
 

 

RC: Reviewer Comment,  AR: Author Response,  □ New Manuscript text 

 

Dear Referee, 

We would like to thank you very much for your effort in reviewing our manuscript. Please find our 

responses to your comments below. These should be considered as preliminary (part of the interactive 

discussion) as implementation of the final changes also depends on another referee report that is still 

pending. 

Kind regards, 

Chansheng He 

(on behalf of all the authors) 

 

 

The comments of editor and reviewers are in black with bold text, the author’s answers are 

indicated in blue color, as well as old text passages. New text passages are indicated in green color. 

 
General Comments 
 
Overall, the paper is well written, and the data are valuable. However, I still have some 

main concerns: 

AR: We thank the reviewer for the evaluation and the comments. 

 

Major Comments 

RC: The authors give a good description of the SHP and SM datasets. However, they fail 

to clarify the accuracies of the ground-based datasets. Errors exist in either ground 

measurements or products. Direct comparisons between ground measurements and 

products can not help us understand the quality of the ground measurements. 

Although it is still challenging to quantify errors within the in-situ measurement, 

methods like triple collocation do exist that can give uncertainties of the in-situ 

measurements. I would strongly recommend the authors to try to explain the 



 

 

accuracy of the ground measurements, at least to cite some previous validation work 

to prove that the validation results of SHP and SM products in this work are 

consistent with them. This will make the quality of the ground measurements to be 

convincing. 

AR: Thank you for your comments. Yes, errors exist in either ground measurements or products. Firstly, 

we have tried to collect SM using two sensors at the same depth at a station within the study area 

(Figure R1 (a)). However, as a distance needs to be maintained between the two sensors to prevent 

interference (Cobos and Chambers, 2010), and SM has strong spatial heterology even at centimeter 

scale (Liang et al., 2011; Zhang et al., 2018; Guo et al., 2019; Guo et al., 2020), it’s difficult to say 

that the two sensors are measuring SM at the same place. Results also showed that the two sensors 

at the same depth have different SM dynamics (Figure R1 (b)). Thus, the triple collocation will 

introduce additional errors when obtaining the local SM. Secondly, the harsh mountainous 

environment makes it difficult to collect data and maintain the large-scale SM network over QTP. 

What’s more, we usually need to replace several SM sensors each year, which are always broken by 

the animals (rat, yak, etc.) during the long period (Figure R2). The limited funding also makes it 

difficult to maintain the long-term SM monitoring over large scale of QTP using the triple collocation 

method.  

 
Figure R1. (a) The installation of two 5TE sensors at the same layer at one site within the study area, (b) 

the comparison of measured SM during 2021/5/1-2021/10/15 at the first four depths. 



 

 

 

Figure R2. (a) Datalogger damage caused by water ingress, (b) the stolen of 5TE sensor and datalogger 

in the field (only the broken white waterproof box remains), (c)-(f) the damage of 5TE sensor in the field. 

Meanwhile, we have checked our results thoroughly and corrected a mistake when evaluating the 

SMAP_L4 product in our previous analysis (the SMAP_L4 product version during 2015-2016 is 

different from the data product after 2016). What’s more, in order to compare our results with the 

previous evaluations, we evaluated the SM products using the metrics of Pearson’s R, bias, and 

ubRMSE (Figures 12 and 13). The results about evaluations of the SM products have been revised 

in the manuscript accordingly. 



 

 

 
Figure 12. Scatterplots comparing the different derived SM products with the observed SM for different 

soil layers. The metrics within each plot show the mean value of the metrics for all stations. 



 

 

 

Figure 13. Metrics for comparing the different SM products (GLDAS_Noah, ERA5_Land, and SMAP_L4) 

with the in-situ SM observations for different layers. The different letters above the violin plot indicate 

the significant differences (p < 0.05) between different products for each soil layer, while no letter 

indicates the differences are not significant. 

□  The results show that both SMAP_L4 (mean bias of -0.011 cm3/cm3, 0.052 cm3/cm3, and 0.045 

cm3/cm3 for surface, subsurface, and profile soil layers, respectively) and GLDAS_Noah (mean bias 

of 0.023 cm3/cm3, 0.013 cm3/cm3, and 0.014 cm3/cm3 for surface, subsurface, and profile soil layers, 

respectively) have significantly (p < 0.01) lower bias than ERA5_Land (mean bias of 0.179 cm3/cm3, 

0.191 cm3/cm3, and 0.190 cm3/cm3 for surface, subsurface, and profile soil layers, respectively). Both 

SMAP_L4 (mean R of 0.490, 0.343, and 0.371 for surface, subsurface, and profile soil layers, 

respectively) and ERA5_Land (mean R of 0.471, 0.289, and 0.323 for surface, subsurface, and profile 

soil layers, respectively) correlate with the observations with significantly (p < 0.01) higher R values 

than GLDAS_Noah does (with mean R of 0.296, 0.127, and 0.164 for surface, subsurface, and profile 

soil layers, respectively). After removing the bias, the mean ubRMSE of the three SM products are 

lower than 0.032 cm3/cm3, 0.024 cm3/cm3, and 0.024 cm3/cm3 for the surface, subsurface, and profile 



 

 

SM, respectively. Therefore, the three SM products achieved the accuracy requirement of 0.04 

cm3/cm3 (Chan et al., 2016) in the study area. 

After summarizing the previous works about SM products validation, we found that our results are 

consistent with the previous studies. For example, Xing et al. (2021) found that for the surface SM, 

SMAP_L4 has a better performance than ERA5_Land with the higher R and lower bias. For the root 

zone SM, SMAP_L4 and ERA5_Land have higher R values than the GLDAS_Noah, while 

SMAP_L4 and GLDAS_Noah have a lower bias than the ERA5_Land (Xing et al., 2021), which are 

consistent with our results. On the other hand, previous research also displayed a broad range of bias, 

ubRMSE, and R when evaluating the three SM products (Table R1, Bi et al., 2016; Qu et al., 2019; 

Xing et al., 2021). Thus, our evaluations are consistent with the previous studies with a reasonable 

variation range. Additionally, previous studies demonstrated that the performance of different SM 

products varies from one site to the other (Xing et al., 2021; Bi et al., 2016; Zeng et al., 2015). 

Generally, the SM products overestimate SM under dry condition, while underestimate SM under 

wet condition, and the SM products show worse performance in the sites with strong landscape 

heterogeneity (Zeng et al., 2015; Qu et al., 2019; Xing et al., 2021). Our study showed similar results 

that the bias is negatively correlated with the soil water content significantly for the three SM 

products (Figure R3). In summary, the evaluations of SM products based on our SM dataset are 

consistent with the previous studies. The discussion about the quality of SM datasets has been revised 

in the manuscript. 

Table R1 the comparison of the evaluation metrics for ERA5_Land, GLDAS_Noah, and SMAP_L4 from 

previous studies over QTP with that of our study (mean value) 

product layer 
bias ubRMSE R 

source 
reference our study reference our study reference our study 

ERA5 

_Land 

surface -0.01~0.59 0.179 0.018~0.095 0.032 -0.23~0.84 0.471 
(Xing et al., 2021) 

profile 0.04~0.45 0.190 0.013~0.089 0.024 -0.22~0.96 0.323 

GLDAS 

_Noah 

surface -0.15~0.108 0.023 0.037~0.058 0.032 0.287~0.785 0.296 (Bi et al., 2016;  

Qu et al., 2019; subsurface -- 0.013 0.021~0.054 0.023 -0.245~0.824 0.127 

profile -0.24~0.16 0.014 0.005~0.084 0.022 -0.19~0.79 0.164 Xing et al., 2021) 

SMAP 

_L4 

surface -0.20~0.16 -0.011 0.017~0.086 0.030 0.14~0.78 0.490 
(Xing et al., 2021) 

profile -0.16~0.14 0.045 0.01~0.08 0.021 0.24~0.94 0.371 



 

 

 
Figure R3. The relationship between the bias of different SM products and average SM at surface 

layer. 

□  The evaluations of SM products are consistent with the previous results over QTP (Xing et al., 2021; 

Bi et al., 2016; Qu et al., 2019). 

For the SHP dataset, Zhao et al. (2018) evaluated the soil properties products based on measurements 

at Maqu, Naqu, and Ngari stations over QTP. The comparisons of our evaluation and results of Zhao 

et al. (2018) are shown in Table R2. Zhao et al. (2018) found that the evaluation of SHP datasets 

varied significantly at different regions of QTP. Table R2 shows that our evaluation is consistent with 

the results of Maqu site, which is the nearest site to our study area. 

Table R2. The comparisons of the bias of the evaluation of SHP datasets (HWSD and Soilgrid_250m) 

between Zhao et al. (2018) and this study. 

Dataset site clay (%) silt (%) sand (%) BD (g/cm3) Source 

HWSD 

Ngari 12.60 21.30 -34.20 -0.17 

(Zhao et al., 2018) Naqu 10.90 10.50 -21.50 -0.19 

Maqu 6.49 -28.00 21.90 0.36 

Heihe 13.16 -22.38 9.43 0.21 This study 

Soilgrid250 

Ngari 8.43 14.70 -22.80 -0.27 

(Zhao et al., 2018) Naqu 9.33 13.20 -22.50 -0.37 

Maqu 9.70 -20.50 11.40 0.12 

Heihe 11.48 -24.15 12.78 0.02 This study 



 

 

Furthermore, the values of measured soil properties were compared to those available in the literature 

to cross-check whether they are within a reasonable range. Firstly, we found that the SHPs varied 

significantly at different sites. For example, the sand content is 84.54±8.28 (mean± standard 

deviation) and 26.95±10.55 for the Ngari and Maqu, respectively (Zhao et al., 2018). Thus, we only 

compare our results to the previous studies near our study area (at Qilian Mountain, Table R3). Table 

R3 shows that the values of SHPs in our study have a reasonable range. 

Table R3 the comparisons of SHP values in our dataset (mean±standard deviation) with the value ranges 

of previous studies in the Qilian Mountains 

SHP Value Source 

clay 

(%) 

6.66±1.49 this study 

0.3~19 (Hu et al., 2019; Hu et al., 2020; Yang et al., 2017; Zhi et al., 2017) 

silt 

(%) 

64.1±12.31 this study 

17~90 (Hu et al., 2016; Hu et al., 2019; Hu et al., 2020; Yang et al., 2017; Zhi et al., 2017) 

sand 

(%) 

29.23±13.25 this study 

1~79 (Hu et al., 2016; Hu et al., 2019; Hu et al., 2020; Yang et al., 2017; Zhi et al., 2017) 

SOC 

(%) 

4.53±4.03 this study 

0.07~27 (Hu et al., 2016; Hu et al., 2019; Song et al., 2016; Zhi et al., 2017) 

BD 

(g/cm3) 

1.17±0.24 this study 

0.3~1.8 (Hu et al., 2019; Hu et al., 2020; Yang et al., 2017; Yang et al., 2020; Zhi et al., 2017) 

log10KS 

(cm/day) 

1.4±0.5 this study 

0.07~3.6 (Hu et al., 2020; Liu et al., 2013; Yang et al., 2020) 

Moreover, collecting the SM and SHP datasets since 2013, we have done lots of work based on the 

datasets. For example, based on the SHP dataset, we have analyzed the spatial distribution of the 

saturated soil hydraulic conductivity and soil properties (Zhao et al., 2014; Tian et al., 2017), 

exploring the scaling method of soil texture (Li et al., 2018), the application and improvement of 

hydrological models (Jin et al., 2015; Zhang et al., 2016). Based on the SM dataset, we have done 

the analysis of the spatial-temporal variation of SM (Tian et al., 2019), estimation of soil water 

storage (Tian et al., 2020), analysis of preferential flow (Kang et al., 2022), validation and 

improvement of the SM products (Zhang et al., 2017; 2019; Bai et al., 2020), and the validation of 

hydrological models (Su et al., 2020).  

Lastly, the saturated soil hydraulic conductivity (KS, Tian et al., 2017) of our dataset has contributed 



 

 

as a representative KS network in the SoilKsatDB, a global database of KS (Gupta et al., 2021, Earth 

System Science Data).  

In summary, the comparisons of our results with the previous studies, cross-checking with the 

available literature, and the applications of our SHP and SM datasets indicate that the quality of our 

dataset is good and has been accepted by research community. The discussion about the quality of 

the datasets has been revised in the manuscript. 

□  Our evaluations of SHP datasets are consistent with the results of Zhao et al. (2018). 

□  Additionally, the value ranges of SHPs in our dataset are consistent with the previous studies within 

the study area (Hu et al., 2016; Hu et al., 2019; Hu et al., 2020; Liu et al., 2013; Song et al., 2016; 

Yang et al., 2017; Yang et al., 2020; Zhi et al., 2017). 

 

RC: I believe that the long-time series point SM measurements are valuable and 

meaningful. However, I do not think they are suitable for validating coarse SM 

products. Since the in-situ measurements are all obtained from single stations, 

spatial heterogeneity impacts on the validation results can not be ignored. They 

should be considered, especially when evaluating SM products with a spatial 

resolution of tens kilometers using in-situ point measurements. Actually, dense in-

situ SM observation networks are an effective way to minimize the impacts of spatial 

heterogeneity. Several dense in-situ SM observation networks within the Qinghai 

Tibet Plateau, such as Heihe network constructed during HiWATER, Naqu and Pali of 

the CTP-SMTMN networks and Maqu and Ngari of the Tibet-Obs networks, have 

provided long time-series SM measurements which can be well used for SM 

evaluation. Therefore, I would suggest the authors use point SM measurements in 

different applications on a small scale to clarify their quality. 

AR: Thanks for your suggestion. On the one hand, the mismatch of scale between the SM measurements 



 

 

and the SM products is still a challenge in validating SM products (Jin et al., 2017), particularly in 

hard to reach, data lacking, topographically complex high mountain areas such as the Qilian 

Mountain Ranges and QTP, and has been discussed in the revised manuscript. On the other hand, the 

point SM measurements have been applied successfully as follows: (1) The response of SM at 

different layers to rainfall under different land covers and its control factors (Tian et al., 2019, 

Agricultural and Forest Meteorology, 271(15): 225-239). (2) The coupling of surface SM and 

subsurface SM and the estimation of profile SM from surface SM (Tian et al 2020, Hydrology and 

Earth System Sciences, 24(9): 4659-4674). (3) Analysis of the occurrence and controls of 

preferential flow (Kang et al., 2022, Journal of Hydrology, 607: 127528). (4) The estimation of 

rainfall from SM (Lai et al., 2022, Journal of Hydrology, 606: 127430). (5) Validation of hydrological 

modeling at different sites (Su et al., 2020, Journal of Geophysical Research: Atmospheres, 125(18): 

e2020JD032727). (6) Evaluation of the SMAP and SMOS products using our SM dataset (Zhang et 

al., 2017, Remote Sensing, 9(11): 1111; 2019, Science China Earth Sciences, 62(4): 703-718). 

Additionally, based on the point SM measurements, we also analyzed the variation of SM with 

elevation in this study, and we find the increasing of SM with the increasing elevation (Figure S4 in 

the supplement), which is consistent with the previous studies (Geng et al., 2017). 

 

Figure S4. The variation of SM with elevation for different soil depths based on the observed temporal 



 

 

mean value (and standard deviation) at each station and the station elevation, including the linear fitting 

result with the 95% confidence band. L1 represents SM for layer 1, ** indicates the slope of the linear 

regression is significant at the 0.01 level. 

□   Notably, the scale mismatch between the point location of in-situ SM measurements and the 

footprints of SM products will introduce additional errors in the evaluation of the SM products (Jin 

et al., 2017). 

 

 

Specific Comments 

RC: L40, it is arbitrary to say “highly uncertain”. 

AR: We have changed the statement in the revised manuscript. 

□  the uncertainty associated with information about SHP datasets and SM products still exists 

 

RC: L105, in our stud area 

AR: We have changed it to “in our study area”. 

 

RC: L130, make sure that it is “at the long-term SM monitoring stations” or “at the random 

sampling 

AR: We have changed it to “from each layer of long-term SM monitoring station”. 

 

RC: Table 1, suggest to list spatial resolutions for HWSD, SoilGrid, ShangYG and DaiYJ. 

AR: We have listed the spatial resolutions of SHP datasets in Table 1. 

 



 

 

□  Table 1. Calculation of SHPs at different depths (5 cm, 25 cm, 0–30 cm) for evaluating the soil property datasets.  

Depth HWSD SoilGrid ZhangYG DaiYJ observation 

Spatial resolution 30″ 250 m 1 km 30″ - 

5 cm - SG0-5 ZhangYG0-5 DaiYJ0-5 obs5 

25 cm - SG15-30 - - obs25 

0-30 cm HWSD0-30 (5•SG0-5+10•SG5-15+15•SG15-30)/30 - - (obs5+obs25)/2 

Note: SG and obs represent soil properties from the SoilGrid dataset and from observations, respectively. The subscript gives the soil 

depths for the SoilGrids properties, and “-” indicates that data for a specific layer are not available in the datasets. 

 

RC: Table 2, suggest to list spatial resolutions for GLDAS, ERA5 and SMAP SM products. 

AR: We have listed the spatial resolutions of SM products in Table 2. 

□  Table 2. Calculation of the soil moisture at different depths (surface, subsurface and profile) from different datasets. 

Product 
Spatial 

resolution 
Surface (0-10 cm) Subsurface (10-100 cm) Profile (0-100 cm) 

GLDAS 0.25° sm0-10 (30•sm10-40+60•sm40-100)/90 (10•sm0-10+30•sm10-40+60•sm40-100)/100 

ERA5_Land 9 km (7•sm0-7+3•sm7-28)/10 (18•sm7-28+72•sm28-100)/90 (7•sm0-7+21•sm7-28+72•sm28-100)/100 

SMAP_L4 9 km sm0-10 (10•sm0-100-sm0-10)/9 sm0-100 

Observation - sm5 
(10•sm15+10•sm25+20•sm40+50•

sm60)/90 

(10•sm5+10•sm15+10•sm25+20•sm40+50•
sm60)/100 

Note: sm is soil moisture, and subscripts indicate the range of depth. For the derived products, the depth is a range (e.g., 0-10, representing 

0–10 cm), while for the observations, sm is reported at the observed depths of 5 cm, 15 cm, 25 cm, 40 cm, and 60 cm. 

 

RC: Line 230, double-check the numbers here. I can not well relate some of the numbers 

here to those listed in Table 3. For example, why n ranges within 0.09 and 0.12? why 

cv of clay ranges within (0.18, 0.28)? etc. 

AR: Thank you for your reminder, we have checked and revised the numbers thoroughly according to 

Table 3. 

□  The results show that CV of the n (ranged within 0.1–0.134 at different depths) of Van Genuchten 

model is less than 0.16, which is a relatively low spatial variability. Meanwhile, CV for clay ranged 

from 0.156 to 0.287, and ranged from 0.174 to 0.237 for silt. CV of θs ranged from 0.187 to 0.223, 

and the CV of BD ranged from 0.195 to 0.238. These SHPs therefore show a relatively moderate 

variability according to Wilding (1985). CV of sand ranged between 0.439 and 0.618, θr ranged 



 

 

between 0.472 and 0.654, CV of KS ranged between 0.293 and 0.534, and CV of α ranged from 0.707 

to 1.094. The CV values of these SHPs were mostly higher than 0.36, indicating strong spatial 

variability. Thus, the soil texture for clay and silt had the lowest spatial heterogeneity, while both KS, 

θr, and α had high spatial variability in the study area. 

Table 3. The descriptive statistics (median and coefficient of variation) for soil properties at different depths.  

depth 

(cm) 

clay 

(%) 

silt 

(%) 

sand 

(%) 

BD* 

(g/cm3) 

SOC 

(%) 

log10KS
* 

(cm/d) 

α 

(cm-1) 

n 

(-) 

θs
*
 

(cm3/cm3) 

θr 

(cm3/cm3) 

5 
6.600 

(0.224) 

66.562 

(0.192) 

26.686 

(0.453) 

1.153 

(0.207) 

4.024 

(0.889) 

1.445 

(0.356) 

0.022 

(0.896) 

1.370 

(0.119) 

0.550 

(0.189) 

0.107 

(0.564) 

15 
6.356 

(0.156) 

66.607 

(0.174) 

26.008 

(0.439) 

1.151 

(0.195) 

1.466 

(1.019) 

1.564 

(0.293) 

0.026 

(0.877) 

1.382 

(0.100) 

0.533 

(0.187) 

0.126 

(0.472) 

25 
6.381 

(0.243) 

65.776 

(0.237) 

27.362 

(0.513) 

1.189 

(0.228) 

2.077 

(0.945) 

1.454 

(0.381) 

0.026 

(0.707) 

1.349 

(0.134) 

0.514 

(0.214) 

0.094 

(0.654) 

40 
6.656 

(0.203) 

64.831 

(0.222) 

29.213 

(0.505) 

1.189 

(0.233) 

1.327 

(0.998) 

1.436 

(0.405) 

0.027 

(0.948) 

1.412 

(0.117) 

0.462 

(0.223) 

0.129 

(0.603) 

60 
6.848 

(0.287) 

70.089 

(0.233) 

20.724 

(0.618) 

1.238 

(0.238) 

1.240 

(1.05) 

1.114 

(0.534) 

0.021 

(1.094) 

1.394 

(0.104) 

0.502 

(0.216) 

0.146 

(0.544) 

all 
6.552 

(0.227) 

66.323 

(0.21) 

26.85 

(0.486) 

1.168 

(0.219) 

1.473 

(1.008) 

1.449 

(0.37) 

0.024 

(0.887) 

1.374 

(0.117) 

0.526 

(0.200) 

0.113 

(0.566) 
*indicates that the soil property is significantly (p < 0.05) different at different depths. log10KS is the log10 transformed KS. α and n are the 

parameter of Van Genuchten model (Supplement). θs and θr are the saturated SM and residual SM, respectively (Supplement). 

 

RC: L250, is it -0.66? 

AR: Sorry for the error. It has been changed to “-0.66” in the revised manuscript. 

 

RC: L255, wrong space place in “… significant ,except…” 

AR: Thank you. It has been changed to “significant, except” 

 

RC: Figure 5, keep the soil property name consistent with those in the text. E.g., bulk to 

bulk density or BD, s in logks should be a subscript 

AR: Thank you, the names of SHPs have been changed to be consistent with those in the text (Figure 5). 



 

 

 

Figure 5. Correlations between different SHPs. Different colors indicate different soil layers. The lower 

triangle of the figure area shows the scatterplots between different SHPs of different layers. The upper 

triangle lists the Peason’s correlation coefficients (R) of different SHPs, and the first number in each box 

(Corr: ) is the R value calculated by combining data from all soil depths. Plots running diagonally across 

the figure area represent the distribution of each SHP.  



 

 

 

RC: L280, Theta_r and theta_s should be written formally. 

AR: We have changed the Theta_r and Theta_s into θr and θs, respectively (Figure 6). 

 

Figure 6. The spatial distribution of soil texture (sand, silt, clay, %), BD (g/cm3), log10KS (log10 

transformed KS, cm/d), θr (cm3/cm3), θs (cm3/cm3), α, and n in the study area. 

 

RC: Figure 7, bulk, theta_s, Theta_r, and alpha should be written formally. 

AR: We have changed the Theta_r, Theta_s, and bulk into θr, θs, and BD, respectively (Figure 7). 



 

 

 

Figure 7. (a) The vertical distribution of sand, clay, silt, log10KS, BD, SOC and the parameters of the Van 

Genuchten model for fitting the soil water retention curve (θr, θs, α, and n) in the study area; (b) boxplots 

show the distributions of the soil water retention curves for different soil layers.  

 

RC: L330, Figure 11 here should Figure 10? The “higher” in “…and this is higher than the 

temporal…” should be “lower”? 

AR: Thank you. Yes, it should be Figure 10. And the CV of temporal variation should be lower than that 

of spatial variation (Figure 10). We have changed it in the revised manuscript. 

□  The spatial variability of SM varies from 0.32 to 0.65 over the study area, with a mean CV of 0.45, 

and this is higher than the temporal variability of SM over the study period (2014–2020), which 

varied from 0.03 to 0.52, with a mean CV of 0.18 (Figure 10). 



 

 

 

Figure 10. (a) The relationship between the spatial CV and mean SM for each month for different soil 

layers; (b) the relationship between the temporal CV and mean SM for each station for different soil layers. 

The curve and shading in each plot show the fitted curve and the 95% confidence interval, and the legend 

shows the fitting equation between CV and mean SM for each soil layer. ** shows where the fitted curves 

are significant at the 0.01 level. 

 

RC: Figure 9, the text 0.75 in the legend is wrong? Should it be 0.075? In addition, clarify 

in the text how to obtain figure 9? Same as figure 6 using Kriging method in ArcGIS 

to interpolate? 

AR: Thank you, the value should be 0.075 and the spatial distribution of SM is obtained through the 

Kriging method in ArcGIS. We have changed the value and clarified the method in the revised 

manuscript (Figure 9). 



 

 

 

Figure 9. (a)-(e) The spatial distribution of the average SM during the study period for (a) layer 1 to (e) 

layer 5 through the Kriging method. Circles with different sizes show SM measurements from stations 

with different mean values over the study period. (f) The variation of the average SM with depth in 

different years, the line and shading show the fitted curve and the 95% confidence interval. 

 

RC: L350, two meanings for PBIAS here. One is positive bias, the other is percent bias. 

AR: Yes. The PBIAS can reflect both the positive or negative bias of the datasets and the percent of the 

bias. As the value ranges of SHPs such as soil texture and bulk density varied at a different order of 

magnitude, we used PBIAS instead of “bias” to compare the evaluations of different SHP datasets. 

The equation of the metrics used in this study has been listed in the revised supplement. 

PBIAS = 100 ×
∑(𝑀−𝑂)

∑𝑂
                                                             (1) 

where M, O are the estimation values and observations, respectively. 

 

RC: Figure 11, use BD instead of bulk. 

AR: We have changed it in Figure 11. 



 

 

 

Figure 11. (a) Boxplots show the distributions for the evaluated derived datasets (soil texture and BD 

from the SoilGrid and HWSD datasets, log10KS from the ZhangYG and DaiYJ datasets), with the 

corresponding distributions for the observations. (b) Metrics to compare the existing derived soil datasets 

with the corresponding observations in the study area. 

 

RC: L410, how can you conclude that “our SM dataset provides new accurate in-situ SM 

measurements covering …”? 

AR: We have changed our statement in the revised manuscript. 

□  Our SM dataset provides an in-situ SM measurements covering 2014–2020 over a large-scale 

mountainous area 
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