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Abstract. The alpine grassland ecosystem accounts for 53% of the Qinghai-Tibet Plateau (QTP) area and is an important16
ecological protection barrier, but it is fragile and vulnerable to climate change. Therefore, continuous monitoring of17
grassland aboveground biomass (AGB) is necessary. Although many studies have mapped the spatial distribution of AGB18
for QTP, the results vary widely due to the limited ground samples and mismatch with satellite pixel scales. This paper19
proposed a new algorithm using unmanned aerial vehicles (UAVs) as a bridge to re-estimate the grassland AGB on the QTP20
from 2000 to 2019. The innovations were as follows: 1) In terms of ground data acquisition, the spatial scale matching21
among the traditional ground samples, UAV photos, and MODIS pixels was considered. During 2015-2019, 906 pairs of22
quadrat-scale ground-UAV sample data and 2,602 sets of MODIS pixel-scale UAV data were collected (over 37,000 UAV23
photos). Therefore, the ground validation samples were sufficient and scale-matched. 2) In terms of model construction, the24
traditional quadrat scale (0.25m2) was successfully upscaled to the MODIS pixel scale (6,2500 m2) based on the random25
forest and stepwise upscaling methods. Compared with previous studies, the scale matching of independent and dependent26
variables was achieved, effectively reducing the impact of spatial scale mismatch. The results showed that the correlation27
between the AGB values estimated by UAV and the MODIS vegetation indices was higher than that of the traditional28
sampling method at the pixel scale. The cross-year validation results showed that the constructed pixel scale AGB estimation29
had good robustness, with an average R2 of 0.83 and RMSE of 34.13 g/m2. Our dataset provides an important input30
parameter for a comprehensive understanding of the role of QTP in global climate change processes. The dataset is available31
from the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Terre.tpdc.272587, Zhang32
et al., 2022).33
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1 Introduction34

Grasslands, accounting for approximately 37% of the earth's surface, play an essential role in global carbon cycling and food35
supply (O'mara, 2012). However, most natural grasslands have been degraded to a certain extent due to overgrazing,36
farmland encroachment, soil erosion, and global climate change (Suttie et al., 2005; Ramankutty et al., 2008; O'mara, 2012).37
Therefore, timely monitoring of grassland health is crucial for sustainable development and understanding global carbon38
cycling processing. Aboveground biomass (AGB) is a key indicator of grassland status and an important input parameter for39
ecological modeling and carbon storage estimation. Thus, accurate and rapid estimation of AGB is valuable for grassland40
monitoring.41

42

The advent of satellites has made it possible to map the spatiotemporal dynamics of grasslands over large areas. Spectral43
information from different satellites has been employed for biomass estimation, such as Sentinel-2, Landsat, and MODIS44
(Wang et al., 2019; Zhang et al., 2016). Although there are differences in spatial and spectral resolution, the core idea of45
building a biomass model is constructing the linear or nonlinear relationships between the field-measured samples and46
various satellite spectral indices. Therefore, the estimation accuracy is closely related to the quality and quantity of ground47
samples (Morais et al., 2021; Yu et al., 2021). However, there are still two deficiencies in ground data acquisition: the large48
spatial gap between the traditional samples and satellite pixels, and the low efficiency.49

50
How to narrow the spatial gap between traditional samples and satellite pixels is an urgent problem to be solved. Since it is51
impossible to harvest all grasses within a pixel range, the average of 3-5 quadrats (0.5 m × 0.5 m or 1m × 1m) is usually used52
as the measurement (Dusseux et al., 2015; Yang et al., 2017), which results in a considerable spatial gap. A lot of studies53
have been carried out to upscale ground measurements to satellite pixels (Crow et al., 2012; Bian and Walsh, 1993), such as54
block Kriging geostatistical interpolation, different types of regression models, or machine learning algorithms (Cheng et al.,55
2007; Wang et al., 2014; Cannavacciuolo et al., 1998; Dancy et al., 1986; Li et al., 2018). However, the accuracy of these56
methods depends on the density of sampling points. In addition, fine-resolution satellites were used as a bridge to reduce the57
impact of scale mismatch on AGB estimation (Yu et al., 2021; He et al., 2019). The reason is that the finer the satellite58
resolution, the smaller the spatial gap with the ground samples (Wang and Sun, 2014; Morais et al., 2021). Therefore,59
obtaining ground samples that match the pixel scale is the key to improving the accuracy of satellite AGB estimation.60

61
Improving the efficiency of ground sampling is another issue that needs to be addressed. Although the traditional sampling62
method can yield high-accuracy results, it is time-consuming and labor-intensive. For example, Yang et al. spent five years63
completing the collection of ground samples to invert the grassland AGB in China (Yang et al., 2010). Moreover, with64
limited original ground data, some scholars had to use the data published by others to expand the sample size (Xia et al.,65
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2018; Jiao et al., 2017). However, datasets from different sources may affect the overall accuracy due to the differences in66
sample plot size, sample size, and sampling methods.67

68
The development and popularity of unmanned aerial vehicle (UAV) technology has provided new solutions to the above69
problems. UAV images have been successfully used to estimate ecological metrics such as FVC, biomass, and canopy height70
(Chen et al., 2016; Zhang et al., 2018; Bendig et al., 2015). The use of UAVs has the following unparalleled advantages over71
traditional sampling methods. First, UAVs can effectively obtain two- or three-dimensional vegetation information in a non-72
destructive way, which is helpful for grassland estimation (Lussem et al., 2019; Zhang et al., 2022a; Zhang et al., 2018).73
Second, UAVs can rapidly collect key parameters of grassland within satellite pixels (e.g., FVC, Chen et al. 2016). Hence,74
UAV images can serve as a bridge to reduce the spatial gap between field samples and satellite pixels. However, most75
current UAV-based grassland biomass estimations are small-scale, with few regional-scale studies. Whether UAVs can be76
used to reduce the spatial gap between traditional ground sampling and satellite pixels remains an open question. In addition,77
previous studies lacked cross-year validation to test the robustness of the AGB estimation model over time due to the limited78
sample size.79

80
This study proposed a new approach that combines traditional ground sampling, UAV photography, and satellite data to81
produce a new reliable AGB dataset of QTP grassland. The objectives of this study were: 1) to construct a UAV-based82
grassland AGB estimation model at the quadrat/satellite pixel scales, respectively; 2) to investigate whether UAVs can be83
used as a bridge to reduce the spatial gap between ground samples and satellite pixels to improve the accuracy of grassland84
AGB, and 3) to map the AGB of alpine grasslands on the Qinghai-Tibetan Plateau (QTP) from 2000 to 2019.85

2 Materials and Methods86

2.1 Study Site87

QTP is the highest and largest plateau on the earth (26°00′12″~39°46′50″N, 73°18′52″~104°46′59″E), with an average88
elevation of ~4000 m and an area of approximately 257.24×104 km2 (Figure 1). It is located in western China, with an89
average annual temperature and precipitation of about 1.6℃ and 413.6 mm, respectively. The main grassland types are90
alpine meadows, alpine steppe, and sparse grassland, which play a critical role in climate regulation, water conservation, and91
biodiversity protection (Ding et al., 2013). In this study, the boundary of the QTP of China (Zhang et al., 2014) was92
downloaded from the National Earth System Science Data Center, National Science & Technology Infrastructure of China93
(http://www.geodata.cn). Grassland type data was derived from the 1:1000000 Chinese digital grassland classification map94
provided by the China Resource and Environmental Science and Data Center (https://www.resdc.cn/). This data set,95
generated through field surveys in the 1980s and supplemented by satellite and aerial imagery, is the most detailed96
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grassland-type map available. For comparison with others, we combined the grassland types into three categories: alpine97
meadow, alpine grassland, and sparse grassland, and resampled to 250 m (Table A1).98

99
Figure 1. Distribution of field and UAV sampling sites in 2019 (a); UAV sampling sites in alpine grasslands on the QTP from 2015-100
2018 (b-e). Field_UAV_2019 represents the quadrat-scale sampling sites for the 2019 UAV-Field synchronous grassland biomass101
experiment. UAV_year represents the UAV sampling point based on the GRID or RECTANGE mode of the corresponding year.102

2.2 Overall technology roadmap103

Figure 2 was the overall flowchart of this study. It consisted of four main steps: 1) UAV and field investigation; 2)104

constructing the AGB estimation model at the quadrat scale; 3) upscaling the grassland AGB to the MODIS pixel scale; 4)105
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building the AGB estimation model at the MODIS pixel scale and applying it to the QTP region. More detailed information106
on each step was described in the following sections.107

.108
109

Figure 2. The overall flowchart of UAV field survey and the construction of grassland AGB estimation models at different spatial110
scales.111
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2.3 Field investigation112

2.3.1 UAV and route planning113

DJI Phantom 3 Professional (DJI Company, Shenzhen, China), a popular consumer quadrotor UAV with a high-resolution114
RGB camera, was used to collect UAV images of the QTP from 2015 to 2019. It has a 1/23-inch CMOS sensor and is115
capable of taking 12-megapixel photos. In addition, it uses a 3-axis stable gimbal to take photos vertically downward to116
eliminate the distortion of UAV images. It has good environmental adaptability, with an operating temperature range from 0°117
to 40°, and a maximum take-off altitude of 6000 meters. Therefore, it is well adapted to the low temperature and high118
altitude of the QTP. More detailed information about the UAV system was listed in Table A2.119

120
Fragmentation Monitoring and Analysis with aerial Photography (FragMap) system, capable of long-term collaborative121
observation, was used for UAV route planning (Yi, 2017). During 2015-2019, we conducted UAV monitoring of the QTP122
grasslands using FragMap (Figure 1). Over 2,000 fixed flight routes were set up during this period, and more than 37,000123
UAV images were collected, providing a reliable UAV dataset for this study (Table 1).124

125
Table 1. UAV sampling information from 2015 to 2019126

127
GRID, RECTANGLE, and BELT are the most commonly used flight modes in the FragMap software. GRID and128
RECTANGLE modes have 16 and 12 waypoints for capturing UAV images within a MODIS pixel range (Figure A1). Their129
flying height and speed are set to 20 m and 3m/s, respectively. The spatial coverage of a 20-meter-high UAV photo is about130

26 m  35 m. The BELT mode is similar to GRID, but is designed to obtain near-ground UAV image data with higher131

resolution (Figure 3b). It can be combined with the traditional sampling method to ensure the consistency of UAV images132

Year Flight Mode Number of routes Photo number Acquisition time
2015 RECTANGLE 214 2568 7.05 ~8.24

2016 RECTANGLE 334 4008 6.20~9.29

GRID 150 2400 6.20~9.23

2017 RECTANGLE 315 3780 5.10~10.24

GRID 322 5152 7.15~8.22

2018 RECTANGLE 79 948 7.22~8.03

GRID 303 4848 7.04~8.29

2019 GRID 885 14160 7.12~9.21

Total 2602 37864
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with the ground samples (Figure 3d). Typically, the BELT size is set to 40 m × 40 m, and the flying height and speed are set133
to 2 m and 1 m/s to ensure that field crews have enough time to place sampling frames under the UAV waypoints. As with134
the GRID mode, 16 UAV images can be captured in a single flight. Compared with the MOSAIC flight mode (which135
requires a guaranteed overlap rate between photos to obtain a full view of an area), our design is more in line with the136
traditional ecological sampling concept. It allows for a better balance of spatial representation and accessibility of samples,137
resulting in efficient sample collection.138

139
Figure 3. Schematic diagram of the UAV-field synchronization experiment in 2019: a combination design of GRID (a) and BELT140
(b) flight modes; a UAV image with a quadrat from the BELT mode at the height of 2 m (d); a 20-meter-high UAV image141
including four sample quadrats (c); and the cropped UAV images at quadrat scale from 20 m (e) and 2 m (f) height, respectively.142
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2.3.2 Synchronization experiment of UAV and field sampling143

A UAV-field biomass synchronization experiment was designed in 2019 to ensure spatial matching among satellites, UAVs,144
and ground sampling (Figure 3). The specific implementation steps were as follows. First, we set a GRID flight mode with a145
MODIS pixel size (250 m × 250 m) (Figure 3a). Then, three waypoints were randomly selected from the GRID mode to set146
the BELT flight modes (40 m × 40 m). For each BELT, a sampling frame (0.5 m × 0.5 m) was placed at its 6, 7, 10, and 11147
waypoints to ensure that the GRID image could contain the four frames mentioned above (Figure 3b-c). Then, at the end of148
all flights, the grassland AGB samples were cut, bagged, and numbered. Finally, these samples were oven-dried at 65℃ to149
constant weight to obtain the field-measured AGB values.150

151

2.4 Data processing152

2.4.1 UAV photo pre-processing and indices calculation153

Pre-processing of UAV photos included image quality inspection, cropping, and calculation of different indices. First, we154
eliminated overexposed or blurred 20-meter-high UAV images. Second, the pixels in the sampling frames were cropped and155
saved (Figure 3e). Third, the RGB indices for the cropped UAV images were calculated. Similar to our previous study,156
indices included color space, histogram, and vegetation indices, the details of which can be found in Zhang et al. (2022a). In157
addition, 30 other RGB vegetation indices were added as candidate independent variables. The names, formulas, and158
references of the above indices were shown in Table A3.159

2.4.2 MODIS vegetation index and other spatial data160

The MOD13Q1(v006) product was downloaded from the NASA earth explorer website (https://earthexplorer.usgs.gov/) for161
inversion of the alpine grassland AGB on the QTP. The data contained two commonly used vegetation indices, the162
Normalized Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), with spatial and temporal resolutions of163
250 m and 16 days, respectively. A total of 2,842 scenes from 2000 to 2019 were downloaded. Then, the MODIS images164
were reprojected and stitched using the MODIS Projection Tool (MRT). After that, the corresponding vegetation indices165
closest to the time of the UAV sampling were extracted to construct/validate a pixel-scale AGB estimation model. In166
addition, the kNDVI index was calculated to overcome the NDVI saturation issue based on the equation kNDVI= TANH167
(NDVI2) (Camps-Valls et al., 2021). The annual maximum vegetation indices were calculated by the maximum value168
composition (MVC) algorithm to estimate the spatial AGB distribution of QTP from 2000 to 2019 (Holben, 1986; Wang et169
al., 2021; Gao et al., 2020).170

171
Furthermore, meteorological, soil texture and topographic data were also included as candidate independent variables for172
constructing the pixel-scale AGB estimation model. Meteorological factors, including annual mean temperature (TA), annual173

https://earthexplorer.usgs.gov/
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mean precipitation (PREC), and annual total solar radiation (RAD), were calculated based on the daily meteorological174
dataset from the National Meteorological Information Center of China. The data processing steps mainly included175
interpolation, cumulative summation, and annual averaging to obtain a meteorological raster dataset with a spatial resolution176
of 1000 meters (Li et al., 2021). Moreover, soil texture data at 1 km spatial resolution, including the ratio of soil organic177
matter (SOM), clay, sand, and silt, were downloaded from the Resource and Science and Data Center of China178
(https://www.resdc.cn/). All the meteorological and soil datasets were resampled into 250 m by ArcGIS software to match179
the MODIS data.180

181
Terrain factors included the digital elevation model (DEM), slope, and aspect. The DEM was derived from Shuttle Radar182
Topography Mission (SRTM) imagery (version 004, 90 m) and resampled to 250 m. The slope and aspect data were derived183
from DEM data using the terrain analysis tool of ArcGIS software.184

2.5 AGB modeling and computation at different scales185

We estimated the grassland AGB at three scales: the quadrat scale, the photo scale, and the satellite pixel scale (Figure 4).186
More detailed information was described as follows.187

188
Figure 4. Upscaling steps to estimate grassland AGB matching the MODIS pixel scale.189

https://www.resdc.cn/
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2.5.1 Modeling method190

Random Forest (RF) (Breiman, 2001) is an ensemble-learning algorithm that has been widely used to estimate AGB due to191
its excellent performance (Ghosh and Behera, 2018; Mutanga et al., 2012; Wang et al., 2016). The two main parameters,192
namely the number of regression trees in the forest (ntree) and the number of feature variables required to create branches193
(mtry), were first optimized based on the root mean square error (RMSE) of training data. Here, the value of ntree was set194
from 100 to 5000 with an interval of 100, while mtry was set as the square root of the number of training sample features. In195
addition, the importance of each predictor was ranked by calculating the percentage increase in mean square error196
(%IncMSE).197

198
The backward feature elimination method (BFE) was used to reduce the number of input variables to simplify the RF model199
(Vergara and Estévez, 2014). The main steps were as follows: 1) constructing an AGB RF model by including all predictor200
variables in the initial stages and calculating the %IncMSE index for each variable; 2) eliminating the least promising201
variable and then rerunning the RF model until only one independent variable was left. Moreover, the corresponding202

coefficient of determination (R2) and the corresponding RMSE were calculated in each iteration；3) the smallest subset of203

variables with the highest R2 was selected as the final optimized indices.204
205

In addition, different training and validation strategies were used at different scales. At the quadrat scale, a 10-fold cross-206
validation method was used due to the limited ground samples (Kohavi, 1995). At the pixel scale, 30% of the UAV-207
estimated AGB samples in 2019 were randomly selected as an independent validation dataset due to the large sample size.208
Meanwhile, the UAV_AGB values from 2015 to 2018 were used for cross-year validation to test the robustness of the model209
over time. Statistical metrics R2 (Eq.1) and RMSE (Eq.2) were used to evaluate the performance of the model.210

�2 = 1 − �=1
� (ŷ�−��)2�

�=1
� (ŷ�−��)2�

(1)211

���� = �=1
� (ŷ�−��)2�

�
(2)212

where n is the number of samples, yi and ŷi represent the measured and the predicted AGB value, respectively, yi is the213

mean value of measured AGB samples.214

2.5.2 AGB RF estimation model at the quadrat scale (0.25 m2)215

Since the spatial coverage of a 20m-high UAV photo (26 m35 m) is much wider than a single 2m-high UAV photo, making216

it easier to match to the MODIS pixel scale. Hence, the 20m-high UAV photos containing the sample frames were chosen217
for constructing the quadrat-scale AGB estimation model. A total of 906 pairs of quadrat-scale UAV-field AGB observation218
data were collected, with good spatial representativeness (Figure 1 a, red dots). The observed AGB values ranged from 0 to219
450 g/m2, with mean and median values of 59.75 g/m2 and 33.04 g/m2, respectively, most of which were less than 100 g/m2220
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(Figure 5a). The cropped 20-meter-high UAV image indices and the measured AGB values were used as the independent221
and dependent variables to build the RF model (Figure 2).222

2.5.3 AGB calculation at the photo scale (~900 m2)223

The steps for AGB estimation of the whole 20-meter-high UAV photo were as follows: 1) First, each UAV photo was224
divided into ~2,000 quadrat-sized small patches. 2) Second, the AGB of each small patch was calculated based on the225
quadrat-scale AGB estimation model. 3) Finally, the average of all small patches was calculated as the AGB of the whole226
photo. Based on the above steps, the AGB values of 37,487 images in GRID or RECTANGLE mode were calculated using227
more than 74 million AGB values of the quadrat scale (Table 1).228

229

230
Figure 5. Histograms of field-measured AGB values at quadrat scale (a) and UAV-estimated AGB values of different years at the231
photo scale (b).232

233

2.5.4 AGB RF model construction at MODIS pixel-scale (6,2500 m2)234

The following steps were involved in constructing the AGB estimation model at the pixel scale. 1) Since the coverage of a235
GRID or RECTANGLE mode was similar to that of a MODIS pixel, the average of its 16 or 12 photos was taken as the236
AGB value of the corresponding pixel. From 2015-2019, a total of 2,602 UAV-estimated AGB samples were obtained at the237
pixel scale (Table 1). 2) The MODIS vegetation indices and other spatial metrics corresponding to each GRID or238
RECTANGLE mode were then extracted using the ArcGIS software. Here, the MODIS NDVI, EVI, and kNDVI indices239
closest to the sampling time were chosen to minimize the time difference between sampling and satellite overpass.3)240
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Subsequently, the UAV-estimated AGB values and the extracted spatial indices were used as dependent and independent241
variables to build the AGB estimated model at the pixel scale using the RF algorithm.242

2.6 Uncertainty analysis243

Since the actual AGB values of MODIS pixels cannot be directly obtained, vegetation indices were used to quantify the244
uncertainty of different AGB estimation methods. In other words, the higher the correlation between the estimated AGB and245
MODIS vegetation indices, the more accurate the estimation model was. The performance of the estimation model was246
evaluated through three aspects. In this study, we first compared the correlation between the MODIS vegetation indices and247
AGB values obtained by traditional sampling and UAV estimation methods. We also explored the uncertainties of UAV248
sampling coverage by randomly combining the number of photos in a MODIS pixel, and tested whether the estimated AGB249
was closer to the true value as the number increased. Furthermore, the AGB validation results from GRID or RECTANGLE250
at the pixel scale were compared to understand the uncertainties caused by different flight modes.251

2.7 Trend analysis of grassland AGB252

This study combined the Theil-Sen median trend analysis and Mann-Kendall test to analyze the temporal variation253
characteristics of grassland AGB of QTP (Jiang et al., 2015). Theil-Sen median trend analysis is a robust trend statistical254
method with high computational efficiency, insensitive to outliers (Hoaglin et al., 1983). The Mann-Kendall test is a255
nonparametric test for time series trends, which does not require the measurements to follow a normal distribution and is not256
affected by missing values and outliers. The Theil-Sen Median trend analysis and Mann-Kendall trend test have been widely257
used to analyze vegetation index, cover, and biomass (Gao et al., 2020; Jiang et al., 2015; Fensholt et al., 2009). The258
formulas for the Theil-Sen median trend analysis and the Mann-Kendall method are detailed in Jiang et al. (2015).259

3 Results260

3.1 Independent variables selected for AGB modeling261

The independent variables for AGB estimation at the quadrat and pixel scales were presented in Table 2. A total of 36262
independent variables were selected at the quadrat scale, including 26 vegetation RGB indices, 6 histogram indices, and 4263
color space indices (Figure A2). At the pixel scale, five variables were selected, including NDVI, kNDVI, EVI, PREC, and264
DEM (Figure A3).265

266
267
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Table 2: Selected independent variables for the AGB modeling at quadrat and pixel scales. The full names of each variable at the268
quadrat scale were listed in Table A3.269

Scale Model Number Independent variables

Quadrat RFQ 36 FVC, WI, GI, EXG, TGI, EXGR,VEG, GRATIO, COM, CIVE, RGBVI, EXR,

GLA, GRRI, MVARI, MGRVI, GRVI, RGRI, GBRI, VARI, NDI, RRATIO,

EXB, V, IPCA, INT,

HOC_R_CORR, HOC_B_CHIS, HOC_R_CHIS, HOC_G_CHIS,

HOC_G_CORR, HOC_B_CORR

B, H, G, R,

Pixel RFP 5 NDVI, kNDVI, EVI, DEM, PREC

270

3.2 Modeling and accuracy assessment271

For the AGB estimation model at the quadrat scale, the results of 10-cross validations showed that there was a significant272
linear relationship between the estimated and the measured values (R2=0.73, p<0.001, Table 3, Table A4). The student’s t-273
test was also used to assess whether there was a significant difference between the predicted AGB values and the measured274
values at a confidence level of 95%. As shown in Table 4, there was no significant difference (p=0.51>0.05) with an RMSE275
of 32.94 g/m2. The scatter plot showed that the model predicted well when the measured biomass was less than 150g/m2, but276
showed some underestimation when it was more than 200g/m2 (Figure 6a). It may be because the number of samples more277
than 200g/m2 is relatively small, accounting for only 8.50% of all samples (Figure 5a). Although the sample size of UAVs278
varied from year to year, most of the AGB values estimated from photos ranged from 0 to 300 g/m2 (Figure 5b).279

280
For the pixel-scale AGB estimation model, there was a strong linear relationship between the predicted AGB and UAV281
estimates for 2015-2019 (Table A4). The fitting coefficient R2 was 0.85 for 2017-2019, and slightly lower for 2015-2016 at282
0.63 and 0.77, respectively (Table 3, Figure 6b-f). The RMSE of the pixel-scale model ranged from 23.36 to 34.07 g/m2283
(Table 3). In addition, we found no significant differences between the predicted and measured average AGB values except284
for 2017 and 2018 (Table 4). While the average model projections for 2017 and 2018 were 14.72% and 13.78% lower than285
the UAV estimates, they were within acceptable ranges. Therefore, the constructed pixel-scale AGB estimation model had286
good performance and robustness in different years (Figure 6b~f).287

288
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289
Table 3: Validation results of AGB models at quadrat and pixel scales290

Scale Year Training set Validation set
R2 RMSE(g/m2) R2 RMSE(g/m2)

Quadrat-scale
Pixel-scale

2019
2019
2018
2017
2016
2015

0.94
0.96
__
__
__
__

20.18
10.68
__
__
__
__

0.73 ***
0.85 ***
0.85 ***
0.85 ***
0.77 ***
0.63 ***

32.94
23.36
24.83
23.83
31.28
34.07

‘***’ significant at p<0.001291
292

293
Table 4: T-test results between the predicted and measured AGB values for the modes at the quadrat and pixel scales294

Validation model Measured mean Predicted mean t df p-value
2019_Quadrat-scale 51.57 54.35 -0.66 939.35 0.51
2019_Pixel_scale 136.68 137.7461 -0.15 340.78 0.88
2018_Pixel_scale 152.49 131.48 4.01 723.81 6.63e-05
2017_Pixel_scale 141.42 120.60 5.48 1225.2 5.26e-08
2016_Pixel_scale 149.56 142.70 1.68 961.99 0.09413
2015_Pixel_scale 108.65 98.23 1.96 1225.2 0.05

295
296

3.3 Correlation analysis between AGB values and MODIS indices297

The correlations between the UAV-estimated AGB values and MODIS vegetation indices were much better than the298
traditional sampling method (Figure 7a). For example, the correlation between NDVI and traditionally measured AGB was299
only 0.53, much lower than that obtained from a single UAV image (r=0.74). Moreover, the correlation between NDVI and300
UAV-estimated AGB increased with the number of UAV photos. It increased rapidly as the number increased from 1 to 4301
(from 0.74 to 0.86), then slowed down and stabilized (from 0.87 to 0.88). In addition, we compared the scatter plots and302
fitting lines between NDVI and different AGB estimation methods (Figure 7b-f). The results showed a weak linear303
relationship between the traditionally measured AGB and NDVI, with an R2 of 0.29. With the UAV sampling method, the304
linear relationship was greatly improved and increased with the number of photographs. The fit coefficient R2 increased from305
0.54 to 0.78, much higher than the traditional sampling method (Figure 7).306

307
308
309
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310
311

Figure 6. Validation results of the AGB estimation models at the quadrat (a) and MODIS pixel scale for 2015-2019 (b~f).312

313
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314
Figure 7. Correlation between MODIS vegetation indices and different AGB estimation methods (a); scatter plots of NDVI with315
different AGB estimation methods (b-f). UAV_x, x represents the number of UAV photos used to estimate the average AGB at the316
MODIS pixel scale. Here, x ranges from 1 to 16.317

318
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319

3.4 Spatial distribution of grassland AGB320

The spatial distribution of the average grassland AGB on the QTP from 2000 to 2019 was calculated (Figure 8). The AGB321
gradually increased from west to east. As shown in Figure 8b, the average biomass of eastern OA1, IIAB, IB1, and IIC2 eco-322
geographical regions ranged from 150 to 190 g/m2, and the average AGB of IC1 and IIC1 ranged from 80 to 110 g/m2. The323

average AGB of IID2, IID3, IC2, and IID1 in the west was relatively low, ranging from 35 to 75 g/m2. The ID1 region was324

dominated by sparse grassland with the lowest average interannual AGB values, which fluctuated around 20 g/m2 (Figure325
8b). The average AGB of QTP showed an insignificant increasing trend between 2000 and 2019, with an average growth326
rate of 0.22 gm-2a-1 (Figure 9a). The overall mean AGB of the QTP was 103.6 g/m2, with 151.85 g/m2, 60.85 g/m2, and 28.91327

g/m2 for alpine meadow, alpine steppe, and sparse grassland, respectively (Figure 9b). In addition, the temporal trend of328

grassland AGB in each pixel was analyzed. As shown in Figure 10, the IID3, ID1, IID2, and IIC2 eco-geographical regions329
of the northern QTP showed an increasing trend from 2000 to 2019, while the IC2, IB1, and IIC1 regions showed some330
degradation. Therefore, there was spatial heterogeneity in the temporal variation.331

332

333
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334
335

Figure 8. (a) The spatial distribution of average grassland AGB on the QTP from 2000 to 2019. IID1, IID2, IID3, ID, IIC1, IIC2,336
IC1, IB1 IIAB1, and OA1 are the eco-geographical regions of the QTP(Zheng, 1996). The full names of each eco-geographical337
region were listed in Table A5. (b) AGB values of each eco-geographical region from 2000 to 2019. (c) Comparison of multi-year338
AGB averages in the different eco-geographical regions.339

340
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341
Figure 9. Variation trend of average grassland AGB on the QTP from 2000 to 2019 (a) and average AGB of different grassland342
types (b).343

344
Figure 10. Spatial trends of grassland AGB on the QTP from 2000 to 2019. IID1, IID2, IID3, ID, IIC1, IIC2, IC1, IB1 IIAB1, and345
OA1 are the eco-geographical regions of the QTP (Zheng, 1996). The full names of each eco-geographical region were listed in346
Table A5.347

348
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349

4. Discussion350

4.1 Scale matching and its influence factor351

In previous studies, the AGB value of a satellite pixel was represented by the average value of 3-5 quadrat-scale samples, so352
there is a large spatial gap between the ground samples and the satellite pixels (Yang et al., 2017; Yang et al., 2009; Meng et353

al., 2020). The spatial gap between ground samples and satellite indices affects the accuracy of grassland AGB models. The354

smaller the spatial gap between the two, the higher the accuracy of the model (Morais et al., 2021). We addressed this issue355
using the UAVs as a bridge to reduce the spatial gap. Spatial scale matching of dependent and independent variables was356
achieved in estimating AGB values at different scales. First, at the quadrat scale, the independent variables were all derived357
from cropped 20-meter-high UAV images corresponding to the ground samples (Figure 3e). Then, the 20-meter-high UAV358
image was cropped into ~2000 quadrat-sized patches to ensure consistency with the quadrat-scale model, and the average of359
these patches was used as the final AGB at the photo scale. Finally, by averaging the AGB of 16 or 12 UAV photos within360
the MODIS pixel, the AGB value matching the MODIS pixel scale was calculated (Figure A1). With these three steps, we361
successfully upscaled the measured AGB from the traditional quadrat scale (0.5 m×0.5 m) to the photo scale (26 m×35 m)362
and MODIS pixel scale (250 m×250 m). Our results showed that the correlations between the UAV-estimated AGB values363
and the MODIS vegetation indices were higher than that of the traditional sampling method (Figure 7).364

365
Furthermore, we found that the spatial coverage of the UAV sampling had an impact on the scale matching. Our results366
showed that the closer the spatial coverage of the UAV sampling was to the satellite pixel, the higher its correlation with367
MODIS spectral indices (Figure 7a). It was also confirmed by comparing the validation results of different flight modes. At368
the pixel scale, we found that the R2 between the model predictions and the AGB values estimated based on the GRID mode369
was better than that of RECTANGLE (Figure 11). The reason is that GIRD mode can take 16 pictures within a MODIS pixel,370
while RECTANGLE mode only takes 12 pictures (Figure A1).371

372
The above results confirmed that UAVs could serve as a bridge to effectively reduce the spatial gap between traditional373
samples and satellite data.374
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375
Figure 11. Comparison of validation results for the GRID (a,c,e) and RECTANGLE (b,d,f) modes in 2016-2018.376
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4.2 Importance of the addition of non-vegetation samples377

Compared with traditional sampling, UAV sampling has the advantage of wide spatial coverage (0.5 m×0.5 m vs. 35 m×26378
m). Thus, the UAV image could capture vegetation and non-vegetation background information, such as roads, water, soil,379
gravel, riverbed, etc. (Figure A4). Adding non-vegetation samples could improve the accuracy of AGB estimation at the380
photo scale, especially for low-cover areas, to avoid overestimation. It was also true for the pixel-scale AGB estimation381
model. However, the traditional sampling method gave less consideration to the non-vegetation areas. The sample plots were382
mainly set in areas with homogeneous spatial distribution, and rarely in areas with spatial heterogeneity. This shortcoming383
may limit the accuracy of AGB estimation due to the high spatial heterogeneity of the QTP. Fortunately, the UAV sampling384
method can avoid this drawback. It can objectively record surface information and reduce the influence of manual plot385
selection on AGB estimation.386

4.3 Comparison of the estimated AGB with previous studies387

We compared our results with previous studies at the quadrat, pixel, and regional scales.388
389

At the quadrat scale, consistent with our previous study, we further confirmed that the UAV RGB images could be used to390
estimate grassland AGB (Zhang et al., 2022a; Zhang et al., 2018). Similar to the 2-meter-high UAV image, the indices from391
the 20-meter-high UAV image could be used to estimate the grassland AGB at the quadrat scale (R2=0.73, RMSE=44.23392
g/m2, Figure 6a). Compared with the 2-meter-high UAV image, the 20-meter-high UAV image is more suitable for393

matching the MODIS pixel due to its wider spatial coverage (26 m 35 m).394

395
At the pixel scale, compared with other studies, this paper achieved the spatial scale matching of independent and dependent396

variables during the modeling. In previous studies (Yang et al., 2009; Yang et al., 2017; Meng et al., 2020), they397

constructed the models from the measured AGB values at the quadrat-scale and the spectral indices of the satellites without398
considering the spatial scale difference. It partly explained why the R2 of the AGB linear model constructed by Yang et al.399
was only 0.4 (Yang et al., 2009). Our results confirmed that the R2 of the linear model could be increased from 0.29 to 0.78400
after reducing the spatial gap between measured AGB and NDVI (Figure 7). In addition, thanks to the rapid sampling of401
UAV AGB, a total of 2,602 samples matching the pixel scale were collected during 2015-2019. It allowed us to perform402
cross-year validation to assess the robustness of the model over time, which has rarely been performed in previous studies.403
Our results showed similar validation results for 2017-2019 (R2=0.85, p<0.001) despite different sample sizes and spatial404
distributions (Figure 1, Table 1). But in 2015-2016, R2 was relatively low, at 0.63 and 0.77, respectively (Table 3, Figure 6).405
The reason was that during 2015-2016, some photos with abnormal white balance were obtained due to improper settings,406
which reduced the estimation accuracy (Figure A5). The validation results showed that the pixel-scale AGB estimation407
model had good robustness in different regions and times when the photo quality was acceptable.408



23

Table 5: Comparison of AGB estimation results of different studies on the QTP409

Mean
AGB
(g/m2)

Alpine
steppe
(g/m2)

Alpine
meadow
(g/m2)

Study period Approach Input parameter References

68.8 50.1 90.8 2001-2004 Linear regression EVI (Yang et al., 2009)
__ 22.4 42.37 2000-2012 Linear regression NDVI (Liu et al., 2017)
120.73 __ __ 1980–2014 Exponential

regression
NDVI (Jiao et al., 2017)

78.4 __ __ 1982-2010 RF NDVI, climate (Xia et al., 2018)
77.12 76.43 154.72 2000-2014 RF NDVI, EVI,

climate, terrain
(Zeng et al., 2019)

59.63 42.75 77.56 2000-2017 RF NDVI, climate (Gao et al., 2020)
102.4 __ __ 2000-2020 RF climate, soil, and

terrain
(Zhang et al.,
2022b)

70.00 __ __ 1960–2002 Century climate and soil data (Zhang et al.,
2007)

119.78 __ __ 2002–2004 Orchidee climate, soil and LAI
data

(Tan et al., 2010)

103.6 60.85 151.85 2000-2019 RF MODIS this study
410

At the regional scale, consistent with previous results, we found an overall increase in AGB over the QTP from 2001 to 2019,411
albeit with fluctuations (Zeng et al., 2019; Gao et al., 2020). The annual average AGB of grassland was 103.6 g/m2, which412
was closest to Zhang et al.(Zhang et al., 2022b) and within the range of the previous estimates ( 59.63-120.73 g/m2 ) (Table413
5). The mean AGB varied among different grassland types, with 151.85 g/m2 for the alpine meadow and 60.85 g/m2 for the414
alpine steppe. Our estimation results were similar to those of Zeng et al. (Zeng et al., 2019), but the overall average AGB415
was higher than their estimate of 77.12 g/m2. The spatial distribution of AGB was consistent with previous studies, showing416
a west-to-east increasing trend (Zhang et al., 2022b; Xia et al., 2018). Specifically, the average AGB of OA1, IIAB, IB1, and417
IIC2 eco-geographical regions in the east was significantly higher than that of IID2, IID3, IC2, IID1, and ID1 regions in the418
west (Figure 8). In general, the average AGB estimates for each eco-geographical region in this paper were not much419
different from those of Zhang et al. (2022b). Among them, our average AGB estimates for ID1, IID1, IID3, and IID2 regions420
were slightly lower, but our values were closer to the measured values of these regions (Figure 8c). The reason may be that421
they calculated the potential AGB, while we calculated the actual AGB, so our estimate was relatively low. In terms of422
spatial and temporal trends, the data results showed that the eco-geographical regions in the northern part of the QTP423
demonstrated an increasing trend (IID3, ID1, IID2, and IIC2), while the IC2, IIC1, and IB1 regions exhibited significant or424
non-significant decrease, which was consistent with the results of others (Gao et al., 2020; Liu et al., 2017).425

426
The difference between our estimated grassland AGB and previous studies might be due to differences in data sources and427
modeling methods. Firstly, the sample size and spatial distribution of ground samples were different. The number of ground428
samples is the most important variable affecting the accuracy of the grassland AGB estimation model (Morais et al., 2021).429
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Unlike previous studies, we collected ground validation data by combining the traditional sampling method and UAVs. The430
newly proposed method could overcome the shortcomings of traditional samplings (time-consuming and labor-intensive). It431
no longer takes years to obtain spatially representative, large-scale ground validation data (Yang et al., 2017). With UAV432
sampling, ground observations matching the satellite pixel scale can be obtained in only 15-20 minutes, which is difficult to433
achieve in traditional surveys. Our new sampling method not only accelerates the sampling speed and increases the sample434
size, but also improves the spatial match between ground samples and satellite pixels. As a result, our ground validation data435
is superior to previous studies in terms of quantity and spatial match to the satellite data. Secondly, the input parameters of436
AGB estimation models were different. Some scholars used only a single vegetation index (NDVI or EVI), while others437
combined the vegetation index with meteorological, soil, and terrain indices to construct the AGB estimation models (Table438
5). In this study, NDVI, kNDVI, EVI, DEM, and PREC were used as the final predictor variables to construct the AGB439
estimation model at the pixel scale (Table 2). Thirdly, modeling methods might also affect the simulation results. As shown440
in Table 5, the overall AGB averages of the QTP estimated based on different methods (such as linear or nonlinear441
regression, machine learning, and ecological process model methods) varied considerably. Yang et al.(2017) found that the442
model performance of ANN was much better than the linear regression model when using the same dataset to estimate443
grassland AGB in the Three-River Headwaters Region of China. Jia et al.(2016) reported that the model forms could bring444
13% uncertainty to the AGB estimation. Wang et al. compared the RF with the support vector regression (SVR) machine445
learning algorithm and found that the RF yielded the best performance in grassland biomass estimation (Wang et al., 2017).446

447

4.4 Limitations and further work448

We acknowledge that there are some shortcomings in this study. 1) The predicted values of the quadrat-scale model were449
underestimated when the measured biomass values were greater than 250 g/m2 (Figure 6). One reason may be that the450
number of samples greater than 250 g/m2 was relatively small, accounting for only 5.18 % of all samples. Another reason451
may be that for high biomass grasslands, a single UAV RGB photo can only reflect information such as vegetation cover and452
greenness, but not height information. This feature is very unfavorable for estimating AGB in grassland areas with high453
vegetation coverage and height. Studies have shown that adding vegetation height information can help improve the454
estimation accuracy of grassland AGB (Zhang et al., 2022a; Lussem et al., 2019; Viljanen et al., 2018). In future work, an455
affordable DJI Zensil L1 Lidar UAV will be introduced to invert the height of the grassland. 2) At the pixel scale, limited by456
the estimation accuracy of AGB from UAV, there was also some underestimation in the high biomass area. Although the457
MODIS index closest to the sampling time was chosen for the construction/validation of the AGB estimation model, there458
was still a time difference between the measured samples and the MODIS indices, which might lead to estimation errors. In459
addition, the NDVI saturation problem was not considered in this study, which might affect the AGB estimation accuracy of460
QTP (Tucker, 1979a; Gao et al., 2000; Mutanga and Skidmore, 2004; Tucker, 1979b). In the next step, we will continue to461
collect samples with high biomass and try to correct the NDVI saturation problem to optimize the simulation accuracy of the462
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data set. 3) During 2015-2016, our study had just started, and the appropriate camera parameters were still being explored.463
As a result, some photos with abnormal white balance were obtained, reducing the accuracy of AGB estimation at the photo464
scale (Figure A5). 4) We collected grassland AGB only during the peak growing season, and the applicability of the465
proposed method to other growing seasons needs further study. 5) During the modeling process, due to the limited466
positioning accuracy, only the center points of the flight path were used to find the corresponding MODIS pixels. Moreover,467
although the UAV images in GRID or RECTANGLE mode could cover most areas of a MODIS pixel, full pixel coverage468
was still not achieved. Therefore, we will gradually upscale to MODIS pixels by combining UAVs with Sentinel-2 or469
Landsat images.470

471

5. Data availability472

The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center473
(https://doi.org/10.11888/Terre.tpdc.272587). The dataset contains 20 years of AGB spatial data of the QTP with a resolution474
of 250 m and is stored in TIFF format. The name of the file is "AGB_yyyy.tif", where yyyy represents the year. For example,475
AGB_2000.tif represents this TIFF file describing the alpine grassland AGB condition of QTP in 2000. The data can be476
readily imported into standard geographical information system software (e.g., ArcGIS) or accessed programmatically (e.g.,477
MATLAB, Python).478

6. Conclusion479

In this study, a new AGB dataset for alpine grasslands on the QTP was calculated based on traditional ground sampling,480
UAV photography, and MODIS imagery. The uniqueness of this dataset is the use of UAVs as a spatial scale-matching481
bridge between traditional samples and satellite pixels. The study confirmed that the UAV images could be used for AGB482
estimation at the quadrat /pixel scale, with R2 of 0.73/0.83 and RMSE of 44.23/34.13 g/m2, respectively. At the pixel scale,483
the correlation between AGB estimated by UAV and MODIS vegetation index was higher than that of the traditional484
sampling method (0.88 vs. 0.53). Moreover, the spatial scale matching of the dependent and the independent variables was485
achieved during the modeling. In addition, we performed a cross-year validation of the pixel-scale AGB estimation model to486
confirm the robustness of the model and the accuracy of this dataset. The availability of the new dataset is helpful in many487
applications. First, this dataset provides reliable regional data for estimating grassland productivity, carbon storage,488
ecological carrying capacity, and ecological service functions (such as feed for grazing livestock) of the QTP. Second, the489
dataset can be used to understand the mechanisms of environmental processes, such as hydrological cycle processes, soil490
erosion and degradation, and carbon cycle processes in the QTP. In addition, this dataset can be used as input or validation491
parameters for various ecological models to understand the response mechanism of the QTP to global climate change.492
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Appendix507

508
Figure A1. Waypoints for GRID (a) and RECTANGLE (b) flight modes.509

510
Figure A2. The importance values for each independent variable (a) and the R2 results of the different number of input variables511
at the quadrat scale.512
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513

514
Figure A3. The importance values for each independent variable (a) and the R2 results of the different number of input variables515
at the pixel scale.516

517
Figure A4. Examples of 20-meter-high UAV images with different non-vegetation background information.518
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519
Figure A5. An example of a set of GIRD photos with abnormal white balance in 2015.520

521
Table A1. Combined grassland types522

New grassland type Original grassland type

Alpine meadow Alpine meadow, Lowland meadow, Montane meadow，

Alpine steppe Temperate steppe, Alpine steppe, Alpine meadow steppe

Spare grassland Temperate steppe desert, Alpine desert

523
Table A2. Features of DJI Phantom 3 Pro524

Features Description

DJI Phantom 3 Pro

Sensor 1/23-inch; Effective-pixel: 12-megapixel

Filed of view FOV 94° 20 mm

Aperture f/2.8

Shooting speed Electronic shutter: 8-1/8000 s

Photo size 4000×3000

Flight time ~25 min

Image format

Hovering accuracy

JPEG

±0.5 m vertically; ±1.5 m horizontally

Weight 1280 g

525
526
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Table A3: Details of the independent variables for quadrat-scale AGB estimation527

Acronym Index name Formula Reference
GRVI Green Red Vegetation Index (G-R)/(G+R) (Tucker, 1979a)
EXG Excess Green Vegetation Index 2G-R-B (Woebbecke et al., 1995)
GLA Green leaf area (2G-R-B)/(2G+R+B) (Louhaichi et al.)
MGRVI Modified Green Blue Vegetation Index (G2-R2)/(G2+R2) (Bendig et al., 2015)
RGBVI Red Green Blue Vegetation Index (G2-B*R)/(G2+B*R) (Bendig et al., 2015)
EXB Excess Blue Vegetation Index (1.4*B-G)/(G+R+B) (Maimaitijiang et al., 2019)
NDI Normalized difference index (R-G)/(R+G) (Woebbecke et al., 1993)
EXR Excess Red Vegetation Index 1.4*R-B (Meyer and Neto, 2008)
EXGR Excess Green minus Excess Red index ExG−ExR (Meyer and Neto, 2008)
RRATIO Red Ratio R/(R+B+G) (Woebbecke et al., 1995)
BRATIO Blue Ratio B/(R+B+G) (Woebbecke et al., 1995)
GRATIO Green Ratio G/(R+B+G) (Woebbecke et al., 1995)
VARI Visible Atmospherically Resistance Index (G -R)/(G + R - B) (Gitelson et al., 2002)
NRBI Normalized Red Blue Index (R-B)/(R+B) (Michez et al., 2016)
NGBI Normalized Green Blue Index (G-B)/(G+B) (Michez et al., 2016)
VEG Vegetative index G/(RaB(1-a)),where a=0.667 (Hague et al., 2006)
WI Woebbecke Index (G−B)/(R−G) (Woebbecke et al., 1995)
CIVE Color Index of Vegetation 0.441R –

0.881G+0.385B+18.78745
(Kataoka et al., 2003)

COM Combination Vegetative index 0.25ExG+0.3ExGR+0.33CIVE
+0.12VEG

(Guijarro et al., 2011)

TGI Triangular Greenness Index G-0.39R-0.61B (Hunt et al., 2014; Michez et
al., 2018)

RGBVI Red Green Blue Vegetation Index (G2-B*R)/(G2+B*R) (Bendig et al., 2015)
GRRI Green Red Ratio Index G/R (Maimaitijiang et al., 2019)
GBRI Green Blue Ratio Index G/B (Maimaitijiang et al., 2019)
RBRI Red Blue Ratio Index R/B (Maimaitijiang et al., 2019)
BRRI Blue Red Ratio Index B/R (Jibo et al., 2018)
BGRI Blue Green Ratio Index B/G (Jibo et al., 2018)
RGRI Red Green Ratio Index R/G (Jibo et al., 2018)
INT Color Intensity Index (R+B+G)/3 (Ahmad and Reid, 1996)
MVARI Modified VARI (G-B)/(G+R-B) (Cen et al., 2019)
IPCA Principal Component Analysis Index 0.994×|R−B|+ 0.961×|G−B|+

0.914×|G−R|
(Saberioon et al., 2014)

528

529

530
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Table A3: Details of the independent variables for quadrat-scale AGB estimation (continued)531

Acronym Index name Formula Reference
R An average value of R channel of the

quadrat-scale UAV image

(Zhang et al.,
2022a)

G An average value of G channel of the
quadrat-scale UAV image

B An average value of B channel of the
quadrat-scale UAV image

H An average value of H channel of the
quadrat-scale image in HSV color
space

S An average value of S channel of the
quadrat-scale image in HSV color
space

V An average value of V channel of the
quadrat-scale image in HSV color
space

FVC Fractional Vegetion Cover

EGI Extra Geen Index EGI=2G-R-B

GI Green Index GI=9×(H×3.14159/180) +3×S+V

HOC_i_C
ORR

The histogram correlation coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB

���� � (�1 � − ��1)(�2 � − ��2)�

� (�1(�) − ��1)2� � (�2 � − ��2)2�

HOC_i_
INTERSE
C

The histogram intersection coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB

�������� =
�

min (�1 � , �2 � )�

HOC_i_
BHATTA

The histogram Bhattacharyya distance
coefficient between the i band and the
black reference histogram, where the i
represents the three bands of RGB

�ℎ���� =
�

min (�1 � , �2 � )�

HOC_i_C
HIS

The histogram correlation coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB.

�ℎ�� =
�

�1 � − �2 � 2

�1(�)�

532
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Table A4：Regression analysis for AGB estimation models at quadrat and pixel scales533

Model name Coefficient Value Standard Error t-Value p-value

2019_Quadrat-scale
Slope 0.67 0.016 42.58 9.05e-194

Intercept 20.10 1.49 13.59 5.96e-37

2019_Pixel_scale
Slope 0.84 0.03 31.59 2.75e-73

Intercept 23.20 4.04 5.74 4.24e-8

2018_Pixel_scale
Slope 0.73 0.02 45.81 8.28e-157

Intercept 20.43 2.74 7.46 6.01e-13

2017_Pixel_scale
Slope 0.75 0.01 59.13 1.98e-260

Intercept 13.89 2.04 6.82 2.19e-11

2016_Pixel_scale
Slope 0.94 0.02 40.45 4.69e-157

Intercept 2.48 3.75 0.66 0.03

2015_Pixel_scale
Slope 0.82 0.04 18.88 2.59e-47

Intercept 9.50 5.25 1.81 0.04

534
Table A5: List of abbreviations of eco-geographical regions and the mean AGB of the QTP535

Abbreviation Full name
IB1 Golog-Nagqu high-cold shrub-meadow zone

IIAB1 Western Sichuan-eastern Tibet montane coniferous forest zone

IC1 Southern Qinghai high-cold meadow steppe zone

IC2 Qiangtang high-cold steppe zone

ID1 Kunlun high-cold desert zone

IIC1 Southern Tibet montane shrub-steppe zone

IIC2 Eastern Qinghai-Qilian montane steppe zone

IID1 Nagri montane desert-steppe and desert zone

IID2 Qaidam montane desert zone

IID3 Northern slopes of Kunlun montane desert zone

OA1 Southern slopes of Himalaya montane evergreen broad-leaved forest zone

536
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