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Abstract. The alpine grassland ecosystem accounts for 53% of the Qinghai-Tibet Plateau (QTP) area , which and is an16
important ecological protection barrier, but it is fragile and highly vulnerable to climate change. Therefore, continuous17
monitoring of grasslandof the aboveground biomass (AGB) of grassland is necessary. Although many studies have mapped18
the spatial distribution of AGB over for the QTP, the results vary widely due to the limited ground samples and mismatches19
with satellite pixel scales. This paper proposed a new algorithm using unmanned aerial vehicles (UAVs) as a bridge to re-20
estimate the grassland AGB over on the QTP from 2000 to 2019. The innovations were as follows: 1) In terms of In the21
aspect of ground data collectionacquisition, the spatial scale matching among betweenamong the traditional ground22
samplesquadrat sampling, UAV photos, and MODIS pixels was fully considered. From 2015 to 2019During 2015-2019,23
906 pairs of quadrat-scale ground-UAV sample data at the quadrat scale and 2,602 sets of MODIS pixel-scale UAV data24
matching the MODIS pixel scale were collected (over 37,000 UAV photos). Therefore, the ground validation samples was25
were sufficient and scale scale-matched. 2) In terms of model construction, the traditional quadrat scale (0.25m2) was26
successfully upscaled to the MODIS pixel scale (6,2500 m2) based on the random forest method and stepwise upscaling27
schememethods. Compared with previous studies, the scale matching of independent and dependent variables was28
realizedachieved, effectively reducing the impact of spatial scale mismatch. The results showed that the correlation between29
the AGB values estimated by UAV and the MODIS vegetation indices was higher than that of the traditional sampling30
method at the pixel scaleAt the pixel scale, the AGB value estimated by UAV had a more linear correlation with the MODIS31
vegetation indices than the traditional sampling method. The multi-year independent cross-year -validation results showed32
that the constructed pixel scale AGB estimation had good robustness, with an average R2 of 0.83 and RMSE of 34.13 g/m2.33
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Our dataset provides an important input parameter for a comprehensive understanding of the role of the QTP in the process34
of global climate change processes. The dataset is available from the National Tibetan Plateau/Third Pole Environment Data35
Center (https://doi.org/10.11888/Terre.tpdc.272587, Zhang et al., 2022).36

1 Introduction37

Grasslands, accounting for approximately 37% of the earth's surface, play an essential role in global carbon cycling and food38
supply (O'mara, 2012). However, most natural grasslands have been degraded to a certain extent due to overgrazing,39
farmland encroachment, soil erosion, and global climate change (Suttie et al., 2005; Ramankutty et al., 2008; O'mara, 2012).40
Therefore, timely monitoring of grassland health is crucial for sustainable development and understanding the global carbon41
cycling processing. Aboveground biomass (AGB) is a key indicator of grassland status and an important input parameter for42

the ecological model modeling and carbon storage estimation. Thus, accurate and rapid estimation of AGB is valuable for43

grassland monitoring.44

45

The advent of satellites has made it possible to map the spatiotemporal dynamics of large areas of grasslands over large46
areas.The advent of satellites makes it possible to map the spatial distribution and temporal dynamics of grassland over large47
areas. Spectral information from different satellites has been employed for biomass estimation, such as Sentinel-2, Landsat,48
and MODIS (Wang et al., 2019; Zhang et al., 2016). Although there are differences in spatial and spectral resolution, the49
core idea of building a biomass model is constructing the linear or nonlinear relationships between the field field-measured50
samples and various satellite spectral indices. Therefore, the estimation accuracy is closely related to the quality and quantity51
of ground samples (Morais et al., 2021; Yu et al., 2021). However, tThere are still two deficiencies in ground data52
collectionacquisition: the large spatial scale gap between the traditional samples and satellite pixels, and the low efficiency.53

54
How to narrow the spatial gap between traditional samples and satellite pixels is an urgent problem to be solved. Since it is55
impossible to harvest all the grasses within a pixel range, an the average of 3-5 quadrats size samples (0.5 m × 0.5 m or 1m56
× 1m) is usually used as the measurement (Dusseux et al., 2015; Yang et al., 2017), which results in a considerable spatial57
gap. A lot of studies have been carried out to upscale ground measurements to satellite pixels (Crow et al., 2012; Bian and58
Walsh, 1993), such as block Kriging geostatistical interpolation, different types of regression models, or machine learning59
algorithms (Cheng et al., 2007; Wang et al., 2014; Cannavacciuolo et al., 1998; Dancy et al., 1986; Li et al., 2018). However,60
the accuracy of these methods depends on the density of sampling points. In addition, fine-resolution satellites were used as61
a bridge to reduce the impact of scale mismatch on AGB estimation (Yu et al., 2021; He et al., 2019). The reason is that the62
finer the satellite resolution, the smaller the spatial gap with the ground samples The primary reason is that the spatial gap63
between traditional ground data and fine-resolution satellites is much smaller than medium or coarse-resolution satellites64
(Wang and Sun, 2014; Morais et al., 2021). Therefore, obtaining a valueground samples that matchhing the pixel scale is65
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the key to improving improving the accuracy ofthe satellite AGB inversionestimation using remote sensing data accuracy66
from remote sensing.67

68
Improving the efficiency of ground sampling is the other problem to be solved another issue that needs to be addressed.69
Although the the traditional field sampling method can get yield high high-accuracy results, it is time--consuming and labor-70
intensive. Large-region grassland AGB inversion often requires years of accumulation to obtain ground observation samples71
with sufficient spatial representation. For example, it took Yang et al. spent five years to completecompleting the collection72
of ground samples to investigate invert the grassland AGB in in China (Yang et al., 2010). Moreover, with limited original73
ground data, some scholars had to useexpanded the sample size by using the data published by others to expand the sample74
size when the original ground data was limited (Xia et al., 2018; Jiao et al., 2017). However, datasets from different sources75
may affect the overall accuracy due to the differences in sample plot size, sample size, and sampling methods.Considering76
the differences in the plot area, quadrat size, and sampling method, datasets from different sources may affect the overall77
inversion accuracy.78

79
The development and popularization popularity of unmanned aerial vehicle (UAV) technology has provides provided new80
ideas for to solving solve solutions to the above problems. UAV images have been successfully used to estimate ecological81
indicators metrics such as FVC, biomass, and canopy height (Chen et al., 2016; Zhang et al., 2018; Bendig et al., 2015). The82
use of UAVs has the following unparalleled advantages over traditional sampling methods. Compared with traditional83

sampling methods, the use of UAVs has the following incomparable advantages. First, UAVs can effectively obtain 2D two-84

or 3D three-dimensional vegetation information about vegetation structure in a non-destructive way without destroying85
damaging it, which is helpful helpful for grassland the estimation of grassland biomass (Lussem et al., 2019; Zhang et al.,86
2022a; Zhang et al., 2018). Second, UAVs can easily rapidly collect key parameters of grassland within satellite pixels (e.g.,87
FVC, Chen et al. 2016). Hence, UAV images can serve be used as a bridge to reduce the spatial gap between the field88
samples and the satellite pixels. However, most current UAV-based grassland biomass estimations are small-scale, with with89
few regional-scale studies. WIt is still unknown whether UAVs can be used to narrow reduce the spatial gap between the90
traditional ground samples sampling and satellite pixels remains an open question. In addition, due to the limited sample size,91
previous studies regional-scale grassland AGB models lacked independent years of cross-year validationcross-validation to92
test the robustness of the AGB estimation model over time due to the limited sample sizein different periods.93

94
This study proposed a new method approach that combining combines traditional ground sampling, UAV95
photographingphotography, and satellite data to generate produce a new reliable AGB dataset of QTP grassland. The96
objectives of this study were: 1) to construct a the UAV-based grassland AGB estimation model s at the quadrat/satellite97
pixel scales, respectively; 2) to investigate whether UAVs can be used as a bridge to narrow reduce the spatial gap between98
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traditional ground observation samples and satellite pixels, and to improve the estimation accuracy of grassland AGB;, and99
3) to map the AGB of alpine grasslands on the Qinghai-Tibetan Plateau (QTP) from 2000 to 2019.100

2 Materials and Methods101

2.1 Study Site102

QTP is the highest and largest plateau on the earth (26°00′12″~39°46′50″N, 73°18′52″~104°46′59″E), with an average103
elevation of ~4000 m and an area of approximately 257.24×104 km2 (Figure 1). It is located in western western China, and104
thwith an averagee annual average temperature and precipitation of about are around 1.6℃ and 413.6 mm, respectively. The105
main grassland types are alpine meadows, alpine steppe, and sparse grassland, which play a critical role in climate regulation,106
water conservation, and biodiversity protection (Ding et al., 2013). However, grassland ecosystems are fragile and107
vulnerable to global climate change and human activities, and have high spatial heterogeneity. In this study, the boundary of108
the QTP of China (Zhang et al., 2014) was downloaded from the National Earth System Science Data Centerr, National109
Science & Technology Infrastructure of China (http://www.geodata.cn(Zhang et al., 2014)). The Ggrassland type data was110
derived from the 1:1000000 Chinese digital grassland classification map provided by the China rResource and111
eEnvironmental science Science and data Data Ccenter of China (https://www.resdc.cn/). This data set, generated through112
field surveys in the 1980s and supplemented by satellite and aerial imagery, is the most detailed grassland-type map113
available.This data set was produced through field surveys and supplemented by satellite and aerial images in the 1980s and114
is also the most detailed map of grassland types. For comparison with others studies, we combined the grassland types into115
three categories: alpine meadow, alpine grassland, and sparse grassland, and resampled them to 250 meters (Table A1).116
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117
Figure 1. Distribution of field and UAV sampling sites ofin 2019 (a); and UAV sampling sites in of 2015-2018 in alpine grasslands118
on the QTP from 2015-2018 (b-e). Field_UAV_2019 represents the quadrat- scale sampling sites for for the 2019 2019 UAV-Field119
synchronous grassland biomass experiment. UAV_year represents the UAV sampling point based on the GRID or RECTANGE120
mode of the corresponding year.121

2.2 Overall technology roadmap122

Figure 2 showswas the The overall flowchart of this studyof UAV-field investigation and the construction of grassland AGB123

estimation model at different spatial scales were shown in Figure 2, . which It consisted s of mainly includes four main steps:124
1) UAV and field investigation; 2) constructing constructing the the grassland AGB estimation model at the quadrat scale; 3)125
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upscaling the grassland the AGB to the MODIS pixel scales; 4) building the the final AGB estimation model at the MODIS126

pixel scale and applying it to the QTP region. More detailed information about on each step was iswas described in the127

following sections.128

.129
130
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Figure 2. The overall flowchart of UAV -field investigation survey and the construction of grassland AGB estimation models at131
different spatial scales.132

2.3 Field investigation133

2.3.1 UAV and route planning134

DJI Phantom 3 professional Professional (DJI Company, Shenzhen, China), a popular consumer quadrotor UAV equipped135
with a high-resolution RGB camera, was used to collect UAV images of the QTP from 2015 to 2019. It has a 1/23-inch136
CMOS sensor and is capable of taking 12-megapixel photos. In addition, it uses a 3-axis stable gimbal to take photos137
downward vertically downward andto eliminate the distortion of UAV images. It has good environmental adaptability, with138

an operatingthe working temperature ranges from 0° to 40°, , and a maximum the highest take-off altitude can reach of139

6000 meters. Therefore, itit is well can adaptadapted well to the low temperature and high altitude of the QTP. More detailed140
information about the UAV system is was listed in Table A2.141

142
Fragmentation Monitoring and Analysis with aerial Photography (FragMap) system, which can realize capable of long-term143
collaborative observation, was used for UAV route planning (Yi, 2017). The repeatability of UAV observation is the basis144
for understanding the ecological process. Through During 2015-2019, we conducted UAV monitoring of the QTP grasslands145
using FragMap (Fig. 1).FragMap, we conducted UAV observations on the QTP from 2015 to 2019 (Figure 1). Over 2,000146
fixed flight routes were set up during this period,during this period , and more than 37,000 UAV images were collected,147
providing a reliable UAV data set for this study (Table 1).148

149
Table 1. UAV sampling information from 2015 to 2019150

Year Flight Mode Number of routes Photo number Acquisition time

2015 RECTANGLE 214 2568 7.05 ~8.24

2016 RECTANGLE 334 4008 6.20~9.29

GRID 150 2400 6.20~9.23

2017 RECTANGLE 315 3780 5.10~10.24

GRID 322 5152 7.15~8.22

2018 RECTANGLE 79 948 7.22~8.03

GRID 303 4848 7.04~8.29

2019 GRID 885 14160 7.12~9.21

Total 2602 37864
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151
152

GRID, RECTANGLE, and BELT are the most commonly used flight modes in the FragMap software. The GRID and153
RECTANGLE modes have 16 and 12 waypoints for capturing UAV images within a MODIS pixel range (Figure A1). Their154
flying height and speed are set to 20 m and 3m/s, respectively. The spatial coverage of a 20-meter-high UAV photo is about155

26 m  35 m. The BELT mode is similar to GRID, but is designed to obtain get near-ground UAV image data with a higher156

resolution (Figure 3b). It can be combined with the traditional sampling method to ensure the that consistency of UAV157
images are consistent with the ground quadrats samples (Figure 3d). GenerallyTypically, the BELT size is set to 40 m × 40158
m, and the flying height and speed are set to 2 m and 1 m/s to ensure that field workers crews have enough time to place a159
sampling quadrat frames on under the UAV shooting waypoints. As with the GRID mode, 16 UAV images can be captured160
during in a single one flight. Compared with the MOSAIC flight flight mode (which requires a guaranteed overlap rate161
between photos to obtain a full view of an area), our design is more in line with the traditional ecological sampling concept.162
It allows for a better balance of spatial representation and accessibility of samples, resulting in efficient sample collection.163

164
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165
Figure 3. Schematic diagram of the UAV-field synchronization experiment in 2019: a combination design of GRID (a) and BELT166
(b) flight modes; a UAV image with a quadrat from the BELT mode at the height of 2 m (d); a 20-meter-high UAV image167
including four sample quadrats (c); and the cropped UAV images at quadrat scale from 20 m (e) and 2 m (f) height, respectively.168

2.3.2 Synchronization experiment of UAV and field sampling169

A UAV-field biomass synchronization experiment was designed in 2019 to ensure spatial matching among betweenamong170
satellites, UAVs, and ground sampling (Figure 3). The specific implementation steps were as follows. First, we set a GRID171
flight mode with the a MODIS pixel size (250 m × 250 m) (Figure 3a). Then, three waypoints were randomly selected from172
the GRID route mode were randomly selected for to set setting the BELT flight routes modes (40 m × 40 m). For each173
BELT, we placed a sampling quadrat frame (0.5 m × 0.5 m) was placed at its 6, 7, 10, and 11 waypoints to ensure that the174
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GRID image can could contain the four quadrats frames described mentioned above (Figure 3b-c). Then, at the end of all175

flights, the gGrassland AGB samples were then cut, bagged, and numbered at the end of all flights. Finally, these samples176
were oven-dried at 65℃ to constant weight to obtain the field-measured AGB values.177

178

2.4 Data processing179

2.4.1 UAV photo pre-processing and indices calculation180

The UAV photo prePre-processing of UAV photos included image quality inspection, image cropping, and calculation of181
different indices. . First, we eliminated the overexposed or blurry blurred 20-meter-high UAV images. Second, the pixels in182
the sampling quadrat frames were cropped and saved (Figure 3e). Third, we calculated the RGB indices for the cropped183
UAV images were calculated. Similar to our previous study, indices included color space, histogram, and vegetation indices,184
the details of which could can be found in Zhang et al. (2022a). reference (Zhang et al., 2022a). In addition, 30 other RGB185
vegetation indices were added as candidate independent variables. The names, formulas, and references of the above186
indiceswere were shown in Table A3.187

2.4.2 MODIS vegetation index and other spatial data188

The MOD13Q1(v006) product was downloaded from the NASA earth explorer website (https://earthexplorer.usgs.gov/) for189
the inversion of the alpine grassland AGB on the QTP. The data contained contained two commonly used vegetation indices,190
the Nnormalized vegetation Vegetation index Index (NDVI) and the enhanced Enhanced vegetation Vegetation index Index191
(EVI), with spatial and temporal resolutions of 250 m and 16 days, respectively. A total of 2,842 scenes from 2000 to 2019192
were downloaded. Then, the MODIS images were reprojected and stitched using the MODIS projection Projection tool Tool193
(MRT). After that, the corresponding vegetation indices closest to the time of the UAV sampling were extracted to194
construct/validate a pixel-scale AGB estimation model to construct a pixel-scale AGB estimation model.After that, we used195
the point extraction function in ArcGIS software to get the corresponding vegetation indices of the UAV samples to196
construct the pixel-scale AGB estimation model. In addition, based on the NDVI index and the formula kNDVI= TANH197
(NDVI2), the kNDVI index was calculated to overcome the NDVI saturation issue based on the equation kNDVI= TANH198
(NDVI2) (Camps-Valls et al., 2021). The annual maximum vegetation indices were calculated by the maximum value199
composition (MVC) algorithm of ENVI software to estimate the spatial AGB distribution of QTP from 2000 to 2019200
(Holben, 1986; Wang et al., 2021; Gao et al., 2020).201

202
Furthermore, the meteorological, soil texture, and topographic data were also included as candidate independent variables for203
constructing the pixel-scale AGB estimation model. Meteorological factors, including the annual mean temperature (TA),204
annual mean precipitation (PREC), and annual total solar radiation (RAD), were calculated based on the daily205
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meteorological dataset from the National Meteorological Information Center of China. The data processing steps mainly206

included interpolation, cumulative summation, and annual averaging processing to obtain the a meteorological raster207

dataset with a spatial resolution of 1000 meters (Li et al., 2021). Moreover, the spatial distribution data of soil texture data208
with ata 1 1 km spatial resolution, including the ratio of soil organic matter (SOM), clay, sand, and silt, were downloaded209
from the Resource and Science and Data Center of China (https://www.resdc.cn/). All the meteorological and soil datasets210
were resampled into 250 m by ArcGIS software to match the MODIS data.211

212
Terrain factors included the digital elevation model (DEM), slope, and aspect. The DEM was derived from shuttle Shuttle213
radar Radar topography Topography mission Mission (SRTM) images imagery (version 004, 90 m) and resampled to 250 m.214
Then use the terrain analysis tool of ArcGIS software to calculate the The slope and aspect data were derived based onfrom215
DEM data using the terrain analysis tool of ArcGIS software.Slope and aspect were then calculated from the DEM data216
using the terrain analysis tools of ArcGIS software.217

2.5 AGB modeling and computation at different scales218

We estimated the grassland AGB at three scales: the quadrat scale, the photo scale, and the satellite pixel scale (Figure 4).219
More detailed information wasiswas described as follows.220

221
Figure 4. Upscaling steps to estimate grassland AGB matching the MODIS pixel scale.222
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2.5.1 Modeling method223

Random Forest (RF) (Breiman, 2001), (Breiman, 2001) is an ensemble-learning algorithm, was that has been widely used224
employed to estimate AGB at different scales due to its excellent performance in biomass estimation (Ghosh and Behera,225
2018; Mutanga et al., 2012; Wang et al., 2016). The tTwo main parameters, namely the number of regression trees in the226
forest (ntree) and the number of feature variables required to create branches (mtry), were first optimized based on the root227
mean square error (RMSE) of training data at first. Here, the value of ntree values werewas tested set from 100 to 5000 with228
an interval of 100, and while the mtry was set as the square root of the number of training sample features. In addition, the229
importance of each predictor was ranked by calculating the percentage increase in mean square error (%IncMSE).230

231
The backward feature elimination method (BFE) was used to reduce the number of input variables to simply simplify the RF232
model (Vergara and Estévez, 2014). The main steps were as follows: 1) constructing an AGB RF model by including all233
predictor variables in the initial stages and calculating the %IncMSE index for each variable; 2) eliminating the least234
promising variable and then rerunning the RF model until only one independent variable was was left. Moreover, the235

corresponding coefficient of determination (R2) and the corresponding RMSE were calculated in each iteration； 3)236

selecting the smallest subset of variables with the highest R2 was selected as the final optimized indices.237
238

In addition, different training and validation strategies were used at different scales. At the quadrat scale, a 10-fold cross-239
validation method was used due to the limited ground samples (Kohavi, 1995). At the pixel scale, 30% of the UAV-240
estimated AGB samples in 2019 were randomly selected as an independent validation dataset due to the large sample size.241
Meanwhile, the UAV_AGB values from 2015 to 2018 were used for cross-year validation was performed using UAV-242
estimated AGB values estimated by UAVs from 2015 to 2018 to test the robustness of the model over over timedifferent243
periods. Statistical measuresmetrics, including the R2 (Eq.1) and , the RMSE (Eq.2) , and mean absolute percentage error244
(MAPE, Eq.3), were used to qualify evaluate the model performance performanceof the model.245

�2 = 1 − �=1
� (ŷ�−��)2�

�=1
� (ŷ�−��)2�

(1)246

���� = �=1
� (ŷ�−��)2�

�
(2)247

where n is the number of samples, yi and ŷi represent the measured and the predicted AGB value, respectively, yi is the248

mean value of measured AGB samples.249

2.5.2 AGB RF estimation model at the quadrat scale (0.25 m2)250

Since the spatial coverage of a 20m-high UAV photo (26 m35 m) is much wider than a single 2m-high UAV photo, making251

it easier to match to the MODIS pixel scale. Hence, the 20m-high UAV photos containing the sample frames were chosen252
for constructing the quadrat-scale AGB estimation model. A total of 906 pairs of quadrat-scale UAV-field AGB observation253
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data were collected, with good spatial representativeness (Figure 1 a, red dots). The observed AGB values ranged from 0254
g/m2 to 450 g/m2, with mean and median values of 59.75 g/m2 and 33.04 g/m2, respectively, most of which were less than255
100 g/m2 (Figure 5a). Then, theThe cropped 20-meter-high UAV image indices and the measured AGB values were used as256
the independent and dependent variables to build the RF model (Figure 2).257

2.5.3 AGB calculation at the photo scale (~900 m2)258

The steps for for AGB estimation of the entire whole 20-meter-high UAV photo were as follows: 1) First, each UAV photo259
was divided into ~2,000 quadrat-sized small patches. 2) Second, the AGB of each small patch was calculated based on the260
quadrat-scale AGB estimation model. 3) Finally, the average value of all the small patches was calculated as the AGB of the261
whole photo. Based on the above steps, the AGB values of 37,487 images in GRID or RECTANGLE mode were calculated262
using over more than 74 million AGB values at the of the quadrat scale (Table 1).263

264

265
Figure 5. Histograms of field-measured AGB values at quadrat scale (a) and UAV-estimated AGB values of different years at the266
photo scale (b).267

268

2.5.4 AGB RF model construction at MODIS pixel-scale (6,2500 m2)269

The following steps were involved in constructing the AGB estimation model at the pixel scale. 1) Since the coverage of a270

GRID or RECTANGLE route mode was similar to that of the a MODIS pixel, the average of its 16 or 12 photos was taken271

as the AGB value of the corresponding pixel. From 2015-2019, a total of. 2,602 UAV-estimated AGB samples were272
obtained at the pixel scale from 2015 to 2019 (Table 1). 2) The MODIS vegetation indices and other spatial metrics273
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corresponding to each GRID or RECTANGLE route mode were then extracted using the ArcGIS software. Here, the274
MODIS NDVI, EVI, and kNDVI indices closest to the sampling time were chosen to minimize the time difference between275
sampling and satellite overpass.3) Subsequently, the UAV-estimated AGB values and the extracted spatial indices were used276
as dependent and independent variables to build the AGB estimated model at the pixel scale using the RF algorithm.277

2.6 Uncertainty analysis278

Since the actual AGB values of MODIS pixels cannot be directly obtained, vegetation indices were used to quantify the279
uncertainty of different AGB estimation methods. In other words, the higher correlation between the estimated AGB and280
MODIS vegetation indices, the higher accuracy ofthe correlation between the estimated AGB and MODIS vegetation indices,281
the more accurate the estimation model was was. This stud The performance of the estimation model was evaluated through282
the three aspects. In this study, wey firstly compared the correlation between the MODIS vegetation indices and AGB values283
obtained by traditional sampling and UAV estimation methods. We also explored the uncertainties of UAV sampling284
coverage by randomly combining the number of photos in a MODIS pixel, and tested whether the estimated AGB was285
closer to the true value as the number increased. Furthermore, the AGB validation results from GRID or RECTANGLE at286
the pixel scale were compared to understand the uncertainties caused by different flight modes.287

2.7 Trend analysis of grassland AGB288

This study combined the Theil-Sen median trend analysis and Mann-Kendall test to analyze the temporal variation289
characteristics of grassland AGB of QTP (Jiang et al., 2015). Theil-Sen median trend analysis is a robust trend statistical290
method with high computational efficiency, insensitive to outliers (Hoaglin et al., 1983). The Mann-Kendall test is a291
nonparametric test for time series trends, which does not require the measurements to follow a normal distribution and is not292
affected by missing values and outliers. The Theil-Sen Median trend analysis and Mann-Kendall trend test have been widely293
used to analyze vegetation index, cover, and biomass (Gao et al., 2020; Jiang et al., 2015; Fensholt et al., 2009). The294
formulas for the Theil-Sen median trend analysis and the Mann-Kendall method are detailed in Jiang et al. (2015)(Jiang et al.,295
2015).296

297

3 Results298

3.1 Independent variables selected for AGB modeling299

The selected independent variables for AGB estimation at the quadrat and pixel scales were arewere listedpresented in300
Table 2. A total of 36 independent variables were finally selected at the quadrat scale, including 26 vegetation RGB indices,301
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6 histogram indices, and 4 color space indices (Figure A2). At the pixel scale, five variables were selected, including NDVI,302
kNDVI, EVI, PREC, and DEM (Figure A3).303

304
305
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Table 2: Selected independent variables for the AGB modeling at quadrat and pixel scales. The full names of each variable at the306
quadrat scale were listed in Table A32.307

Scale Model Number Independent variables

Quadrat RFQ 36 FVC, WI, GI, EXG, TGI, EXGR,VEG, GRATIO, COM, CIVE, RGBVI, EXR,

GLA, GRRI, MVARI, MGRVI, GRVI, RGRI, GBRI, VARI, NDI, RRATIO,

EXB, V, IPCA, INT,

HOC_R_CORR, HOC_B_CHIS, HOC_R_CHIS, HOC_G_CHIS,

HOC_G_CORR, HOC_B_CORR

B, H, G, R,

Pixel RFP 5 NDVI, kNDVI, EVI, DEM, PREC

308

3.2 Modeling and accuracy assessment309

For the quadrat-scale the AGB estimation model at the quadrat scale, the results of 10-cross validations results showed that310
there was a significant linear relationship between the estimated AGB values of the model and the measured values (R2=0.73,311
p<0.001, Table 3, Table A4). The student’s t-test was also used to evaluate assess whether there was a significant differences312
existed between the predicted AGB values and the measured values at a coefficient confidence level of 95%. As shown in313
Table 4, showed there was there was no significant difference between the predicted and measured average AGB values314
(p=0.51>0.05) with an . The total RMSE of and MAPE of the prediction model were 32.94 g/m2 and 48.94%, respectively.315
The scatter plot showed that the model predicted well when the measured biomass was less than 150g/m2, but showed some316
underestimation when it was greater more than 200g/m2 (Figure 6a). The reason might be thatIt may be because the number317
of samples the sample size larger more than 200g/m2 was is relatively small, accounting for only 8.50% of allthe total318
number of samples (Figure 5a). Although the UAV sample size of UAVs varied yearlyfrom year to year, the estimated most319
of the AGB values at estimated from photosthe photo scale ranged from 0 to 300 g/m2 (Figure 5b). ThMost of the320
AGB averages estimated by UAVs were around 150 g/m2 from 2016 to 2019, and slightly lower in 2015 (108 g/m2).e mean321
UAV AGB in 2016-2019 was around 150 g/m2, while it was slightly lower in 2015 with 108 g/m2.322

323
For the pixel-scale AGB estimation model, there was a strong linear relationship s existed between the predicted AGB and324
UAV estimates estimated values for 2015-2019 (Table A4 ). In 2019,The fitting coefficient R2 was 0.85 in for 2017-2019,325
an,d and slightly lower in for 2015-2016 at, at 0.63 and 0.77, respectively (Table 3, Figure 6b-f). The RMSE and MAPE of326
the pixel-scale model ranged from 23.36 g/m2 to 34.07 g/m2 , 12.32% to 25.19%, respectively (Table 3). In addition, we327
found that there were no significant differences between the predicted and measured average AGB values , except in for328
2017 and 2018 (Table 4). While While the average model projections the averages fof or the 2017 and 2018 model estimates329
are were 14.72% and 13.78% lower than the UAV estimates, respectively, they are were within an acceptable ranges.330
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Therefore, the cross-year validation results indicated that it the constructed pixel-scale AGB estimation model had good331
good performance and robustness in different across in different years the cross-year validation results indicated that it had332
good performance and robustness in different years (Figure 6b~f).333

334
335
336
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337
Table 3: Validation results of AGB models at quadrat and pixel scales338

Scale Year Training set Validation set
R2 RMSE(g/m2) R2 RMSE(g/m2)

Quadrat-scale
Pixel-scale

2019
2019
2018
2017
2016
2015

0.94
0.96
__
__
__
__

20.18
10.68
__
__
__
__

0.73 ***
0.85 ***
0.85 ***
0.85 ***
0.77 ***
0.63 ***

32.94
23.36
24.83
23.83
31.28
34.07

‘***’ significant at p<0.001339
340
341

342
Table 4: T-test results between the predicted and measured AGB values for the modes ofat the quadrat and pixel scales343

Validation model Measured mean Predicted mean t df p-value
2019_Quadrat-scale 51.57 54.35 -0.66 939.35 0.51
2019_Pixel_scale 136.68 137.7461 -0.15 340.78 0.88
2018_Pixel_scale 152.49 131.48 4.01 723.81 6.63e-05
2017_Pixel_scale 141.42 120.60 5.48 1225.2 5.26e-08
2016_Pixel_scale 149.56 142.70 1.68 961.99 0.09413
2015_Pixel_scale 108.65 98.23 1.96 1225.2 0.05

344
345

3.3 Correlation analysis between AGB values and MODIS indices346

The correlationss between the UAV-estimated AGB values and MODIS vegetation indices indices were much better than the347
traditional ground sampling method (Figure 7a). For example, the correlation between NDVI and traditionally measured348
AGB was only 0.53, much lower than that that obtained from a single UAV image (r=0.74). Moreover, the correlation349
between NDVI and UAV-estimated AGB increased with the number of UAV photos. It increased rapidly as the number350
increased from 1 to 4 (from 0.74 to 0.86), then slowed down and stabilized (from 0.87 to 0.88).351

352
In addition, we compared the the scatter plots and fitting lines between NDVI and different AGB estimation methods (Figure353
7b-f). The results showed a weak linear relationship between the traditionally measured AGB and NDVIa weak linear354
relationship between the traditional measured AGB and NDVI, and with an the R2 was onlyof 0.29. With the UAV sampling355
method, Linearity the linear relationship was greatly improved ausing the UAV sampling method and increased with the356
number of photosphotographs. The fit coefficient R2 increased from 0.54 to 0.78, much higher than the traditional sampling357
method (Figure 7).358
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362
363

Figure 6Figure 6. Validation results of the AGB estimation models at the quadrat (a) and MODIS pixel scale for 2015-2019 (b~f).364

365
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366
Figure 7. The cCorrelations between the MODIS vegetation indices and different AGB estimation methods (a); the scatter plots367
between of NDVI and with different AGB estimation methods (b-f). UAV_x, x represents the number of UAV photos used to368
estimate the average AGB at the MODIS pixel- scale. Here, the value range of x is ranges from 1 to 16.369

370
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371

3.4 Spatial distribution of grassland AGB372

The spatial distribution of the average grassland AGB on theon the QTP from 2000 to 2019 was calculated (Figure 8). The373
AGB gradually increased from west to east. As shown in Figure 8b, the average biomass of eastern OA1, IIAB, IB1, and374
IIC2 eco-geographical regions ranged from 150 to 190 g/m2, and the average AGB of IC1 and IIC1 ranged from 80 to 110375

g/m2. The average AGB of IID2, IID3, IC2, and IID1 in the west was relatively low, ranging from 35 to 75 g/m2. The ID1376

region is was dominated by sparse grassland with the lowest average interannual AGB values, which fluctuated around 20377

g/m2 with interannual mean AGB values fluctuating around 20 g/m2. (Figure 8b). From 2000 to 2019, Tthe meanaverage378
AGB on theof QTP showed an insignificant increasing trend between 2000 and 2019, with an average growth rate of 0.22379
gm-2a-1 (Figure 9a). The overall mean AGB of the QTP was 103.6 g/m2,, andwith 151.85 g/m2, 60.85 g/m2, and 28.91 g/m2380
for the mean AGB of the alpine meadow, alpine steppe, and sparse grassland, r were 151.85 g/m2, 60.85 g/, and 28.91 g/m2,381

respectively (Figure 9b). In addition, the temporal trend of grassland AGB in each pixel was analyzed. As shown in Figure382

10, the IID3, ID1, IID2, and IIC2 eco-geographical regions of the northern QTP showed an increasing trend from 2000 to383
2019, while the IC2, IB1, and IIC1 regions showed some degradation. Therefore, although the overall AGB of the QTP384
showed an increasing trend from 2000 to 2019, there was spatial heterogeneity in the temporal variation.385

386

.387
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From 2000388
to 2019, the mean AGB on the QTP showed an insignificant increasing trend, with an average rate of 0.22 gm-2a-1 (Figure 9a).389
The overall mean AGB of the QTP was 103.6 g/m2, and the mean AGB of the alpine meadow, alpine steppe, and sparse390

grassland were 151.85 g/m2, 60.85 g/, and 28.91 g/m2, respectively (Figure 9b).391
392



24

393
394

Figure 8. (a) The spatial distribution of average grassland AGB on the Qinghai-Tibet PlateauQTP during 2000-from 2000 to 2019.395
IID1, IID2, IID3, ID, IIC1, IIC2, IC1, IB1 IIAB1, and OA1 are the eco-geographical regions of the QTP(Zheng, 1996). The full396
names of each eco-geographical region were listed in Table A5. (b) AGB values of each eco-geographical region from 2000 to 2019.397
(c) Comparison of multi-year AGB averages in the different eco-geographical regions.398

399
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400
Figure 9. Variation trend of average grassland AGB on the QTP from 2000 to 2019 (a) and average AGB of different grassland401
types (b).402

403
Figure 10. Spatial trends of grassland AGB on the QTP from 2000 to 2019. IID1, IID2, IID3, ID, IIC1, IIC2, IC1, IB1 IIAB1, and404
OA1 are the eco-geographical regions of the QTP (Zheng, 1996). The full names of each eco-geographical region were listed in405
Table A5.406

407
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408

4. Discussion409

4.1 Scale matching and its influence factor410

In Unlike the previous studies, the AGB value of a satellite pixel was directly represented by the average value of 3-5411
quadrat-scale samples, so there is a large spatial gap between the ground samples and the satellite pixels (Yang et al., 2017;412
Yang et al., 2009; Meng et al., 2020), which directly represented the AGB value of a satellite pixel with the average value of413
3-5 quadrat-scale samples. The spatial gap between ground samples and satellite indices affects the accuracy of grassland414

AGB models. The smaller the spatial gap between the two, the higher the accuracy of the model (Morais et al., 2021). To415

address this issue, we used the UAV as a bridge to close the gapWe addressed this issue using the UAVs as a bridge to416
reduce the spatial gap, this study successfully upscaled the traditional quadrat scale to the MODIS pixel scale. We achieved417
the Sspatial scale matching of dependent and independent variables was achieved in estimating when calculating the AGB418
values at different scales. First, at the quadrat scale, the independent variables were all derived from cropped 20-meter-high419
UAV images corresponding to the ground samples (Figure 3e). Then, the 20-meter-high UAV image was cropped into420
~2000 quadrat-sized small patches to ensure consistency with the quadrat- scale model, and the average of these patches was421
taken used as the final AGB at the photo- scale. Finally, by averaging the AGB of 16 or 12 UAV photos within the MODIS422
pixel, the AGB AGB value matching that matched the MODIS pixel scale was calculated by the average value ofaveraging423
the AGB of 16 or 12 UAV photos within the MODIS pixel (Figure A1). Through the above With these three steps, we424
successfully upscaled the measured AGB from the traditional quadrat scale (0.5 m×0.5 m) to the photo scale (26 m×35 m)425
and MODIS pixel scale (250 m×250 m). Our results showed that , at the pixel scale, the correlations between the UAV-426
estimated UAV_estimated AGB values estimated by UAV and the MODIS vegetation indices indexindices was were higher427
than that of the traditional sampling method (Figure 7).428

429
Furthermore, we found that the spatial coverage of the UAV sampling had an impact had a particular influence on the the430
effect s of scale matching. Our results indicated showed that the closer the spatial coverage of the UAV sampling was to the431
satellite pixel, the higher its correlation with MODIS spectral indices (Figure 7a). ThisIt iswas also confirmed by432
comparingThe comparison of the validation results of of different flight modes also confirmed this. At the pixel scale, we433
found that the R2 between the model predictions and the AGB values estimated based on the GRID mode was better than that434
of RECTANGLE (Figure 11).At the pixel scale, we found a higher correlation between the model predictions and the AGB435
estimates obtained based on the GRID model than the RECTANGLE model (Figure 11). At the pixel scale, we found that436
UAV AGB estimates from the GRID mode had a higher correlation with the mode predictions than the RECTANGLE flight437
mode (Figure 10). The reason is that GIRD mode can take 16 pictures within a MODIS pixel, while RECTANGLE mode438
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only takes 12 pictures (Figure A1).The reason was that the GIRD mode could obtain 16 photos in the MODIS pixel at a time,439
while the RECTANGLE mode could only take 12 photos.440

441
The above results confirmed that UAVss could serve as a bridge to effectively narrow closereduce the spatial gap between442
traditional samples and satellite data.443



28

444



29

445
Figure 1011. Comparison of validation results for the GRID (a,c,e) and RECTANGLE (b,d,f) modes in 2016-2018.446
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4.2 Importance of the addition of non-vegetation samples447

Compared with traditional sampling, UAV sampling has the advantage of wide spatial coverage (0.5 m×0.5 m vs.VS 35448
m×26 m). Thus, vegetation and non-vegetation background information, such as roads, water, soil, gravel, riverbed, etc.,449
were captured on the UAV photosthe UAV image could capture vegetation and non-vegetation background information,450
such as roads, water, soil, gravel, riverbed, etc. (Figure A4Figure 1112). Adding The addition of non-vegetated vegetation451
samples could improve the estimation accuracy of A AGB estimation at the photo scale, especially for low- coveragecover452
areas, , to avoid overestimation. The It same was also true for the pixel- scale AGB estimation model. However, the less453
consideration was given to the non-vegetated areas in the traditional methodtraditional sampling method gave less454
consideration to the non-vegetation vegetated areas. The sample plots were mainly set in areas with the homogeneous455
uniform spatial distribution, and rarely but few in areas with spatial heterogeneity. This defect shortcoming might may limit456
the accuracy of AGB estimation due to the high spatial heterogeneity of the QTP. Fortunately, the UAV sampling method457
could can avoid this drawback. It can objectively record surface information and reduce the influence of manual plot458
selection on AGB estimation.It could objectively record the ground surface information with both vegetated and non-459
vegetated areas, resulting in a more objective AGB estimation at the pixel scale.460

461

462
Figure 1112. Examples of 20-meter-high UAV images with different non-vegetation background information.463

464
465
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4.3 Comparison of the estimated AGB with previous studies466

We compared our resultsIn the following, the AGB estimation results of this study were compared with previous467
studiesthose of others at the quadrat, pixel, and regional scales.at the quadrat scale, pixel scale, and regional scale.468

469
At the quadrat scale, consistent with our previous study, we further confirmed that the UAV RGB images could be used to470
estimate grassland AGB at the quadrat scale over a large region (Zhang et al., 2022a; Zhang et al., 2018). Similar to the 2-471
meter-high UAV image, the indices from the 20-meter-high UAV images could also be used to estimate the grassland AGB472
at the quadrat -scale (R2=0.73, RMSE=44.23 g/m2,). The quadrat-scale UAV model had an excellent grassland AGB473
estimation ability in the range of 0-150 g/m2, and the verification points were mainly distributed near the 1:1 line (Figure 6a).474
Compared with the 2-meter-high UAV image, the 20-meter-high UAV image is more suitable for matching the MODIS475

pixel due to its wider spatial coverage (26 m 35 m).476

477
At the pixel scale, compared with other studies, this paper achieved the spatial scale matching of independent variables and478

dependent variables in the during the modelingmodeling. In previous studies process (Yang et al., 2009; Yang et al., 2017;479

Meng et al., 2020). , they directly constructed the models from the measured AGB values at the quadrat-scale and the480
spectral indices of the satellites without considering the spatial scale difference. It partly explaineds why the R2 of the AGB481
linear model constructed by Yang et al. was only 0.4 (Yang et al., 2009). Our results also confirmed that after considering482
the scale difference between measured AGB and NDVI, the R2 of the linear model could be increased from 0.29 to 0.78 after483
reducing the spatial gap between measured AGB and NDVI (Figure 7). In addition, thanks to the rapid sampling of UAV484
AGB, a total of 2,602 samples matching the pixel scale were collected during 2015-2019. It allowed us to perform multi-year485
cross-year validation to assess the robustness of the model at different timesover timeof AGB models at pixel scale to verify486
the model's robustness in different years, which washas rarely been performed in previous studies. Our results showed487
similar validation results for 2017-2019 (R2=0.85, p<0.001) des despite different sample sizes and spatial distributions488
(Figure 1, Table 1).489
However, previous studies only randomly selected 20-30% of samples and rarely considered the independence of samples490
on the time scale.491
In addition, we implemented large-region and multi-year cross-validation in model verification. Despite differences in492
sample size and spatial distribution (Figure 1, Table 1), the validation results for 2017-2019 were similar (R2=0.85). But in493
2015-2016, , R2 was relatively low, at 0.63 and 0.77, respectively (Table 3, Figure 6). The reason was that during 2015-2016,494

due to the improper setting, many some photos with abnormal white balance were obtained due to improper settings,495

which reduced the accuracy of the estimationestimation accuracy (Figure A5Figure 1213). The validation results showed that496
the pixel-scale AGB estimation model had good robustness in different regions and times when the photo quality was497
acceptable. The validation results indicated show that that the pixel- scale AGB estimation mode has l had good good498
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adaptability robustness in different regions and times when the photo quality is acceptableperiods while obtaining high-499
quality UAV images. Therefore, this method can be used to estimate the AGB values matching the satellite pixel scale in500
large regions.501

502
Figure 1213. An example of a set of GIRD photos with abnormal white balance in 2015.503

504
Table 45: Comparison of AGB estimation results of different studies on the QTP505

Mean
AGB
(g/m2)

Alpine
steppe
(g/m2)

Alpine
meadow
(g/m2)

Study period Approach Input Data
parameter
source

References

68.8 50.1 90.8 2001-2004 Linear regression MODIS EVI (Yang et al., 2009)
__ 22.4 42.37 2000-2012 Linear regression MODIS NDVI (Liu et al., 2017)
120.73 __ __ 1980–2014 Exponential

regression
NDVI (Jiao et al., 2017)

78.4 __ __ 1982-2010 RF GIMMSNDVI,
climate

(Xia et al., 2018)

77.12 76.43 154.72 2000-2014 RF NDVI, EVI,
climate,
terrainMODIS

(Zeng et al., 2019)

59.63 42.75 77.56 2000-2017 RF MODISNDVI,
climate

(Gao et al., 2020)

120.73 __ __ 1980–2014 Regression MODIS (Jiao et al., 2017;
Zhang et al.,
2022b)

102.4 __ __ 2000-2020 RF climate, soil, and (Zhang et al.,
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terrain 2022b)
70.00 __ __ 1960–2002 Century cClimate and soil

data
(Zhang et al.,
2007)

119.78 __ __ 2002–2004 Orchidee cClimate, soil and
LAI data

(Tan et al., 2010)

103.6 60.85 151.85 2000-2019 RF MODIS this study
506

At the regional scale, consistent with previous results, we found an overall increase in AGB over the QTP from 2001 to 2019,507
albeit with although there were fluctuations among years (Zeng et al., 2019; Gao et al., 2020). The annual average AGB of508
grassland was 103.6 g/m2, which was closest to Zhang et al.(Zhang et al., 2022b) and within the range of the previous509
estimates ( 59.63-120.73 g/m2 ) (Table 5).The annual mean AGB of grassland was 103.6 g/m2, within the previously510
estimated range (59.63-120.73 g/m2) (Table 4) . The mean AGB varied among of different grassland types was different,511
with 151.85 g/m2 foramong which the the alpine meadow was 151.85 g/m2, and 60.85 g/m2 for the alpine steppe was 60.85512
g/m2. Our estimation results were similar to those of Zeng et al. (Zeng et al., 2019), but the overall average AGB was higher513
than their estimated of 77.12 g/m2. The spatial distribution of AGB was consistent with previous studies, showing a west-to-514
east increasing trend (Zhang et al., 2022b; Xia et al., 2018). Specifically, the average AGB of OA1, IIAB, IB1, and IIC2 eco-515
geographical regions in the east was significantly higher than that of IID2, IID3, IC2, IID1, and ID1 regions in the west516
(Figure 8). In general, the average AGB estimates for each eco-geographical region in this paper were not much different517
from those of Zhang et al. (2022b). Among them, our average AGB estimates for ID1, IID1, IID3, and IID2 regions were518
slightly lower, but our values were closer to the measured values of these regions (Figure 8c). The reason may be that they519
calculated the potential biomassAGB, while we calculated the actual biomassAGB, so our estimate was relatively low.The520
reason may be that they calculate the potential biomass, while we calculate the actual biomass, so the estimate is low. In521
terms of spatial and temprooral trends, the data results showed that the eco-geographical regions in the northern part of the522
QTP demonstrated an increasing trend (IID3, ID1, IID2, and IIC2), while the IC2, IIC1, and IB1 regions exhibited523
significant or non-significant decreases, which was consistent with the results of others (Gao et al., 2020; Liu et al., 2017).524

525
The difference between our estimated grassland AGB and previous studies might be due to differences in data sources and526
modeling methods. Firstly, the sample size and spatial distribution of ground samples were different. The number of ground527
samples is the most important variable affecting the accuracy of the grassland AGB estimation model (Morais et al., 2021).528
Unlike previous studies, we collected ground verification validation data by combining the traditional sampling method and529
UAVs. The newly proposed method could overcome the shortcomings of traditional samplings (, such as the time-530
consuming and labor-intensive). It no longer took years of work to It no longer takes years to obtain spatially representative,531
large-scale ground validation dataOobtaining sufficient sufficient spatially representative ground verification validation data532
in over a large regionsarea no longer requires years of work (Yang et al., 2017). . With UAV sampling, ground observations533
matching the satellite pixel scale can be obtained in only 15-20 minutes, which is difficult to achieve in traditional surveys.534
Our new sampling method not only accelerates the sampling speed and increases the sample size, but also improves the535
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spatial match between ground samples and satellite pixels. As a result, our ground validation data is superior to previous536
studies in terms of quantity and spatial match to the satellite data. Secondly, the predictorinput variablesparameters of AGB537
estimation models were different. Some scholars used only a single vegetation index (NDVI or EVI), while others combined538
the vegetation index with meteorological, soil, and terrain indices to construct the AGB estimation models (Table 5). In this539
study, NDVI, kNDVI, EVI, DEM, and PREC were used as the final predictor variables to construct the AGB estimation540
model at the pixel scale (Table 2). Thirdly, Through UAV sampling, only 15~20 minutes were needed to complete a ground541
survey in a pixel range of 250 m × 250 m. In addition, it could effectively reduce the spatial gap between ground verification542
samples and satellite pixels.543

544
Meanwhile, different modeling approaches methods might also affect the simulation results. As shown in Table 5, the545
overall AGB averages of the QTP estimated estimated varied considerably based on different methods (, such as linear or546
nonlinear regression, machine learning, and ecological process model methods) varied considerably. Yang et al.(2017) found547
that the model performance of ANN was much better than the linear regression model when using the same dataset to548
estimate grassland AGB in the Three-River Headwaters Region of China (Yang et al., 2017). Jia et al.(2016) reported that549
the model forms could bring 13% uncertainty to the AGB estimation.n(Jia et al., 2016). Wang et al. compared the RF with550
the support vector regression (SVR) machine learning algorithm and found that the RF yielded the best performance in551
grassland biomass estimation (Wang et al., 2017).552

553

4.4 Limitations and further work554

We acknowledge that there are some shortcomings in this study. 1) The predicted values of the quadrat-scale model were555
underestimated when the measured biomass values were greater than 250 g/m2 (Figure 6). One reason may be that the556
number of samples greater than 250 g/m2 was relatively small, accounting for only 5.18 % of the total all samples. Another557
reason may be that for high biomass grasslands, a single UAV RGB photo can only reflect information such as vegetation558
cover and greenness, but not height information. This feature is bound to be very unfavorable for estimating AGB in559
grassland areas with high vegetation coverage and height. Studies have shown that adding vegetation height information can560
help improve the estimation accuracy of grassland AGB 1) The sample size greater than 200 g/m2 was insufficient at the561
quadrat scale, leading to underestimation where AGB was high. We will enlarge the sample size to improve the simulation562
accuracy in future research. 2) Although the grassland height information could help improve the estimation accuracy of563
grassland AGB, it was still challenging to obtain grassland height information from UAV RGB images in a large area.564
(Zhang et al., 2022a; Lussem et al., 2019; Viljanen et al., 2018). In future work, aAn affordable DJI Zensil L1 Lidar UAV565
will be introduced to invert the height of the grasslandt grass heights in future work. Thus, in the next step, we will consider566
using the affordable DJI Zensil L1 Lidar UAV to obtain grassland height information to improve the AGB estimation567
capability. 2) At the pixel scale, limited by the estimation accuracy of AGB from UAV, there was also some underestimation568
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in the high biomass area. Although the MODIS index closest to the sampling time was chosen for the construction/validation569
of the AGB estimation model, there iswas still a time difference between the measured samples and the MODIS indices,570
which maymight lead to estimation errors. In addition, the NDVI saturation problem was not considered in this study, which571
might affect the AGB estimation accuracy of QTP (Tucker, 1979a; Gao et al., 2000; Mutanga and Skidmore, 2004; Tucker,572
1979b). In the next step, we will continue to collect samples with high biomass and try to correct the NDVI saturation573
problem to optimize the simulation accuracy of the data set. 3)3) During 2015-2016, weour study washad just574
beginningstarted, , just started using UAVs to monitor the health of the grassland, and the appropriate suitable camera575
parameters and methods were still under being explorationexplored. ThereforeAs a result, some photos with abnormal white576
balance were obtained, reducing the accuracy of AGB estimationreduced the accuracy of AGB estimation at the photo scale577
(Figure 1213A5). 4) We only collected grassland AGB only in during the peak season of vegetation growthgrowing season,578
and whether the applicability of the proposed method applies to other growing growing seasons needs further studyremains579
to be further investigated. 5) During the modeling process, due to the limited positioning accuracy, only the center points of580
the flight route path were used to find the matching corresponding MODIS pixels due to the limited positioning accuracy.581
Moreover, although the UAV images from in GRID or RECTANGLE mode could could cover most areas of a MODIS pixel,582
full pixel coverage was was still not achieved. Therefore, we will gradually scale upupscale to MODIS pixels by combining583
UAVs with Sentinel-2 or Landsat images.584

585
586

5. Data availability587

The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center588
( athttps://doi.org/10.11888/Terre.tpdc.272587). The dataset contains 20 years of AGB spatial data of the QTP with a589
resolution of 250 m and is stored in TIFF format. The name of the file is "AGB_yyyy.tif", where yyyy represents the year.590
For example, AGB_2000.tif represents this TIFF file describing the alpine grassland AGB condition of QTP in 20052000.591
The data can be readily imported into standard geographical information system software (e.g., ArcGIS) or accessed592
programmatically (e.g., MATLAB, Python).593

6. Conclusion594

This study In this study, a newa new AGB dataset for alpine grasslands on the QTP was calculated based on traditional595
ground sampling, UAV photography, and MODIS imagery. presents a new gridded dataset of alpine grassland AGB over596
the QTP based on traditional ground sampling, UAV photographing, and MODIS images. The uniqueness of this dataset is597
the use of that when obtaining ground verification data, the UAVs is used as a spatial scale- matching bridge between598
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traditional local measurement samples and satellite pixels. The study confirmed that the UAV images could be used for AGB599
estimation at the quadrat /pixel scale, with R2 of 0.73/0.83 and RMSE of 44.23/34.13 g/m2, respectively. At the pixel scale,600
the correlation between AGB estimated by UAV and MODIS vegetation index was higher than that of the traditional601
sampling method (0.88 vs. 0.53 ).At the pixel scale, the AGB estimated by UAV was more correlated with the MODIS602
vegetation indices than the traditional ground sampling method (0.88 VS 0.53), and Moreover, the spatial scale matching of603
the dependent and the independent variables was achieved during the model modelingconstruction. In addition, we604
performed a an independent cross-year validation of the pixel-scale AGB estimation model to confirm the robustness of the605
model and the accuracy of this dataset In addition, the constructed pixel scale model has been independently cross-validated606
over many years (2015-2019), which confirmed the robustness of the model and ensured the accuracy of this dataset.607
Availability The availability of the new dataset is helpful in many applications. First, this dataset provides reliable regional608
data for estimating grassland productivity, carbon storage, ecological environment carrying capacity, and ecological service609
functions (such as feed for grazing livestock) onof the QTP. Second, the dataset can be used to understand the mechanisms610
of environmental processes, such as hydrological cycle processes, soil erosion and degradation, and carbon cycle processes611
in the QTP. In addition, this dataset can be used as input or validation parameters for various ecological models to612
understand the response mechanism of the QTP to global climate change.613
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Appendix628

629
Figure A1. Waypoints for GRID (a) and RECTANGLE (b) flight modes.630

631
Figure A2. The importance values for each independent variable (a) and the R2 results of the different number of input variables632
at the quadrat scale.633
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634

635
Figure A3. The importance values for each independent variable (a) and the R2 results of the different number of input variables636
at the pixel scale.637

638
Figure A4. Examples of 20-meter-high UAV images with different non-vegetation background information.639
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640
Figure A5. An example of a set of GIRD photos with abnormal white balance in 2015.641

642
643

Table A1. Combined grassland types644

New grassland type Original grassland type

Alpine meadow Alpine meadow, Lowland meadow, Montane meadow，

Alpine steppe Temperate steppe, Alpine steppe, Alpine meadow steppe

Spare grassland Temperate steppe desert, Alpine desert

645
Table A2. Features of DJI Phantom 3 Pro646

Features Description

DJI Phantom 3 Pro

Sensor 1/23-inch; Effective-pixel: 12-megapixel

Filed of view FOV 94° 20 mm

Aperture f/2.8

Shooting speed Electronic shutter: 8-1/8000 s

Photo size 4000×3000

Flight time ~25 min

Image format

Hovering accuracy

JPEG

±0.5 m vertically; ±1.5 m horizontally

Weight 1280 g

647
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648
649
650

Table A3: Details of the independent variables for quadrat-scale AGB estimation651

Acronym Index name Formula Reference
GRVI Green Red Vegetation Index (G-R)/(G+R) (Tucker, 1979a)
EXG Excess Green Vegetation Index 2G-R-B (Woebbecke et al., 1995)
GLA Green leaf area (2G-R-B)/(2G+R+B) (Louhaichi et al.)
MGRVI Modified Green Blue Vegetation Index (G2-R2)/(G2+R2) (Bendig et al., 2015)
RGBVI Red Green Blue Vegetation Index (G2-B*R)/(G2+B*R) (Bendig et al., 2015)
EXB Excess Blue Vegetation Index (1.4*B-G)/(G+R+B) (Maimaitijiang et al., 2019)
NDI Normalized difference index (R-G)/(R+G) (Woebbecke et al., 1993)
EXR Excess Red Vegetation Index 1.4*R-B (Meyer and Neto, 2008)
EXGR Excess Green minus Excess Red index ExG−ExR (Meyer and Neto, 2008)
RRATIO Red Ratio R/(R+B+G) (Woebbecke et al., 1995)
BRATIO Blue Ratio B/(R+B+G) (Woebbecke et al., 1995)
GRATIO Green Ratio G/(R+B+G) (Woebbecke et al., 1995)
VARI Visible Atmospherically Resistance Index (G -R)/(G + R - B) (Gitelson et al., 2002)
NRBI Normalized Red Blue Index (R-B)/(R+B) (Michez et al., 2016)
NGBI Normalized Green Blue Index (G-B)/(G+B) (Michez et al., 2016)
VEG Vegetative index G/(RaB(1-a)),where a=0.667 (Hague et al., 2006)
WI Woebbecke Index (G−B)/(R−G) (Woebbecke et al., 1995)
CIVE Color Index of Vegetation 0.441R –

0.881G+0.385B+18.78745
(Kataoka et al., 2003)

COM Combination Vegetative index 0.25ExG+0.3ExGR+0.33CIVE
+0.12VEG

(Guijarro et al., 2011)

TGI Triangular Greenness Index G-0.39R-0.61B (Hunt et al., 2014; Michez et
al., 2018)

RGBVI Red Green Blue Vegetation Index (G2-B*R)/(G2+B*R) (Bendig et al., 2015)
GRRI Green Red Ratio Index G/R (Maimaitijiang et al., 2019)
GBRI Green Blue Ratio Index G/B (Maimaitijiang et al., 2019)
RBRI Red Blue Ratio Index R/B (Maimaitijiang et al., 2019)
BRRI Blue Red Ratio Index B/R (Jibo et al., 2018)
BGRI Blue Green Ratio Index B/G (Jibo et al., 2018)
RGRI Red Green Ratio Index R/G (Jibo et al., 2018)
INT Color Intensity Index (R+B+G)/3 (Ahmad and Reid, 1996)
MVARI Modified VARI (G-B)/(G+R-B) (Cen et al., 2019)
IPCA Principal Component Analysis Index 0.994×|R−B|+ 0.961×|G−B|+

0.914×|G−R|
(Saberioon et al., 2014)

652
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Table A3: Details of the independent variables for quadrat-scale AGB estimation (continued)655

Acronym Index name Formula Reference
R An average value of R channel of the

quadrat-scale UAV image

(Zhang et al.,
2022a)

G An average value of G channel of the
quadrat-scale UAV image

B An average value of B channel of the
quadrat-scale UAV image

H An average value of H channel of the
quadrat-scale image in HSV color
space

S An average value of S channel of the
quadrat-scale image in HSV color
space

V An average value of V channel of the
quadrat-scale image in HSV color
space

FVC Fractional Vegetion Cover

EGI Extra Geen Index EGI=2G-R-B

GI Green Index GI=9×(H×3.14159/180) +3×S+V

HOC_i_C
ORR

The histogram correlation coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB

���� � (�1 � − ��1)(�2 � − ��2)�

� (�1(�) − ��1)2� � (�2 � − ��2)2�

HOC_i_
INTERSE
C

The histogram intersection coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB

�������� =
�

min (�1 � , �2 � )�

HOC_i_
BHATTA

The histogram Bhattacharyya distance
coefficient between the i band and the
black reference histogram, where the i
represents the three bands of RGB

�ℎ���� =
�

min (�1 � , �2 � )�

HOC_i_C
HIS

The histogram correlation coefficient
between the i band and the black
reference histogram, where the i
represents the three bands of RGB.

�ℎ�� =
�

�1 � − �2 � 2

�1(�)�

656
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Table A4：Regression analysis for AGB estimation models at quadrat and pixel scalesStatistical information of regression models657
for AGB estimation models at quadrat and pixel scales658

Model name Coefficient Value Standard Error t-Value p-value

2019_Quadrat-scale
Slope 0.67 0.016 42.58 9.05e-194

Intercept 20.10 1.49 13.59 5.96e-37

2019_Pixel_scale
Slope 0.84 0.03 31.59 2.75e-73

Intercept 23.20 4.04 5.74 4.24e-8

2018_Pixel_scale
Slope 0.73 0.02 45.81 8.28e-157

Intercept 20.43 2.74 7.46 6.01e-13

2017_Pixel_scale
Slope 0.75 0.01 59.13 1.98e-260

Intercept 13.89 2.04 6.82 2.19e-11

2016_Pixel_scale
Slope 0.94 0.02 40.45 4.69e-157

Intercept 2.48 3.75 0.66 0.03

2015_Pixel_scale
Slope 0.82 0.04 18.88 2.59e-47

Intercept 9.50 5.25 1.81 0.04

659
Table A5: List of abbreviations of eco-geographical regions and the mean AGB of the QTP660

Abbreviation Full name
IB1 Golog-Nagqu high-cold shrub-meadow zone

IIAB1 Western Sichuan-eastern Tibet montane coniferous forest zone

IC1 Southern Qinghai high-cold meadow steppe zone

IC2 Qiangtang high-cold steppe zone

ID1 Kunlun high-cold desert zone

IIC1 Southern Tibet montane shrub-steppe zone

IIC2 Eastern Qinghai-Qilian montane steppe zone

IID1 Nagri montane desert-steppe and desert zone

IID2 Qaidam montane desert zone

IID3 Northern slopes of Kunlun montane desert zone

OA1 Southern slopes of Himalaya montane evergreen broad-leaved forest zone

661
662
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