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Abstract. Roadside noise barriers (RNBs) are important urban infrastructures to develop a liveable city. However, the 

absence of accurate and large-scale geospatial data on RNBs has impeded the increasing progress of rational urban planning, 20 

sustainable cities, and healthy environments. To address this problem, this study proposes a geospatial artificial intelligence 

framework to create a vectorized RNB dataset in China using street view imagery. To begin, intensive sampling is performed 

on the road network of each city based on OpenStreetMap, which is used as the geo-reference to download 5.6 million Baidu 

Street View (BSV) images. Furthermore, considering the prior geographic knowledge contained in street view images, 

convolutional neural networks incorporating image context information (IC-CNNs) based on an ensemble learning strategy 25 

are developed to detect RNBs from the BSV images. Subsequently, the RNB dataset presented by polylines is generated 

based on the identified RNB locations, with a total length of 2,227 km in 215 cities. At last, the quality of the RNB dataset is 

evaluated from two perspectives: first, the detection accuracy; second, the completeness and positional accuracy. 

Specifically, based on a set of randomly selected samples containing 10,000 BSV images, four quantitative metrics are 

calculated, with an overall accuracy of 98.61 %, recall of 87.14 %, precision of 76.44 %, and F1-score of 81.44 %. 30 

Moreover, a total length of 254 km of roads in different cities are manually surveyed using BSV images to evaluate the 

mileage deviation and overlap level between the generated and surveyed RNBs. The root-mean-squared error for mileage 

deviation is 0.08 km, and the intersection over union for overlay level is 88.08 % ± 2.95 %. The evaluation results suggest 

that the generated RNB dataset is of high quality and can be applied as an accurate and reliable dataset for a variety of large-
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scale urban studies. The generated vectorized RNB dataset and the labelled BSV image benchmark dataset are publicly 35 

available at https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). 

1 Introduction 

In recent years, several studies have documented the substantial impact of traffic noise problems in cities (Apparicio et al., 

2016; Begou et al., 2020). Roadside noise barriers (RNBs) are vital urban infrastructure that contribute significantly to 

mitigate undesirable traffic noise in communities (Abdulkareem et al., 2021; Ning et al., 2010). Additionally, RNBs 40 

contribute to the development of sustainable cities in many ways. For example, with the emphasis on new energy, RNBs are 

being used to install solar photovoltaic panels, thereby increasing the utility of new energy sources (Gu et al., 2012; Zhong et 

al., 2021). Besides, the reasonable presence of RNBs enables the airflows in the urban canyon region to be adjusted, thereby 

improving the roadside air quality (Huang et al., 2021; Zhao et al., 2021). Because of the importance of RNBs in building 

sustainable cities, the demand for RNBs has increased alongside traffic growth in recent decades (Boer and Schroten, 2007; 45 

Oltean-Dumbrava and Miah, 2016). There are bottom-up benefits from establishing an accurate and standardised large-scale 

RNB dataset with detailed geospatial information about RNBs, including their mileages, locations, and distributions (Liu et 

al., 2020; Wang and Wang, 2021). Particularly, precise RNB locations enables traffic departments to effectively manage and 

maintain this type of infrastructure (Sainju and Jiang, 2020). Additionally, urban research can simulate dynamic cities based 

on accurate RNB geospatial information (Wang and Wang, 2021; Zhao et al., 2017). Moreover, governments can rely on the 50 

RNB maps to examine urban layouts and create green and sustainable cities (Song et al., 2021; Song and Wu, 2021). 

Over the past few years, extensive geospatial databases have been established to store data on many aspects of urban 

infrastructure (Griffiths and Boehm, 2019; Perkins and Xiang, 2006). However, the sharing and exchange of RNB data in 

these databases are restricted, and the data only covers a limited geographic area (Wang et al., 2019; Zhang et al., 2022). 

These challenges to data acquisition are because databases have to adhere to various standards related to geographic data 55 

(e.g., file format and geographic coordination reference) (Lafia et al., 2018). Moreover, the RNB data are often created and 

updated manually through road inspections and investigations, which are costly and time consuming, especially on a large 

scale (Potvin et al., 2019; Ranasinghe et al., 2019). Therefore, there is an urgent requirement to seek alternate effective ways 

to generate and update the RNB geospatial dataset. 

Street view imagery is geo-referenced data densely covering the road network of cities. As a new geospatial data source, it 60 

provides depictions of real-world surroundings, including natural landscapes and built environment, and enables users to 

recognize physical objects, urban dynamics features, and geographic scenes on a large scale (Zhang et al., 2018). In addition, 

as part of the data sharing movement, an increasing number of community-based organizations and corporations, such as 

Baidu Maps, Tencent Maps and Google Maps, are regularly generating and updating open-access street view imagery (Qin 

et al., 2020; Zhang et al., 2019). As a result, such big data brings great prospects for acquiring urban infrastructure 65 

information (e.g., RNBs), with benefits such as broad coverage, rapid update speed, and low acquisition cost (Kang et al., 
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2020). However, manual interpretation is a tedious task and conventional computer vision algorithms struggle when 

confronted with large amounts of data and complex image features (Zhang et al., 2018). 

With the advancement of computing hardware and frameworks, deep learning methods now have an increased capacity for 

extracting semantic features from a large amount of data (Lecun et al., 2015). The emerging approaches are increasingly 70 

being used to interpret physical objects and detect interior patterns from earth observation data (Jiang et al., 2021). 

Meanwhile, image classification based on deep learning has been used to identify RNBs using street view imagery (Zhong et 

al., 2021). However, for the purposes of identifying RNBs, prior geographic knowledge, which is essential, is frequently 

overlooked, such as the fact that RNBs are frequently located between roads and densely populated regions (e.g., residential, 

educational, and medical areas) (Arenas, 2008; Wang et al., 2018; Zhang et al., 2022). In recent years, a new framework of 75 

data-driven research based on geospatial artificial intelligence (GeoAI) and machine learning has resulted in multiple notable 

improvements in the discovery of geographic scene knowledge (Goodchild and Li, 2021; Li, 2020). When empirical and 

prior spatial information is included into deep learning approaches, it can help develop a more holistic understanding of a 

research subject and mitigate the effects of data scarcity or representational bias (Janowicz et al., 2019; Qian et al., 2020). As 

a result, it is possible to enhance the effectiveness of deep learning methods for identifying RNBs by incorporating some 80 

prior geographic knowledge from street view imagery. Additionally, Wolpert and Macready (1997) introduced the “no free 

lunch” theory, demonstrating that a single model must pay for some accuracy by degrading its generalizability. This is 

acceptable, as it is challenging to construct a perfect solution for all scenarios using a single model, particularly when 

dealing with vast volumes of data and large-scale areas (Wang and Li, 2021). 

The purpose of this study is to build an accurate and nationwide vectorized RNB dataset utilizing Baidu Street View (BSV) 85 

imagery. To improve the performance of detecting RNBs, this work proposes a GeoAI framework. Concretely, an ensemble 

of convolutional neural networks incorporating image context information (IC-CNNs) is developed, which considers the 

prior geographic knowledge contained in street view images. Subsequently, a post-processing method is applied to generate 

the vectorized RNB dataset based on the identified RNB locations. At last, the RNB dataset quality is quantitatively 

evaluated from two perspectives, i.e., the detection accuracy as well as the completeness and positional accuracy. The main 90 

contributions of this study can be summarized as follows: 

(1) This study provides the first reliable and nationwide vectorized RNB dataset in China, as well as the labelled BSV 

images which can be used as a benchmark dataset. 

(2) A GeoAI framework is presented for processing numerous BSV images in order to generate the RNB mapping and for 

comprehensively evaluating the generated results. 95 

(3) This study presents multiple IC-CNNs based on prior geographic knowledge and ensemble learning strategy to achieve 

high-performance object identification from street view imagery. 

The remainder of this paper is organized as follows. Section 2 briefly describes the data and methods used to generate and 

evaluate the RNB dataset. Section 3 presents the results of the RNB mapping as well as evaluation and analysis for RNB 
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dataset. Section 4 discusses the capability of proposed methods, as well as the challenges and limitations of this work. The 100 

last section provides the conclusions of this study. 

2 Data and methods 

2.1 The GeoAI framework 

The GeoAI framework’s workflow is divided into three stages: data preparation, modelling, and evaluation, as shown in Fig. 

1. To begin with, BSV images are gathered during the data preparation stage using OpenStreetMap (OSM) road data and the 105 

BSV application programming interface (API). Subsequently, BSV images are used to generate various samples for 

modelling and evaluation. During the modelling stage, deep learning approaches are used to detect RNBs from the BSV 

imagery. Using the vectorization post-processing method, the identified and scattered RNB locations are subsequently 

processed into a vectorized dataset. During the evaluation stage, the quality of the created dataset is quantitatively assessed 

in two aspects, i.e., the detection accuracy as well as completeness and positional accuracy. 110 
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Figure 1: The flow chart of GeoAI framework to generate the vectorized RNB dataset. 

2.2 Data preparation 

Three types of data are acquired for this study: the road networks, administrative boundary, and street view imagery. 

Afterwards, training, validation, and test samples are collected based on these data. However, the data from Taiwan province 115 

are scarce. 

2.2.1 Road networks 

The road networks are download from OSM (https://www.openstreetmap.org/) in May 2021, which is polyline-based and 

includes a variety of road types, including motorway, trunk road, primary road, and secondary road. According to previous 

findings, the quality of OSM road networks in China is high in terms of completeness and positional accuracy (Liu and Long, 120 
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2015). In addition, RNBs have a high probability of being installed on motorways and trunk roads (Zhang et al., 2022). 

Therefore, given the expense of acquiring and computing BSV images, in this study, samples on motorways and trunk roads 

are only considered for downloading BSV images. Figure 2a depicts the spatial distribution of these two types of roads. 

 

Figure 2: Three data sources are used in this study. (a) OSM road network data, (b) Chinese administrative boundary with four 125 
city tiers, and (c) The locations of the downloaded BSV images. (Road networks are from OSM) 

2.2.2 Administrative boundary 

The city boundary is acquired from http://bzdt.ch.mnr.gov.cn/ in April 2021. According to the urban management hierarchy 

established by the Chinese government, cities in China are divided into four tiers (Guan and Rowe, 2018; Jia et al., 2020), 

including municipalities, sub-provincial cities, prefecture-level cities, and the locations of them are shown in Fig. 2b. 130 

Specifically, Tier 1 is centrally administered cities and municipalities. Tier 2 is primarily sub-provincial cities, whereas Tier 

3 is province capitals and large prefecture-level cities. Tier 4 is ordinary prefecture cities. Cities with varying administrative 

levels have varying authorities over resource allocation and jurisdiction (Guan et al., 2018). 

2.2.3 Street View Imagery 

With their high resolution and detailed information on Chinese streets, BSV images are of comparable quality to Google 135 

Street View images, which are not available in China (Zhou et al., 2019b). Numerous sample points along OSM roads are 

collected, and the BSV API is utilized to obtain street view images at those locations. Following the work of Zhang et al. 

(2022), a sampling interval of around 25 m is utilized to account for the trade-off between data granularity and the 

expenditure of downloading imagery. As a result, the total number of sample points is 24,871,839. As shown in Fig. 3, the 

illustration of BSV images with different photography directions shows that BSV image with 90° is more appropriate for the 140 

present work because it provides a comprehensive roadside view. Hence, to identify the RNBs along the corresponding 

roadside, BSV images with a 90° viewing angle are acquired. Owing to the absence of BSV images on a few road segments 

in a particular year, which will be supplemented in adjacent years. Additionally, the BSV sensors may be obstructed by some 

vehicles or other surrounding objects. These issues are resolved by downloading multitemporal BSV images from 2014 to 
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2020. A total of 5,589,691 BSV images are downloaded with a size of 500 pixels × 400 pixels, and their spatial locations are 145 

shown in Fig. 2c. 

 

Figure 3: Illustration of BSV images with different photography directions. (BSV images are from Baidu Maps) 

2.2.4 Training, validation, and test sample collection 

An effective sampling technique for generating training, validation, and test image samples are developed to detect RNB 150 

from the large volume of BSV images collected. Figure 1 illustrates the different steps followed in the data preparation stage. 

The BSV images are classified into four tiers based on their location within the city administration hierarchy. Subsequently, 

the training, validation, and test sampling set are subdivided from the entire samples, accounting for 60 %, 20 %, and 20 % 

of images, respectively. These sampling sets can be used to collect the corresponding samples and benefit by avoiding the 

mixing of samples. 155 

Previous investigations revealed that BSV images with RNBs are rare, accounting for fewer than 5 % of the sampled images. 

To alleviate the impact of class imbalance problem on model training, 50,000 images are randomly selected from each city 

tier based on the training sampling set. These samples are labelled as positive type (i.e., image with RNB) or negative type 

(i.e., image without RNB). Subsequently, the same number of positive and negative samples are maintained. Certain objects, 

such as tunnel inner walls, billboards, and guardrails, seem like RNBs in images, which intensifies the difficulty of deep 160 

learning, as shown in Fig. 4. Therefore, 500 images of each of these objects are added as confusing negative samples to the 

training samples. The ultimate training sample size is 14,484, including 6,492 positive and 7,992 negative samples. To 

generate the validation and test samples, 500 and 2,500 image samples from each city tier are chosen. There are 79 positive 

samples and 1,921 negative samples in the validation samples, while there are 350 positive samples and 9,650 negative 

samples in the test samples. The details of sample collection results are shown in Table 1. The labelled BSV images are 165 

available at https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). 
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Figure 4: Three confusing negative samples which look like RNBs, including (a) tunnel inner wall, (b) billboard, and (c) guardrail. 

(BSV images are from Baidu Maps) 

Table 1: Details of sample collection results. 170 

 Type Tier 1 Tier 2 Tier 3 Tier 4 Confusing sample Total 

Training samples 

Positive 2,886 2,191 870 545 / 6,492 

Negative 2,886 2,191 870 545 1,500 7,992 

Total 5,772 4,382 1,740 1,090 1,500 14,484 

Validation samples 

Positive 40 18 18 3 / 79 

Negative 460 482 482 497 / 1,921 

Total 500 500 500 500 / 2,000 

Test samples 

Positive 129 115 77 29 / 350 

Negative 2,371 2,385 2,423 2,471 / 9,650 

Total 2,500 2,500 2,500 2,500 / 10,000 

2.3 Modelling 

2.3.1 Convolutional neural network incorporating image context information (IC-CNN) 

RNBs are widely placed on the roadside in densely populated regions, such as residential, educational, and government 

institutions, as previously described in studies (Arenas, 2008; Wang et al., 2018; Zhang et al., 2022). Therefore, based on 

this prior geographic knowledge, an IC-CNN that leverages the context information contained in BSV images is developed, 175 

which aims at enhancing the RNB detection accuracy. Figure 5 illustrates the construction of IC-CNN, which adopts the 

ResNet architecture (He et al., 2016). In this workflow, prior geographic knowledge is incorporated into the neural network 

by means of transferring learning. Initially, 500 samples are randomly selected from positive and negative training samples 

in each tier. Three context labels are added depending on the context of these BSV images: building dominated, non-building 

dominated, and uncertain (unable to judge the background of the BSV image because it is obscured by objects). The context 180 

labels are interpreted by semantic segmentation models released by MIT Computer Vision team (Zhou et al., 2019a). Besides 

the sky and ground objects, images are judged to be building dominated if the building objects occupy the majority of the 

image; otherwise, they are evaluated to be non-building dominated. Additionally, the uncertain type is classified by visual 
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interpretation of whether the image is obscured. These labelled images are available at 

https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). Next, 4,000 samples with image context labels are used to train 185 

the IC-CNN on a preliminary basis, where using hybrid loss to optimize parameters in IC-CNN for image context and RNB 

identification, as formulated in Eq. (1). After the network has converged, the IC-CNN’s classifier is replaced with a binary 

classification, and all the training samples are supplemented to fine-tune and intensively train the network. 

 

Figure 5: The construction of convolutional neural network incorporating image background information. (BSV images are from 190 
Baidu Maps) 

Hybrid loss = CE(p𝑖𝑚𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) + 2 × CE(p𝑛𝑜𝑖𝑠𝑒 𝑏𝑎𝑟𝑟𝑖𝑒𝑟) ,       (1) 

CE(p) = −∑p ∙ log(p) ,           (2) 
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where p𝑖𝑚𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑒𝑥𝑡  is the confidence of image context identification, pnoise barrier  is the confidence of RNB identification, 

and CE(p) refers to the cross-entropy loss function (Hu et al., 2018). 195 

2.3.2 Ensemble learning strategy 

Owing to the high cost of labelling and the restricted quantity of trained samples, an ensemble learning strategy for 

enhancing RNB detection accuracy is utilized in this study based on the “no free lunch” theory (Wolpert and Macready, 

1997). In ensemble learning domain, the effective strategy to boost performance is to integrate the numerous high-variance 

models together (Cao et al., 2020). Therefore, this study integrates four IC-CNNs, and their convolutional layers are chosen 200 

from the ResNet family (He et al., 2016; Zagoruyko and Komodakis, 2016), including ResNet101, ResNet152, Wide 

ResNet50, and Wide ResNet101. The integration of the four IC-CNNs with varying capacities for feature extraction can 

make a significant contribution to achieve high detection accuracy. 

2.3.3 Vectorization post-processing  

After performing detection by an ensemble of IC-CNNs, the identified and scattered RNB locations are connected to create a 205 

vectorized RNB dataset by a post-processing technique, which is based on the spatial neighbour relationship between 

samples. Specifically, if adjacent sample images of the same road contain RNB objects, their locations will be connected. 

Furthermore, the findings of Sainju and Jiang (2020) demonstrated that “near objects are more related” principle (Tobler, 

1970, 2004) holds true when using street view imagery to detect objects at the urban scale. Therefore, in this study, given the 

likelihood of RNB misidentification, if a sample image is flanked by images containing RNBs in the same way, it will be 210 

considered as a positive type to minimize the impact of misidentification. 

2.4 Evaluation methods 

2.4.1 Metrics for detection accuracy 

To evaluate the accuracy of RNB detection, four quantitative metrics in the deep learning classification task, including 

overall accuracy (OA), recall, precision, and F1-score (Thomas et al., 2020) are analyzed. After detecting the RNBs in BSV 215 

images, the number of false-negative (FN), true-negative (TN), true-positive (TP), and false-positive (FP) images is 

calculated. True positive means the prediction and ground truth of images are both positive. Conversely, false negative 

means the predictions are negative while the ground truths are positive. The four metrics are calculated based on the 

following Eqs. (3)-(6) (Thomas et al., 2020): 

𝑂𝐴 =
TP+TN

TP+FP+TN+FN
 ,           (3) 220 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
 ,           (4) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN
 ,            (5) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∙Precision∙Recall

Precision+Recall
 ,          (6) 

2.4.2 Metrics for completeness and positional accuracy 

To quantitatively evaluate completeness and positional accuracy of generated RNBs, two quantitative metrics, including 225 

RMSE and IoU are adopted (Rezatofighi et al., 2019). For calculating these metrics, numerous roads are selected from 

various cities and are surveyed manually as ground truths based on BSV imagery. Based on the mileage deviation and 

overlap relationship between the generated and surveyed RNBs, RMSE and IoU are calculated following Eqs. (7) and (8), 

respectively: 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑙𝑖 − 𝑙𝑖̂)2𝑚

𝑖=1  ,          (7) 230 

where m is the number of selected roads, 𝑙𝑖 is the surveyed RNB mileage of the ith road, and 𝑙𝑖̂ is the generated RNB mileage 

of the ith road. 

𝐼𝑜𝑈 =
L𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

L𝑢𝑛𝑖𝑜𝑛
 ,           (8) 

where L𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛  is intersection mileage of generated and surveyed RNB, and L𝑢𝑛𝑖𝑜𝑛  is union mileage of generated and 

surveyed RNB. 235 

2.5 Implementation configuration 

 Several techniques to enhance the performance of the model throughout the training and inference stages are employed in 

this study. Data augmentation techniques such as random resized cropping and random horizontal flipping are utilized to 

increase data volume and decrease model bias error. Subsequently, the model parameters are optimized using the cosine 

annealing learning rate scheduler (Bhattacharyya et al., 2021) and AdamW optimizer (Loshchilov and Hutter, 2017). 240 

Additionally, long training and inference resized tuning (Touvron et al., 2019) are employed to improve the model’s 

performance. Finally, an ensemble of models identifies RNBs based on the voting mechanism. 

3 Results 

3.1 RNB mapping result 

The final RNBs dataset are available at https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). Details of the BSV image 245 

identification results are shown in Appendix A, and details of RNB mileage by city in China are shown in Appendix B, with 

the total RNB mileage of 2227 km. The spatial distribution of RNB mileage among cities is depicted in Fig. 6, where blank 

https://doi.org/10.5194/essd-2022-19

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



12 

 

areas indicate no RNBs or lack of BSV images. Figure 6 suggests that RNBs in eastern China are more densely distributed 

and have longer mileage. Furthermore, Tier 1 and Tier 2 contain major portion of the total RNB mileage. Because unique 

urban administration system in China mandates lower-tier cities to rigidly follow the "leadership" of higher-tier cities (Ma, 250 

2005; Zhao et al., 2003), higher-tier cities are rapidly increasing in size and occupying considerable resources, while lower-

tier cities are developing slowly (Au and Henderson, 2006; Lin, 2002). Therefore, to a certain extent, it shows that the 

statistics correlate with the development of Chinese cities, implying that higher-tier cities have a high probability of covering 

and updating BSV imagery or laying down RNBs. 

 255 

Figure 6: Mileage zonal statistic in China. The blank areas indicate no RNBs or lack of BSV images. 

After analyzing the generated RNB dataset from a national scale, three cities with the highest RNB mileage in each tier are 

selected to analyze the citywide mapping results, as shown in Fig. 7. The figure shows that RNBs are generally clustered in 

the central areas of these cities. For example, the RNBs in Shanghai are mainly clustered on the third ring road, while those 

in Beijing are mainly clustered on the sixth ring road. As a result, when combined with the planed layout and actual mapping 260 

of RNB distribution, the data can partially reflect the rationality of urban infrastructure planning and layout. 
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Figure 7: Distribution of RNBs in several representative cities. (BSV images are from Baidu Maps and base maps are from ESRI) 

3.2 Evaluation and analysis 

3.2.1 RNB detection accuracy 265 

Table 2 summarizes the evaluation results of RNB identification at different city tiers based on test samples. The OA and the 

F1-score for the overall city tiers are 98.61 % and 81.44 %, respectively. However, the accuracy is greater for higher-tier 

cities than for lower-tier cities. This may be attributed to the fact that cities with lower tiers appear to have a more severe 

class imbalance problem for deep learning methods, which affects the training and generalization of the model. Therefore, 

the results indicate that prior to using this dataset, an assessment of the influence of regional quality differences on specific 270 

applications is required. 

Table 2: Evaluation results of RNB identification in different city tiers. The evaluation results of every city tier are calculated 

using the test samples of the corresponding city tier, while the overall evaluation results are calculated using the entire test 

samples. 

City tier 
OA 

(%) 

Recall 

(%) 

Precision 

(%) 

F1-score 

(%) 
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Tier 1 98.12 88.37 78.08 82.91 

Tier 2 98.28 86.09 78.57 82.16 

Tier 3 98.68 87.01 74.44 80.24 

Tier 4 99.36 86.21 67.57 75.76 

Overall 98.61 87.14 76.44 81.44 

3.2.2 RNB completeness and positional accuracy 275 

To evaluate the completeness and positional accuracy of the RNB dataset, approximately 254 km of roads are selected from 

different city tiers and manually surveyed using the BSV imagery. Appendix C summarizes the detailed quantitative 

differences between generated and surveyed RNBs in terms of mileage deviation and level of overlap. The overall RMSE for 

mileage deviation is 0.08 km and IoU for overlay level is 88.08 % ± 2.95 %. The results shows that the generated and 

surveyed RNBs are highly consistent in terms of mileage and distribution, demonstrating the high completeness and 280 

positional accuracy of the generated RNB dataset. 

Moreover, as illustrated in Fig. 8, the visual comparison between surveyed and generated RNBs on various roads depicts that 

the generated and surveyed RNBs on the road are overall consistent in terms of mapping. However, several validated points 

demonstrated that the proposed deep learning approach incorrectly recognized small RNB objects in the images, such as 

validated points IV, II, and III on Beijing's Jingmen motorway, Zhengzhou's Longhai Road, and Wenzhous’s Ouhai Avenue, 285 

respectively. Additionally, several objects that looked similar to RNBs, such as multi-windowed buildings, are misclassified 

as positive type; for example, point IV on Wenzhou’s Ouhai Avenue. Despite these misclassifications, most of the validated 

points demonstrated a high accuracy of the RNB prediction and the high performance of the proposed framework, implying 

the reliability of the generated RNB dataset. 
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 290 

Figure 8: RNB mapping result in city scale. (BSV images are from Baidu Maps) 

4 Discussion 

4.1 Model capability 

An ablation study is conducted to demonstrate the quality of the generated dataset and validate the effectiveness of 

developed methods (Table 3). As shown in Table 4, the combination of proposed strategies achieves the highest performance. 295 

The ablation results illustrate that the effectiveness of proposed strategies, including integrating image context information 

into CNN, adding confusing negative samples, and ensemble learning strategy. Additionally, Figure 9 depicts the areas of 

IC-CNNs’ attention, revealing that IC-CNNs not only have a capacity for focusing on RNB objects in BSV images, but also 

have a sense of their surrounds. The results suggest the reliability of the generated dataset and partially decipher the “black 

box” of deep learning to explain the high performance of the developed methods. Notably, this study successfully achieves 300 

incorporating some of the prior geographic knowledge into the deep learning method. RNB detection accuracy can be 

increased further by combining more comprehensive knowledge of geographic scenes from BSV images into deep learning 

network, such as various geographic elements and processes as well as the associated construction theory (Lü et al., 2018). 

Table 3: Ablation study design. The ablation study combines the four strategies used in this study to illustrate their effectiveness. 
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Ablation 
Baseline 

(ResNet101) 

Incorporate image 

context information 

Add confusing 

negative samples 
Ensemble learning strategy 

I ✓    

II ✓ ✓   

III ✓ ✓ ✓  

IV ✓ ✓ ✓ ✓ 

Table 4: Quantitative results of ablation. The ablation results show that the proposed methods have the highest RNB detection 305 
accuracy. 

Ablation OA Recall Precision F1-score 

I 97.81 % (± 0.01 %) 62.91 % (± 0.41 %) 74.14 % (± 0.16 %) 64.62 % (± 0.25 %) 

II 97.50 % (± 0.03 %) 86.00 % (± 0.09 %) 63.67 % (± 0.25 %) 72.05 % (± 0.15 %) 

III 98.02 % (± 0.01 %) 81.71 % (± 0.07 %) 68.82 % (± 0.13 %) 74.41 % (± 0.07 %) 

IV 98.32 % (± 0.00 %) 85.60 % (± 0.08 %) 71.87 % (± 0.04 %) 78.09 % (± 0.05 %) 
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Figure 9: Attention maps of IC-CNNs on BSV images with RNB. The hotspots indicate the area where the attention of IC-CNN is 

focused. (BSV images are from Baidu Maps) 

4.2 Limitations and future work 310 

This study has several limitations in the process of dataset generation, which can be grouped into three categories, namely 

data source, ground scenario, and modelling: 

(1) Due to economic status, topographical conditions, or government policies, not all Chinese cities are covered by BSV 

imagery, with data not available for 18 cities (Deng et al., 2021; Du et al., 2020). In addition, challenges owing to 

overexposure or obstruction of the sensors by vehicles hinder capturing a complete street scene. As a result, the natural 315 

characteristics of the data source can have certain impacts on the accuracy of the RNB dataset. 

(2) The road/traffic environment is often complex. Concretely, BSV sensors can detect RNBs on distant highways or other 

lanes, and it may result in some mistakes during RNB detection and mapping. However, the likelihood of this occurring 

is small (about 4 % of RNB samples) by sampling investigation. 

(3)  This study implicitly presupposes that BSV images are independent and identically distributed. As shown in Fig. 8, the 320 

developed GeoAI framework can achieve high performance in continuous RNB mapping. However, spatial 

autocorrelation effect in BSV images is overlooked, as BSV images taken along the same road network path frequently 

resemble adjacent one (Sainju and Jiang, 2020). 
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In the future, to address the data shortage issue, more data sources, such as Google Maps and Tencent Maps, will be used. 

Additionally, approaches for photogrammetry and image scene understanding techniques will be developed to tackle the 325 

complex ground scenario. Finally, end-to-end deep learning algorithms will be constantly enhanced by the addition of more 

powerful units and structures to account for spatial autocorrelation in street view imagery. 

5 Code availability 

The codes of deep learning approaches in this study are available at https://doi.org/10.11888/Others.tpdc.271914 (Chen, 

2021) and https://github.com/ChanceQZ/NoiseBarrierIdentification. Python3 packages such as PyTorch, NumPy, and 330 

OpenCV are used to develop the code. The vectorization post-processing procedure is performed in the ArcGIS Pro 

platform. 

6 Data availability 

The road data comes from OSM (https://www.openstreetmap.org/), a collaborative project dedicated to providing many 

types of freely editable geographic data for the world. City boundaries can be obtained from http://bzdt.ch.mnr.gov.cn/. In 335 

addition, BSV images can be downloaded by using BSV API (https://api.map.baidu.com/panorama/v2?key=parameters). 

Finally, the generated RNB dataset, labelled BSV image benchmark, and RNB detection results are available to the public at 

https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). The mileage of RNB is calculated in Albers equal-area conical 

projection. 

7 Conclusion 340 

This study presents the first nationwide RNB dataset in China using BSV imagery based on a GeoAI framework as well as 

the labelled BSV image benchmark. In this study, based on prior geographic knowledge in BSV imagery, RNB samples are 

identified based on deep learning approaches. Subsequently, the vectorized RNB dataset is constructed using the post-

processing procedure. Finally, the created RNB dataset is evaluated from two perspectives, i.e., the detection accuracy as 

well as the completeness and positional accuracy. The four quantitative metrics, OA, recall, precision, and F1-score, 345 

analyzed are all high, showing high accuracy of the model in RNB detection. Additionally, the level of mileage deviation 

and overlay between the generated and surveyed RNBs are determined via a manual survey of around 254 km of roads in 

various cities. The RMSE for mileage deviation and the IoU for overlay level revealed that the created and surveyed RNBs 

are consistent. The results indicate that the created RNB dataset can serve as a reliable dataset for local governments and 

urban research institutions in terms of data support and decision-making., with the support of the RNB dataset, the improved 350 

energy conversion estimation at a large scale can enable more precise modeling and analysis. Besides, the dataset can be 
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used to assist in urban planning and regional economic research. Furthermore, the labelled BSV image benchmark aids in the 

development and training of deep learning models for additional urban studies. 

  

https://doi.org/10.5194/essd-2022-19

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



20 

 

Appendix A 355 

Table A1: Details of the BSV image identification results. 

City tier 
Negative 

(BSV image count) 

Positive 

(BSV image count) 

Total 

(BSV image count) 

Tier 1 636,566 48,159 684,725 

Tier 2 1,594,057 137,686 1,731,743 

Tier 3 1,308,692 83,264 1,391,956 

Tier 4 1,746,742 34,525 1,781,267 

Overall 5,286,057 303,634 5,589,691 

Table A2: Identification confusion matrix based on test samples. 

Tier 1 
Predicted class 

Negative Positive 

True class 
Negative 2,339 32 

Positive 15 114 

Tier 2 
Predicted class 

Negative Positive 

True class 
Negative 2,358 27 

Positive 16 99 

Tier 3 
Predicted class 

Negative Positive 

True class 
Negative 2,400 23 

Positive 10 67 

Tier 4 
Predicted class 

Negative Positive 

True class 
Negative 2,459 12 

Positive 4 25 

Overall 
Predicted class 

Negative Positive 

True class 
Negative 9,556 94 

Positive 45 305 
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Appendix B 360 

The total RNB mileage in China is 2226.85 km. The RNB mileage in different city tiers are 369.42 km, 941.72 km, 605.21 

km, and 310.49 km, respectively. 

Table B1: Details of RNB mileage by city in China. The RNB mileages of some cities are 0 km, indicating that they lack RNBs or 

BSV images, or that the BSV images are out of date. 

Tier 1 Tier 4 

City 
Mileage 

(km) 
City 

Mileage 

(km) 
City 

Mileage 

(km) 
City 

Mileage 

(km) 

Shanghai 205.99 Foshan 39.27 Xinxiang 1.05 Suqian 0.12 

Beijing 96.13 Dongguan 25.22 Huangshi 1.04 Leshan 0.12 

Tianjin 52.75 Ganzhou 20.91 Hainan 0.99 Wuzhou 0.11 

Chongqing 13.33 Nantong 17.70 Taizhou (Zhe) 0.95 Shaoyang 0.10 

Macao   1.23 Quanzhou 17.62 Hanzhong 0.95 Qionghai 0.10 

Tier 2 Wenzhou 11.03 Anyang 0.79 Chongzuo 0.10 

City 
Mileage 

(km) 
Yangzhou 10.80 Jiaxing 0.78 Shangqiu 0.09 

Guangzhou 126.14 Jiangmen 9.39 Jiayuguan 0.78 Jingdezhen 0.09 

Wuhan 113.33 Zunyi 9.29 Jiujiang 0.74 Xiangxi 0.08 

Shenyang 102.77 Rizhao 6.31 Xianyang 0.71 Xuchang 0.08 

Hangzhou 93.62 Deyang 5.61 Liaoyang 0.70 Xuancheng 0.08 

Nanjing 73.24 Linyi 5.59 Jincheng 0.67 Huangshan 0.08 

Jinan 72.60 Kaifeng 5.56 Panjin 0.66 Xiangtan 0.08 

Ningbo 72.01 Yichang 5.38 Pingdingshan 0.65 Bijie 0.08 

Shenzhen 54.52 Chifeng 4.74 Longyan 0.64 Pingxiang 0.08 

Xiamen 50.25 Maanshan 4.06 Bayinguoleng 0.62 Changzhi 0.07 

Changchun 44.61 Zhuhai 3.87 Qingyuan 0.62 Liupanshui 0.07 

Dalian 37.54 Xingtai 3.76 Nanping 0.58 Yichun (Hei) 0.07 

Qingdao 36.71 Zhenjiang 3.59 Nanchong 0.56 Zhangzhou 0.06 

Chengdu 33.04 Baoji 3.55 Liuzhou 0.54 Meizhou 0.06 

Xian 26.14 Chanzhou 3.48 Zhangjiakou 0.51 Ezhou 0.06 

Harbin 5.22 Shantou 3.09 Sanming 0.50 Hinggan 0.06 

Tier 3 Weifang 2.80 Yaan 0.49 Fuxin 0.05 

City 
Mileage 

(km) 
Huizhou 2.78 Zhuzhou 0.47 Haidong 0.05 

Suzhou (Su) 97.96 Weinan 2.76 Jiuquan 0.35 Tongchuan 0.05 

Zhengzhou 80.92 Zhaoqing 2.67 Cangzhou 0.34 Yichun (Gan) 0.05 
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Hefei 56.38 Hengyang 2.66 Nanyang 0.33 Yingkou 0.05 

Guiyang 48.71 Jinghua 2.65 Heyuan 0.33 Honghe 0.04 

Changsha 47.88 Baoding 2.57 Tieling 0.28 Gannan 0.04 

Fuzhou (Min) 46.30 Huzhou 2.55 Qinhuangdao 0.28 Zigong 0.04 

Nanchang 36.03 Xiangyang 2.51 Tianmen 0.26 Shaoguan 0.04 

Urumqi  30.09 Haixi 2.43 Kizilsukirk 0.26 Bayannaoer 0.04 

Kunming 23.57 Taian 2.35 Xinzhou 0.25 Qujing 0.04 

Wuxi 22.95 Ordos 2.17 Changde 0.25 Chuxiong 0.04 

Shijiazhuang 21.32 Sanya 2.16 Tonghua 0.25 Suining 0.04 

Naning 15.84 Mianyang 2.08 Fuzhou (Gan) 0.24 Dezhou 0.03 

Taiyuan 13.01 Wuhu 2.05 Guilin 0.24 Zhumadian 0.02 

Xuzhou 12.47 Shangrao 2.01 Yunfu 0.23 Chuzhou 0.02 

Xining 8.93 Lianyungang 1.97 Dandong 0.22 Yuncheng 0.02 

Hohhot  8.78 Taizhou (Su) 1.93 Jingzhou 0.21 Fuyang 0.02 

Haikou 7.74 Shaoxing 1.89 Yanan 0.21 Chaoyang 0.02 

Datong 7.45 Dali 1.74 Xinyu 0.20 Lincang 0.02 

Luoyang 7.42 Chengde 1.55 Ningde 0.20 Ankang 0.02 

Lanzhou 4.09 Wuhai 1.53 Qiannan 0.20 Shanwei 0.02 

Zibo 1.67 Zhongshan 1.47 Yangquan 0.19 Fangchenggang 0.02 

Anshan 1.25 Yuxi 1.45 Yulin (Qin) 0.19 Yongzhou 0.02 

Tangshan 1.19 Yanbian 1.43 Yibin 0.19 Jieyang 0.02 

Handan 1.15 Daqing 1.34 Langfang 0.17 Maoming 0.02 

Yinchuan 1.05 Shiyan 1.26 Ulanqab 0.17 Hechi 0.02 

Benxi 0.43 Yantai 1.25 Huaian 0.17 Shannan 0.02 

Jilin 0.33 Anqing 1.23 Ali 0.16 Bengbu 0.02 

Baotou 0.18 Yancheng 1.21 Jining 0.16 Quzhou 0.02 

Lhasa 0.06 Songyuan 1.21 Sanmenxia 0.15 Jingmen 0.02 

Fushun 0.06 Dongying 1.11 Baiyin 0.13 Xinyang 0.02 

  Heze 1.08 Karamay 0.12 Linfen 0.02 

The RNB mileages of other cities are 0 km. 

 365 
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Appendix C 

Table C1: Quantitative comparison with the generated and surveyed RNBs in different roads in different city tiers. The 4 km - 7.5 

km of roads with RNBs are selected as surveyed objects. The total road mileage is around 254 km. 

Tier City Road name 
Road mileage 

(km) 

Surveyed 

RNB mileage 

(km) 

Generated 

RNB mileage 

(km) 

IoU 

(%) 

1 

Beijing 

Guangqu motorway 6.37 1.81 1.29 71.52 

Beijing-Urumqi motorway 4.13 3.07 2.95 96.06 

Jingmen motorway 5.23 1.58 1.46 92.41 

Chongqing 

Tushan road 5.58 0.77 0.43 56.19 

Jichang road 5.24 2.16 1.56 71.24 

Inner ring motorway 4.63 0.39 0.34 89.41 

Shanghai 

Shanghai-Kunming motorway 6.17 4.19 4.19 100.00 

Shanghai-Jinshan motorway 6.55 5.50 5.34 97.07 

Humin elevated road 6.43 3.10 3.10 92.69 

Tianjin 

Hongqi south road 4.97 0.91 0.91 95.05 

Kunlun road 5.03 2.01 1.89 93.80 

Ninghe-Jinghai motorway 6.23 2.60 2.07 78.22 

2 

Chengdu 

No.2 Elevated ring road 4.80 0.93 0.91 83.80 

Chengbei motorway 4.54 2.32 2.32 100.00 

Cheng-Yu Area ring 

motorway 
4.65 3.14 2.15 68.48 

Guangzhou 

City ring motorway 5.10 1.83 1.83 100.00 

Huanan motorway 4.29 1.22 1.22 100.00 

Liede avenue 4.85 0.89 0.98 91.20 

Nanjing 

Airport motorway 5.95 1.43 0.91 63.35 

Shanghai-Chengdu motorway 5.28 1.48 1.16 78.52 

Jiangbei avenue 5.51 1.89 2.15 86.20 

Wuhan 

Longyang avenue 4.99 0.61 0.74 77.76 

Second ring road 5.23 2.31 2.31 93.35 

Baishazhou elevated road 7.08 2.76 2.74 97.64 

3 

Fuzhou 

Airport motorway 5.82 1.36 1.16 85.53 

East No.3 ring road 4.60 1.38 1.34 96.43 

North No.3 ring road 4.61 2.04 1.84 90.19 

Hefei 

Tongling road 6.66 2.44 2.35 83.76 

North South No.1 elevated 

road 
6.35 2.66 2.23 83.98 
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Co-operative south road 4.51 2.04 1.99 97.66 

Suzhou 

Youxin motorway 6.27 2.75 2.73 99.21 

South ring motorway 7.15 4.99 4.85 96.42 

Central west road 5.79 3.34 2.98 89.36 

Zhengzhou 

Longhai east road 4.51 3.19 2.88 85.44 

Longhai road 4.55 2.62 2.54 96.99 

East No.3 ring road 4.80 1.01 1.20 73.72 

4 

Dongguan 

South ring road 4.88 1.04 0.94 90.29 

Shenyang-Haikou motorway 4.70 1.86 1.91 95.68 

Huancheng Road 4.72 0.91 0.87 95.30 

Nantong 

Changjiang middle road 4.46 1.86 1.80 96.57 

Hongjiang elevated road 5.07 0.85 0.80 94.40 

Binjiang bridge 6.14 1.70 1.98 79.75 

Quanzhou 

Shenyang-Haikou motorway 4.21 2.45 1.79 73.16 

Huacheng south road 5.73 1.08 1.10 94.21 

Airport motorway 4.73 0.68 0.61 90.32 

Wenzhou 

Ouhai avenue 4.74 2.31 2.08 87.12 

National highway 104 5.46 0.31 0.35 88.31 

Wenzhou bridge 5.16 0.66 0.60 90.00 

  370 
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