
Dear Editor and Reviewer #1

This paper introduces the aboveground biomass data of 250 m spatial resolution grassland on the

Qinghai-Tibetan Plateau from 2000 to 2019. The data are of great significance for studying the

grassland carbon budget, the interaction between grassland vegetation and climate change, and the

construction of ecological civilization on the Qinghai-Tibetan Plateau. A few suggestions or

comments on the data paper.

Response: We appreciate your insightful comments on our paper. The comments provided have
been extremely helpful to us. We have revised the manuscript in response to your comments and
carefully proofread the manuscript to minimize typographical, grammatical, and bibliography
errors. The point-to-point responses to your comments are listed below in blue.

Point 1. Complementing the sources of study region boundary data, the boundary data from

different sources are slightly different.

Response: Thank you for your comments. As you suggested, we have added the sources of

boundary in section 2.1 (Lines 90-91):

“In this study, the boundary of the QTP of China (Zhang et al., 2014) was downloaded from the

National Earth System Science Data Center, National Science & Technology Infrastructure of

China (http://www.geodata.cn).”

Point 2. The study area of this data article is the Qinghai-Tibetan Plateau in China, and it is

suggested that the area outside of China should also be taken into account to calculate the

grassland aboveground biomass as a whole.

Response. Thank you for your comments. In this study, we only conducted field surveys on the

Qinghai-Tibet Plateau in China and did not collect aboveground biomass samples in other regions.

In the future, we will continue to expand the sample collection area to realize the inversion of

grassland AGB across the Third Pole. To avoid confusion, we have modified the title to (lines

1-3):

“A 250m annual alpine grassland AGB dataset over the Qinghai-Tibetan Plateau (2000-2019) in

China based on in-situ measurements, UAV images, and MODIS Data.”

Point 3. How were sparse grassland, Alpine grassland, and Alpine meadow classified in Figure 1?

What was the basis or source of the classification? Similarly, how was the distribution of

http://www.geodata.cn


grasslands on the Qinghai-Tibetan Plateau determined in this data article? The topography of the

Qinghai-Tibetan Plateau is complex, and it is a critical task to determine the extent of the 250-m

resolution grassland distribution, which is also related to the use of this data. If the research results

of others were used, please give the relevant sources and accuracy.

Response: Thank you for your comments. As you suggested, we have added the detailed

information on the grassland classification map in Section 2.1 (lines 92-96):

“Grassland type data was derived from the 1:1000000 Chinese digital grassland classification map

provided by the China Resource and Environmental Science and Data Center

(https://www.resdc.cn/). This data set, generated through field surveys in the 1980s and

supplemented by satellite and aerial imagery, is the most detailed grassland-type map available.

For comparison with others, we combined the grassland types into three categories: alpine

meadow, alpine grassland, and sparse grassland, and resampled to 250 m (Table A1).”

Table A1. Combined grassland types

New grassland type Original grassland type

Alpine meadow Alpine meadow, Lowland meadow, Montane meadow，

Alpine steppe Temperate steppe, Alpine steppe, Alpine meadow steppe

Spare grassland Temperate steppe desert, Alpine desert

”

Point 4. The content and depth of discussion in this data article is far from adequate and it is

suggested to be strengthened. Scholars have published a large number of reviews and research

results in the field of estimating grassland biomass using remotely sensed data. It is suggested to

read carefully to enhance the discussion of this data article.

Response: Thank you for your comments. As you suggested, we have made the following

changes.

 We have modified the original Figure 8 by adding an eco-geographic region layer, and

conducted a statistical analysis of interannual trends in eco-geographic regions. In addition,

we have added Table A5 in the Appendix section to describe the abbreviations and full names

of the eco-geographic regions (lines 328-333).

https://www.resdc.cn/


Figure 8. (a) The spatial distribution of average grassland AGB on the QTP from 2000 to 2019.
IID1, IID2, IID3, ID, IIC1, IIC2, IC1, IB1 IIAB1, and OA1 are the eco-geographical regions of the
QTP(Zheng, 1996). The full names of each eco-geographical region were listed in Table A5. (b)
AGB values of each eco-geographical region from 2000 to 2019. (c) Comparison of multi-year
AGB averages in the different eco-geographical regions.

Table A5: List of abbreviations of eco-geographical regions and the mean AGB of the QTP

Abbreviation Full name
IB1 Golog-Nagqu high-cold shrub-meadow zone
IIAB1 Western Sichuan-eastern Tibet montane coniferous forest zone
IC1 Southern Qinghai high-cold meadow steppe zone
IC2 Qiangtang high-cold steppe zone
ID1 Kunlun high-cold desert zone
IIC1 Southern Tibet montane shrub-steppe zone
IIC2 Eastern Qinghai-Qilian montane steppe zone
IID1 Nagri montane desert-steppe and desert zone
IID2 Qaidam montane desert zone
IID3 Northern slopes of Kunlun montane desert zone
OA1 Southern slopes of Himalaya montane evergreen broad-leaved forest zone



 We analyzed the changes of grassland AGB on the Qinghai-Tibet Plateau from 2000 to 2019

using the Theil-Sen Median trend analysis and the Mann-Kendall test. And Section 2.7 was

added to introduce the trend analysis method (lines 246-253):

“2.7 Trend analysis of grassland AGB
This study combined the Theil-Sen median trend analysis and Mann-Kendall test to analyze
the temporal variation characteristics of grassland AGB of QTP (Jiang et al., 2015). Theil-Sen
median trend analysis is a robust trend statistical method with high computational efficiency,
insensitive to outliers (Hoaglin et al., 1983). The Mann-Kendall test is a nonparametric test
for time series trends, which does not require the measurements to follow a normal
distribution and is not affected by missing values and outliers. The Theil-Sen Median trend
analysis and Mann-Kendall trend test have been widely used to analyze vegetation index,
cover, and biomass(Gao et al., 2020; Jiang et al., 2015; Fensholt et al., 2009). The formulas
for the Theil-Sen median trend analysis and the Mann-Kendall method are detailed in Jiang et
al. (2015).”

 In Section 3.4, we have added a description of the spatial distribution and trends of the AGB

of the QTP from 2000 to 2019 based on the eco-geographical regions (lines 315-325):

“The spatial distribution of the average grassland AGB on the QTP from 2000 to 2019 was
calculated (Figure 8). The AGB gradually increased from west to east. As shown in Figure 8b,
the average biomass of eastern OA1, IIAB, IB1, and IIC2 eco-geographical regions ranged
from 150 to 190 g/m2, and the average AGB of IC1 and IIC1 ranged from 80 to 110 g/m2.
The average AGB of IID2, IID3, IC2, and IID1 in the west was relatively low, ranging from
35 to 75 g/m2. The ID1 region was dominated by sparse grassland with the lowest average
interannual AGB values, which fluctuated around 20 g/m2 (Figure 8b). The average AGB of
QTP showed an insignificant increasing trend between 2000 and 2019, with an average
growth rate of 0.22 gm-2a-1 (Figure 9a). The overall mean AGB of the QTP was 103.6 g/m2,
with 151.85 g/m2, 60.85 g/ m2, and 28.91 g/m2 for alpine meadow, alpine steppe, and sparse
grassland, respectively (Figure 9b). In addition, the temporal trend of grassland AGB in each
pixel was analyzed. As shown in Figure 10, the IID3, ID1, IID2, and IIC2 eco-geographical
regions of the northern QTP showed an increasing trend from 2000 to 2019, while the IC2,
IB1, and IIC1 regions showed some degradation. Therefore, there was spatial heterogeneity
in the temporal variation.”



Figure 10. Spatial trends of grassland AGB on the Tibetan Plateau from 2000 to 2019.

IID1, IID2, IID3, ID, IIC1, IIC2, IC1, IB1 IIAB1, and OA1 are the eco-geographical

regions of the QTP (Zheng, 1996). The full names of each eco-geographical region are

listed in Table A5.

 In section 4.1, a discussion on spatial scale matching has been added (lines 346-350).

“In previous studies, the AGB value of a satellite pixel was represented by the average value

of 3-5 quadrat-scale samples, so there is a large spatial gap between the ground samples and

the satellite pixel (Yang et al., 2017; Yang et al., 2009; Meng et al., 2020). The spatial gap

between ground samples and satellite indices can impact the accuracy of grassland AGB

models. The smaller the spatial gap between the two, the higher the accuracy of the model

(Morais et al., 2021). We address this issue using the UAVs as a bridge to reduce the spatial

gap.”

 In Section 4.3, the original Table 4 was updated. The "Data Source" column in the original

table was changed to "input parameter". In addition, three new references were added to the

list (lines 403-404).



[1] ZHANG, X., LI, M., WU, J., HE, Y., and NIU, B.: Alpine Grassland Aboveground Biomass and

Theoretical Livestock Carrying Capacity on the Tibetan Plateau, Journal of Resources and Ecology, 13,

129-141, 2022b.4

[2] Zhang, Y. Q., Tang, Y. H., and Jiang, J. A.: Characterizing the dynamics of soil organic carbon in

grasslands on the Qinghai-Tibetan Plateau, 2007.4

[3] Tan, K., Ciais, P., Piao, S., Wu, X., Tang, Y., Vuichard, N., Liang, S., and Fang, J.: Application of the

ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan

grasslands, 2010.4

 In Section 4.3, the following four aspects of discussion have been added.

 First, the comparison of scale matching between dependent and independent variables

was added (lines 390-395).

“At the pixel scale, compared with other studies, this paper achieved the spatial scale

matching of independent and dependent variables during the modeling. In previous

studies (Yang et al., 2009; Yang et al., 2017; Meng et al., 2020), they constructed the

models from the measured AGB values at the quadrat-scale and the spectral indices of the

satellites without considering the spatial scale difference. It partly explained why the R2

of the AGB linear model constructed by Yang et al. was only 0.4 (Yang et al., 2009). Our

results confirmed that the R2 of the linear model could be increased from 0.29 to 0.78

after reducing the spatial gap between measured AGB and NDVI (Figure 7).”

 Second, a comparison of model validation methods has been added (lines 395-402).

“In addition, thanks to the rapid sampling of UAVAGB, a total of 2602 samples matching
the pixel scale were collected during 2015-2019. It allowed us to perform cross-year
validation to assess the robustness of the model over time, which has rarely been



performed in previous studies. Our results showed similar validation results for
2017-2019 (R2=0.85, p<0.001) despite different sample sizes and spatial distributions
(Figure 1, Table 1). But in 2015-2016, R2 was relatively low, at 0.63 and 0.77,
respectively (Table 3, Figure 6). The reason was that during 2015-2016, some photos with
abnormal white balance were obtained due to improper settings, which reduced the
estimation accuracy (Figure A5). The validation results showed that the pixel-scale AGB
estimation model had good robustness in different regions and times when the photo
quality was acceptable.”

 Third, we added the spatial trend comparison of AGB on QTP at the eco-geographical
region scale (lines 410-419).

“The spatial distribution of AGB was consistent with previous studies, showing a

west-to-east increasing trend (Zhang et al., 2022b; Xia et al., 2018). Specifically, the

average AGB of OA1, IIAB, IB1, and IIC2 eco-geographical regions in the east was

significantly higher than that of IID2, IID3, IC2, IID1, and ID1 regions in the west

(Figure 8). In general, the average AGB estimates for each eco-geographical region in

this paper were not much different from those of Zhang et al. (2022b). Among them, our

average AGB estimates for ID1, IID1, IID3, and IID2 regions were slightly lower, but our

values were closer to the measured values of these regions (Figure 8c). The reason may

be that they calculated the potential AGB, while we calculated the actual AGB, so our

estimate was relatively low. In terms of spatial and temporal trends, the data results

showed that the eco-geographical regions in the northern part of the QTP demonstrated an

increasing trend (IID3, ID1, IID2, and IIC2), while the IC2, IIC1, and IB1 regions

exhibited significant or non-significant decrease, which was consistent with the results of

others (Gao et al., 2020; Liu et al., 2017).”

 In addition, the reasons for the differences between the results of this study and those of
previous studies were discussed. We discussed this through three aspects: the measured
samples, the model input parameters, and the modeling approach (lines 421-440).

“The difference between our estimated grassland AGB and previous studies might be due
to differences in data sources and modeling methods. Firstly, the sample size and spatial
distribution of ground samples were different. The number of ground samples is the most
important variable affecting the accuracy of the grassland AGB estimation model (Morais
et al., 2021). Unlike previous studies, we collected ground validation data by combining
the traditional sampling method and UAVs. The newly proposed method could overcome
the shortcomings of traditional samplings (time-consuming and labor-intensive). It no
longer takes years to obtain spatially representative, large-scale ground validation data
(Yang et al., 2017). With UAV sampling, ground observations matching the satellite pixel
scale can be obtained in only 15-20 minutes, which is difficult to achieve in traditional



surveys. Our new sampling method not only accelerates the sampling speed and increases
the sample size, but also improves the spatial match between ground samples and satellite
pixels. As a result, our ground validation data is superior to previous studies in terms of
quantity and spatial match to the satellite data. Secondly, the input parameters of AGB
estimation models were different. Some scholars used only a single vegetation index
(NDVI or EVI), while others combined the vegetation index with meteorological, soil,
and terrain indices to construct the AGB estimation models (Table 5). In this study, NDVI,
kNDVI, EVI, DEM, and PREC were used as the final predictor variables to construct the
AGB estimation model at the pixel scale (Table 2). Thirdly, modeling methods might also
affect the simulation results. As shown in Table 5, the overall AGB averages of the QTP
estimated based on different methods (such as linear or nonlinear regression, machine
learning, and ecological process model methods) varied considerably. Yang et al.(2017)
found that the model performance of ANN was much better than the linear regression
model when using the same dataset to estimate grassland AGB in the Three-River
Headwaters Region of China. Jia et al.(2016) reported that the model forms could bring
13% uncertainty to the AGB estimation. Wang et al. compared the RF with the support
vector regression (SVR) machine learning algorithm and found that the RF yielded the
best performance in grassland biomass estimation (Wang et al., 2017).”

 In Section 4.4, we have added a discussion of the underestimation of the AGB estimation

models, as well as possible reasons and the future research direction (lines 443-456):

“We acknowledge that there are some shortcomings in this study. 1) The predicted values of

the quadrat-scale model were underestimated when the measured biomass values were

greater than 250 g/m2 (Figure 6). One reason may be that the number of samples greater than

250 g/m2 was relatively small, accounting for only 5.18 % of all samples. Another reason

may be that for high biomass grasslands, a single UAV RGB photo can only reflect

information such as vegetation cover and greenness, but not height information. This feature

is very unfavorable for estimating AGB in grassland areas with high vegetation coverage and

height. Studies have shown that adding vegetation height information can help improve the

estimation accuracy of grassland AGB (Zhang et al., 2022a; Lussem et al., 2019; Viljanen et

al., 2018). In future work, an affordable DJI Zensil L1 Lidar drone will be introduced to

invert the height of grassland. 2) At the pixel scale, limited by the estimation accuracy of

AGB from UAV, there was also some underestimation in the high biomass area. Although the

MODIS index closest to the sampling time was chosen in the construction of the AGB

estimation model, there was still a time difference between the measured samples and the

MODIS indices, which might lead to estimation errors. In addition, the NDVI saturation

problem was not considered in this study, which might affect the AGB estimation accuracy of

QTP (Tucker, 1979a; Gao et al., 2000; Mutanga and Skidmore, 2004; Tucker, 1979b). In the

next step, we will continue to collect samples with high biomass and try to correct the NDVI



saturation problem to optimize the simulation accuracy of the data set.”

Point 5. Accuracy evaluation should not only pay attention to R2 and RMSE, but also pay

attention to the relationship between the regression line and 1:1 line. In the regression analysis in

Figure 6, the relationship between the regression line and the 1:1 line was not discussed, although

the authors gave the 1:1 line. It should be noted that the regression line is meaningful only if there

is no significant difference between the regression line and the 1:1 line. This information was not

given in the paper, and there was a significant lack of accuracy evaluation in the article. This is

directly related to the reliability of the regional results.

Response: Thank you for your comments. As you suggested, we changed as following:

 In the revised version, we have added the formulae for calculating R2 and RMSE in Section

2.5.1 (lines 204-208)

“
Statistical metrics R2 (Eq.1) and RMSE (Eq.2) were used to evaluate the performance of the
model.

�2 = 1 − �=1
� (ŷ�−��)2�

�=1
� (ŷ�−��)2�

(1)

���� = �=1
� (ŷ�−��)2�

�
(2)

where n is the number of samples, yi and ŷi represent the measured and the predicted AGB
value, respectively, yi is the mean value of measured AGB samples.
”

 We modified Table 3 by adding significance level information of R2 (lines 284-285).

Table 3: Validation results of AGB models at quadrat and pixel scales
Scale Year Training set Validation set

R2 RMSE(g/m2) R2 RMSE(g/m2)
Quadrat-scale
Pixel-scale

2019
2019
2018
2017
2016
2015

0.94
0.96
__
__
__
__

20.18
10.68
__
__
__
__

0.73 ***
0.85 ***
0.85 ***
0.85 ***
0.77 ***
0.63 ***

32.94
23.36
24.83
23.83
31.28
34.07

‘***’ significant at p<0.001

 Moreover, regression analysis was performed to verify the strong linear relationship between

the predicted and measured AGB values. In the revised version, we have added a new Table

A4 to describe the slope and intercept coefficients of the regression model and the t-test



results for these coefficients in the Appendix section (line 526):

Table A4: Regression analysis for AGB estimation models at quadrat and pixel scales

Model name Coefficient Value Standard Error t-Value p-value

2019_Quadrat-scale
Slope 0.67 0.016 42.58 9.05e-194
Intercept 20.10 1.49 13.59 5.96e-37

2019_Pixel_scale
Slope 0.84 0.03 31.59 2.75e-73
Intercept 23.20 4.04 5.74 4.24e-8

2018_Pixel_scale
Slope 0.73 0.02 45.81 8.28e-157
Intercept 20.43 2.74 7.46 6.01e-13

2017_Pixel_scale
Slope 0.75 0.01 59.13 1.98e-260
Intercept 13.89 2.04 6.82 2.19e-11

2016_Pixel_scale
Slope 0.94 0.02 40.45 4.69e-157
Intercept 2.48 3.75 0.66 0.03

2015_Pixel_scale
Slope 0.82 0.04 18.88 2.59e-47
Intercept 9.50 5.25 1.81 0.04

 In this study, we used the RF model to predict AGB values rather than through a linear

regression equation. The linear regression equation constructed in Figure 6 was only used to

assess whether there was a significant linear relationship between the estimated and measured

AGB values at the quadrat or pixel scale. In the new version, a Student's t-test was used to test

whether there was a statistically significant difference between predicted and measured AGB

values at the 95% confidence level (Table 4, lines 288-289).

“Table 4: T-test results between the predicted and measured AGB values for the modes at
quadrat and pixel scales

Validation model Measured
mean

Predicted
mean

t df p-value

2019_Quadrat-scale 51.57 54.35 -0.66 939.35 0.51
2019_Pixel_scale 136.68 137.7461 -0.15 340.78 0.88
2018_Pixel_scale 152.49 131.48 4.01 723.81 6.63e-05
2017_Pixel_scale 141.42 120.60 5.48 1225.2 5.26e-08
2016_Pixel_scale 149.56 142.70 1.68 961.99 0.09413
2015_Pixel_scale 108.65 98.23 1.96 1225.2 0.05

”

 In this version, we have modified Figure 6. Indexes such as R2, p-value, RMSE, and the

number of validation samples (N) have been added to quantify the difference between the

predicted and measured AGB values.



Figure 6. Validation results of the AGB estimation models at the quadrat (a) and MODIS pixel
scale for 2015-2019 (b~f).

 We have also modified the text in section 3.2 (lines 266-281):

“For the AGB estimation model at the quadrat scale, the results of 10-cross validations
showed that there was a significant linear relationship between the estimated and the
measured values (R2=0.73, p<0.001, Table 3, Table A4). The student’s t-test was also used to
assess whether there was a significant difference between the predicted AGB values and the
measured values at a confidence level of 95%. As shown in Table 4, there was no significant



difference (p=0.51>0.05) with an RMSE of 32.94 g/m2. The scatter plot showed that the
model predicted well when the measured biomass was less than 150g/m2, but showed some
underestimation when it was more than 200g/m2 (Figure 6a). This may be because the
number of samples more than 200g/m2 is relatively small, accounting for only 8.50% of all
samples (Figure 5a). Although the sample size of UAVs varied from year to year, most of the
AGB values estimated from photos ranged from 0 to 300 g/m2 (Figure 5b).

For the pixel-scale AGB estimation model, there was a strong linear relationship between the
predicted AGB and UAV estimates for 2015-2019 (Table A4). The fitting coefficient R2 was
0.85 for 2017-2019, slightly lower for 2015-2016 at 0.63 and 0.77, respectively (Table 3,
Figure 6b-f). The RMSE of the pixel-scale model ranged from 23.36 to 34.07 g/m2 (Table 3).
In addition, we found no significant differences between the predicted and measured average
AGB values except for 2017 and 2018 (Table 4). While the average model projections for
2017 and 2018 were 14.72% and 13.78% lower than the UAV estimates, they were within
acceptable ranges. Therefore, the constructed pixel-scale AGB estimation model had good
performance and robustness in different years (Figure 6b~f).”

Point 6. The English of the article is seriously substandard, with problems such as too many

grammatical errors, and even some sentences lack obvious sentence components.

Response: Thank you for your comments. Based on your suggestion, we have carefully proofread

the manuscript to minimize typographical, grammatical, and bibliography errors. For specific

changes, please refer to the revised version with change tracking.


