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Abstract. Soil hydraulic properties (SHPs) and soil moisture (SM) are fundamental to describing and predicting water and 

energy cycles at the land surface, and for regulating evapotranspiration, infiltration and runoff. However, information about 

these soil properties from existing datasets is often scarce and inaccurate for high and cold mountainous areas such as the 

Qinghai-Tibet Plateau (QTP), which hampers our understanding of hydrological and energy cycle processes over large 

mountainous areas like the QTP. Based on soil profile data at depths of 5 cm and 25 cm from 238 sampling sites, and on soil 15 

data from 32 SM monitoring stations at depths of 5 cm, 15 cm, 25 cm, 40 cm, and 60 cm, we have compiled a SHP and SM 

dataset for a high and cold mountainous area, Northeastern QTP. We used this dataset to explore the large-scale spatial and 

temporal variability of SHPs and of SM across the study area. Our evaluation of several existing SHP datasets, SM datasets 

derived from remote-sensing, reanalysis and data assimilation, showed that SHPs (soil texture, bulk density, and soil saturated 

hydraulic conductivity) in these datasets are biased, and do not capture the spatial variability recorded in the in-situ 20 

observations. When comparing with the in-situ SM observations, the SM product derived from remote-sensing was more 

reliable than the SM product derived from reanalysis data (which had a higher bias), and than the data assimilation product 

(which did not capture SM temporal variability). The in situ observation dataset presented here provides unique and important 

information about the SHP variability and long-term SM trends at a large-scale, high and cold mountainous area, and thus 

offers opportunity for further understanding of water cycle and energy exchange processes over the QTP. 25 
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1. Introduction 

Soil provides an important link between atmospheric and hydrologic processes, and has a strong influence on surface energy 

and water fluxes, and on regional climate (Amundson et al., 2015; Jia et al., 2020). Soil hydraulic properties (SHP) control 

water movement in the soil (Maxwell and Condon, 2016; Vereecken et al., 2015), and impact water and energy exchange 30 

between the land and the atmosphere (McColl et al., 2017; Wang et al., 2020). Soil moisture (SM) is an essential climate 

variable (Global Climate Observing System, 2010) because of the effects it has on the weather (Tuttle and Salvucci, 2016), on 

runoff (McDonnell et al., 2018), on evapotranspiration (Jung et al., 2010), on groundwater recharge (McColl et al., 2017), on 

the carbon cycle (Green et al., 2019; Wei et al., 2021), and on temperature extremes (Seneviratne et al., 2010). Soil properties 

are represented in models at different scales, from small-scale hydrological models to regional- and global-scale Earth system 35 

models (Bai et al., 2020; Vereecken et al., 2016), and much effort has gone into assessing and improving the accuracy of model 

estimates of SHP and SM (e.g., Blöschl et al., 2019; Dorigo et al., 2021; Montzka et al., 2017) over the past decades. However, 

the uncertainty associated with information about SHP and SM over large spatial scales remains high (Benninga et al., 2018; 

Fatichi et al., 2020), especially for high and cold mountainous areas, such as the Qinghai-Tibet Plateau (QTP, Che et al., 2019; 

Jin et al., 2015; Li et al., 2018a; Liu et al., 2021b; Zhao et al., 2018).  40 

Due to its harsh environment, large-scale soil-sampling is rarely undertaken in high and cold mountainous areas such as the 

QTP (Che et al., 2019; Li et al., 2017; Li et al., 2018b; Zhang et al., 2021). This makes the data in many widely-used soil 

databases for mountainous areas highly uncertain (Dai et al., 2019; Wang et al., 2021). Recently, there has been considerable 

progress towards creating large-scale SHP datasets for the mountainous areas of the QTP. These new datasets include the soil 

organic carbon (Ding et al., 2019; Song et al., 2016; Wang et al., 2021; Yang et al., 2016), soil thickness (Yang et al., 2016; 45 

Zhang et al., 2016), and soil texture (Li et al., 2018c; Lu et al., 2017), which have improved our understanding of the spatial 

distribution and estimation accuracy of SHP datasets over the QTP (Li et al., 2020). Field sampling and laboratory 

measurements are more difficult and time consuming for some key SHPs, such as the soil water retention curve and saturated 

hydraulic conductivity, than the equivalent investigations for more basic soil parameters, such as texture (He et al., 2021; Tian 

et al., 2017). To date, very few large-scale studies have provided comprehensive in-situ measurements of both these key soil 50 

hydraulic properties and basic soil information, and there are few in situ observations of large-scale soil hydraulic properties 

available for the QTP (Liu et al., 2021; Tian et al., 2017; Zhao et al., 2018). The relationships between individual SHPs and 

their large-scale spatial distribution over the QTP remain largely unknown (Tian et al., 2017; Zhao et al., 2018). Large-scale 

estimates of key SHPs over the QTP, which are always made using pedotransfer function, have been shown to have particularly 

high uncertainty (Dai et al., 2019; Lu et al., 2020; Van Looy et al., 2017; Zhang et al., 2018a; Zhao et al., 2018). 55 

SM can be quantified using in-situ instruments (Dorigo et al., 2021; Vereecken et al., 2008), remote sensing (Mohanty et al., 

2017) and land-process models (Muñoz-Sabater et al., 2021). Land-process models have large biases and predictions often 

vary between different models (Lu et al., 2020; Xia et al., 2014; Xing et al., 2021; Zhang et al., 2021). Remote-sensing 

observations can be challenging over mountainous regions and SM can generally only be retrieved for the uppermost 5 cm of 
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the soil. (Xing et al., 2021; Zhang et al., 2019). Ground-based SM measurements are the most accurate and important means  60 

for developing, validating, and extrapolating spatially-contiguous data derived from satellites or from land-process models 

(Dorigo et al., 2021; Benninga et al., 2018; Xia et al., 2014). However, measuring SM in-situ over large areas is difficult, 

particularly in mountainous regions, and thus such measurements are scarce (Ochsner et al., 2013; Dorigo et al., 2021).In 

recent years, numerous long-term SM monitoring networks have been established (e.g. Dorigo et al., 2021; Ochsner et al., 

2013; Bogena et al., 2018; Bogena et al., 2021), but only a few of these are in high and cold mountain areas (Che et al., 2021; 65 

Su et al., 2011; Jin et al., 2014; Pellet and Hauck, 2017; Zhang et al., 2021), and this limits the improvements to remote sensing 

products and land surface models for mountainous areas (Li et al., 2021; Xia et al., 2014; Su et al., 2013). 

This study presents field-sampled SHP profiles, collected through a SM monitoring network that was established in 2013, 

and uses these to compile a SHP dataset, and a long-term SM dataset for the Qilian Mountains, on the northeastern edge of the 

QTP. We used these datasets to investigate SHP and SM characteristics. We discuss the characteristics of the SHPs and the 70 

spatial-temporal characteristics of SM over the Qilian Mountains, and evaluate the uncertainties associated with five widely-

used soil-property datasets and three global SM products over the study area. In section 2, we describe the field campaign and 

laboratory experiments that were used to compile the new SHPs and SM datasets, and those used for the existing datasets. We 

present our results and discussion of potential applications in sections 3 and 4, and outline our conclusions in section 5. The in 

situ datasets presented here fill some geographical gaps in the current global soil databases, and will be useful to both the 75 

hydro-climatology research and the land-surface modeling communities, for climatic and land surface studies over the QTP. 

2. Materials and methods 

2.1 Study sites 

The upper stream of the Heihe River Basin is in the Qilian Mountains at the northeastern border of the Qinghai-Tibet Plateau. 

It has an area of 2.7 × 104 km2 and an elevation range of about 2000–5600 m (Figure 1, Li et al., 2019). The area has an annual 80 

rainfall that varies from 200 to 700 mm (Luo et al., 2016), annual potential evapotranspiration that ranges from 700 to 2000 

mm, and an annual mean temperature range of -3.1 °C to 3.6 °C, based on data from 1960 to 2012 (He et al., 2018). Big 

differences in climate condition and topography lead to high spatial heterogeneity in land-cover and soil properties in 

mountainous areas (Jin et al., 2015). The land-cover is mainly grassland, forestland and sparsely vegetated land (Zhou et al., 

2016). The main soil types are Calcic Chernozems, Kastanozems, and Gelic Regosols. The main soil texture classes are silt 85 

loam, silt and sandy loam (Tian et al., 2017; 2019). The study area has a harsh natural environment and are challenges for 

fieldwork in the high and cold mountainous areas (Figure S1). 
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Figure 1. (a) Study area and its location in Northwest China, (b) distribution of the soil sample locations in the upper stream of the 

Heihe River Basin, on a basemap that shows the distribution of the 32 main LULC (Land Use/Cover)-soil-DEM types. (c)-(f) 90 
photographs from field sampling in the study area. 

2.2. Field sampling  

Soil type, land-cover and elevation are all spatially heterogeneous in the Qilian Mountains (Li et al., 2019). To capture the 

spatial distribution of the SHPs, we obtained existing land cover/land use data (LULC, landuse/landcover data for the Heihe 

River Basin (2011), http://data.tpdc.ac.cn/en/), soil type data (Soil, Gansu Soil Handbook at 1:1 000 000 scale) and digital 95 

elevation model data (DEM, https://earthexplorer.usgs.gov/) for this area. We divided the study area into 32 homogeneous 

zones by converting, overlaying and aggregating the LULC-Soil-DEM datasets in ArcGIS (Figure 1 (b)). The procedure is 

described in detail in Jin et al. (2015). Thus, we divided the study area into 32 LULC-Soil-DEM zones, each with a unique set 

of land use/land cover, soil and elevation characteristics. These zones represent the landscape features of the mountainous 

study area. To further analyze the spatial distribution of the SHPs in the mountainous area, we used equation (1) to determine 100 

the minimum number of random soil samples that were needed for a robust statistical analysis (Jensen, 2005). 
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N =
𝐵∏𝑖(1−∏𝑖)

𝑏𝑖
2                                                                                      (1) 

Where Пi is the percentage of classes (the i class) with percentage closest to 50% among all the types (the total number of 

the class is k); B represents percentiles around (
𝛼

𝑘
) of a Chi-square distribution with 1 degree of freedom; bi is the expected 

precision of class i; and α is the confidence level. In the study area, class i is the class that closest to 50% of all the types, which 105 

is saturated frigid frozen soil in dense grassland, with elevation between 3500 m and 4000 m in our stud area. We calculated 

N to be 339 or 170 for a precision, bi, of 0.05 and a confidence level, α, of 0.95 or 0.85, respectively. The details of this 

procedure are presented in Li et al. (2018).  

We established a long-term in-situ monitoring network to cover the mountainous area, based on the spatial distribution of 

the 32 LULC-Soil-DEM zones. One long-term SM monitoring station was established in each of the LULC-Soil-DEM zones, 110 

the specific position of each station was determined by the overall distribution of the stations and road accessibility (Figure 

S2-Figure S3). According to soil depth survey, the soil profile was investigated from the surface to 70 cm depth, and was 

divided into 5 layers (0–10 cm, 10–20 cm, 20–30 cm, 30–50 cm, and 50–70 cm) at each station. SM sensors (ECH2O 5TE, 

METER Group Inc., USA) were installed in the center of each layer to continuously measure the SM at different soil depths 

with a time interval of 30 min. These measurements began in 2013. Soil-specific sensor calibrations were performed with the 115 

direct calibration method using soil samples from each station (Cobos and Chambers, 2010; Zhang et al., 2017). A detailed 

description of the SM monitoring is presented in Tian et al. (2019; 2020) and Zhang et al. (2017). Since the soil freezes in 

winter, SM data are only available for the growing seasons (May to October, Tian et al., 2019), and we averaged the 

measurements to obtain monthly SM data for use in this study. Thus, monthly SM observations at different depths (5 cm, 15 

cm, 25 cm, 40 cm, and 60 cm) over the growing seasons of 2014–2020 are used in this study. 120 

To analyze the SHPs, both disturbed and undisturbed soil samples were collected from each soil layer at each station using 

self-sealing bags and a metal cylinder (with a diameter of 5 cm and a height of 5 cm). Environmental factors such as the 

position, slope, aspect, root depth, and land cover were measured at each station. Details of the installation and field 

measurements are shown in Tian et al. (2019). The 32 long-term SM monitoring stations constitute a large-scale in-situ SM 

monitoring network in a high and cold mountainous area (Figure 1). 125 

The calculated minimum required number of soil samples (N in Equation (1)) were collected randomly from each zone in 

the study area. Based on the spatial distribution of the LULC-Soil-DEM zones, road accessibility and the distribution of the 

soil sample locations, we collected 206 random soil sample sites in the study area from July 2012 to September 2014 (Figure 

1). For each of the random sampling site, soil samples were collected at depths of 5 cm and 25 cm. At the long-term SM 

monitoring stations, both disturbed and undisturbed soil samples were collected from each layer of each random site using 130 

self-sealing bags and a metal cylinder (with a diameter and height of 5 cm). 
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Figure 2. The design and field sampling strategies for the datasets created in this study (the blue text describes the measurement 

method used for each dataset). 

2.3. Laboratory experiment of soil properties 135 

The soil samples were taken to the Key Laboratory of Western China’s Environmental Systems (Ministry of Education) at 

Lanzhou University to measure SHPs. The soil particle composition and soil organic carbon (SOC) were measured from the 

disturbed soil samples using a Mastersizer 2000 laser diffraction particle size analyzer (Malvern Panalytical Ltd.) and a total 

organic carbon analyzer (Analytik Jena GmbH), respectively. The saturated hydraulic conductivity (KS) was measured for the 

undisturbed soil samples using the constant head method. We measured the soil water retention curve (SWRC) for the 140 

undisturbed samples using the refrigerated centrifuge method (CR-GIII High-Speed Refrigerated Centrifuge, Hitachi, Ltd.), 

and measured the soil bulk density for the undisturbed soil samples using the oven-drying method. Finally, soil porosity was 

calculated from the soil bulk density. Details of the measurements and calculations are given in Tian et al. (2017; 2019).  

The experiment soil water retention curve data (measured soil water content at the specific matrix potential from 0 to 6359 

hPa (also written as cm H2O), were fitted using different widely-used SWRC models, and the best-fitting SWRC model was 145 

selected. The Brook-Corey (1964) and Van Genuchten (1980) models are the most widely-used SWRC models, the Kosugi 

(1996) model includes a specific physical mechanism (Zhang et al., 2018a), the Clapp and Hornberger (1978) model is widely 

used for land surface modelling (Zhao et al., 2018), and the Gardner (1970) model has the simplest form. The equations for 

the different SWRC models are given in the supplement. 
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2.4. Existing datasets 150 

2.4.1 Soil hydraulic properties datasets 

The Harmonized World Soil Database V1.2 (HWSD) is a 30 arc-second raster database that combines existing up to date 

regional and national soil information from all over the globe (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). The HWSD provides 

an estimate of basic SHPs for two soil layers to a depth of 1 m (0–30 cm and 30–100 cm, http://www.fao.org/soils-portal/data-

hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, accessed: 10 September 2021). The SoilGrids2.0 155 

system (SoilGrid, https://soilgrids.org/, last access: 10 September 2021) currently provides the most detailed estimate of global 

soil distribution, with data for multiple soil depths (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and 100–200 cm) at a 

resolution of 250 m (Poggio et al., 2021). In large-scale land-process modeling for the QTP, the HWSD and SoilGrid datasets 

are the most widely-used datasets for basic soil properties, such as the soil texture, soil bulk density, soil organic carbon (Dai 

et al., 2019a; Lu et al., 2020; Su et al., 2013; Zhao et al., 2018). 160 

The key soil hydraulic properties (key SHPs) are the soil saturated hydraulic conductivity (KS) and the soil water retention 

curve (SWRC). A dataset developed by Yongjiu Dai using pedotransfer functions (PTFs) with a spatial resolution of 30″ (nearly 

900 m) and a vertical resolution equal to that of the SoilGrid data (Dai et al., 2019b; Lu et al., 2020), has been described as “a 

new version of the global high-resolution dataset of soil hydraulic and thermal parameters for land surface modeling.” This 

dataset is commonly used to provide SHPs for land-surface models (Dai et al., 2019b; He et al., 2020), and is hereafter referred 165 

to as DaiYJ. Another key SHPs dataset was developed by Yonggen Zhang, based on a combination of the PTF method and 

surface soil properties from the SoilGrid dataset. It has a spatial resolution of 1 km × 1 km for the surface layer (0–5 cm, Zhang 

et al., 2018a), and is hereafter referred to as ZhangGY. This dataset has been described as "a high-resolution global map of soil 

hydraulic properties produced by a hierarchical parameterization of a physically-based water retention model." 

Most of the SHP observations were sampled from the surface layer (uppermost 5 cm) or the subsurface layer (25 cm), and 170 

it is therefore robust to assess the accuracy of the soil property datasets for the surface layer, the subsurface layer and for the 

profile (0–30 cm). However, since the SHPs (the soil saturated hydraulic conductivity) are available for the surface layer (0–5 

cm) from the ZhangYG dataset, the SHP observations are used to evaluate for this layer in this datasets. 

Table 1. Calculation of SHPs at different depths (5 cm, 25 cm, 0–30 cm) for evaluating the soil property datasets.  

Depth HWSD SoilGrid ZhangYG DaiYJ observation 

5 cm - SG0-5 ZhangYG0-5 DaiYJ0-5 obs5 

25 cm - SG15-30 - - obs25 

0-30 cm HWSD0-30 (5•SG0-5+10•SG5-15+15•SG15-30)/30 - - (obs5+obs25)/2 

Note: SG and obs represent soil properties from the SoilGrid dataset and from observations, respectively. The subscript gives the soil 175 
depths for the SoilGrids properties, and “-” indicates that data for a specific layer are not available in the datasets. 
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2.4.2 Soil moisture datasets 

We also used this large-scale observation dataset to evaluate three SM product types that are widely-used for mountainous 

areas: reanalysis products, data assimilation products and remote-sensing products. The ERA5_Land dataset (the land 

component of the fifth generation of the European Reanalysis series) was selected to represent the current state-of-the-art 180 

reanalysis product for SM (Muñoz-Sabater et al., 2021). ERA5_Land provides SM data for different soil layers (0–7 cm, 7–

28 cm and 28–100 cm) from 1950 to present, with hourly temporal resolution and 9 km spatial resolution. The 

GLDAS2.1_Noah dataset (from the Noah land surface model, driven by Global Land Data Assimilation System) was taken to 

represent the newest data-assimilation SM product (Rodell et al., 2004; Beaudoing et al., 2020). GLDAS2.1_Noah provides 

SM data for different soil layers (0–10 cm, 10–40 cm and 40–100 cm) from 2000 to present, with spatial and temporal 185 

resolutions of 0.25 degrees and three hours, respectively (Rodell et al., 2004). The SMAP_L4 product (Soil Moisture Active 

Passive L4) is taken as representative of remote-sensing-derived SM products. It provides SM data for two soil layers (0–10 

cm and 0–100 cm) from March 2015 to present, with spatial and temporal resolutions of 9 km and three hours, respectively 

(Reichle et al., 2017). 

Our SM observation dataset comprises monthly data at depths of 5 cm, 15 cm, 25 cm, 40 cm and 60 cm for the growing 190 

seasons from 2014 to 2020. To use these data for evaluating the differently derived-SM products, we first averaged the derived 

data to monthly resolution, and then used depth-weighted averaging to convert all data (observations and derived data) to 

surface (0–10 cm), subsurface (10–100 cm), and profile (0–100 cm) values. SMAP data are only available starting from 2015, 

thus the assessment was carried out at monthly resolution for data at three depths (surface, subsurface and profile) for the 

growing seasons of 2015–2020.  195 

Table 2. Calculation of the soil moisture at different depths (surface, subsurface and profile) from different datasets. 

Product Surface (0-10 cm) Subsurface (10-100 cm) Profile (0-100 cm) 

GLDAS sm0-10 (30•sm10-40+60•sm40-100)/90 (10•sm0-10+30•sm10-40+60•sm40-100)/100 

ERA5_Land (7•sm0-7+3•sm7-28)/10 (18•sm7-28+72•sm28-100)/90 (7•sm0-7+21•sm7-28+72•sm28-100)/100 

SMAP_L4 sm0-10 (10•sm0-100-sm0-10)/9 sm0-100 

Observation sm5 (10•sm15+10•sm25+20•sm40+50•sm60)/90 (10•sm5+10•sm15+10•sm25+20•sm40+50•sm60)/100 

Note: sm is soil moisture, and the subscripts indicate the range of depths over which the data are valid. For the derived products, the depth 

is a range (e.g., 0-10, representing 0–10 cm), while for the observations, sm is reported at the observed depths of 5 cm, 15 cm, 25 cm, 40 cm 

and 60 cm. 

2.5. Statistic analysis 200 

The maximum, minimum, mean, and coefficient of variation (CV) were calculated for the SHPs from the different datasets, 

and a boxplot shows the scatter. The differences between the data in different groups were assessed using a one-way analysis 

of variance (ANOVA) with the post-hoc Bonferroni test when the normality and homogeneity of variance of the datasets were 

satisfied. The Kruskal-Wallis ANOVA with a post-hoc Dunn’s test was used for cases where these conditions were not satisfied 
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(McDonald, 2009). The significance level for acceptance was 0.05 for all statistical tests. The statistical analysis and fitting of 205 

the different SWRC models to the experiment data were performed using Matlab (R2017b, The MathWorks). The spatial 

distribution of the data was interpolated using ArcGIS software. 

3. Results  

3.1. Basic information of the soil dataset 

Some samples were lost while being transported from the field to the laboratory and the soil depth varied across the large-scale 210 

study area, meaning that at some random sampling sites we could only sample the uppermost soil layers (0–10 cm), and could 

only sample the uppermost 0–30 cm of the soil at some long-term measuring stations. In total, we collected 451 disturbed soil 

samples and 337 undisturbed soil samples from 206 random sampling sites (2 soil depths: 5 cm and and 25 cm) and from 32 

long term observation stations (5 soil depths: 5 cm, 15 cm, 25 cm, 40 cm, and 60 cm).  

The soil texture for the disturbed samples was classified using the USDA (United States Department of Agriculture) triangle 215 

classification system (Figure 3). The main soil types were silt loam (78.05%), sandy loam (12.64%), silt (7.98%), loamy sand 

(0.89%) and loam (0.44%).  

The performances of the different SWRC models for fitting the experimental SWRC data are shown in Figure 4. The results 

show that the Van Genuchten model fitted the data with significantly greater accuracy (median RMSE and R2 of 0.0027 and 

0.999, respectively, at p < 0.01 ) than the Kosugi model did (median RMSE and R2 of 0.0038 and 0.998, respectively). The 220 

accuracy of the fits made using the Van Genuchten model and Kosugi model were significantly higher than those for the 

Gadner, Brook-Corey or Clapp and Hornberger models. The least accurat fit was from the Clapp and Hornberger model, with 

a median RMSE and R2 of 0.0145 and 0.976, respectively. There was no significant difference between the accuracies of the 

Gadner, Brook-Corey and Clapp and Hornberger models (p > 0.05). Thus, the Van Genuchten model was selected as the most 

suitable model for the study area, and the soil hydraulic parameters (α, θs, θr and l) were calculated for the samples using this 225 

model. 

The average and CV (the standard deviation divided by the average) were calculated for the soil texture (clay, silt, sand), soil 

bulk density (BD), SOC, KS, and the soil water retention curve parameters (α, θs, θr and l) of Van Genuchten model for all the 

soil samples at different depths, as shown in Table 3. The results show that CV of the n (ranged within 0.09–0.12 at different 

depths) of Van Genuchten model is less than 0.16, which is a relatively low spatial variability. Meanwhile, CV for clay ranged 230 

from 0.18 to 0.28, and ranged from 0.18 to 0.23 for silt. θs ranged from 0.21 to 0.23, and the soil BD ranged from 0.21 to 0.24. 

These SHPs therefore show a relatively moderate variability according to Wilding (1985). CV of sand ranged between 0.45 

and 0.62, θr ranged between 0.38 and 0.73, KS ranged between 1.01 and 1.27, and α ranged from 1.2 to 3.8. The CV values of 

these SHPs were higher than 0.36, indicating strong spatial variability. Thus, the soil texture for clay and silt had the lowest 

spatial heterology, while both KS and α had high spatial variability in the study area. 235 
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Figure 3. The distribution of soil textures for all the soil samples in the USDA triangle. 

 

Figure 4. Comparison of the performance of different SWRC models. The different letters above the voilin plot indicate the 

significant differences between different models. V-G, K-S, GAD, B-C and C-H represent the Van Genuchten model, Kosugi model, 240 
Gadner model, Brook-Corey model and Clapp and Hornberger model, respectively. 
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Table 3. The descriptive statistics (median and coefficient of variation) for soil properties at different depths.  

depth 

(cm) 

clay 

(%) 

silt 

(%) 

sand 

(%) 

Bulk* 

(g/cm3) 

SOC 

(%) 

Log10KS
* 

(cm/d) 

α  

(cm-1) 

n  

(-) 

θs
*
 

(cm3/cm3) 

θr 

(cm3/cm3) 

5 
6.6 

(0.224) 

66.562 

(0.192) 

26.686 

(0.453) 

1.153 

(0.207) 

4.024 

(0.889) 

1.445 

(0.356) 

0.022 

(0.896) 

1.37 

(0.119) 

0.55 

(0.189) 

0.107 

(0.564) 

15 
6.356 

(0.156) 

66.607 

(0.174) 

26.008 

(0.439) 

1.151 

(0.195) 

1.466 

(1.019) 

1.564 

(0.293) 

0.026 

(0.877) 

1.382 

(0.1) 

0.533 

(0.187) 

0.126 

(0.472) 

25 
6.381 

(0.243) 

65.776 

(0.237) 

27.362 

(0.513) 

1.189 

(0.228) 

2.077 

(0.945) 

1.454 

(0.381) 

0.026 

(0.707) 

1.349 

(0.134) 

0.514 

(0.214) 

0.094 

(0.654) 

40 
6.656 

(0.203) 

64.831 

(0.222) 

29.213 

(0.505) 

1.189 

(0.233) 

1.327 

(0.998) 

1.436 

(0.405) 

0.027 

(0.948) 

1.412 

(0.117) 

0.462 

(0.223) 

0.129 

(0.603) 

60 
6.848 

(0.287) 

70.089 

(0.233) 

20.724 

(0.618) 

1.238 

(0.238) 

1.240 

(1.05) 

1.114 

(0.534) 

0.021 

(1.094) 

1.394 

(0.104) 

0.502 

(0.216) 

0.146 

(0.544) 

all 
6.552 

(0.227) 

66.323 

(0.21) 

26.85 

(0.486) 

1.168 

(0.219) 

1.473 

(1.008) 

1.449 

(0.37) 

0.024 

(0.887) 

1.374 

(0.117) 

0.526 

(0.200) 

0.113 

(0.566) 
*indicates that the soil property is significantly (p < 0.05) different at different depths. 

3.2 Characteristics of the soil property data 

3.2.1 Relationships between different soil properties 245 

After getting the SHPs for the study area, we explored the relationships between different SHPs for the data at each depth, and 

for the ‘all depths’ summary data. The summary data included the greatest number of data, and so we used the summary data 

from all depths as to represent the correlations between the different SHPs (Figure 4). The results show that the relationships 

between the properties for silt, sand and clay are significant (p < 0.001), Pearson’s correlation coefficient (R) is -0.99 for the 

correlation between sand and silt, R is 0.66 for sand and clay, and is 0.60 for silt and clay. We also found that BD is significantly 250 

(p < 0.05) correlated with soil texture as follows: BD was negatively correlated with clay (R = -0.15) and silt (R = -0.28), while 

positively correlated with sand (R = 0.28). The relationships between SOC and soil texture (clay, silt and sand) are not 

significant (p > 0.05), while SOC is significantly and negatively correlated with BD (R = -0.72). Similarly, log10 (KS) (log10 

transformed KS) is not significantly correlated with soil texture, but is negatively correlated with soil BD (R = -0.27) and is 

significantly positively correlated with SOC (R = 0.18). Finally, the relationships between the four parameters of the Van 255 

Genuchten model (α, n, θs, θr) are all significant ,except for the relationship between n and θs (R = 0.019, p > 0.05). The 

relationships between α and the other SHPs are not significant, except for a significant positive correlation with KS (R = 0.29). 

n is negative correlated with clay (R = -0.13), silt (R = -0.19) and SOC (R = -0.29), while significantly positively correlated 

with sand (R=0.19); n is not significantly correlated with either BD or KS. θs is positively correlated with silt (R = 0.23) and 

KS (R = 0.26), and significantly negatively correlated with sand (R = -0.22) and BD (R = -0.27). θr is negatively correlated 260 

with SOC (R = -0.46) and positively correlated with KS (R = 0.15), but is not significantly correlated with the other SHPs. 
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12 

 

Figure 5. Correlations between different SHPs. Different colors indicate different soil layers. The lower triangle of the figure area 

shows the scatterplots between different SHPs for the different soil layers. The upper triangle lists the Peason’s correlation 

coefficients (R) for the comparisons between the different soil layers, and the first number in each box (Corr: ) is the R value 265 
calculated by combinig data from all soil depths. Plots running the diagonally across the figure area represent the distribution of 

each SHP for the different soil layers.  
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3.2.2. Spatial distribution of soil properties 

We explored the spatial distribution of SHPs by using the Kriging method in ArcGIS to interpolate the SHPs that were 

calculated from the in-situ observations (Figure 6). The results show that clay and silt have a similar spatial distribution, with 270 

higher prevalence in the east and lower prevalence in the west and south parts of the study area. This is the opposite of the 

spatial distribution for sand, which has lower prevalence in the east, and is more common in the west and south parts of the 

study area. The spatial distribution of BD is similar to that for sand, and opposite to the distribution of clay and silt, which 

agrees with the correlations found among the SHPs. KS has higher values in both the middle and north parts of the study area, 

and is lowest in the east part of the study area. The residual SM is high in the middle and south parts of the study area, while 275 

the saturated SM is high in the southeastern and middle parts of the study area. α has a similar spatial pattern to silt, and is 

higher in the southeast; n has a similar spatial pattern to the residual soil moisture, with higher values in the middle part of the 

study area and lower values in the east and west parts. 

 

Figure 6. The spatial distribution of soil texture (sand, silt, clay, %), BD (g/cm3), log10(KS) (log10 transformed, cm/d), the residual SM 280 
(Theta_r, cm3/cm3), saturated SM (theta_s, cm3/cm3), α and n in the study area. 

3.2.3 Vertical distribution of soil properties 

We analyzed the vertical distribution of the SHPs in the study area, with the results shown in Table 3 and Figure 7. The soil 

texture varies as follows: the median clay content decreases from 5 cm depth (where it has a median value of 6.6%) to 15 cm 

depth (6.36%), then increases to 60 cm depth (6.85%), while the silt content decreases from 5 cm depth (where it has a median 285 

value of 66.56%) to 40 cm depth (64.83%), then increases to 60 cm (70.09%). log10KS increases from 5 cm depth (with a 
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median value of 1.45 cm/day) to 15 cm depth (1.56 cm/day), then decreases between 15 cm and 60 cm depth (1.14 cm/day). 

The BD increases from 5 cm depth (with a median value of 1.15 g/cm3) to 60 cm depth (1.24 g/cm3). The SOC has a maximum 

at 5 cm depth (where it has a median value of 4.02%), then increases between 15 cm depth (1.47%) and 25 cm depth (2.08%), 

and then decreases to 60 cm depth (1.24%). The saturated SM increases from 5 cm depth (0.55 cm3/cm3) to 40 cm depth (0.46 290 

cm3/cm3), then increased from 40 cm to 60 cm depth (0.50 cm3/cm3). The residual SM first increases from 5 cm depth (0.17 

cm3/cm3) to 15 cm depth (0.13 cm3/cm3), and then decreases to 25 cm depth (0.094 cm3/cm3), then increases from 25 cm to 60 

cm depth (0.15 cm3/cm3). The analysis of variance was used to explore differences in the soil properties at different depths, as 

shown in Table 3. The results show that differences between most of the SHPs (including clay, silt and sand) at different depths 

are not significant (p > 0.05). However, the differences between some of the SHPs at different depths are significant , including 295 

BD (p = 0.022), KS (p = 0.013) and saturated SM (p = 0.022). The multiple comparison analysis shows that KS is significantly 

lower at 60 cm depth than at shallower depths. We should note that there are some differences in the number of samples for 

different soil layers in this study: we sampled from 206 random sites at depths of 5 cm and 25 cm, and used data from 32 long 

term monitoring sites that was sampled at depths of 5 cm, 15 cm, 25 cm, 40 cm and 60 cm.  

 300 

Figure 7. (a) The vertical distribution of sand, clay, silt, log10KS, soil BD, SOC and the parameters of the Van Genuchten model for 

fitting the soil water retention curve (saturated soil moisture and residual soil moisture (cm3/cm3)) in the study area (32 points); (b) 

boxplots show the distributions of the soil water retention curves for different soil layers.  
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3.3 Spatial-temporal characteristics of soil moisture data 

The temporal variability of the monthly observed SM data for different soil layers during growing seasons from 2014 to 2020 305 

is shown in Figure 8 (a). Trends in the annual SM observations were explored using linear regression (the slope of the linear 

regression fitted to data from each station) and are shown in Figure 8 (b). The results show that SM at 5 cm depth followed an 

increasing trend at 12 of the 32 stations from 2014 to 2020, while there was a decreasing trend at the other 20 stations. For the 

SM data for all soil layers (0–70 cm) combined, there was an increasing trend at only 7 of the 32 stations, and a decreasing 

trend at the other 25 stations. However, the trends at most stations were not significant at the 0.05 level. We calculated the 310 

trend for the regionally averaged SM (using an area weight for each SM station) and found that there was a decreasing trend 

from 2014 to 2020 at all the depths: the slope of lieaner regression is -0.0057 cm3•cm3/year, -0.0075 cm3•cm3/year, -0.0072 

cm3•cm3/year, -0.0062 cm3•cm3/year, -0.0047 cm3•cm3/year, and -0.0094 cm3•cm3/year for depths of 5 cm, 15 cm, 25 cm, 40 

cm, 60 cm, and for ‘full profile SM’ (0–70 cm). Meanwhile, the decreasing trend in the area-averaged SM was significant for 

depths of 25 cm, 40 cm, 60 cm, and for the ‘full profile SM’ (p < 0.05), but was not significant at 5 cm or 15 cm depth. 315 

The spatial distribution of the average SM during the 2014–2020 growing seasons is shown in Figure 9. The results indicate 

that SM has a similar spatial pattern at different dpeths, which shows the decreasing trend from the southeast to the northwest 

of the study area. The SM in the south part of the study area is higher than in the north part, which may be attributable to the 

relationship between SM and elevation. We analyzed how SM varies with the elevation by comparing the mean observed SM 

at each station with the station elevation (Figure S4). This showed that SM increases significantly with increasing elevation (p 320 

< 0.01), and that the slope of the linear regression between SM and elevation decreases with depth. The slopes were 0.081 

(cm3•cm3/km), 0.070 (cm3•cm3/km), 0.066 (cm3•cm3/km), 0.063 (cm3•cm3/km), 0.053 (cm3•cm3/km), and 0.059 (cm3•

cm3/km) for SM in the uppermost soil layer (5 cm), in the second layer (15 cm), third layer (25 cm), forth layer (40 cm), fifth 

layer (60 cm), and in the ‘full profile’ (0–70 cm), respectively. The vertical varaibility of the SM observations with depth were 

also explored using the area-averaged SM from all the stations at each soil depth for each year (Figure 9(f)). The results indicate 325 

that SM fluctuations decrease significantly as depth increases (p < 0.01). Specifically, SM in the first three layers (the mean 

SM for 0–25 cm depth is 0.166 cm3/ cm3) was significantly (p < 0.01) higher than SM in the fifth layer (the mean SM at 60 

cm depth is 0.148 cm3/ cm3), while the SM in the forth layer (the mean SM at 40 cm depth is 0.159 cm3/ cm3) was not 

significanly different to SM in the other layers. 

The relationship between the coefficient of variation (CV) and the mean SM was used to explore spatial-temporal variations 330 

in SM over the study area (Figure 10). Figure 11 shows that the CV decreases as the mean SM increases, and that the relationship 

between the CV and mean SM follows a power law. The results indicate that SM is more variable in dry conditions. The spatial 

variability of SM varies from 0.03 to 0.52 over the study area, with a mean CV of 0.18, and this is higher than the temporal 

variability of SM over the study period (2014–2020), which varied from 0.32 to 0.65, with a mean CV of 0.45. 
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 335 

Figure 8. (a) The heatmap shows the temporal variability of the observed monthly SM from all stations for 5 soil layers during the 

growing seasons in 2014–2020 in the study area. (b) The slope of the regression (k, cm3•cm-3/year) for the annual average SM and 

time. * and ** show where the slope value for the regression passed the significance test at the 0.05 and 0.01 levels, respectively. 
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Figure 9. (a)-(e) The spatial distribution of the average SM during the study period for (a) layer 1 (e) to layer 5. Circles with different 340 
sizes show SM measurements from stations with different mean values over the study period. (f) The variability of the average SM 

with depth in different years. The line and shading show the fitted curve and the 95% confidence interval. 

 

Figure 10. (a) The relationship between the spatial CV and mean SM for each station for different soil layers; (b) the relationship 

between the temporal CV and mean SM for each month for different soil layers. The curve and shading in each plot show the fitted 345 
curve and the 95% confidence interval, and the legend shows the fitting equation between CV and mean SM for each soil layer. ** 

shows where the fitted curves are significant at the 0.01 level. 

3.4 Validation of the existing datasets 

3.4.1 Validation of the existic SHP datasets 

Several widely-used derived SHP datasets were evaluated through comparison with the in-situ SHP observations. Based on 350 

the observations, we evaluated the soil texture data (clay, silt and sand) and BD for the SoilGrid and HWSD datasets, and KS 
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for DaiYJ and ZhangYG datasets (Figure 11). The results show that there is a high positive bias (PBIAS) for clay in the 

SoilGrid data, with NRMSE (Normalized root mean square error) and PBIAS (Percent bias) of 176% (172%), 203% (199%), 

and 187% (184%) for depths of 5 cm, 25 cm and 0–30 cm, respectively. The lowest negative biases are for silt in the SoilGrid 

dataset, which has an NRMSE (PBIAS) of 42% (-38%), 43% (-35%), and 41% (-36%) for depths of 5 cm, 25 cm and 0–30 355 

cm, respectively. BD was also overestimated in the datasets, with an NRMSE (PBIAS) of 20% (1%), 26% (12%), and 15% 

(8.7%) for depths of 5 cm, 25 cm and 0-30 cm for the SoilGrid dataset, respectively. Values for logKS were also overestimated 

in the DaiYJ dataset, with an NRMSE (PBIAS) of 36% (11%) and 37% (0.7%) for the depth of 5 cm and 25 cm, respectively. 

These results suggest that the clay content, sand content and BD are overestimated in both the SoilGrid and HWSD datasets, 

and that the silt content is underestimated for 0–30 cm soil depths in the study area. The soil texture and BD values in the 360 

SoilGrid dataset have higher precision than those from HWSD, and the KS values in the ZhangYG dataset have higher precision 

than those in the DaiYJ for the study area. 

Scatterplots comparing the existing soil datasets with the observations are shown in Figure S5. The scatterplots show that 

the derived and observed values agree most closely for BD, which has the highest R values: 0.30, 0.36 and 0.64 for depths of 

5 cm, 25 cm and 0–30 cm, respectively, when comparing the SoilGrid data to the observed data. For 0–30 cm depth, the 365 

SoilGrid BD data are more closely to the observations than the HWSD data (R = 0.09). The R for soil texture varies between 

-0.05 and 0.23 for the SoilGrid and HWSD datasets for different soil depths. R for KS from the ZhangYG dataset is 0.18 for 5 

cm depth, which is higher than R for KS from the DaiYJ dataset, which is -0.08 and -0.13 for depths of 5 cm and 25 cm, 

respectively. We also found that SHPs vary within a narrower range in the derived datasets than they do in the observations. 

The low Pearson’s R value and the scatterplot indicate that the soil datasets do not capture the spatial distribution of the SHPs 370 

(soil texture, BD and KS) in mountainous areas with complex terrain. 

 

Figure 11. (a) Boxplots show the distributions for the the evaluated derived datsets (soil texture and BD from the SoilGrid and HWSD 

datasets, log10KS from the ZhangYG and DaiYJ datasets), with the corresponding distributions for the observations. (b) Metrics to 

compare the existing derived soil datasets with the corresponding observations in the study area. 375 
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3.4.2 Validation of the soil moisture products 

Evaluations of the reanalysis product (ERA_Land), reanalysis product with data assimilation (GLDAS_Noah), and the remote 

sensing product (SMAP_L4) using the SM observations are shown in Figure 12 (scatterplots comparing the different SM 

products) and Figure 13 (the results of the evaluation metrics for the different products). The results show that both SMAP_L4 

(median RMSEs of 0.039, 0.074 and 0.070 for surface, subsurface and profile soil layers, respectively) and GLDAS_Noah 380 

(median RMSEs of 0.068, 0.058 and 0.053 for surface, subsurface and profile soil layers, respectively) have significantly (p < 

0.01) lower RMSE than ERA5_Land (median RMSEs of 0.188, 0.196 and 0.195 for surface, subsurface and profile soil layers, 

respectively). Both SMAP_L4 (median R = 0.484, 0.360 and 0.411 for surface, subsurface and profile soil layers, respectively) 

and ERA5_Land (median RMSE 0.483, 0.317 and 0.341 for surface, subsurface and profile soil layers, respectively) correlate 

with the observations with significantly (p < 0.01) higher R values than GLDAS_Noah does (with median R = 0.290, 0.207 385 

and 0.228 for surface, subsurface and profile soil layers, respectively). The positive mean bias error (MBE) shows that all the 

derived products overestimate SM for the surface, subsurface and profile soil layers. 

 

Figure 12. Scatterplots comparing the different derived SM products with the observed SM for different soil layers. The metrics 

within each plot show the mean value of the metrics for all stations. The smoothed color density in the scatter plots shows the density 390 
of points.  
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Figure 13. Metrics for comparsing the different SM products (GLDAS2.1_Noah, ERA5_Land, SMAP_L4) with the in-situ SM 

observations for different soil layers. The different letters above the volin plot indicate the significant differences (p < 0.05) between 

different products for each soil layer. The volin curve shows the kernel distribution of the data. 395 

4. Discussion 

In this study, we provided a new and unique large-scale SHP and SM dataset for a high and cold mountainous area on the 

northeastern margin of the Qinghai-Tibet Plateau (QTP), which fills gaps in the spatial coverage of previous studies (Li et al., 

2018b; Song et al., 2016; Yang et al., 2016). This dataset provides new knowledge about correlations between different soil 

properties, and about the spatial and vertical distribution of SHPs, and insights into the spatial-temporal variability of SM over 400 

large-scale mountainous areas of the QTP.  The lack of large-scale field sampling has led to our poor understanding of key 

soil hydraulic properties (including the soil saturated hydraulic conductivity and soil hydraulic properties related to the soil 

retention curve) over the QTP (Liu et al., 2021; Tian et al., 2017; Zhao et al., 2018). Large-scale information about key soil 

hydraulic properties is generally estimated using soil pedotransfer functions and basic soil information, such as soil texture 

(Fatichi et al., 2020), which is strongly location-dependent (Van Looy et al., 2017; Zhao et al., 2020) and not well known over 405 

the QTP (Dai et al., 2019; Lu et al., 2020; Zhang et al., 2018a). The large-scale dataset presented here provides comprehensive 

in-situ observations of both basic SHPs and key soil hydraulic properties. While this study has explored the relationships 

between different SHPs, further establishing specific pedotransfer function is appropriate over the QTP. Large-scale SM 

information is commonly taken from reanalysis and remote sensing products, which have high uncertainty (Xia et al., 2014; 

Xing et al., 2021; Zhang et al., 2019; Zhang et al., 2021). Our SM dataset provides new accurate in-situ SM measurements 410 
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covering 2014–2020 over a large-scale mountainous area. It is valuable for future studies into soil hydrological processes (Tian 

et al., 2019; 2020), for evaluating satellite- and model-based SM products (Zhang et al., 2017; 2019; Su et al., 2020), and for 

the evaluation of SM-upscaling methods (Jin et al., 2017), and the development of data fusion methods (Lu et al., 2020; Zhang 

et al., 2018b). 

The evaluation of SHPs datasets has shown that some widely-used SHPs datasets (soil texture and BD from the HWSD and 415 

SoilGrid datasets, and KS from the DaiYJ and ZhangYG datasets) have a high bias in the mountainous areas, especially for 

soil texture (clay and sand contents are significantly overestimated). These derived datasets do not capture the spatial 

distribution and heterogeneity of SHPs in the mountainous areas, which has been shown to be important in land-processes 

modelling over the terrain-complex mountainous areas (Jin et al., 2015; Samaniego et al., 2017). The bias and poor spatial 

representation of the soil data in these widely used SHPs datasets increase the uncertainty of the land surface models that they 420 

are used in, and limit the scientific understanding of and advancement in land surface processes over the QTP (Paniconi and 

Putti, 2015). Thus, large-scale field soil sampling in high and cold mountainous area is vital to advance large-scale earth system 

modelling. 

Our evaluation of the three derived SM products indicates that the remote sensing product (SMAP_L4) provides the best 

estimates of SM, the reanalysis product (ERA5_Land) does not provide accurate estimates of SM, and the data assimilation 425 

product (GLDAS_Noah) fails to capture the temporal variability of SM. A comparison of the ERA5_Land and GLDAS_Noah 

products indicates that the reanalysis product captures the temporal variability of SM better, while the data assimilation product 

represents the SM values more accurately. However, remote sensing of large scale SHP and SM remains challenging over the 

QTP, and such SHP and SM products warranty further validation and improvement over high and cold mountainous areas such 

as the QTP. Our SM dataset complements the currently limited in-situ observations and provides opportunity for validating 430 

remote sensing SM products, for calibrating land surface models, and for detecting and monitoring land surface changes over 

QTP.  

5. Data availability 

The dataset of soil hydraulic properties distribution in NetCDF format and soil moisture in excel format is available from 

Zenodo repository (https://doi.org/10.5281/zenodo.5830583, He et al., 2022a) and from the National Tibetan Plateau Data 435 

Center (https://doi.org/10.11888/Terre.tpdc.271936, He et al., 2022b). The dataset is published under the Creative Commons 

Attribution 4.0 International (CC BY 4.0) license. 
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6. Conclusions 

For this study, in-situ measurements of soil physical properties and a long-term SM monitoring network were set up in a high 

and cold mountainous area on the northeastern QTP. The resulting dataset presented here fills some geographical gaps in the 440 

coverage of SHP data and long-term large-scale SM measurements for the QTP.  

Analysis of this in-situ SHPs dataset shows that the spatial distribution and vertical variability of some SHPs vary 

significantly. SM decreases with increasing depth over 0–70 cm, and SM within 0–70 cm depth shows a decreasing trend for 

2014–2020. Evaluations of several existing datasets, using these new measurements, shows that these datasets have a large 

bias for soil texture (clay, silt, clay) and do not capture the spatial distribution of SHPs. The SM products based on reanalysis 445 

data have a high bias, the SM product based on data assimilation does not capture SM temporal variability, and the SM product 

based on remote sensing data agrees with the observations more closely than the other datasets do. The observation dataset 

presented here is significant for assessing uncertainty arising from soil data used in land process models, and for advancing 

SM-retrieval from remote sensing and land surface models, and in turn, for identifying models and products that are appropriate 

for the QTP. 450 

In summary, this study provides a unique and new comprehensive dataset of in-situ measurements of soil physical properties 

and observations from long-term SM monitoring over the northeastern margin of the QTP. This dataset provides accurate soil 

parameters and SM evaluation data that are useful for different models, for remote sensing SM products, and for developing 

and assessing upscaling methods.  

Author contributions 455 

CH conceptualized and administered the two soil hydraulic property research projects. JT, BZ, CH, conceptualized the 

methodology. JT and XW collected the data. JT, CH and BZ performed the analysis. JT prepared the draft manuscript and CH 

revised and finalized the manuscript. 

Competing interests 

The authors declare that they have no conflict of interest. 460 

Acknowledgements 

The project was partially funded by the National Natural Science Foundation of China (grants 42030501, 91125010, 42101022). 

We are grateful to the members of the Center for Dryland Water Resources Research and Watershed Science, Lanzhou 

University, for their persistent efforts to establish and maintain the SM network, collect and analyze the SM data in this high, 

cold, and inaccessible mountainous area since 2012. Without their hard work, the dataset presented here would not exist. 465 

Members who participate collecting data since 2012 including: Lanhui Zhang, Yibo Wang, Xifeng Zhang, Xin Jin, Weizhen 

Wu, Jinlin Li, Chen Zhao, Yiwen Jiang, Xiaolei Wang, Lixiao Yang, Xiao Bai, Zhongfu Wang, Xuejin Wang, Yi Zhu, Zhibo 

https://doi.org/10.5194/essd-2022-21

O
pe

n
 A

cc
es

s  Earth System 

 Science

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.

Anonymous
Highlight

Anonymous
Sticky Note
I think 'new' is too much since Tibet-obs already provided very comprehensive dataset. 



 

23 

Han, Shengxuan Zeng, Xingyan Tan, Xiang Li, Xuefeng Xu, Feng Li, Yuzuo Zhu, Mingmin Zhang, Xuliang Li, Shaoyuan Xu, 

Chao Gao, Weijie Hong, Yai Lai, Weiming Kang. We want to thank the Dayekou Hydrology Field Observation and Research 

Station of Lanzhou University, for their support during the fieldwork. We also thank the high-performance computing service 470 

platform in Lanzhou University (https://hpc.lzu.edu.cn/) for providing technical and computing support. 

References 

Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., and Sparks, D. L.: Soil and human security in the 21st 

century, Science, 348, 1261071, https://doi.org/10.1126/science.1261071, 2015. 

Bai, X., Jia, X., Jia, Y., Shao, M. a., and Hu, W.: Modeling long-term soil water dynamics in response to land-use change in a 475 

semi-arid area, J. Hydrol., 585, 124824, https://doi.org/10.1016/j.jhydrol.2020.124824, 2020. 

Benninga, H. J. F., Carranza, C. D. U., Pezij, M., van Santen, P., van der Ploeg, M. J., Augustijn, D. C. M., and van der Velde, 

R.: The Raam regional soil moisture monitoring network in the Netherlands, Earth Syst. Sci. Data, 10, 61-79, 

https://doi.org/10.5194/essd-10-61-2018, 2018. 

Blöschl, G., Bierkens, M. F. P., Chambel, A., et al.: Twenty-three unsolved problems in hydrology (UPH) – a community 480 

perspective, Hydrol. Sci. J., 64, 1141-1158, https://doi.org/10.1080/02626667.2019.1620507, 2019. 

Bogena, H., White, T., Bour, O., Li, X., and Jensen, K.: Toward Better Understanding of Terrestrial Processes through Long-

Term Hydrological Observatories, Vadose Zone J., 17, https://doi.org/10.2136/vzj2018.10.0194, 2018. 

Bogena, H., Schrön, M., Jakobi, J., et al.: COSMOS-Europe: A European Network of Cosmic-Ray Neutron Soil Moisture 

Sensors, Earth Syst. Sci. Data Discuss., 2021, 1-33, https://doi.org/10.5194/essd-2021-325, 2021. 485 

Brooks, R., and Corey, T.: Hydraulic properties of porous media, Hydrology Papers, Colorado State University, 24, 37, 1964. 

Che, T., Li, X., Liu, S., Li, H., Xu, Z., Tan, J., Zhang, Y., Ren, Z., Xiao, L., Deng, J., Jin, R., Ma, M., Wang, J., and Yang, X.: 

Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China, 

Earth Syst. Sci. Data, 11, 1483-1499, https://doi.org/10.5194/essd-11-1483-2019, 2019. 

Clapp, R. B., and Hornberger, G. M.: Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601-604, 490 

https://doi.org/10.1029/WR014i004p00601, 1978. 

Cobos, D. R., and Chambers, C.: Calibrating ECH2O soil moisture sensors, Application Note, Decagon Devices, Pullman, 

Washington, 2010. 

Dai, Y., Shangguan, W., Wei, N., Xin, Q., Yuan, H., Zhang, S., Liu, S., Lu, X., Wang, D., and Yan, F.: A review of the global 

soil property maps for Earth system models, SOIL, 5, 137-158, https://doi.org/10.5194/soil-5-137-2019, 2019a. 495 

Dai, Y., Xin, Q., Wei, N., Zhang, Y., Shangguan, W., Yuan, H., Zhang, S., Liu, S., and Lu, X.: A Global High‐Resolution Data 

Set of Soil Hydraulic and Thermal Properties for Land Surface Modeling, J. Adv. Model. Earth Sy., 11, 2996-3023, 

https://doi.org/10.1029/2019MS001784, 2019b. 

Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., 

Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., and Zhao, L.: The paleoclimatic footprint in the soil carbon stock 500 

of the Tibetan permafrost region, Nat. Commun., 10, 4195, https://doi.org/10.1038/s41467-019-12214-5, 2019. 

https://doi.org/10.5194/essd-2022-21

O
pe

n
 A

cc
es

s  Earth System 

 Science

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.



 

24 

Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., 

Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J. C., Camarero, J. J., Capello, G., Choi, 

M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar 

Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, 505 

R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., 

Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., 

Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., 

Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a 

decade, Hydrol. Earth Syst. Sci., 25, 5749-5804, https://doi.org/10.5194/hess-25-5749-2021, 2021. 510 

FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (HWSD), version 1.1, 2012. 

Fatichi, S., Or, D., Walko, R., Vereecken, H., Young, M. H., Ghezzehei, T. A., Hengl, T., Kollet, S., Agam, N., and Avissar, R.: 

Soil structure is an important omission in Earth System Models, Nat. Commun., 11, 522, https://doi.org/10.1038/s41467-

020-14411-z, 2020. 

Gardner, W. R.: Field Measurement of Soil Water Diffusivity, Soil Sci. Soc. Am. J., 34, 832-833, 515 

https://doi.org/10.2136/sssaj1970.03615995003400050045x, 1970. 

Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence, D. M., and Gentine, P.: Large influence 

of soil moisture on long-term terrestrial carbon uptake, Nature, 565, 476-479, https://doi.org/10.1038/s41586-018-0848-x, 

2019. 

He, C., Tian, J., Zhang, B., and Zhang, L.: A Review of Advances in Impacts of Soil Hydraulic Properties on Hydrological 520 

Processes, Challenges and Opportunities, Adv. Earth Sci., 36, 12, https://doi.org/10.11867/j. issn.1001-8166.2021.016, 2021. 

He, C, Tian, J, Wang, X, Zhang, L, Zhang, B, Wang, Y.: An in situ observation datset of soil hydraulic properties and soil 

moisture in a high and cold mountainous area on the northeastern Qinghai-Tibet Plateau. Zenodo [Data set], 

https://doi.org/10.5281/zenodo.5830583, 2022a. 

He, C, Tian, J, Wang, X, Zhang, L, Zhang, B, Wang, Y.: An in situ observation datset of soil hydraulic properties and soil 525 

moisture in a high and cold mountainous area on the northeastern Qinghai-Tibet Plateau (2014-2020). National Tibetan 

Plateau Data Center [Data set], https://doi.org/10.11888/Terre.tpdc.271936, 2022b. 

He, H., He, D., Jin, J., Smits, K. M., Dyck, M., Wu, Q., Si, B., and Lv, J.: Room for improvement: A review and evaluation of 

24 soil thermal conductivity parameterization schemes commonly used in land-surface, hydrological, and soil-vegetation-

atmosphere transfer models, Earth-Science Reviews, 211, 103419, https://doi.org/10.1016/j.earscirev.2020.103419, 2020. 530 

Jensen, J. R.: Introductory Digital Image Processing, Prentice Hall, Upper Saddle River, NJ, USA, 2004. 

Jia, X., Shao, M. a., Wei, X., Zhu, Y., Wang, Y., and Hu, W.: Policy development for sustainable soil water use on China’s 

Loess Plateau, Sci. Bull., 65, 2053-2056, /https://doi.org/10.1016/j.scib.2020.09.006, 2020. 

Jin, R., Li, X., Yan, B., Li, X., Luo, W., Ma, M., Guo, J., Kang, J., Zhu, Z., and Zhao, S.: A Nested Ecohydrological Wireless 

Sensor Network for Capturing the Surface Heterogeneity in the Midstream Areas of the Heihe River Basin, China, IEEE 535 

Geosci. Remote Sens. Lett., 11, 2015-2019, https://doi.org/10.1109/LGRS.2014.2319085, 2014. 

https://doi.org/10.5194/essd-2022-21

O
pe

n
 A

cc
es

s  Earth System 

 Science

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.



 

25 

Jin, X., Zhang, L. h., Gu, J., Zhao, C., Tian, J., and He, C. S.: Modeling the impacts of spatial heterogeneity in soil hydraulic 

properties on hydrological process in the upper reach of the Heihe River in the Qilian Mountains, Northwest China, Hydrol. 

Processes, 29, 3318-3327, https://doi.org/10.1002/hyp.10437, 2015. 

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, 540 

R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., 

Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, 

U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline in the global land evapotranspiration trend due to 

limited moisture supply, Nature, 467, 951, https://doi.org/Science10.1038/nature09396, 2010. 

Kosugi, K. i.: Lognormal Distribution Model for Unsaturated Soil Hydraulic Properties, Water Resour. Res., 32, 2697-2703, 545 

https://doi.org/10.1029/96WR01776, 1996. 

Li, J., Chen, F., Zhang, G., Barlage, M., Gan, Y., Xin, Y., and Wang, C.: Impacts of Land Cover and Soil Texture Uncertainty 

on Land Model Simulations Over the Central Tibetan Plateau, J. Adv. Model. Earth Sy., 10, 2121-2146, 

https://doi.org/10.1029/2018MS001377, 2018a. 

Li, J., Zhang, L., He, C., and Zhao, C.: A Comparison of Markov Chain Random Field and Ordinary Kriging Methods for 550 

Calculating Soil Texture in a Mountainous Watershed, Northwest China, Sustainability, 10, 2819, 

https://doi.org/10.3390/su10082819, 2018c. 

Li, X. Y., Yang, X. F., Ma, Y. J., Hu, G. R., Hu, X., Wu, X. C., Wang, P., Huang, Y. M., Cui, B. L., and Wei, J. Q.: Qinghai Lake 

Basin Critical Zone Observatory on the Qinghai-Tibet Plateau, Vadose Zone J., 17, https://doi.org/10.2136/vzj2018.04.0069, 

2018b. 555 

Li, X., Liu, S., Xiao, Q., Ma, M., Jin, R., Che, T., Wang, W., Hu, X., Xu, Z., and Wen, J.: A multiscale dataset for understanding 

complex eco-hydrological processes in a heterogeneous oasis system, Sci. Data, 4, 170083, 

https://doi.org/10.1038/sdata.2017.83, 2017. 

Li, X., Gou, X., Wang, N. L., Sheng, Y., Jin, H. J., Qi, Y., Song, X., Hou, F. J., Li, Y., and Zhao, C.: Tightening ecological 

management facilitates green development in the Qilian Mountains, Sci. Bull., 64, 2928-2937, https://doi.org/10.1360/TB-560 

2019-0209, 2019. 

Li, X., Che, T., Li, X., Wang, L., Duan, A., Shangguan, D., Pan, X., Fang, M., and Bao, Q.: CASEarth Poles: Big Data for the 

Three Poles, Bull. Am. Meteorol. Soc., 101, E1475-E1491, https://doi.org/10.1175/bams-d-19-0280.1, 2020. 

Li, X., Cheng, G., Wang, L., Wang, J., Ran, Y., Che, T., Li, G., He, H., Zhang, Q., Jiang, X., Zou, Z., and Zhao, G.: Boosting 

geoscience data sharing in China, Nat. Geosci., 14, 541-542, https://doi.org/10.1038/s41561-021-00808-y, 2021. 565 

Liu, F., Wu, H., Zhao, Y., Li, D., Yang, J.-L., Song, X., Shi, Z., Zhu, A. X., and Zhang, G.-L.: Mapping high resolution National 

Soil Information Grids of China, Sci. Bull., https://doi.org/10.1016/j.scib.2021.10.013, 2021a. 

Liu, J., Chai, L., Dong, J., Zheng, D., Wigneron, J. P., Liu, S., Zhou, J., Xu, T., Yang, S., Song, Y., Qu, Y., and Lu, Z.: 

Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned 

hat method, Remote Sens. Environ., 255, 112225, https://doi.org/10.1016/j.rse.2020.112225, 2021b. 570 

Lu, H., Zheng, D., Yang, K., and Yang, F.: Last-decade progress in understanding and modeling the land surface processes on 

the Tibetan Plateau, Hydrol. Earth Syst. Sci., 24, 5745-5758, https://doi.org/10.5194/hess-24-5745-2020, 2020. 

https://doi.org/10.5194/essd-2022-21

O
pe

n
 A

cc
es

s  Earth System 

 Science

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.



 

26 

Lu, L., Liu, C., Li, X., and Ran, Y.: Mapping the Soil Texture in the Heihe River Basin Based on Fuzzy Logic and Data Fusion, 

Sustainability, 9, 1246, 2017. 

Luo, K., Tao, F., Moiwo, J. P., and Xiao, D.: Attribution of hydrological change in Heihe River Basin to climate and land use 575 

change in the past three decades, Sci. Rep., 6, 33704, https://doi.org/10.1038/srep33704, 2016. 

Maxwell, R. M., and Condon, L. E.: Connections between groundwater flow and transpiration partitioning, Science, 353, 377-

380, https://doi.org/10.1126/science.aaf7891, 2016. 

McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., and Entekhabi, D.: The global distribution and 

dynamics of surface soil moisture, Nat. Geosci., 10, 100-104, https://doi.org/10.1038/ngeo2868, 2017. 580 

McDonald, J. H.: Handbook of biological statistics, Sparky House Publishing Baltimore, MD, 2009. 

McDonnell, J. J., Evaristo, J., Bladon, K. D., Buttle, J., Creed, I. F., Dymond, S. F., Grant, G., Iroume, A., Jackson, C. R. , 

Jones, J. A., Maness, T., McGuire, K. J., Scott, D. F., Segura, C., Sidle, R. C., and Tague, C.: Water sustainability and 

watershed storage, Nat. Sustainability, 1, 378-379, https://doi.org/10.1038/s41893-018-0099-8, 2018. 

Mohanty, B. P., Cosh, M. H., Lakshmi, V., and Montzka, C.: Soil moisture remote sensing: State-of-the-science, Vadose Zone 585 

J., 16, https://doi.org/10.2136/vzj2016.10.0105, 2017. 

Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A., and Vereecken, H.: A global data set of soil hydraulic properties and 

sub-grid variability of soil water retention and hydraulic conductivity curves, Earth Syst. Sci. Data, 9, 529-543, 

https://doi.org/10.5194/essd-9-529-2017, 2017. 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, 590 

S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, 

J. N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349-4383, 

https://doi.org/10.5194/essd-13-4349-2021, 2021. 

Ochsner, T. E., Cosh, M. H., Cuenca, R. H., Dorigo, W. A., Draper, C. S., Hagimoto, Y., Kerr, Y. H., Larson, K. M., Njoku, E. 

G., Small, E. E., and Zreda, M.: State of the Art in Large-Scale Soil Moisture Monitoring, Soil Sci. Soc. Am. J., 77, 1888-595 

1919, https://doi.org/10.2136/sssaj2013.03.0093, 2013. 

Paniconi, C., and Putti, M.: Physically based modeling in catchment hydrology at 50: Survey and outlook, Water Resour. Res., 

51, 7090-7129, https://doi.org/10.1002/2015wr017780, 2015. 

Pellet, C., and Hauck, C.: Monitoring soil moisture from middle to high elevation in Switzerland: set-up and first results from 

the SOMOMOUNT network, Hydrol. Earth Syst. Sci., 21, 3199-3220, https://doi.org/10.5194/hess-21-3199-2017, 2017. 600 

Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: 

producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217-240, https://doi.org/10.5194/soil-

7-217-2021, 2021. 

Reichle, R. H., Lannoy, G. J. M. D., Liu, Q., Ardizzone, J. V., Colliander, A., Conaty, A., Crow, W., Jackson, T. J., Jones, L. 

A., Kimball, J. S., Koster, R. D., Mahanama, S. P., Smith, E. B., Berg, A., Bircher, S., Bosch, D., Caldwell, T. G., Cosh, M., 605 

González-Zamora, Á., Collins, C. D. H., Jensen, K. H., Livingston, S., Lopez-Baeza, E., Martínez-Fernández, J., McNairn, 

H., Moghaddam, M., Pacheco, A., Pellarin, T., Prueger, J., Rowlandson, T., Seyfried, M., Starks, P., Su, Z., Thibeault, M., 

https://doi.org/10.5194/essd-2022-21

O
pe

n
 A

cc
es

s  Earth System 

 Science

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.



 

27 

Velde, R. v. d., Walker, J., Wu, X., and Zeng, Y.: Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture 

Product Using In Situ Measurements, J. Hydrometeorol., 18, 2621-2645, https://doi.org/10.1175/jhm-d-17-0063.1, 2017. 

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., 610 

Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, Bull. Am. 

Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. 

Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., Eisner, S., Müller Schmied, H., Sutanudjaja, E., 

and Warrach-Sagi, K.: Toward seamless hydrologic predictions across spatial scales, Hydrol. Earth Syst. Sci., 21, 4323-

4346, https://doi.org/10.5194/hess-21-4323-2017, 2017. 615 

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating 

soil moisture–climate interactions in a changing climate: A review, Earth Sci. Rev., 99, 125-161, 

https://doi.org/http://doi.org/10.1016/j.earscirev.2010.02.004, 2010. 

Song, X. D., Brus, D. J., Liu, F., Li, D.-C., Zhao, Y.-G., Yang, J.-L., and Zhang, G.-L.: Mapping soil organic carbon content 

by geographically weighted regression: A case study in the Heihe River Basin, China, Geoderma, 261, 11-22, 620 

https://doi.org/10.1016/j.geoderma.2015.06.024, 2016. 

Su, Z., Wen, J., Dente, L., van der Velde, R., Wang, L., Ma, Y., Yang, K., and Hu, Z.: The Tibetan Plateau observatory of 

plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and 

model products, Hydrol. Earth Syst. Sci., 15, 2303-2316, https://doi.org/10.5194/hess-15-2303-2011, 2011. 

Su, Z., de Rosnay, P., Wen, J., Wang, L., and Zeng, Y.: Evaluation of ECMWF's soil moisture analyses using observations on 625 

the Tibetan Plateau, J. Geophys. Res. Atmos., 118, 5304-5318, https://doi.org/10.1002/jgrd.50468, 2013. 

Tian, J., Zhang, B. Q., He, C. S., and Yang, L. X.: Variability in Soil Hydraulic Conductivity and Soil Hydrological Response 

Under Different Land Covers in the Mountainous Area of the Heihe River Watershed, Northwest China, Land Degrad. Dev., 

28, 1437-1449, https://doi.org/10.1002/ldr.2665, 2017. 

Tian, J., Zhang, B. Q., He, C. S., Han, Z. B., Bogena, H. R., and Huisman, J. A.: Dynamic response patterns of profile soil 630 

moisture wetting events under different land covers in the Mountainous area of the Heihe River Watershed, Northwest China, 

Agric. For. Meteorol., 271, 225-239, https://doi.org/10.1016/j.agrformet.2019.03.006, 2019. 

Tian, J., Han, Z., Bogena, H. R., Huisman, J. A., Montzka, C., Zhang, B., and He, C.: Estimation of subsurface soil moisture 

from surface soil moisture in cold mountainous areas, Hydrol. Earth Syst. Sci., 24, 4659-4674, https://doi.org/10.5194/hess-

24-4659-2020, 2020. 635 

Tuttle, S., and Salvucci, G.: Empirical evidence of contrasting soil moisture–precipitation feedbacks across the United States, 

Science, 352, 825-828, https://doi.org/10.1126/science.aaa7185, 2016. 

Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. 

Am. J., 44, 892-898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980. 

Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y. A., Padarian, 640 

J., Schaap, M. G., Tóth, B., Verhoef, A., Vanderborght, J., Ploeg, M. J., Weihermüller, L., Zacharias, S., Zhang, Y., and 

Vereecken, H.: Pedotransfer Functions in Earth System Science: Challenges and Perspectives, Rev. Geophys., 55, 1199-

1256, https://doi.org/10.1002/2017RG000581, 2017. 

https://doi.org/10.5194/essd-2022-21

O
pe

n
 A

cc
es

s  Earth System 

 Science

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.



28 

Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., and Hopmans, J. W.: On the value of soil moisture 

measurements in vadose zone hydrology: A review, Water Resour. Res., 44, https://doi.org/10.1029/2008wr006829, 2008. 645 

Vereecken, H., Huisman, J. A., Franssen, H. J. H., Brüggemann, N., Bogena, H. R., Kollet, S., Javaux, M., Kruk, J. V. D., and 

Vanderborght, J.: Soil hydrology: Recent methodological advances, challenges, and perspectives, Water Resour. Res., 51, 

2616-2633, https://doi.org/10.1002/2014WR016852, 2015. 

Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M., Amelung, W., and 

Aitkenhead, M.: Modeling Soil Processes: Review, Key Challenges, and New Perspectives, Vadose Zone J., 15, 650 

https://doi.org/10.2136/vzj2015.09.0131, 2016. 

Wang, D., Wu, T., Zhao, L., Mu, C., Li, R., Wei, X., Hu, G., Zou, D., Zhu, X., Chen, J., Hao, J., Ni, J., Li, X., Ma, W., Wen, 

A., Shang, C., La, Y., Ma, X., and Wu, X.: A 1km resolution soil organic carbon dataset for frozen ground in the Third Pole, 

Earth Syst. Sci. Data, 13, 3453-3465, https://doi.org/10.5194/essd-13-3453-2021, 2021. 

Wang, X., Zhang, B., Xu, X., Tian, J., and He, C.: Regional water-energy cycle response to land use/cover change in the agro-655 

pastoral ecotone, Northwest China, J. Hydrol., 580, 124246, https://doi.org/10.1016/j.jhydrol.2019.124246, 2020. 

Xia, Y., Sheffield, J., Ek, M. B., Dong, J., Chaney, N., Wei, H., Meng, J., and Wood, E. F.: Evaluation of multi-model simulated 

soil moisture in NLDAS-2, J. Hydrol., 512, 107-125, https://doi.org/10.1016/j.jhydrol.2014.02.027, 2014. 

Xing, Z., Fan, L., Zhao, L., De Lannoy, G., Frappart, F., Peng, J., Li, X., Zeng, J., Al-Yaari, A., Yang, K., Zhao, T., Shi, J., 

Wang, M., Liu, X., Hu, G., Xiao, Y., Du, E., Li, R., Qiao, Y., Shi, J., Wen, J., Ma, M., and Wigneron, J.-P.: A first assessment 660 

of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet 

Plateau, Remote Sens. Environ., 265, 112666, https://doi.org/10.1016/j.rse.2021.112666, 2021. 

Yang, C., Li, H.-Y., Fang, Y., Cui, C., Wang, T., Zheng, C., Leung, L. R., Maxwell, R. M., Zhang, Y.-K., and Yang, X.: Effects 

of Groundwater Pumping on Ground Surface Temperature: A Regional Modeling Study in the North China Plain, J. Geophys. 

Res. Atmos., 125, e2019JD031764, https://doi.org/10.1029/2019JD031764, 2020. 665 

Yang, R., Zhang, G., Liu, F., Lu, Y., Yang, F., Yang, F., Yang, M., Zhao, Y., and Li, D.: Comparison of boosted regression tree 

and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem, Ecol. Indic., 60, 870-

878, https://doi.org/10.1016/j.ecolind.2015.08.036, 2016. 

Zhang, G. L., Brus, D., Liu, F., Song, X.-D., and Lagacherie, P.: Digital Soil Mapping Across Paradigms, Scales and Boundaries, 

Springer, Singapore, 2016. 670 

Zhang, L., He, C., and Zhang, M.: Multi-Scale Evaluation of the SMAP Product Using Sparse In-Situ Network over a High 

Mountainous Watershed, Northwest China, Remote Sens., 9, 1111, https://doi.org/10.3390/rs9111111, 2017. 

Zhang, L., He, C., Zhang, M., and Zhu, Y.: Evaluation of the SMOS and SMAP soil moisture products under different 

vegetation types against two sparse in situ networks over arid mountainous watersheds, Northwest China, Sci. China Earth 

Sci., 62, 703-718, https://doi.org/10.1007/s11430-018-9308-9, 2019. 675 

Zhang, P., Zheng, D., van der Velde, R., Wen, J., Zeng, Y., Wang, X., Wang, Z., Chen, J., and Su, Z.: Status of the Tibetan 

Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset, Earth Syst. Sci. Data, 13, 3075-

3102, https://doi.org/10.5194/essd-13-3075-2021, 2021. 

https://doi.org/10.5194/essd-2022-21

O
pe

n
 A

cc
es

s  Earth System 

 Science

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.



 

29 

Zhang, Y., Schaap, M. G., and Zha, Y.: A High-Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical 

Parameterization of a Physically Based Water Retention Model, Water Resour. Res., 54, 680 

https://doi.org/10.1029/2018WR023539, 2018a. 

Zhang, Y. L., Li, X., Cheng, G. D., Jin, H. J., Yang, D. W., Flerchinger, G. N., Chang, X. L., Wang, X., and Liang, J.: Influences 

of Topographic Shadows on the Thermal and Hydrological Processes in a Cold Region Mountainous Watershed in Northwest 

China, J. Adv. Model. Earth Sy., 10, 1439-1457, https://doi.org/10.1029/2017MS001264, 2018b. 

Zhao, C.L., Jia, X.X., Shao, M. A., and Zhang, X.: Using pedo-transfer functions to estimate dry soil layers along an 860-km 685 

long transect on China’s Loess Plateau, Geoderma, 369, 114320, https://doi.org/10.1016/j.geoderma.2020.114320, 2020. 

Zhao, H., Zeng, Y., Lv, S., and Su, Z.: Analysis of soil hydraulic and thermal properties for land surface modeling over the 

Tibetan Plateau, Earth Syst. Sci. Data, 10, 1031-1061, https://doi.org/10.5194/essd-10-1031-2018, 2018. 

Zhou, J., Cai, W., Qin, Y., Lai, L., Guan, T., Zhang, X., Jiang, L., Du, H., Yang, D., Cong, Z., and Zheng, Y.: Alpine vegetation 

phenology dynamic over 16years and its covariation with climate in a semi-arid region of China, Sci. Total Environ., 572, 690 

119-128, https://doi.org/10.1016/j.scitotenv.2016.07.206, 2016. 

https://doi.org/10.5194/essd-2022-21

O
pe

n
 A

cc
es

s  Earth System 

 Science

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.




