
1

A 250m annual alpine grassland AGB dataset over the Qinghai-1

Tibetan Plateau (2000-2019) in China based on in-situ measurements,2

UAV photos, and MODIS Data3

Huifang Zhang 1,2,3, Zhonggang Tang2, Binyao Wang2, Hongcheng Kan2 ,Yi Sun1,2, Yu Qin3, Baoping4
Meng1,2, Meng Li1,2, Jianjun Chen4, Yanyan Lv1,2, Jianguo Zhang1,2 Shuli Niu5, Shuhua Yi 1,2,*5
1Institute of Fragile Eco-environment, Nantong University, 999 Tongjing Road, Nantong, Jiangsu, 226007, China6
2School of Geographic Science, Nantong University, 999 Tongjing Road, Nantong, Jiangsu, 226007, China7
3State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy8
of Sciences, 320 Donggang West Road, Lanzhou 730000, China9
4College of Geomatics and Geoinformation, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China;10
5Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources11
Research, Chinese Academy of Sciences, Beijing, China12

Correspondence to: Shuhua Yi (yis@ntu.edu.cn)13

Abstract. The alpine grassland ecosystem accounts for 53% of the Qinghai-Tibet Plateau (QTP) area and is an important14
ecological protection barrier, but it is fragile and vulnerable to climate change. Therefore, continuous monitoring of15
grassland aboveground biomass (AGB) is necessary. Although many studies have mapped the spatial distribution of AGB16
for the QTP, the results vary widely due to the limited ground samples and mismatches with satellite pixel scales. This paper17
proposed a new algorithm using unmanned aerial vehicles (UAVs) as a bridge to estimate the grassland AGB on the QTP18
from 2000 to 2019. The innovations were as follows: 1) In terms of ground data acquisition, spatial scale matching among19
the traditional ground samples, UAV photos, and MODIS pixels was considered. A total of 906 pairs between field20
harvested AGB and UAV sub-photos, and 2,602 sets of MODIS pixel scale UAV data (over 37,000 UAV photos) were21
collected during 2015-2019. Therefore, the ground validation samples were sufficient and scale-matched. 2) In terms of22
model construction, the traditional quadrat scale (0.25 m2) was successfully upscaled to the MODIS pixel scale (6,2500 m2)23
based on the random forest and stepwise upscaling methods. Compared with previous studies, the scale matching of24
independent and dependent variables was achieved, effectively reducing the impact of spatial scale mismatch. The results25
showed that the correlation between the AGB values estimated by UAV and MODIS vegetation indices was higher than that26
between field-measured AGB and MODIS vegetation indices at the MODIS pixel scale. The multi-year validation results27
showed that the constructed MODIS pixel scale AGB estimation model had good robustness, with an average R2 of 0.83 and28
RMSE of 34.13 g·m-2. Our dataset provides an important input parameter for a comprehensive understanding of the role of29
the QTP under global climate change. The dataset is available from the National Tibetan Plateau/Third Pole Environment30
Data Center (https://doi.org/10.11888/Terre.tpdc.272587, Zhang et al., 2022).31
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1 Introduction32

Grasslands, accounting for approximately 37% of the earth's surface, play an essential role in the global carbon cycle and33
food supply (Ómara, 2012). However, most natural grasslands have been degraded to a certain extent due to overgrazing,34
farmland encroachment, soil erosion, and global climate change (Suttie et al., 2005; Ramankutty et al., 2008; Ómara, 2012).35
Therefore, timely monitoring of grassland health is crucial for the sustainable development of livestock and understanding of36
the global carbon cycle. Aboveground biomass (AGB) is a key indicator of grassland status and an important input37
parameter for ecological modeling and carbon storage estimation. Thus, accurate and rapid estimation of AGB is valuable38
for grassland monitoring.39

40

The advent of satellites has made it possible to map the spatiotemporal dynamics of grasslands over large areas. Spectral41
information from different satellite sensors has been employed for biomass estimation, such as Sentinel-2, Landsat, and42
MODIS (Wang et al., 2019; Zhang et al., 2016). Although there are differences in spatial and spectral resolution, the core43
idea of the biomass estimation model is to construct linear or nonlinear relationships between the field-measured samples44
and various satellite spectral indices. Therefore, the accuracy of the estimation is closely related to the quality and quantity45
of ground samples (Morais et al., 2021; Yu et al., 2021). However, there are still two deficiencies in ground data acquisition:46
the large spatial gap between the traditional samples and satellite pixels, and the low efficiency.47

48
How to narrow the spatial gap between traditional samples and satellite pixels is an urgent problem to be solved. Since it is49
impossible to harvest all grasses within a satellite pixel range, the average of 3-5 quadrats (0.5 m × 0.5 m or 1 m × 1 m) is50
usually used as the measurement (Dusseux et al., 2015; Yang et al., 2017), which results in a considerable spatial gap. A lot51
of studies have been carried out to upscale ground measurements to satellite pixels (Crow et al., 2012; Bian and Walsh,52
1993), such as block Kriging geostatistical interpolation, different types of regression models, and machine learning53
algorithms (Cheng et al., 2007; Wang et al., 2014; Cannavacciuolo et al., 1998; Dancy et al., 1986; Li et al., 2018). However,54
the accuracy of these methods depends on the density of sampling points. In addition, fine-resolution satellite images were55
used as a bridge to reduce the impact of scale mismatch on AGB estimation (Yu et al., 2021; He et al., 2019). The rationale56
is that the finer the resolution of the satellite image, the smaller the spatial gap with the ground samples (Wang and Sun,57
2014; Morais et al., 2021). Therefore, filling the spatial gap between ground samples and satellite pixels is the key to58
improving the accuracy of satellited AGB estimation.59

60
Improving the efficiency of ground sampling is another issue that needs to be addressed. Although the traditional sampling61
method can yield high-accuracy results, it is time-consuming and labor-intensive. For example, five years were spent in62
completing the collection of ground samples to map the grassland AGB in China (Yang et al., 2010). Moreover, with limited63
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original ground data, some scholars had to use the data published by others to increase the sample amount (Xia et al., 2018;64
Jiao et al., 2017). However, datasets from different sources may affect the overall accuracy due to the differences in quadrat65
size, plot size, and harvesting methods.66

67
As a linkage/bridge between field observation and satellites detecting for grassland biomass, the development and popularity68
of unmanned aerial vehicle (UAV) technology has provided a new solution to the abovementioned two issues. UAV69
photograph has been successfully used to estimate ecological metrics such as fractional vegetation cover (FVC), biomass,70
and canopy height (Chen et al., 2016; Zhang et al., 2018; Bendig et al., 2015). The use of UAVs has the following two71
unparalleled advantages over traditional sampling methods. First, UAVs can effectively obtain two- or three-dimensional72
vegetation information in a non-destructive way, which is helpful for grassland monitoring (Lussem et al., 2019; Zhang et al.,73
2022a; Zhang et al., 2018). Second, UAVs can rapidly collect key parameters of grassland within satellite pixels (e.g., FVC,74
Chen et al. 2016). Hence, UAV photographs can serve as a bridge to fill the spatial gap between field samples and satellite75
pixels. However, most current UAV-based grassland biomass estimations are conducted on a small scale, but few studies are76
on a regional scale. Whether UAVs can be used to fill the spatial gap between traditional ground sampling and satellite77
pixels remains an open question. In addition, there is a shortage of multi-year validation to test the robustness of the AGB78
estimation model over time due to the limited sample amount in previous studies.79

80
This study proposed a new approach combining traditional ground sampling, UAV photograph, and satellite image to81
produce a new reliable AGB dataset for the grasslands of the Qinghai-Tibetan Plateau (QTP). The objectives of this study82
were: 1) to construct a UAV-based grassland AGB estimation model at the quadrat/MODIS pixel scales, respectively; 2) to83
investigate whether UAVs can be used as a bridge to fill the spatial gap between ground samples and satellite pixels to84
improve the accuracy of grassland AGB estimation, and 3) to map the AGB of alpine grasslands on the QTP from 2000 to85
2019.86

2 Materials and Methods87

2.1 Study Site88

QTP is the highest and largest plateau on the earth (26°00′12″~39°46′50″N, 73°18′52″~104°46′59″E), with an average89
elevation of ~4000 m and an area of approximately 257.24 × 104 km2 (Figure 1). It is located in western China, with an90
average annual temperature and precipitation of about 1.6℃ and 413.6 mm, respectively. The primary grassland types are91
meadow, steppe, and desert, which play a critical role in climate regulation, water conservation, and biodiversity protection92
(Ding et al., 2013). In this study, the boundary of the QTP (Zhang et al., 2014) was downloaded from the National Earth93
System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn). Grassland94

http://www.geodata.cn
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types were derived from the 1: 1000000 Chinese digital grassland classification map provided by the China Resource and95
Environmental Science and Data Center (https://www.resdc.cn/). This dataset, generated through field surveys in the 1980s96
and supplemented by satellite and aerial imagery, is the most detailed grassland-type map available. To facilitate comparison97
with others' AGB estimates, we regrouped the grassland types into three categories: meadow, steppe, and desert (Table A1),98
and resampled this regrouped vector to a grid with 250 m spatial resolution.99

100
Figure 1. Distribution of field and UAV sampling sites in 2019 (a); UAV sampling sites in grasslands on the QTP from 2015-2018101
(b-e). Field_UAV_2019 represents the quadrat-scale sampling sites for the 2019 UAV-Field synchronous grassland biomass102
experiment. UAV_year represents the UAV sampling points based on the GRID or RECTANGLE mode of the corresponding year.103

https://www.resdc.cn/
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2.2 Overall technology roadmap104

The overall flowchart of this study is shown in Figure 2. It consisted of four main steps: 1) UAV and field investigation; 2)105

constructing the AGB estimation model at the quadrat scale; 3) upscaling the grassland AGB to the MODIS pixel scale (250106
m); 4) building the AGB estimation model at the MODIS pixel scale (250 m) and applying it to the QTP region. More107
detailed information about each step was described in the following sections.108

109
110

Figure 2. The overall flowchart of UAV field survey and the construction of grassland AGB estimation models at different spatial111
scales.112
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2.3 Field investigation113

2.3.1 UAV and route planning114

DJI Phantom 3 Professional (DJI Company, Shenzhen, China), a popular consumer quadrotor UAV with a high-resolution115
RGB camera, was used to collect UAV photos of the QTP from 2015 to 2019. It has a 1/23-inch CMOS sensor and is116
capable of taking 12-megapixel photos. In addition, it uses a 3-axis stable gimbal to take photos vertically downward to117
eliminate the distortion of UAV photos. It has good environmental adaptability, with an operating temperature range from118
0℃ to 40℃, and a maximum take-off altitude of 6000 m. Therefore, DJI Phantom 3 Professional is adequate to monitor119
grassland states on the QTP. More detailed information about the UAV system was listed in Table A2.120

121
Fragmentation monitoring and analysis with aerial photography (FragMap) system was used for UAV route planning (Yi,122
2017). During 2015-2019, we conducted UAV monitoring of the QTP grasslands using FragMap (Figure 1). Over 2,000123
fixed flight routes were set up during this period, and more than 40,000 UAV photos were collected, providing a sufficient124
dataset for this study (Table 1).125

126
Table 1. UAV sampling information from 2015 to 2019127

128
GRID, RECTANGLE, and BELT are the most widely used flight modes in FragMap software. Among these modes, GRID129
and RECTANGLE modes have 16 and 12 waypoints for capturing UAV photos within a MODIS pixel range (250 m × 250130
m) (Figure A1). The flying height and speed are set to 20 m and 3 m/s, respectively. The spatial coverage area of a 20-meter-131

Year Flight Mode Number of route Photo number Acquisition date
2015 RECTANGLE 214 2568 7/05 ~ 8/24

2016 RECTANGLE 334 4008 6/20 ~ 9/29

GRID 150 2400 6/20 ~ 9/23

2017 RECTANGLE 315 3780 5/10 ~ 10/24

GRID 322 5152 7/15 ~ 8/22

2018 RECTANGLE 79 948 7/22 ~ 8/03

GRID 303 4848 7/04 ~ 8/29

2019 GRID

BELT

885

151

14160

2416

7/12 ~ 9/21

7/12 ~ 9/21

Total 2753 40280
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high UAV photo is about 26 m  35 m. The BELT mode is similar to GRID, but is designed to obtain near-ground UAV132

photos with higher resolution (Figure 3b). Normally, the BELT size is set to 40 m × 40 m, and the flying height and speed133
are set to 2 m and 1 m/s to ensure that field crews have enough time to place sampling quadrats under the UAV waypoints.134

Therefore, it can be used to help field workers quickly and evenly place sampling quadrats. As with the GRID mode, 16135

UAV photos can be captured in a single flight of BELT. Compared with the MOSAIC mode (which requires a guaranteed136
overlap rate between photos to obtain a full view of an area), our design is more in line with the traditional ecological137
sampling concept and more conducive to rapid sample collection.138

139
Figure 3. Schematic diagram of the UAV-field synchronization experiment in 2019: a combination design of GRID (a) and BELT140
(b) flight modes; a UAV photo with a quadrat from the BELT mode at the height of 2 m (d); a 20-meter-high UAV photo including141
four sample quadrats (c); and the cropped UAV photos at the quadrat scale from 20 m (e) and 2 m (f) height, respectively.142
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2.3.2 Synchronization experiment of UAV and field sampling143

A UAV-field biomass synchronization experiment was conducted in 2019 to ensure spatial matching among satellites, UAVs,144
and ground sampling (Figure 3). The specific four steps were as follows. Firstly, we set a GRID flight mode with a MODIS145
pixel size (250 m × 250 m) (Figure 3a). Secondly, three waypoints were selected from the GRID flight mode to set the146
BELT flight modes (40 m × 40 m). For each BELT, a sampling quadrat (0.5 m × 0.5 m) was placed at its 6, 7, 10, and 11147
waypoints to ensure that the GRID photo could contain the four abovementioned quadrats (Figure 3b-c). Thirdly, after the148
implementation of all fights, the grassland samples were cut, bagged, and numbered. Finally, these samples were oven-dried149
at 65℃ to constant weight to obtain the field-measured AGB values.150

151

2.4 Data processing152

2.4.1 UAV photo pre-processing and indices calculation153

Pre-processing of UAV photos included image quality inspection, cropping, and calculation of different indices. It should be154
noted that only UAV photos at 20 m height were used in this paper. Firstly, we eliminated overexposed or blurred 20-meter-155
high UAV photos. Secondly, the pixels in the sampling quadrats were cropped and saved (Figure 3e). Thirdly, the RGB156
indices, including color space, histogram, and vegetation indices, were calculated based on the method in our previous study157
(Zhang et al., 2022a). In addition, 30 other RGB indices were added as candidate independent variables. The names,158
formulas, and references of the above indices are shown in Table A3.159

2.4.2 MODIS vegetation index and other spatial data160

The MOD13Q1(v006) product was downloaded from the National Aeronautics and Space Administration (NASA) earth161
explorer website (https://earthexplorer.usgs.gov/) for detecting the alpine grassland AGB on the QTP. The data contained162
two commonly used vegetation indices, the Normalized Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI),163
with spatial and temporal resolutions of 250 m and 16 days, respectively. A total of 2,842 scenes from 2000 to 2019 were164
downloaded. Then, the MODIS images were reprojected and mosaiced using the MODIS Projection Tool (MRT). After that,165
the corresponding vegetation indices closest to the date of the UAV sampling were extracted to construct/validate the166
MODIS pixel-scale AGB estimation model. In addition, the kNDVI was calculated to overcome the NDVI saturation issue167
based on the equation kNDVI = TANH (NDVI2) (Camps-Valls et al., 2021). The annual maximum vegetation indices were168
calculated by the maximum value composition (MVC) algorithm to estimate the spatial AGB distribution of the QTP from169
2000 to 2019 (Holben, 1986; Wang et al., 2021; Gao et al., 2020).170

171

https://earthexplorer.usgs.gov/
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Furthermore, meteorological, soil texture, and topographic data were included as candidate independent variables for172
constructing the MODIS pixel-scale AGB estimation model. Meteorological factors, including mean annual temperature173
(MAT), mean annual precipitation (MAP), and total annual solar radiation (TASR), were calculated based on the daily174
meteorological dataset from the National Meteorological Information Center of China (http://data.cma.cn/). The data175
processing steps mainly included checking and eliminating the anomalous values of attributes, cumulative summation,176
annual averaging, and interpolation to obtain a meteorological raster dataset with a spatial resolution of 1 km (Li et al., 2021).177
Moreover, soil texture data at 1 km spatial resolution, including the ratio of soil organic matter (SOM), clay, sand, and silt,178
were downloaded from the Resource and Science and Data Center of China (https://www.resdc.cn/). All the meteorological179
and soil raster datasets were regridded into 250 m by ArcGIS software (Version 10.2, Environmental Systems Research180
Institute, Inc.) to match the MODIS image.181

182
Terrain factors including altitude, slope, and aspect, were derived from the digital elevation model (DEM) using the terrain183
analysis tool of ArcGIS software. The DEM was retrieved from Shuttle Radar Topography Mission (SRTM) imagery184
(version 004, 90 m) and regridded to 250 m.185

2.5 AGB modeling and computation at different scales186

We estimated the grassland AGB at three scales: the quadrat scale, the photo scale, and the MODIS pixel scale (Figure 4).187
More detailed information was described as follows.188

189
Figure 4. Upscaling steps to estimate grassland AGB matching the MODIS pixel scale.190

https://www.resdc.cn/


10

2.5.1 Random forest model191

Random Forest (RF) (Breiman, 2001) is an ensemble-learning algorithm that has been widely used to estimate AGB due to192
its excellent performance (Ghosh and Behera, 2018; Mutanga et al., 2012; Wang et al., 2016). The two primary parameters,193
named the number of regression trees in the forest (ntree) and the number of feature variables required to create branches194
(mtry), were firstly optimized based on the root mean square error (RMSE) of training data. Here, the value of ntree was set195
from 100 to 5000 with an interval of 100, while mtry was set as the square root of the number of training sample features. In196
addition, the importance of each predictor was ranked by calculating the percentage increased in mean square error197
(%IncMSE).198

199
The backward feature elimination method (BFE) was used to reduce the number of input variables to simplify the RF model200
(Vergara and Estévez, 2014). The primary steps were as follows: 1) constructing an AGB RF model by including all201
predictors in the initial stages and calculating the %IncMSE for each variable; 2) eliminating the least promising variable and202
then rerunning the RF model until only one independent variable was left. Moreover, the corresponding coefficient of203
determination (R2) and the corresponding RMSE were calculated in each iteration; 3) the smallest subset of variables with204
the highest R2 was selected as the final optimized indices.205

206
In addition, different training and validation strategies were used at different scales. Due to the limited ground samples, a 10-207
fold cross-validation method was used at the quadrat scale (Kohavi, 1995). At the MODIS pixel scale, 30% of the UAV-208
estimated AGB samples in 2019 were randomly selected as an independent validation dataset due to its large size.209
Meanwhile, the UAV_AGB values from 2015 to 2018 were used for multi-year validation to test the robustness of the model210
over time. Statistical metrics R2 (Eq.1) and RMSE (Eq.2) were used to evaluate model performance.211

�2 = 1 − �=1
� (ŷ�−��)2�

�=1
� (ŷ�−�� �)2�

(1)212

���� = �=1
� (ŷ�−��)2�

�
(2)213

where n is the number of samples, yi and ŷi represent the measured and the predicted AGB value, respectively, �� is the214

mean value of measured AGB samples.215

2.5.2 AGB RF estimation model at the quadrat scale (0.25 m2)216

Since the spatial coverage area of a 20-meter-high UAV photo (26 m  35 m) is much larger than a single 2-meter-high217

UAV photo (0.8 m  1 m), making it easier to match the MODIS pixel scale (250 m  250 m). Hence, the 20-meter-high218

UAV photos containing the sample quadrats were chosen for constructing the quadrat-scale AGB estimation model. A total219
of 906 pairs between field harvested AGB and UAV sub-photos were collected, with good spatial representativeness (Figure220
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1a, yellow dots). The observed AGB values ranged from 0 to 450 g·m-2, with mean and median values of 59.75 g·m-2 and221
33.04 g·m-2, respectively (Figure 5a). The cropped 20-meter-high UAV photo indices and the measured AGB values were222
used as the independent and dependent variables to build the RF model at the quadrat scale (Figure 2).223

2.5.3 AGB calculation at the photo scale (~900 m2)224

The steps for AGB estimation of the whole 20-meter-high UAV photo were as follows: 1) Firstly, each UAV photo was split225
into ~2,000 quadrat-sized small patches. 2) Secondly, the AGB of each small patch was calculated based on the quadrat-226
scale AGB estimation model. 3) Finally, the average of all small patches was calculated as the AGB of the whole photo.227
Based on the above steps, the AGB values of more than 75 million quadrats in 37,864 photos in GRID or RECTANGLE228
mode were calculated (Table 1).229

230

231
Figure 5. Histograms of field-measured AGB values at quadrat scale (a) and UAV-estimated AGB values of different years at the232
photo scale (b).233

234

2.5.4 AGB RF model construction at MODIS pixel-scale (6,2500 m2)235

The following steps were involved in constructing the AGB estimation model at the MODIS pixel scale. 1) Since the236
coverage area of a GRID or RECTANGLE mode was similar to that of a MODIS pixel, the average value of 16 or 12 UVA237
photos’ AGB was taken as the AGB value of the corresponding MODIS pixel. During 2015-2019, a total of 2,602 UAV-238
estimated AGB samples were obtained at the MODIS pixel scale (Table 1). 2) The MODIS vegetation indices and other239
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spatial metrics (such as meteorological, soil texture, and topographic data) corresponding to each GRID or RECTANGLE240
mode were then extracted using the ArcGIS software. Here, the MODIS NDVI, EVI, and kNDVI indices closest to the241
sampling date were chosen to minimize the time difference between sampling and satellite overpass. 3) Subsequently, the242
UAV-estimated AGB values, MODIS vegetation indices, and other spatial metrics were used as dependent and independent243
variables to build the AGB estimated model at MODIS pixel scale using the RF model.244

2.6 Uncertainty analysis245

Since the actual AGB values of MODIS pixels cannot be directly obtained, the regression coefficient between vegetation246
indices and estimated AGB was used to quantify the uncertainty of different AGB estimation methods. In other words, the247
higher the correlation between the estimated AGB and MODIS vegetation indices, the more accurate the estimation model248
was. The performance of the estimation model was evaluated through three aspects. In this study, we first compared the249
correlation between the MODIS vegetation indices and AGB values obtained by traditional sampling and UAV estimation250
methods. We also explored the uncertainties of UAV sampling coverage area by regularly combining the number of photos251
in a MODIS pixel, and tested whether the estimated AGB was closer to the “true” value as the number increased.252
Furthermore, the AGB validation results between GRID and RECTANGLE at the pixel scale were compared to understand253
the uncertainties caused by different flight modes.254

2.7 Trend analysis of grassland AGB255

This study combined the Theil-Sen median trend analysis and Mann-Kendall test to analyze the temporal variation256
characteristics of grassland AGB in QTP (Jiang et al., 2015). Theil-Sen median trend analysis is a robust trend statistical257
method with high computational efficiency, insensitive to outliers (Hoaglin et al., 1983). The Mann-Kendall test is a258
nonparametric test for time series trends, which does not require the measurements to follow a normal distribution and is not259
affected by missing values and outliers. The Theil-Sen Median trend analysis and Mann-Kendall trend test have been widely260
used to analyze the temporal trend of vegetation index, cover, and biomass (Gao et al., 2020; Jiang et al., 2015; Fensholt et261
al., 2009). The detailed formulas for the Theil-Sen median trend analysis and the Mann-Kendall method are provided by262
Jiang et al. (2015).263

3 Results264

3.1 Independent variables selected for AGB modeling265

The independent variables for AGB estimation at the quadrat and MODIS pixel scales were presented in Table 2. A total of266
36 independent variables were selected at the quadrat scale, including 26 vegetation RGB indices, six histogram indices, and267
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four color space indices (Figure A2). At the MODIS pixel scale, five variables were selected, including NDVI, kNDVI, EVI,268
MAP, and DEM (Figure A3).269

270
Table 2. Selected independent variables for the AGB modeling at quadrat and pixel scales. The full names of each variable at the271
quadrat scale were listed in Table A3.272

Scale Model Number Independent variables

Quadrat RFQ 36 FVC, WI, GI, EXG, TGI, EXGR,VEG, GRATIO, COM, CIVE, RGBVI, EXR,

GLA, GRRI, MVARI, MGRVI, GRVI, RGRI, GBRI, VARI, NDI, RRATIO,

EXB, V, IPCA, INT,

HOC_R_CORR, HOC_B_CHIS, HOC_R_CHIS, HOC_G_CHIS,

HOC_G_CORR, HOC_B_CORR，

B, H, G, R

Pixel RFP 5 NDVI, kNDVI, EVI, DEM, MAP

273

3.2 Modeling and accuracy assessment274

For the AGB estimation model at the quadrat scale, the results of 10-cross validations showed that there was a significant275
linear relationship between the estimated and the field-measured values (R2 = 0.73, p < 0.001, Table 3, Table A4). There was276
no significant difference (p > 0.05) between the predicted and the measured values of the mean AGB at a confidence level of277
95% (Table 4) with an RMSE of 32.94 g·m-2 (Table 3). The model predicted well when the measured biomass was less than278
150 g·m-2, however, underestimation was found when the measured biomass was more than 200 g·m-2 (Figure 6a). It may be279
because the number of samples more than 200 g·m-2 is relatively small, accounting for only 8.50% of all samples (Figure 5a).280
Although the sample amount of UAV varied year by year, the AGB values estimated from UAV photos typically ranged281
from 0 to 300 g·m-2 (Figure 5b).282

283
For the AGB estimation model at the MODIS pixel scale, there was a strong linear relationship (p < 0.05) between the284
estimated AGB and that measured by UAV photos for 2015-2019 (Table A4). The fitting coefficient R2 was 0.85 for 2017-285
2019, and slightly lower for 2015-2016 with the value of 0.63 and 0.77, respectively (Table 3, Figure 6b-f). The RMSE of286
the MODIS pixel-scale model ranged from 23.36 to 34.07 g·m-2 (Table 3). In addition, we found no significant differences287
(p > 0.05) between the predicted and measured values of the average AGB, except for 2017 and 2018 (Table 4). The average288
AGB estimated by the MODIS pixel-scale model for 2017 and 2018 were 131.48 g·m-2 and 120.60 g·m-2, which were289
14.72% and 13.78% lower than those estimated by UAV photos. Although the average AGB estimates between the MODIS290
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pixel-scale model and UAV were different in 2017 and 2018, the error percentages were acceptable. Therefore, the291
constructed MODIS pixel-scale AGB estimation model had good performance and robustness in different years (Figure 6b-f).292

293
Table 3. Validation results of AGB models at the quadrat and pixel scales294

Scale Year Training set Validation set
R2 RMSE(g·m-2) R2 RMSE(g·m-2)

Quadrat-scale
Pixel-scale

2019
2019
2018
2017
2016
2015

0.94
0.96
__
__
__
__

20.18
10.68
__
__
__
__

0.73 ***
0.85 ***
0.85 ***
0.85 ***
0.77 ***
0.63 ***

32.94
23.36
24.83
23.83
31.28
34.07

‘***’ significant at p < 0.001295
296

297
Table 4. T-test results between the predicted and measured AGB values for the modes at the quadrat and pixel scales298

Validation model Measured mean
(g·m-2)

Predicted mean
(g·m-2)

t df p-value

2019_Quadrat-scale 51.57 54.35 -0.66 939.35 0.51
2019_Pixel_scale 136.68 137.75 -0.15 340.78 0.88
2018_Pixel_scale 152.49 131.48 4.01 723.81 6.63e-05
2017_Pixel_scale 141.42 120.60 5.48 1225.20 5.26e-08
2016_Pixel_scale 149.56 142.70 1.68 961.99 0.09
2015_Pixel_scale 108.65 98.23 1.96 1225.20 0.05

299
300

3.3 Correlation analysis between AGB values and MODIS indices301

The correlations between the UAV-estimated AGB and MODIS vegetation indices were much better than that between field302
harvested AGB and MODIS vegetation indices (Figure 7a). For example, the correlation between NDVI and field harvested303
AGB was only 0.53, considerably lower than the correlation between NDVI and AGB obtained from a single UAV photo (r304
= 0.74). Moreover, the correlation between NDVI and UAV-estimated AGB increased with the increasing number of UAV305
photos. It increased rapidly as the number of UAV photos increased from 1 to 4 (from 0.74 to 0.86), then slowed down and306
stabilized (from 0.87 to 0.88). In addition, we compared the scatter plots and fitting lines between NDVI and different AGB307
estimation methods (Figure 7b-f). The results showed a weak linear relationship between the field-measured AGB and NDVI,308
with an R2 of 0.29. While using the UAV sampling method, the linear relationship was greatly improved and increased with309
the increasing number of photos. The fit coefficient R2 increased from 0.54 to 0.78, much higher than the traditional310
sampling method (Figure 7).311
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312
313

Figure 6. Validation results of the AGB estimation models at the quadrat (a) and MODIS pixel scale for 2015-2019 (b-f).314

315
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316
Figure 7. Correlation between MODIS vegetation indices and different AGB estimation methods (a); scatter plots of NDVI with317
different AGB estimation methods (b-f). UAV_x, x represents the number of UAV photos used to estimate the average AGB at the318
MODIS pixel scale. Here, x ranges from 1 to 16.319
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3.4 Spatial distribution of grassland AGB320

The spatial distribution of the average grassland AGB on the QTP from 2000 to 2019 was calculated (Figure 8). The AGB321
gradually increased from west to east. The average AGB of eastern OA1, IIAB1, IB1, and IIC2 eco-geographical regions322
ranged from 150 to 190 g·m-2, and the average AGB of IC1 and IIC1 ranged from 80 to 110 g·m-2 (Figure 8b). The average323
AGB of IID2, IID3, IC2, and IID1 in the west was relatively low, ranging from 35 to 75 g·m-2. The ID1 region was324
dominated by desert grassland with the lowest average annual AGB values, which fluctuated around 20 g·m-2 (Figure 8b).325
Except for the low AGB due to low precipitation in 2015 (Figure A4), the mean AGB showed an overall increasing trend326
from 2000 to 2019, with an average growth rate of 0.22 g·m-2·a-1 (Figure 9a). The overall mean AGB of the QTP was 103.6327

g·m-2, with 151.85 g·m-2, 60.85 g·m-2, and 28.91 g·m-2 for meadow, steppe, and desert grassland, respectively (Figure 9b).In328

addition, the temporal trend of grassland AGB in each pixel was analyzed. As shown in Figure 10, the IID3, ID1, IID2, and329
IIC2 eco-geographical regions of the northern QTP showed an increasing trend from 2000 to 2019, while the IC2, IB1, and330
IIC1 regions showed a decreasing trend. Therefore, there was spatial heterogeneity in the temporal variation.331
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332
333

Figure 8. (a) The spatial distribution of average grassland AGB on the QTP from 2000 to 2019. IID1, IID2, IID3, ID, IIC1, IIC2,334
IC1, IB1 IIAB1, and OA1 are the eco-geographical regions of the QTP(Zheng, 1996). The full names of each eco-geographical335
region were listed in Table A5. (b) AGB values of each eco-geographical region from 2000 to 2019. (c) Comparison of multi-year336
AGB averages in the different eco-geographical regions.337
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338
Figure 9. Variation trend of average grassland AGB on the QTP from 2000 to 2019 (a) and average AGB of different grassland339
types (b).340

341
Figure 10. Spatial trends of grassland AGB on the QTP from 2000 to 2019. IID1, IID2, IID3, ID, IIC1, IIC2, IC1, IB1 IIAB1, and342
OA1 are the eco-geographical regions of the QTP (Zheng, 1996). The full names of each eco-geographical region were listed in343
Table A5.344
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4 Discussion345

4.1 Scale matching and its impact factor346

In previous studies, the AGB values at the satellite pixel scale were usually represented by the average of 3-5 quadrat-scale347
samples placed in the corresponding satellite pixel, resulting in a large spatial gap between the ground samples and the348
satellite pixels (Yang et al., 2017; Yang et al., 2009; Meng et al., 2020). The spatial gap between ground samples and349
satellite pixels affects the accuracy of grassland AGB estimation models (Morais et al., 2021). Therefore, we used the UAVs350
as a bridge to fill the spatial gap. Spatial scale matching of dependent and independent variables was achieved in estimating351
AGB values at different scales. Firstly, at the quadrat scale, the independent variables were all derived from cropped 20-352
meter-high UAV photos corresponding to the ground samples (Figure 3e). Secondly, the 20-meter-high UAV photo was split353
into ~2000 quadrat-sized patches to ensure consistency with the quadrat-scale model, and the average of these patches was354
used as the final AGB at the photo scale. Finally, the AGB matching the MODIS pixel scale was calculated by averaging the355
AGB of 16 or 12 UAV photos within the MODIS pixel (Figure A1). With these three steps, we successfully upscaled the356
measured AGB from quadrat scale (0.5 m × 0.5 m) to photo scale (26 m × 35 m) and MODIS pixel scale (250 m × 250 m).357
Our results showed that the correlations between the UAV-estimated AGB values and the MODIS vegetation indices were358
higher than that between field harvested AGB and MODIS vegetation indices (Figure 7).359

360
Furthermore, we found that the spatial coverage area of the UAV sampling had an impact on the scale matching. Our results361
showed that the closer the spatial coverage area of the UAV sampling was to the satellite pixel, the higher its correlation with362
MODIS vegetation indices (Figure 7a). It was further confirmed by comparing the validation results of different flight modes.363
At the MODIS pixel scale, we found that the R2 between the model predictions and the AGB values estimated by GRID364
mode was better than that of RECTANGLE mode (Figure 11). The reason is that GIRD mode can take 16 photos within a365
MODIS pixel, while RECTANGLE mode can only take 12 photos (Figure A1). As a result, UAV photos could serve as a366
bridge to effectively fill the spatial gap between traditional samples and satellite data.367
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368
Figure 11. Comparison of validation results for the GRID (a,c,e) and RECTANGLE (b,d,f) modes in 2016-2018.369
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4.2 Importance of the addition of non-vegetation samples370

Compared with traditional sampling (Yang et al., 2017), UAV sampling has the advantage of larger spatial coverage area371
(0.5 m × 0.5 m vs. 35 m × 26 m). Thus, the UAV photo could capture non-vegetation background information, such as roads,372
water, soil, gravel, and riverbed (Figure A5). Adding non-vegetation samples could improve the accuracy of AGB estimation373
at the photo scale, especially for areas with low vegetation cover. It was also suitable for the pixel-scale AGB estimation374
model.375

4.3 Comparison of the estimated AGB with previous studies376

We compared our results with previous studies at the quadrat, pixel, and regional scales. At the quadrat scale, consistent with377
our previous study, we further confirmed that the UAV photos could be used to estimate grassland AGB (Zhang et al., 2022a;378
Zhang et al., 2018). Similar to the 2-meter-high UAV photo, the 20-meter-high UAV photo could be used to estimate the379

grassland AGB at the quadrat scale (R2 = 0.73, RMSE = 44.23 g·m-2, Figure 6a). Compared with the 2-meter-high UAV380

photo (0.8 m  1 m), the 20-meter-high UAV photo (26 m  35 m) is more suitable for matching the MODIS pixel due to its381

larger spatial coverage area. In addition, the direct use of the 20-meter-high photo eliminates the need for spatial scale382
conversions when upscaling the AGB estimation from the quadrat scale to the photo scale.383

384
At the pixel scale, compared with other studies, this paper achieved the spatial scale matching of independent and dependent385

variables during the modeling. In previous studies (Yang et al., 2009; Yang et al., 2017; Meng et al., 2020), they386

constructed the models from the measured AGB values at the quadrat scale and the spectral indices of the satellites without387
considering the spatial scale difference. It partly explained why the R2 of the AGB linear model constructed by Yang et al.388
(2009) was only 0.4. Our results confirmed that the R2 of the linear model could be increased from 0.29 to 0.78 after filling389
the spatial gap between measured AGB and MODIS NDVI (Figure 7). In addition, thanks to the rapid sampling of UAV390
technology, a total of 2,602 UAV samples matching the MODIS pixel scale were collected during 2015-2019. It allowed us391
to perform multi-year validation to assess the robustness of the model over time, which has rarely been performed in392
previous studies. Our results showed similar validation results for 2017-2019, despite different sample amounts and spatial393
distributions (Figure 1, Table 1). But in 2015-2016, R2 was relatively low, at 0.63 and 0.77, respectively (Table 3, Figure 6).394
The reason was that during 2015-2016, some photos with unnatural white balance were obtained due to improper settings,395
which reduced the estimation accuracy (Figure A6). The validation results showed that the MODIS pixel-scale AGB396
estimation model had good robustness in different regions and times whenever the photo quality was acceptable.397

398
At the regional scale, consistent with previous results, we found an overall increase in AGB over the QTP from 2000 to 2019,399
albeit with fluctuations (Zeng et al., 2019; Gao et al., 2020). The annual average AGB of grassland was 103.6 g·m-2, which400
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was closest to Zhang et al.(2022b) and within the range of the previous estimates (59.63-120.73 g·m-2) (Table 5). The mean401
AGB varied among different grassland types, with 151.85 g·m-2 for the meadow and 60.85 g·m-2 for the steppe. Our402
estimation results were similar to those of Zeng et al.(2019), but the overall average AGB was higher than their estimate of403
77.12 g·m-2. The spatial distribution of AGB was consistent with previous studies, showing a west-to-east increasing trend404
(Zhang et al., 2022b; Xia et al., 2018). Specifically, the average AGB of OA1, IIAB1, IB1, and IIC2 eco-geographical405
regions in the east was significantly higher than that of IID2, IID3, IC2, IID1, and ID1 regions in the west (Figure 8). In406
general, the average AGB estimates for each eco-geographical region in this paper were similar to those reported by Zhang407
et al. (2022b). Among them, our average AGB estimates for ID1, IID1, IID3, and IID2 regions were slightly lower, but our408
values were closer to the measured values of these regions (Figure 8c). The reason may be that they calculated the potential409
AGB, while we calculated the actual AGB, so our estimate was relatively low. In terms of spatial and temporal trends, the410
data results showed that the eco-geographical regions in the northern part of the QTP demonstrated an increasing trend (IID3,411
ID1, IID2, and IIC2), while the IC2, IIC1, and IB1 regions exhibited significant or non-significant decrease, which was412
consistent with the results of others (Gao et al., 2020; Liu et al., 2017).413

414
Table 5. Comparison of AGB estimation results of different studies on the QTP415

Mean AGB
(g·m-2)

Steppe
(g·m-2)

Meadow
(g·m-2)

Study period Approach Input parameter References

68.8 50.1 90.8 2001-2004 Linear regression EVI (Yang et al., 2009)
__ 22.4 42.37 2000-2012 Linear regression NDVI (Liu et al., 2017)
120.73 __ __ 1980-2014 Exponential

regression
NDVI (Jiao et al., 2017)

78.4 __ __ 1982-2010 RF NDVI, climate (Xia et al., 2018)
77.12 76.43 154.72 2000-2014 RF NDVI, EVI,

climate, terrain
(Zeng et al., 2019)

59.63 42.75 77.56 2000-2017 RF NDVI, climate (Gao et al., 2020)
102.4 __ __ 2000-2020 RF climate, soil, and

terrain
(Zhang et al.,
2022b)

70.00 __ __ 1960-2002 Century climate and soil data (Zhang et al.,
2007)

119.78 __ __ 2002-2004 Orchidee climate, soil and LAI
data

(Tan et al., 2010)

103.6 60.85 151.85 2000-2019 RF MODIS this study
416
417

The difference between our estimated grassland AGB and previous studies might be due to differences in data sources and418
modeling methods. Firstly, the sample amount and spatial distribution of ground samples were different. The number of419
ground samples is the most important variable affecting the accuracy of the grassland AGB estimation model (Morais et al.,420
2021). Unlike previous studies, we collected ground validation data by combining the traditional sampling method and421
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UAVs. The newly proposed method could overcome the shortcomings of traditional samplings (time-consuming and labor-422
intensive). It no longer takes years to obtain spatially representative, large-scale ground validation data (Yang et al., 2017).423
With UAV sampling, ground observations matching the satellite pixel scale can be obtained in only 15-20 minutes, which is424
difficult to achieve in traditional surveys. Our new sampling method not only accelerates the sampling speed and increases425
the sample amount, but also improves the spatial match between ground samples and satellite pixels. As a result, our ground426
validation data is better than previous studies in terms of quantity and spatial scale matching with the satellite data. Secondly,427
the input parameters of AGB estimation models were different. Some scholars used only a single vegetation index (NDVI or428
EVI), while others combined the vegetation index with meteorological, soil, and terrain indices to construct the AGB429
estimation models (Table 5). In this study, NDVI, kNDVI, EVI, DEM, and MAP were used as the final predictor variables to430
construct the AGB estimation model at the MODIS pixel scale (Table 2). Thirdly, modeling methods might also affect the431
estimation results. As shown in Table 5, the overall AGB averages of the QTP estimated based on different methods (such as432
linear or nonlinear regression, machine learning, and ecological process model methods) varied considerably. Yang et al.433
(2017) found that the model performance of the artificial neural network (ANN) was much better than the linear regression434
model when using the same dataset to estimate grassland AGB in the Three-River Headwaters Region of China. Jia et al.435
(2016) reported that the model forms could bring 13% uncertainty to the AGB estimation. Wang et al. (2017) compared the436
RF with the bagging, mboost, and support vector regression (SVR) algorithms, and found that the RF yielded the best437
performance in grassland AGB estimation.438

439

4.4 Limitations and further work440

We acknowledge that there are some shortcomings in this study. 1) The predicted values of the quadrat-scale model were441
underestimated when the measured biomass values were greater than 250 g·m-2 (Figure 6). One of the reasons may be that442
the number of samples larger than 250 g·m-2 at the quadrat scale is relatively small, accounting for only 5.18% of the total443
samples. Another possible reason is that the height of the grassland could not be detected by a single UAV photo. Therefore,444
it could lead to an underestimation of AGB for grassland species with the same FVC but greater heights. Previous studies445
have shown that adding vegetation height information can improve the estimation accuracy of grassland AGB (Zhang et al.,446
2022a; Lussem et al., 2019; Viljanen et al., 2018). In future work, an affordable DJI Zensil L1 Lidar UAV will be introduced447
to detect the height of the grassland. 2) At the MODIS pixel scale, limited by the estimation accuracy of AGB from UAV448
photos, there was also some underestimation in the high biomass area. Although the MODIS indices closest to the sampling449
date were chosen for the construction/validation of the AGB estimation model, there was still a time gap between the450
measured samples and the MODIS indices, which might lead to estimation uncertainties. In addition, the NDVI saturation451
problem was not considered in this study, which might affect the AGB estimation accuracy in QTP (Tucker, 1979a; Gao et452
al., 2000; Mutanga and Skidmore, 2004; Tucker, 1979b). In the next step, we will continue to collect samples with high453
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biomass and try to correct the NDVI saturation problem for optimizing the simulation accuracy of the dataset. 3) During454
2015-2016, we set the automatic white balance mode for UAV shooting due to inexperience. As a result, some photos with455
unnatural white balance were obtained, reducing the accuracy of AGB estimation at the photo scale (Figure A6). 4) We456
collected grassland AGB only during the peak growing season, and the applicability of the proposed method to other457
growing seasons needs further study. 5) During the modeling process, due to the poor positioning accuracy, only the center458
points of the flight path were used to find the corresponding MODIS pixels. Moreover, although the UAV photos in GRID or459
RECTANGLE mode could cover most areas of a MODIS pixel, full pixel coverage was still not achieved. Therefore, we will460
gradually upscale to MODIS pixels by combining UAVs with Sentinel-2 or Landsat images.461

462

5 Data availability463

The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center464
(https://doi.org/10.11888/Terre.tpdc.272587). The dataset contains 20 years of AGB spatial data of the QTP with a resolution465
of 250 m and is stored in TIFF format. The name of the file is "AGB_yyyy.tif", where yyyy represents the year. For example,466
AGB_2000.tif represents this TIFF file describing the alpine grassland AGB condition of QTP in 2000. The data can be467
readily imported into standard geographical information system software (e.g., ArcGIS) or accessed programmatically (e.g.,468
MATLAB, Python).469

6 Conclusion470

This study developed a new AGB dataset for alpine grasslands on the QTP based on traditional ground sampling, UAV471
photography, and MODIS imagery. The uniqueness of this dataset is the use of UAVs as a spatial scale-matching bridge472
between traditional samples and MODIS pixels. The study confirmed that the UAV photos could be used for AGB473
estimation at the quadrat/MODIS pixel scale, with R2 of 0.73/0.83 and RMSE of 44.23/34.13 g·m-2, respectively. At the474
MODIS pixel scale, the correlations between AGB estimated by UAV and MODIS vegetation indices were higher than that475
between field harvested AGB and MODIS vegetation indices. Moreover, the spatial scale matching of the dependent and the476
independent variables was achieved during the modeling. In addition, we performed a multi-year validation of the MODIS477
pixel-scale AGB estimation model to confirm the robustness of the model and the accuracy of this dataset. The availability478
of the new dataset is helpful in many applications. First, this dataset provides reliable regional data for estimating grassland479
productivity, carbon storage, ecological carrying capacity, and ecological service functions (such as feed for grazing480
livestock) of the QTP. Second, the dataset can be used to understand the mechanisms of environmental processes, such as481
hydrological cycle processes, soil erosion and degradation, and carbon cycle processes in the QTP. In addition, this dataset482
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can be used as input or validation parameters for various ecological models to understand the response mechanism of the483
QTP to global climate change.484
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Appendix500

501
Figure A1. Waypoints for GRID (a) and RECTANGLE (b) flight modes.502

503
Figure A2. The importance values for each independent variable (a) and the R2 results of the different number of input variables504
at the quadrat scale.505
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506

507
508

Figure A3. The importance values for each independent variable (a) and the R2 results of the different number of input variables509
at the MODIS pixel scale.510

511
Figure A4. Mean annual precipitation (MAP) on the QTP from 2000-2019.512

513
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514
Figure A5. Examples of 20-meter-high UAV photos with different non-vegetation background information.515

516
Figure A6. An example of a set of GIRD photos with unnatural white balance in 2015.517
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518
Table A1. Combined grassland types519

New grassland type Original grassland type

Meadow Alpine meadow, Lowland meadow, Montane meadow，

Steppe Temperate steppe, Alpine steppe, Alpine meadow steppe

Desert Temperate steppe desert, Alpine desert

520
521

522

Table A2. Features of DJI Phantom 3 Pro523

Features Description

DJI Phantom 3 Pro

Sensor 1/23-inch; Effective-pixel: 12-megapixel

Field of view FOV 94° 20 mm

Aperture f/2.8

Shooting speed Electronic shutter: 8-1/8000 s

Photo size 4000×3000

Flight time ~25 min

Image format

Hovering accuracy

JPEG

±0.5 m vertically; ±1.5 m horizontally

Weight 1280 g

524

525
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Table A3. Details of the independent variables for quadrat-scale AGB estimation526

Acronym Index name Formula Reference
GRVI Green Red Vegetation Index (G-R)/(G+R) (Tucker, 1979a)
EXG Excess Green Vegetation Index 2G-R-B (Woebbecke et al., 1995)
GLA Green leaf area (2G-R-B)/(2G+R+B) (Louhaichi et al.)
MGRVI Modified Green Blue Vegetation Index (G2-R2)/(G2+R2) (Bendig et al., 2015)
RGBVI Red Green Blue Vegetation Index (G2-B*R)/(G2+B*R) (Bendig et al., 2015)
EXB Excess Blue Vegetation Index (1.4*B-G)/(G+R+B) (Maimaitijiang et al., 2019)
NDI Normalized difference index (R-G)/(R+G) (Woebbecke et al., 1993)
EXR Excess Red Vegetation Index 1.4*R-B (Meyer and Neto, 2008)
EXGR Excess Green minus Excess Red index ExG−ExR (Meyer and Neto, 2008)
RRATIO Red Ratio R/(R+B+G) (Woebbecke et al., 1995)
BRATIO Blue Ratio B/(R+B+G) (Woebbecke et al., 1995)
GRATIO Green Ratio G/(R+B+G) (Woebbecke et al., 1995)
VARI Visible Atmospherically Resistance Index (G -R)/(G + R - B) (Gitelson et al., 2002)
NRBI Normalized Red Blue Index (R-B)/(R+B) (Michez et al., 2016)
NGBI Normalized Green Blue Index (G-B)/(G+B) (Michez et al., 2016)
VEG Vegetative index G/(RaB(1-a)),where a = 0.667 (Hague et al., 2006)
WI Woebbecke Index (G−B)/(R−G) (Woebbecke et al., 1995)
CIVE Color Index of Vegetation 0.441R–

0.881G+0.385B+18.78745
(Kataoka et al., 2003)

COM Combination Vegetative index 0.25ExG+0.3ExGR+0.33CIVE
+0.12VEG

(Guijarro et al., 2011)

TGI Triangular Greenness Index G-0.39R-0.61B (Hunt et al., 2014; Michez et
al., 2018)

RGBVI Red Green Blue Vegetation Index (G2-B*R)/(G2+B*R) (Bendig et al., 2015)
GRRI Green Red Ratio Index G/R (Maimaitijiang et al., 2019)
GBRI Green Blue Ratio Index G/B (Maimaitijiang et al., 2019)
RBRI Red Blue Ratio Index R/B (Maimaitijiang et al., 2019)
BRRI Blue Red Ratio Index B/R (Jibo et al., 2018)
BGRI Blue Green Ratio Index B/G (Jibo et al., 2018)
RGRI Red Green Ratio Index R/G (Jibo et al., 2018)
INT Color Intensity Index (R+B+G)/3 (Ahmad and Reid, 1996)
MVARI Modified VARI (G-B)/(G+R-B) (Cen et al., 2019)
IPCA Principal Component Analysis Index 0.994×|R−B|+ 0.961×|G−B|+

0.914×|G−R|
(Saberioon et al., 2014)

527

528

529
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Table A3. Details of the independent variables for quadrat-scale AGB estimation (continued)530

Acronym Index name Formula Reference
R An average value of R channel of the

quadrat-scale UAV photo

(Zhang et al.,
2022a)

G An average value of G channel of the
quadrat-scale UAV photo

B An average value of B channel of the
quadrat-scale UAV photo

H An average value of H channel of the
quadrat-scale image in HSV color
space

S An average value of S channel of the
quadrat-scale image in HSV color
space

V An average value of V channel of the
quadrat-scale image in HSV color
space

FVC Fractional Vegetion Cover

EGI Extra Geen Index EGI = 2G-R-B

GI Green Index GI = 9×(H×3.14159/180) +3×S+V

HOC_i_C
ORR

The histogram correlation coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB

���� = � (�1 � − ��1)(�2 � − ��2)�

� (�1(�) − ��1)2� � (�2 � − ��2)2�

HOC_i_
INTERSE
C

The histogram intersection coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB

�������� =
�

min (�1 � , �2 � )�

HOC_i_
BHATTA

The histogram Bhattacharyya distance
coefficient between the i band and the
black reference histogram, where the i
represents the three bands of RGB

�ℎ���� = 1 −
1

��1��2�2 �
�1(�) ⋅ �2(�)�

HOC_i_C
HIS

The histogram correlation coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB.

�ℎ�� =
�

�1 � − �2 � 2

�1(�)�
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531

Table A4. Regression analysis for AGB estimation models at quadrat and pixel scales532

Model name Coefficient Value Standard Error t-Value p-value

2019_Quadrat-scale
Slope 0.67 0.016 42.58 9.05e-194

Intercept 20.10 1.49 13.59 5.96e-37

2019_Pixel_scale
Slope 0.84 0.03 31.59 2.75e-73

Intercept 23.20 4.04 5.74 4.24e-8

2018_Pixel_scale
Slope 0.73 0.02 45.81 8.28e-157

Intercept 20.43 2.74 7.46 6.01e-13

2017_Pixel_scale
Slope 0.75 0.01 59.13 1.98e-260

Intercept 13.89 2.04 6.82 2.19e-11

2016_Pixel_scale
Slope 0.94 0.02 40.45 4.69e-157

Intercept 2.48 3.75 0.66 0.03

2015_Pixel_scale
Slope 0.82 0.04 18.88 2.59e-47

Intercept 9.50 5.25 1.81 0.04

533
Table A5. List of abbreviations of eco-geographical regions of the QTP534

Abbreviation Full name
IB1 Golog-Nagqu high-cold shrub-meadow zone

IC1 Southern Qinghai high-cold meadow steppe zone

IC2 Qiangtang high-cold steppe zone

ID1 Kunlun high-cold desert zone

IIAB1 Western Sichuan-eastern Tibet montane coniferous forest zone

IIC1 Southern Tibet montane shrub-steppe zone

IIC2 Eastern Qinghai-Qilian montane steppe zone

IID1 Nagri montane desert-steppe and desert zone

IID2 Qaidam montane desert zone

IID3 Northern slopes of Kunlun montane desert zone

OA1 Southern slopes of Himalaya montane evergreen broad-leaved forest zone
535
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