertainty in ensembles of global biodiversity 1255 

scenarios, Nat. Commun., 10, 1446, https://doi.org/10.1038/s41467-019-09519-w, 2019. 

Global Surface Summary of Day (GSOD): https://www.ncei.noaa.gov/data/global-summary-of-the-day/, last access: 15 

October 2022. 

Weibull, W.: A Statistical Distribution Function of Wide Applicability, J. Appl. Mech., 18, 293–297, 

https://doi.org/10.1115/1.4010337, 1951. 1260 

Willis, K. J. and Bhagwat, S. A.: Biodiversity and Climate Change, Science (80-. )., 326, 806–807, 

https://doi.org/10.1126/science.1178838, 2009. 

WMO: Guide to Instruments and Methods of Observation, 8th ed., World Meteorological Organization, Geneva, 548 pp., 

2018. 

Woodward, F. I.: Climate and plant distribution, Cambridge University Press, Cambridge, 192 pp., 1987. 1265 

Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, 

M., Yabu, S., Yoshimura, H., Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The Meteorological Research 

Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component, J. 

Meteorol. Soc. Japan. Ser. II, 97, 931–965, https://doi.org/10.2151/jmsj.2019-051, 2019. 

Zeng, Z., Ziegler, A. D., Searchinger, T., Yang, L., Chen, A., Ju, K., Piao, S., Li, L. Z. X., Ciais, P., Chen, D., Liu, J., Azorin-1270 

Molina, C., Chappell, A., Medvigy, D., and Wood, E. F.: A reversal in global terrestrial stilling and its implications for wind 

energy production, Nat. Clim. Chang., 9, 979–985, https://doi.org/10.1038/s41558-019-0622-6, 2019. 

Zhang, K., Bosch-Serra, A. D., Boixadera, J., and Thompson, A. J.: Investigation of Water Dynamics and the Effect of 

Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach, 

PLoS One, 10, e0131360, https://doi.org/10.1371/journal.pone.0131360, 2015. 1275 

Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview, Rev. Geophys., 43, 

https://doi.org/10.1029/2004RG000157, 2005. 

Ziese, M., Rauthe-Schöch, A., Becker, A., Finger, P., Meyer-Christoffer, A., and Schneider, U.: GPCC Full Data Daily 

Version.2018 at 1.0°: Daily Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data, 

https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100, 2018. 1280 

Zomer, R. J., Xu, J., and Trabucco, A.: Version 3 of the Global Aridity Index and Potential Evapotranspiration Database, Sci. 

Data, 9, 409, https://doi.org/10.1038/s41597-022-01493-1, 2022. 

Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, 

D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Chang., 8, 469–477, 

https://doi.org/10.1038/s41558-018-0156-3, 2018. 1285 


