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Abstract. The alpine grassland ecosystem accounts for 53% of the Qinghai-Tibet Plateau (QTP) area, which is an important

ecological protection barrier, but fragile and highly vulnerable to climate change. Therefore, continuous monitoring of the

aboveground biomass (AGB) of grassland is necessary. Although many studies have mapped the spatial distribution of AGB

over the QTP, the results vary widely due to the limited ground samples and mismatches with satellite pixel scales. This

paper proposed a new algorithm using unmanned aerial vehicles (UAVs) as a bridge to re-estimate the grassland AGB over20
the QTP from 2000 to 2019. The innovations were as follows: 1) In the aspect of ground data collection, the spatial scale

matching among the traditional ground quadrat sampling, UAV photos, and MODIS pixels was fully considered. From 2015

to 2019, 906 pairs of ground-UAV sample data at the quadrat scale and 2,602 sets of UAV data matching the MODIS pixel

scale were collected. A total of more than 37,000 UAV photos were captured at the height of 20 meters. Therefore, the

ground validation samples was sufficient and scale matched. 2) In terms of model construction, the traditional quadrat scale25
(0.25m2) was successfully upscaled to the MODIS pixel scale (6,2500 m2) based on the random forest method and stepwise

upscaling scheme. Compared with previous studies, the scale matching of independent and dependent variables was realized,

effectively reducing the impact of scale mismatch. At the pixel scale, the AGB value estimated by UAV had a more linear

correlation with the MODIS vegetation indices than the traditional sampling method. The multi-year independent cross-

validation results showed that the constructed pixel scale AGB estimation had good robustness, with an average R2 of 0.8330
and RMSE of 34.13 g/m2. Our dataset provides an important input parameter for a comprehensive understanding of the QTP

in the process of global climate change. The dataset is available from the National Tibetan Plateau/Third Pole Environment

Data Center (https://doi.org/10.11888/Terre.tpdc.272587, Zhang et al., 2022).
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1 Introduction

Grasslands, accounting for approximately 37% of the earth's surface, play an essential role in global carbon cycling and food35
supply (O'mara, 2012). However, most natural grasslands have been degraded to a certain extent due to overgrazing,

farmland encroachment, soil erosion, and global climate change (Suttie et al., 2005; Ramankutty et al., 2008; O'mara, 2012).

Therefore, timely monitoring of grassland health is crucial for sustainable development and understanding the global carbon

cycling processing. Aboveground biomass (AGB) is a key indicator of grassland status and an important input parameter of

the ecological model and carbon storage estimation. Thus, accurate and rapid estimation of AGB is valuable for grassland40
monitoring.

The advent of satellites makes it possible to map the spatial distribution and temporal dynamics of grassland over large areas.

Spectral information from different satellites has been employed for biomass estimation, such as Sentinel-2, Landsat, and

MODIS (Wang et al., 2019; Zhang et al., 2016). Although there are differences in spatial and spectral resolution, the core45
idea of building a biomass model is constructing the linear or nonlinear relationships between the field measured samples

and various satellite spectral indices. Therefore, the estimation accuracy is closely related to the quality and quantity of

ground samples (Morais et al., 2021; Yu et al., 2021). There are still two deficiencies in ground data collection: the large

spatial scale gap between the traditional samples and satellite pixels, and the low efficiency.

50
How to narrow the spatial gap between traditional samples and satellite pixels is an urgent problem to be solved. Since it is

impossible to harvest all the grass within a pixel range, an average of 3-5 quadrat size samples (0.5 m × 0.5 m or 1m × 1m) is

usually used as the measurement (Dusseux et al., 2015; Yang et al., 2017), which results in a considerable spatial gap. A lot

of studies have been carried out to upscale ground measurements to satellite pixels (Crow et al., 2012; Bian and Walsh,

1993), such as block Kriging geostatistical interpolation, different types of regression models, or machine learning55
algorithms (Cheng et al., 2007; Wang et al., 2014; Cannavacciuolo et al., 1998; Dancy et al., 1986; Li et al., 2018). However,

the accuracy of these methods depends on the density of sampling points. In addition, fine-resolution satellites were used as

a bridge to reduce the impact of scale mismatch on AGB estimation (Yu et al., 2021; He et al., 2019). The primary reason is

that the spatial gap between traditional ground data and fine-resolution satellites is much smaller than medium or coarse-

resolution satellites (Wang and Sun, 2014). Therefore, obtaining a value matching the pixel scale is the key to improving the60
AGB inversion accuracy from remote sensing.

Improving the efficiency of ground sampling is the other problem to be solved. Although the traditional field sampling

method can get high accuracy results, it is time-consuming and labor-intensive. Large-region grassland AGB inversion often

requires years of accumulation to obtain ground observation samples with sufficient spatial representation. For example, it65
took Yang et al. five years to complete the collection of ground samples to investigate the grassland AGB in China (Yang et
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al., 2010). Moreover, some scholars had expanded the sample size by using the data published by others when the original

ground data was limited (Xia et al., 2018; Jiao et al., 2016). Considering the differences in the plot area, quadrat size, and

sampling method, datasets from different sources may affect the overall inversion accuracy.

70
The development and popularization of unmanned aerial vehicle (UAV) technology provides new ideas for solving the

above problems. UAV images have been successfully used to estimate ecological indicators such as FVC, biomass, and

canopy height (Chen et al., 2016; Zhang et al., 2018; Bendig et al., 2015). Compared with traditional sampling methods, the

use of UAVs has the following incomparable advantages. First, UAVs can effectively obtain 2D or 3D information about

vegetation structure without destroying it, which is helpful for the estimation of grassland biomass (Lussem et al., 2019;75
Zhang et al., 2022; Zhang et al., 2018). Second, UAVs can easily collect key parameters of grassland within satellite pixels

(e.g., FVC, Chen et al. 2016). Hence, UAV images can be used as a bridge to reduce the spatial gap between the field

sampling and the satellite pixel. However, most UAV-based grassland biomass estimations are small-scale, with few

regional-scale studies. It is still unknown whether UAVs can be used to narrow the spatial gap between the traditional

ground samples and satellite pixels. In addition, due to the limited sample size, previous regional-scale grassland AGB80
models lacked independent years of cross-validation to test the robustness of the model in different periods.

This study proposed a new method combining traditional ground sampling, UAV photographing, and satellite data to

generate a new reliable AGB dataset of QTP. The objectives of this study were: 1) to construct the UAV-based grassland

AGB estimation models at quadrat/satellite pixel scales, respectively; 2) to investigate whether UAVs can be used as a85
bridge to narrow the spatial gap between traditional ground observation samples and satellite pixels, and improve the

estimation accuracy of grassland AGB; 3) to map the AGB of alpine grassland on the Qinghai-Tibetan Plateau (QTP) during

the 2000~2019.

2 Materials and Methods

2.1 Study Site90

QTP is the highest and largest plateau on the earth (26°00′12″~39°46′50″N, 73°18′52″~104°46′59″E) with an average

elevation of ~4000 m and an area of approximately 257.24×104 km2 (Figure 1). It is located in western China, and the annual

average temperature and precipitation are around 1.6℃ and 413.6 mm, respectively. The main grassland types are alpine

meadows, alpine steppe, and sparse grassland, which play a critical role in climate regulation, water conservation, and

biodiversity protection (Ding et al., 2013). However, grassland ecosystems are fragile and vulnerable to global climate95
change and human activities, and have high spatial heterogeneity.
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Figure 1. Distribution of field and UAV sampling sites of 2019 (a); and UAV sampling sites of 2015-2018 in alpine grasslands on
the QTP (b-e). Field_UAV_2019 represents quadrat scale sampling sites for the 2019 UAV-Field synchronous grassland biomass100
experiment. UAV_year represents the UAV sampling point based on the GRID or RECTANGE flight mode of the corresponding
year.
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2.2 Overall technology roadmap

The overall flowchart of UAV-field investigation and the construction of grassland AGB estimation model at different

spatial scales were shown in Figure 2, which mainly includes four steps: 1) UAV and field investigation; 2) constructing the105
grassland AGB estimation model at the quadrat scale; 3) upscaling the AGB to the MODIS pixels; 4) building the final AGB

estimation model at MODIS pixel scale and applying it to the QTP region. More detailed information about each step was

described in the following sections.

.
110

Figure 2. The overall flowchart of UAV-field investigation and the construction of grassland AGB estimation models at different
spatial scales.
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2.3 Field investigation

2.3.1 UAV and route planning

DJI Phantom 3 professional (DJI Company, Shenzhen, China), a popular consumer quadrotor UAV equipped with a high-115
resolution RGB camera, was used to collect UAV images of the QTP from 2015 to 2019. It has a 1/23-inch CMOS sensor

and is capable of taking 12-megapixel photos. In addition, it uses a 3-axis stable gimbal to take photos downward vertically

and eliminate the distortion of UAV images. It has good environmental adaptability, the working temperature ranges from 0°

to 40°, and the highest take-off altitude can reach 6000 meters. Therefore, it can adapt well to the low temperature and high

altitude of the QTP. More detailed information about the UAV system is listed in Table A1.120

Fragmentation Monitoring and Analysis with aerial Photography (FragMap) system, which can realize long-term

collaborative observation, was used for UAV route planning (Yi, 2017). The repeatability of UAV observation is the basis

for understanding the ecological process. Through FragMap, we conducted UAV observations on the QTP from 2015 to

2019 (Figure 1). Over 2,000 fixed flight routes were set during this period, and more than 37,000 UAV images were125
collected, providing a reliable UAV data set for this study (Table 1).

Table 1. UAV sampling information from 2015 to 2019

130
GRID, RECTANGLE, and BELT are the most commonly used flight modes in the FragMap software. The GRID and

RECTANGLE modes have 16 and 12 waypoints for capturing UAV images within a MODIS pixel range (Figure A1). Their

flying height and speed are set to 20 m and 3m/s, respectively. The BELT mode is similar to GRID but is designed to get

near-ground UAV image data with a higher resolution (Figure 3b). It can be combined with the traditional sampling method

Year Flight Mode Number of routes Photo number Acquisition time

2015 RECTANGLE 214 2568 7.05 ~8.24

2016

RECTANGLE 334 4008 6.20~9.29

GRID 150 2400 6.20~9.23

2017

RECTANGLE 315 3780 5.10~10.24

GRID 322 5152 7.15~8.22

2018

RECTANGLE 79 948 7.22~8.03

GRID 303 4848 7.04~8.29

2019 GRID
Total

885
2602

14160
37864

7.12~9.21
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to ensure that UAV images are consistent with the ground quadrats (Figure 3d). Generally, the BELT size is set to 40 m × 40135
m, and the flying height and speed are set to 2 m and 1 m/s to ensure that field workers have enough time to place a sampling

quadrat on the UAV shooting waypoint. As with GRID mode, 16 UAV images can be captured during one flight.

Figure 3. Schematic diagram of the UAV-field synchronization experiment in 2019: a combination design of GRID (a) and BELT140
(b) flight modes; a UAV image with a quadrat from the BELT mode at the height of 2 m (d); a 20-meter-high UAV image
including four sample quadrats (c); and the cropped UAV images at quadrat scale from 20 m (e) and 2 m (f) height, respectively.
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2.3.2 Synchronization experiment of UAV and field sampling

A UAV-field biomass synchronization experiment was designed in 2019 to ensure spatial matching among satellites, UAVs,

and ground sampling (Figure 3). The specific implementation steps were as follows. First, we set a GRID flight mode with145
the MODIS pixel size (250 m × 250 m) (Figure 3a). Then, three waypoints from the GRID route were randomly selected for

setting the BELT routes (40 m × 40 m). For each BELT, we placed a sampling quadrat (0.5 m × 0.5 m) at its 6, 7, 10, and 11

waypoints to ensure that the GRID image can contain the four quadrats described above (Figure 3b-c). Grassland AGB

samples were then cut, bagged, and numbered at the end of all flights. Finally, these samples were oven-dried at 65℃ to

constant weight to obtain the field-measured AGB values.150

2.4 Data processing

2.4.1 UAV photo preprocessing and indices calculation

UAV photo preprocessing included image quality inspection, image cropping, and calculation of different indices. First, we

eliminated the overexposed or blurry 20-meter-high UAV images. Second, the pixels in the sampling quadrat were cropped155
and saved (Figure 3e). Third, we calculated the RGB indices for the cropped UAV images. Similar to our previous study,

indices included color space, histogram, and vegetation indices, details of which could be found in reference (Zhang et al.,

2022). In addition, 30 other RGB vegetation indices were added as candidate independent variables. The names, formulas,

and references of the above indices were shown in Table A2.

2.4.2 MODIS vegetation index and other spatial data160

The MOD13Q1(v006) product was downloaded from the NASA earth explorer website (https://earthexplorer.usgs.gov/) for

the inversion of the alpine grassland AGB on the QTP. The data contained two commonly used vegetation indices,

normalized vegetation index (NDVI) and enhanced vegetation index (EVI), with spatial and temporal resolutions of 250 m

and 16 days, respectively. A total of 2,842 scenes from 2000 to 2019 were downloaded. Then, the MODIS images were

reprojected and stitched using the MODIS projection tool (MRT). After that, we used the point extraction function in165
ArcGIS software to get the corresponding vegetation indices of the UAV samples to construct the pixel-scale AGB

estimation model. In addition, based on the NDVI index and the formula kNDVI= TANH (NDVI2), the kNDVI index was

calculated to overcome the NDVI saturation issue (Camps-Valls et al., 2021). The annual maximum vegetation indices were

calculated by the maximum value composition (MVC) algorithm of ENVI software to estimate the spatial AGB distribution

of QTP from 2000 to 2019.170

Furthermore, the meteorological, soil texture, and topographic data were also included as candidate independent variables for

constructing the pixel-scale AGB estimation model. Meteorological factors, including the annual mean temperature (TA),
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annual mean precipitation (PREC), and annual total solar radiation (RAD), were calculated based on the daily

meteorological dataset from the National Meteorological Information Center of China. The data processing steps mainly175
included interpolation, cumulative summation, and annual averaging processing to obtain the meteorological raster dataset

with a spatial resolution of 1000 meters (Li et al., 2021). Moreover, the spatial distribution data of soil texture with 1 km

spatial resolution, including the ratio of soil organic matter (SOM), clay, sand, and silt, were downloaded from the Resource

and Science and Data Center of China (https://www.resdc.cn/). All the meteorological and soil datasets were resampled into

250 m by ArcGIS software to match the MODIS data.180

Terrain factors include the digital elevation model (DEM), slope, and aspect. The DEM was from shuttle radar topography

mission (SRTM) images (version 004, 90 m) and resampled to 250 m. Slope and aspect were then calculated from the DEM

data using the terrain analysis tools of ArcGIS software.

2.5 AGB modeling and computation at different scales185

We estimated the grassland AGB at three scales: the quadrat scale, photo scale, and satellite pixel scale (Figure 4). More

detailed information was described as follows.

Figure 4. Upscaling steps to estimate grassland AGB matching the MODIS pixel scale.
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2.5.1 Modeling method190

Random Forest (RF) (Breiman, 2001), an ensemble-learning algorithm, was employed to estimate AGB at different scales

due to its excellent performance in biomass estimation (Ghosh and Behera, 2018; Mutanga et al., 2012; Wang et al., 2016).

Two main parameters, the number of regression trees in the forest (ntree) and the number of feature variables required to

create branches (mtry), were optimized based on the root mean square error (RMSE) of training data at first. Here, the ntree

values were tested from 100 to 5000 with an interval of 100, and the mtry was set as the square root of the number of training195
sample features. In addition, the importance of each predictor was ranked by calculating the percentage increase in mean

square error (%IncMSE).

The backward feature elimination method (BFE) was used to reduce the number of input variables to simply the RF model

(Vergara and Estévez, 2014). The main steps were as follows: 1) constructing an AGB RF model by including all predictor200
variables in the initial stages and calculating the %IncMSE index for each variable; 2) eliminating the least promising

variable and then rerunning the RF model until only one independent variable was left. Moreover, the corresponding

coefficient of determination (R2) and the corresponding root mean square error (RMSE) were calculated in each iteration；3)

selecting the smallest subset of variables with the highest R2 as the final optimized indices.

205
In addition, different training and validation strategies were used at different scales. At the quadrat scale, a 10-fold cross-

validation method was used due to the limited ground samples (Kohavi, 1995). At the pixel scale, 30% of the UAV-

estimated AGB samples in 2019 were randomly selected as an independent validation dataset due to the large sample size.

Meanwhile, cross-year validation was performed using UAV-estimated AGB values from 2015 to 2018 to test the robustness

of the model over different periods.210

2.5.2 AGB RF estimation model at the quadrat scale (0.25 m2)

A total of 906 pairs of quadrat-scale UAV-field AGB observation data were collected, with good spatial representativeness

(Figure 1 a, red dots). The observed AGB values ranged from 0 g/m2 to 450 g/m2, with mean and median values of 59.75

g/m2 and 33.04 g/m2, respectively, most of which were less than 100 g/m2 (Figure 5a). Then, the cropped 20-meter-high

UAV image indices and the measured AGB values were used as the independent and dependent variables to build the RF215
model (Figure 2).

2.5.3 AGB calculation at the photo scale (~900 m2)

The steps for AGB estimation of the entire 20-meter-high UAV photo were as follows: 1) First, each UAV photo was

divided into ~2,000 quadrat-sized small patches. 2) Second, the AGB of each small patch was calculated based on the

quadrat-scale AGB estimation model. 3) Finally, the average value of all the small patches was calculated as the AGB of the220
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whole photo. Based on the above steps, the AGB values of 37,487 images in GRID or Rectangle mode were calculated using

over 74 million AGB values at the quadrat scale (Table 1).

Figure 5. Histograms of field-measured AGB values at quadrat scale (a) and UAV-estimated AGB values of different years at the225
photo scale (b).

2.5.4 AGB RF model construction at MODIS pixel-scale (6,2500 m2)

The following steps were involved in constructing the AGB estimation model at the pixel scale. 1) Since the coverage of a

GRID or RECTANGLE route was similar to that of the MODIS pixel, the average of its 16 or 12 photos was taken as the230
AGB value of the corresponding pixel. 2,602 UAV-estimated AGB samples were obtained at the pixel scale from 2015 to

2019 (Table 1). 2) The MODIS vegetation indices and other spatial metrics corresponding to each GRID or RECTANGLE

route were then extracted using the ArcGIS software. 3) Subsequently, the UAV-estimated AGB values and the extracted

spatial indices were used as dependent and independent variables to build the AGB estimated model at the pixel scale using

the RF algorithm.235

2.6 Uncertainty analysis

Since the actual AGB values of MODIS pixels cannot be directly obtained, vegetation indices were used to quantify the

uncertainty of different AGB estimation methods. In other words, the higher correlation between the estimated AGB and

MODIS vegetation indices, the higher accuracy of the estimation model was. This study firstly compared the correlation

between the MODIS vegetation indices and AGB values obtained by traditional sampling and UAV estimation methods. We240
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also explored the uncertainties of UAV sampling coverage by randomly combining the number of photos in a MODIS pixel,

and tested whether the estimated AGB was closer to the true value as the number increased. Furthermore, the AGB

validation results from GRID or RECTANGLE at the pixel scale were compared to understand the uncertainties caused by

different flight modes.

3 Results245

3.1 Independent variables selected for AGB modeling

The selected independent variables for AGB estimation at quadrat and pixel scales were listed in Table 2. A total of 36

independent variables were finally selected at the quadrat scale, including 26 vegetation RGB indices, 6 histogram indices,

and 4 color space indices (Figure A2). At the pixel scale, five variables were selected, including NDVI, kNDVI, EVI, PREC,

and DEM (Figure A3).250

Table 2: Selected independent variables for the AGB modeling at quadrat and pixel scales. The full name of each variable at the
quadrat scale was listed in Table A2.

Scale Model Number Independent variables

Quadrat RFQ 36 FVC, WI, GI, EXG, TGI, EXGR,VEG, GRATIO, COM, CIVE, RGBVI, EXR,

GLA, GRRI, MVARI, MGRVI, GRVI, RGRI, GBRI, VARI, NDI, RRATIO,

EXB, V, IPCA, INT,

HOC_R_CORR, HOC_B_CHIS, HOC_R_CHIS, HOC_G_CHIS,

HOC_G_CORR, HOC_B_CORR

B, H, G, R,

Pixel RFP 5 NDVI, kNDVI, EVI, DEM, PREC

3.2 Modeling and accuracy assessment255

The estimated AGB values at the quadrat scale fitted well with the measured values (R2 =0.73, RMSE=44.23 g/m2),

especially for the AGBs below 150 g/m2 (Table 3, Figure 6a). However, there was an underestimation of high biomass

(AGB > 200 g/m2), probably due to the limited number of samples (Figure 5a).

Although the UAV sample size varied yearly, the estimated AGB values at the photo scale ranged from 0 to 300 g/m2260
(Figure 5b). The mean UAV AGB in 2016-2019 was around 150 g/m2, while it was slightly lower in 2015 with 108 g/m2.

Cross-year validation results indicated that the constructed pixel scale AGB estimation model achieved good accuracy and

robustness in different years (Figure 6b~f). The R2 was 0.85 in 2017-2019 and slightly lower in 2015-2016 with 0.63 and
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0.77, respectively (Table 3). There was a high correlation between the predictions and the UAV estimates, and the fitted line

was close to the 1:1 line (Figure 6 b~f).265

Table 3: Calibration and validation results of AGB models at quadrat and pixel scales

Scale Year Training set Validation set
R2 RMSE(g/m2) R2 RMSE(g/m2)

Quadrat-scale
Pixel-scale

2019
2019
2018
2017
2016
2015

0.94
0.96
__
__
__
__

20.18
10.68
__
__
__
__

0.73
0.85
0.85
0.85
0.77
0.63

44.23
25.80
39.15
36.49
32.25
36.98

3.3 Correlation analysis between AGB values and MODIS indices

The correlations between the UAV-estimated AGB values and MODIS vegetation indices were much better than the270
traditional ground sampling method (Figure 7a). For example, the correlation between NDVI and traditionally measured

AGB was only 0.53, much lower than that obtained from a single UAV image (r=0.74). Moreover, the correlation between

NDVI and UAV-estimated AGB increased with the number of UAV photos. It increased rapidly as the number increased

from 1 to 4 (from 0.74 to 0.86), then slowed down (from 0.87 to 0.88).

275
In addition, we compared the scatter plots and fitting lines between NDVI and different AGB estimation methods (Figure

7b-f). The results showed a weak linear relationship between the traditional measured AGB and NDVI, and the R2 was only

0.29. Linearity was greatly improved using the UAV sampling method and increased with the number of photos. The fit

coefficient R2 increased from 0.54 to 0.78, much higher than the traditional sampling method (Figure 7).

280

https://doi.org/10.5194/essd-2022-210
Preprint. Discussion started: 8 July 2022
c© Author(s) 2022. CC BY 4.0 License.



14

Figure 6. Validation results of the AGB estimation models at the quadrat (a) and MODIS pixel scale for 2015-2019 (b~f).
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285
Figure 7. The correlations between the MODIS vegetation indices and different AGB estimation methods (a); the scatter plots
between NDVI and different AGB estimation methods (b-f). UAV_x, x represents the number of UAV photos used to estimate the
average AGB at MODIS pixel-scale. Here, the value range of x is from 1 to 16.

https://doi.org/10.5194/essd-2022-210
Preprint. Discussion started: 8 July 2022
c© Author(s) 2022. CC BY 4.0 License.



16

290

3.4 Spatial distribution of grassland AGB

The spatial distribution of the average grassland AGB on the QTP from 2000 to 2019 was calculated (Figure 8). The AGB

gradually increased from west to east. From 2000 to 2019, the mean AGB on the QTP showed an insignificant increasing

trend, with an average rate of 0.22 gm-2a-1 (Figure 9a). The overall mean AGB of the QTP was 103.6 g/m2, and the mean

AGB of the alpine meadow, alpine steppe, and sparse grassland were 151.85 g/m2, 60.85 g/, and 28.91 g/m2, respectively295
(Figure 9b).

Figure 8. The spatial distribution of average grassland AGB on the Qinghai-Tibet Plateau during 2000-2019.300
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Figure 9. Variation trend of average grassland AGB on the QTP from 2000 to 2019 (a) and average AGB of different grassland
types (b).

4. Discussion

4.1 Scale matching and its influence factor305

Unlike the previous studies (Yang et al., 2017; Yang et al., 2009; Meng et al., 2020), which directly represented the AGB

value of a satellite pixel with the average value of 3-5 quadrat-scale samples, this study successfully upscaled the traditional

quadrat scale to the MODIS pixel scale. We achieved the spatial scale matching of dependent and independent variables

when calculating the AGB values at different scales. First, at the quadrat scale, the independent variables were all derived

from cropped UAV images corresponding to the ground samples (Figure 3e). Then, the 20-meter-high UAV image was310
cropped into ~2000 quadrat-sized small patches to ensure consistency with the quadrat scale model, and the average of these

patches was taken as the final AGB at the photo-scale. Finally, the AGB value that matched the MODIS pixel scale was

calculated by the average value of 16 or 12 UAV photos within the MODIS pixel (Figure A1). Through the above three steps,

we successfully upscaled the measured AGB from the traditional quadrat scale (0.5 m×0.5 m) to the photo scale (26 m×35 m)

and MODIS pixel scale (250 m×250 m). Our results showed that, at the pixel scale, the correlation between UAV_estimated315
AGB values and MODIS vegetation indices was higher than that of the traditional sampling method (Figure 7).

Furthermore, we found that the spatial coverage of the UAV sampling had a particular influence on the effects of scale

matching. Our results indicated that the closer the spatial coverage of the UAV sampling to the satellite pixel, the higher

correlation with MODIS spectral indices (Figure 7a). The comparison of the validation results of different flight modes also320
confirmed this. At the pixel scale, we found that UAV AGB estimates from the GRID mode had a higher correlation with the
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mode predictions than the RECTANGLE flight mode (Figure 10). The reason was that the GIRD mode could obtain 16

photos in the MODIS pixel at a time, while the RECTANGLE mode could only take 12 photos.

The above results confirmed that UAVs could serve as a bridge to effectively narrow the scale gap between traditional325
observations and satellite data.

Figure 10. Comparison of validation results for the GRID (a,c,e) and RECTANGLE (b,d,f) modes in 2016-2018.
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4.2 Importance of the addition of non-vegetation samples

Compared with traditional sampling, UAV sampling has the advantage of wide spatial coverage (0.5 m×0.5 m VS 35 m×26330
m). Thus, vegetation and non-vegetation background information, such as roads, water, soil, gravel, riverbed, etc., were

captured on the UAV photos (Figure 11). The addition of non-vegetated samples could improve the estimation accuracy of

AGB at the photo scale, especially for low coverage areas, to avoid overestimation. The same was true for the pixel scale

AGB estimation model. However, less consideration was given to the non-vegetated areas in the traditional method. The

sample plots were mainly set in areas with uniform spatial distribution but few in areas with spatial heterogeneity. This335
defect might limit the accuracy of AGB estimation due to the high spatial heterogeneity of the QTP. Fortunately, the UAV

sampling method could avoid this drawback. It could objectively record the ground surface information with both vegetated

and non-vegetated areas, resulting in a more objective AGB estimation at the pixel scale.

340
Figure 11. Examples of 20-meter-high UAV images with different non-vegetation background information.
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4.3 Comparison of the estimated AGB with previous studies

In the following, the AGB estimation results of this study were compared with those of others at the quadrat scale, pixel345
scale, and regional scale.

At the quadrat scale, consistent with our previous study, we further confirmed that the UAV RGB images could be used to

estimate grassland AGB at the quadrat scale over a large region (Zhang et al., 2022; Zhang et al., 2018). Similar to the 2-

meter-high UAV image, the indices from 20-meter-high UAV images could also be used to estimate the grassland AGB at350
quadrat-scale (R2=0.73, RMSE=44.23 g/m2). The quadrat-scale UAV model had an excellent grassland AGB estimation

ability in the range of 0-150 g/m2, and the verification points were mainly distributed near the 1:1 line (Figure 6a).

At the pixel scale, compared with other studies, this paper achieved the spatial scale matching of independent variables and

dependent variables in the modeling process (Yang et al., 2009; Yang et al., 2017). In addition, we implemented large-region355
and multi-year cross-validation in model verification. Despite differences in sample size and spatial distribution (Figure 1,

Table 1), the validation results for 2017-2019 were similar (R2=0.85). But in 2015-2016, R2 was relatively low, at 0.63 and

0.77, respectively (Table 3, Figure 6). The reason was that during 2015-2016, due to the improper setting, many photos with

abnormal white balance were obtained, which reduced the accuracy of the estimation (Figure 12). The validation results

indicated that the pixel scale AGB estimation model had good adaptability in different regions and periods while obtaining360
high-quality UAV images. Therefore, this method can be used to estimate the AGB values matching the satellite pixel scale

in large regions.

Figure 12. An example of a set of GIRD photos with abnormal white balance in 2015.
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365
Table 4: Comparison of AGB estimation results of different studies on the QTP

Mean
AGB
(g/m2)

Alpine
steppe
(g/m2)

Alpine
meadow
(g/m2)

Study period Approach Data
source

References

68.8 50.1 90.8 2001-2004 Linear regression MODIS EVI (Yang et al.,
2009)

__ 22.4 42.37 2000-2012 Linear regression MODIS
NDVI

(Liu et al., 2017)

78.4 __ __ 1982-2010 RF GIMMS (Xia et al., 2018)
77.12 76.43 154.72 2000-2014 RF MODIS (Zeng et al.,

2019)
59.63 42.75 77.56 2000-2017 RF MODIS (Gao et al., 2020)
120.73 __ __ 1980–2014 regression MODIS (Jiao et al., 2016)
103.6 60.85 151.85 2000-2019 RF MODIS this study

At the regional scale, consistent with previous results, we found an overall increase in AGB over the QTP from 2001 to 2019,

although there were fluctuations among years (Zeng et al., 2019; Gao et al., 2020). The annual mean AGB of grassland was

103.6 g/m2, within the previously estimated range (59.63-120.73 g/m2) (Table 4). The mean AGB of different grassland370
types was different, among which the alpine meadow was 151.85 g/m2, and the alpine steppe was 60.85 g/m2. Our estimation

results were similar to Zeng et al. (Zeng et al., 2019), but the overall average AGB was higher than their estimated 77.12

g/m2. The difference between our estimated grassland AGB and previous studies might be due to differences in data sources

and modeling methods. Unlike previous studies, we collected ground verification data by combining the traditional sampling

method and UAVs. The newly proposed method could overcome the shortcomings of traditional samplings, such as the375
time-consuming and labor-intensive. It no longer took years of work to obtain sufficient spatially representative ground

verification data in large regions(Yang et al., 2017). Through UAV sampling, only 15~20 minutes were needed to complete

a ground survey in a pixel range of 250 m × 250 m. In addition, it could effectively reduce the spatial gap between ground

verification samples and satellite pixels.

380
Meanwhile, different modeling approaches might also affect the simulation results. Yang et al. found that the model

performance of ANN was much better than the linear regression model when using the same dataset to estimate grassland

AGB in the Three-River Headwaters Region of China (Yang et al., 2017). Jia et al. reported that the model forms could bring

13% uncertainty to the AGB estimation(Jia et al., 2016). Wang et al. compared the RF with the support vector regression

(SVR) machine learning algorithm and found that the RF yielded the best performance in grassland biomass estimation385
(Wang et al., 2017).
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4.4 Limitations and further work

We acknowledge that there are some shortcomings in this study. 1) The sample size greater than 200 g/m2 was insufficient at

the quadrat scale, leading to underestimation where AGB was high. We will enlarge the sample size to improve the390
simulation accuracy in future research. 2) Although the grassland height information could help improve the estimation

accuracy of grassland AGB, it was still challenging to obtain grassland height information from UAV RGB images in a large

area. (Zhang et al., 2022; Lussem et al., 2019; Viljanen et al., 2018). Thus, in the next step, we will consider using the

affordable DJI Zensil L1 Lidar UAV to obtain grassland height information to improve the AGB estimation capability. 3)

During 2015-2016, we just started using UAVs to monitor the health of the grassland, and the suitable camera parameters395
and methods were still under exploration. Therefore, many photos with abnormal white balance reduced the accuracy of

AGB estimation at the photo scale (Figure 12). 4) We only collected grassland AGB in the peak season of vegetation growth,

and whether the proposed method applies to other growing seasons remains to be further investigated. 5) During the

modeling process, the center points of the flight route were used to find the matching MODIS pixels due to the limited

positioning accuracy. Moreover, although the UAV images from GRID or RECTANGLE mode could cover most areas of a400
MODIS pixel, full pixel coverage was still not achieved. Therefore, we will gradually scale up to MODIS pixels by

combining UAVs with Sentinel-2 or Landsat images.

5. Data availability

The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center at

https://doi.org/10.11888/Terre.tpdc.272587. The dataset contains 20 years of AGB spatial data of the QTP with a resolution405
of 250 m and is stored in TIFF format. The name of the file is "AGB_yyyy.tif", where yyyy represents the year. For example,

AGB_2000.tif represents this TIFF file describing the alpine grassland AGB condition of QTP in 2005. The data can be

readily imported into standard geographical information system software (e.g., ArcGIS) or accessed programmatically (e.g.,

MATLAB, Python).

6. Conclusion410

This study presents a new gridded dataset of alpine grassland AGB over the QTP based on traditional ground sampling,

UAV photographing, and MODIS images. The uniqueness of this dataset is that when obtaining ground verification data, the

UAV is used as a scale matching bridge between traditional local measurement samples and satellite pixels. The study

confirmed that the UAV images could be used for AGB estimation at the quadrat /pixel scale, with R2 of 0.73/0.83 and

RMSE of 44.23/34.13 g/m2, respectively. At the pixel scale, the AGB estimated by UAV was more correlated with the415
MODIS vegetation indices than the traditional ground sampling method (0.88 VS 0.53), and the scale matching of the

dependent and the independent variables was achieved during model construction. In addition, the constructed pixel scale
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model has been independently cross-validated over many years (2015-2019), which confirmed the robustness of the model

and ensured the accuracy of this dataset. Availability of the new dataset is helpful in many applications. First, this dataset

provides reliable regional data for estimating grassland productivity, carbon storage, ecological environment carrying420
capacity, and ecological service functions (such as feed for grazing livestock) on the QTP. Second, the dataset can be used

to understand the mechanisms of environmental processes, such as hydrological cycle processes, soil erosion and

degradation, and carbon cycle processes in the QTP. In addition, this dataset can be used as input or validation parameters

for various ecological models to understand the response mechanism of the QTP to global climate change.
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Appendix

440
Figure A1. Waypoints for GRID (a) and RECTANGLE (b) flight modes.

Figure A2. The importance value for each independent variable (a) and the R2 results of the different number of input variables at

the quadrat scale.
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445

Figure A3. The importance value for each independent variable (a) and the R2 results of the different number of input variables at

the pixel scale.

450

Table A1. Features of DJI Phantom 3 Pro

Features Description

DJI Phantom 3 Pro

Sensor 1/23-inch; Effective-pixel: 12-megapixel

Filed of view FOV 94° 20 mm

Aperture f/2.8

Shooting speed Electronic shutter: 8-1/8000 s

Photo size 4000×3000

Flight time ~25 min

Image format

Hovering accuracy

JPEG

±0.5 m vertically; ±1.5 m horizontally

Weight 1280 g

455
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Table A2: Details of the independent variables for quadrat-scale AGB estimation

Acronym Index name Formula Reference
GRVI Green Red Vegetation Index (G-R)/(G+R) (Tucker, 1979)
EXG Excess Green Vegetation Index 2G-R-B (Woebbecke et al., 1995)
GLA Green leaf area (2G-R-B)/(2G+R+B) (Louhaichi et al.)
MGRVI Modified Green Blue Vegetation Index (G2-R2)/(G2+R2) (Bendig et al., 2015)
RGBVI Red Green Blue Vegetation Index (G2-B*R)/(G2+B*R) (Bendig et al., 2015)
EXB Excess Blue Vegetation Index (1.4*B-G)/(G+R+B) (Maimaitijiang et al., 2019)
NDI Normalized difference index (R-G)/(R+G) (Woebbecke et al., 1993)
EXR Excess Red Vegetation Index 1.4*R-B (Meyer and Neto, 2008)
EXGR Excess Green minus Excess Red index ExG−ExR (Meyer and Neto, 2008)
RRATIO Red Ratio R/(R+B+G) (Woebbecke et al., 1995)
BRATIO Blue Ratio B/(R+B+G) (Woebbecke et al., 1995)
GRATIO Green Ratio G/(R+B+G) (Woebbecke et al., 1995)
VARI Visible Atmospherically Resistance Index (G -R)/(G + R - B) (Gitelson et al., 2002)
NRBI Normalized Red Blue Index (R-B)/(R+B) (Michez et al., 2016)
NGBI Normalized Green Blue Index (G-B)/(G+B) (Michez et al., 2016)
VEG Vegetative index G/(RaB(1-a)),where a=0.667 (Hague et al., 2006)
WI Woebbecke Index (G−B)/(R−G) (Woebbecke et al., 1995)
CIVE Color Index of Vegetation 0.441R –

0.881G+0.385B+18.78745
(Kataoka et al., 2003)

COM Combination Vegetative index 0.25ExG+0.3ExGR+0.33CIVE
+0.12VEG

(Guijarro et al., 2011)

TGI Triangular Greenness Index G-0.39R-0.61B (Hunt et al., 2014; Michez et
al., 2018)

RGBVI Red Green Blue Vegetation Index (G2-B*R)/(G2+B*R) (Bendig et al., 2015)
GRRI Green Red Ratio Index G/R (Maimaitijiang et al., 2019)
GBRI Green Blue Ratio Index G/B (Maimaitijiang et al., 2019)
RBRI Red Blue Ratio Index R/B (Maimaitijiang et al., 2019)
BRRI Blue Red Ratio Index B/R (Jibo et al., 2018)
BGRI Blue Green Ratio Index B/G (Jibo et al., 2018)
RGRI Red Green Ratio Index R/G (Jibo et al., 2018)
INT Color Intensity Index (R+B+G)/3 (Ahmad and Reid, 1996)
MVARI Modified VARI (G-B)/(G+R-B) (Cen et al., 2019)
IPCA Principal Component Analysis Index 0.994×|R−B|+ 0.961×|G−B|+

0.914×|G−R|
(Saberioon et al., 2014)
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Table A2: Details of the independent variables for quadrat-scale AGB estimation（continued）

Acrony
m

Index name Formula Reference

R An average value of R channel of the
quadrat-scale UAV image

(Zhang et al.,
2022)

G An average value of G channel of the
quadrat-scale UAV image

B An average value of B channel of the
quadrat-scale UAV image

H An average value of H channel of the
quadrat-scale image in HSV color space

S An average value of S channel of the
quadrat-scale image in HSV color space

V An average value of V channel of the
quadrat-scale image in HSV color space

FVC Fractional Vegetion Cover

EGI Extra Geen Index EGI=2G-R-B

GI Green Index GI=9×(H×3.14159/180) +3×S+V

HOC_i_
CORR

The histogram correlation coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB

���� � (�1 � − ��1)(�2 � − ��2)�

� (�1(�) − ��1)2� � (�2 � − ��2)2�

HOC_i_
INTERS
EC

The histogram intersection coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB

�������� =
�

min (�1 � , �2 � )�

HOC_i_
BHATTA

The histogram Bhattacharyya distance
coefficient between the i band and the
black reference histogram, where the i
represents the three bands of RGB

�ℎ���� =
�

min (�1 � , �2 � )�

HOC_i_
CHIS

The histogram correlation coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB.

�ℎ�� =
�

�1 � − �2 � 2

�1(�)�
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