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Abstract. Roadside noise barriers (RNBs) are important urban infrastructures to develop a liveable city. However, the absence 

of accurate and large-scale geospatial data on RNBs has impeded the increasing progress of rational urban planning, sustainable 20 

cities, and healthy environments. To address this problem, this study creates a vectorized RNB dataset in China proposes using 

street view imagery and a geospatial artificial intelligence framework to create a vectorized RNB dataset in China using street 

view imagery. To begin, intensive sampling is performed on the road network of each city based on OpenStreetMap, which is 

used as the geo-reference to download 5.66 million Baidu Street View (BSV) images. Furthermore, considering the prior 

geographic knowledge contained in street view images, convolutional neural networks incorporating image context 25 

information (IC-CNNs) based on an ensemble learning strategy are developed to detect RNBs from the BSV images. 

Subsequently, tThe RNB dataset presented by polylines is generated based on the identified RNB locations, with a total length 

of 2,2272,667.02 km in 215 222 cities. At last, the quality of the RNB dataset is evaluated from two perspectives: first, the 

detection accuracy; second, the completeness and positional accuracy. Specifically, based on a set of randomly selected 

samples containing 10,000 BSV images, four quantitative metrics are calculated, with an overall accuracy of 98.61 %, recall 30 

of 87.14 %, precision of 76.44 %, and F1-score of 81.44 %. Moreover, aA total length of 254.45 km of roads in different cities 

are manually surveyed using BSV images to evaluate the mileage deviation and overlap level between the generated and 

surveyed RNBs. The root-mean-squared error for mileage deviation is 0.08 km, and the intersection over union for overlay 

level is 88.08 % ± 2.95 %. The evaluation results suggest that the generated RNB dataset is of high quality and can be applied 

as an accurate and reliable dataset for a variety of large-scale urban studies, such as estimating the regional solar photovoltaic 35 
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potential, developing 3D urban models, and designing rational urban layoutses. Besides that, the benchmark dataset of labeled 

BSV images can also support more work on RNB detection, such as developing more advanced deep learning algorithms, fine-

tuning the existing computer vision models, and analysing geospatial scenes in BSV. The generated vectorized RNB dataset 

and the benchmark dataset of labelled BSV imagery benchmark dataset are publicly available at 

https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). 40 

1 Introduction 

In recent years, several studies have documented the substantial impact of traffic noise problems in cities (Apparicio et al., 

2016; Begou et al., 2020). Roadside noise barriers (RNBs) are vital urban infrastructure that contribute significantly to mitigate 

undesirable traffic noise in communities (Abdulkareem et al., 2021; Ning et al., 2010). Additionally, RNBs contribute to the 

development of sustainable cities in many ways. For example, with the emphasis on new energy, RNBs are being used to 45 

install solar photovoltaic panels, thereby increasing the utility of new energy sources (Gu et al., 2012; Zhong et al., 2021). 

Besides, tThe reasonable presence of RNBs also enables the airflows in the urban canyon region to be adjusted, thereby 

improving the roadside air quality (Huang et al., 2021; Zhao et al., 2021). Because of the importance of RNBs in building 

sustainable cities, the demand for RNBs has increased alongside traffic growth in recent decades (Boer and Schroten, 2007; 

Oltean-Dumbrava and Miah, 2016). There are bottom-up benefits from establishing an accurate and standardizedstandardised 50 

large-scale RNB dataset with detailed geospatial information about RNBs, including their mileages, locations, and distributions 

(Liu et al., 2020; Wang and Wang, 2021). ParticularlySpecifically, precise RNB locations enables traffic departments to 

effectively manage and maintain this type of infrastructure (Sainju and Jiang, 2020);. Additionally, urban research can simulate 

dynamic cities based on accurate RNB geospatial information (Wang and Wang, 2021; Zhao et al., 2017). Moreover,; 

governments can rely on the RNB maps to examine urban layouts and create green and sustainable cities (Song et al., 2021; 55 

Song and Wu, 2021). 

 

Over the past few years, extensive geospatial databases have been established to store data on many aspects of urban 

infrastructure (Griffiths and Boehm, 2019; Perkins and Xiang, 2006). However, the sharing and exchange of RNB data in these 

databases are restricted, and the data only covers a limited geographic area (Wang et al., 2019; Zhang et al., 2022a). These 60 

challenges to data acquisition are because databases have to adhere to various standards related to geographic data (e.g., file 

format and geographic coordination reference) (Lafia et al., 2018). MoreoverOn the other hand, the RNB data are often created 

and updated manually through road inspections and investigations, which are costly and time consuming, especially on a large 

scale (Potvin et al., 2019; Ranasinghe et al., 2019). ThereforeThe RNB geospatial dataset must be generated and kept up-to-

date as soon as possible using alternative, efficient methods., there is an urgent requirement to seek alternate effective ways to 65 

generate and update the RNB geospatial dataset. 
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Street view imagery is geo-referenced data densely covering the road network of cities. As a new geospatial data source, it 

provides depictions of real-world surroundings, including natural landscapes and built environment, and enables users to 

recognize physical objects, urban dynamics features, and geographic scenes on a large scale (Zhang et al., 2018). In addition, 

as part of the data sharing movement, an increasing number of community-based organizations and corporations, such as Baidu 70 

Maps, Tencent Maps and Google Maps, are regularly generating and updating open-access street view imagery (Qin et al., 

2020; Zhang et al., 2019). As a result, sSuch big data brings great prospects for acquiring urban infrastructure information 

(e.g., RNBs), with benefits such as broad coverage, rapid update speed, and low acquisition cost (Kang et al., 2020). However, 

manual interpretation is a tedious task and conventional computer vision algorithms struggle when confronted with large 

amounts of data and complex image features (Zhang et al., 2018). 75 

With the advancement of computing hardware and frameworks, deep learning methods now have an increased capacity for 

extracting semantic features from a large amount of data (Lecun et al., 2015). The emerging approaches are increasingly being 

used to interpret physical objects and detect interior patterns from earth observation data (Jiang Zhang et al., 2022b; Qian et 

al., 20221). Meanwhile, image classification based on deep learning has been used to identify RNBs using street view imagery 

(Zhong et al., 2021). However, for the purposes of identifying RNBs, prior geographic knowledge, which is essential, is 80 

frequently overlooked, such as the fact that RNBs are frequently located between roads and densely populated regions (e.g., 

residential, educational, and medical areas) (Arenas, 2008; Wang et al., 2018; Zhang et al., 2022a). In recent years, a new 

framework of data-driven research based on geospatial artificial intelligence (GeoAI) and machine learning has resulted in 

multiple notable improvements in the discovery of geographic scene knowledge (Goodchild and Li, 2021; Li, 2020). When 

empirical and prior spatial information is included into deep learning approaches, it can help develop a more holistic 85 

understanding of a research subject and mitigate the effects of data scarcity or representational bias (Janowicz et al., 2019; 

Qian et al., 2020). As a result, it is possible to enhance the effectiveness of deep learning methods for identifying RNBs by 

incorporating some prior geographic knowledge from street view imagery. Additionally, Wolpert and Macready (1997) 

introduced the “no free lunch” theory, demonstrating that a single model must pay for some accuracy by degrading its 

generalizability. This is acceptable, as it is challenging to construct a perfect solution for all scenarios using a single model, 90 

particularly when dealing with vast volumes of data and large-scale areas (Wang and Li, 2021). 

The purpose of this study is to build an accurate and nationwide vectorized RNB dataset utilizing Baidu Street View (BSV) 

imagery. To improve the performance of detecting RNBs, this work proposes a GeoAI framework. Concretely, an ensemble 

of convolutional neural networks incorporating image context information (IC-CNNs) is developed, which considers the prior 

geographic knowledge contained in street view images. Subsequently, a post-processing method is applied to generate the 95 

vectorized RNB dataset based on the identified RNB locations. At last, the RNB dataset quality is quantitatively evaluated 

from two perspectives, i.e., the detection accuracy as well as the completeness and positional accuracy. The main contributions 

of this study can be summarized as follows: 

(1) This study provides the first reliable and nationwide vectorized RNB dataset in China, as well as the labelled BSV images 

which can be used as a benchmark dataset. 100 



4 

 

(2) A GeoAI framework is presented for processing numerous BSV images in order to generate the RNB mapping and for 

comprehensively evaluating the generated results. 

(3) This study presents multiple IC-CNNs based on prior geographic knowledge and ensemble learning strategy to achieve 

high-performance object identification from street view imagery. 

The remainder of this paper is organized as follows. Section 2 briefly describes the data and methods used to generate and 105 

evaluate the RNB dataset. Section 3 presents the results of the RNB mapping as well as evaluation and analysis for RNB 

dataset. Section 4 discusses the capability of proposed methods, as well as the challenges and limitations of this work. The last 

section provides the conclusions of this study. 

2 Data and methods 

2.1 The GeoAI framework 110 

The GeoAI framework’s workflow is divided into three stages: data preparation, modelling, and evaluation, as shown in Fig. 

1. To begin with, BSV images are gathered during the data preparation stage using OpenStreetMap (OSM) road data and the 

BSV application programming interface (API). Subsequently, BSV images are used to generate various samples for modelling 

and evaluation. During the modelling stage, deep learning approaches are used to detect RNBs from the BSV imagery. Using 

the vectorization post-processing method, the identified and scattered RNB locations are subsequently processed into a 115 

vectorized dataset. During the evaluation stage, the quality of the created dataset is quantitatively assessed in two aspects, i.e., 

the detection accuracy as well as completeness and positional accuracy. 
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Figure 1: The flow chart of GeoAI framework to generate the vectorized RNB dataset. 120 

2.2 Data preparation 

Three types of data are acquired for this study: the road networks, administrative boundary, and street view imagery. 

Afterwards, training, validation, and test samples are collected based on these data. However, tThe data from Taiwan province 

are scarce. 

2.2.1 Road networks 125 

The road networks are download from OSM (https://www.openstreetmap.org/) in May 2021, which is polyline-based and 

includes a variety of road types, including motorway, trunk road, primary road, and secondary road. According to previous 

findings, the quality of OSM road networks in China is high in terms of completeness and positional accuracy (Liu and Long, 

https://www.openstreetmap.org/
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2015). In addition, RNBs have a high probability of being installed on motorways and trunk roads (Zhang et al., 2022a). 

Therefore, given the expense of acquiring and computing BSV images, in this study, samples on motorways and trunk roads 130 

are only considered for downloading BSV images. Figure 2a depicts the spatial distribution of these two types of roads. 

 

Figure 2: Three data sources are used in this study. (a) OSM road network data (a), (b) Chinese administrative boundary with four 

city tiers (b), and (c) The locations Zonal statistics of the number of BSV images (c)downloaded BSV images. (Road networks are 135 
from OSM) 

2.2.2 Administrative boundary 

The city boundary is acquired from http://bzdt.ch.mnr.gov.cn/ in April 2021. According to the urban management hierarchy 

established by the Chinese government, cities in China are divided into four tiers (Guan and Rowe, 2018; Jia et al., 2020), 

including municipalities, sub-provincial cities, prefecture-level cities, and the locations of them are shown in Fig. 2b. 140 

Specifically, Tier 1 is centrally administered cities and municipalities. Tier 2 is primarily sub-provincial cities, whereas Tier 3 

is province capitals and large prefecture-level cities. Tier 4 is ordinary prefecture cities. Cities with varying administrative 

levels have varying authorities over resource allocation and jurisdiction (Guan et al., 2018). 

2.2.3 Street View Imagery 

With their high resolution and detailed information on Chinese streets, BSV images are of comparable quality to Google Street 145 

View images, which are not available in China (Zhou et al., 2019b). Numerous sample points along OSM roads are collected, 

http://bzdt.ch.mnr.gov.cn/A
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and the BSV API is utilized to obtain street view images at those locations. Following the work of Zhang et al. (2022a), a 

sampling interval of around 25 m is utilized to account for the trade-off between data granularity and the expenditure of 

downloading imagery. As a result, the total number of sample points is 24,871,839. As shown in Fig. 3, the illustration of BSV 

images with different photography directions shows that BSV image with 90° is more appropriate for the present work because 150 

it provides a comprehensive roadside view. Hence, to identify the RNBs along the corresponding roadside, BSV images with 

a 90° viewing angle are acquired. Owing to the absence of BSV images on a few road segments in a particular year, which 

will be supplemented in adjacent years. Additionally, the BSV sensors may be obstructed by some vehicles or other 

surrounding objects. These issues are resolved through the use ofby downloading  multitemporal BSV images (ones from 2014 

2013 to 20202021 are downloaded in this study). A total of 6,008,6745,589,691 BSV images are downloaded with a size of 155 

500 pixels × 400 pixels, and their spatial locations are shown in Fig. 2c. Figure 4 depicts the spatial distribution of the number 

of BSV images in China, with the eastern region and higher city tiers having a greater number of BSV images. 

 

Figure 3: Illustration of BSV images with different photography directions. (BSV images are from Baidu Maps) 
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 160 

Figure 4: Zonal statistics of the number of BSV images in China. 

2.2.4 Training, validation, and test sample collection 

An effective sampling technique for generating training, validation, and test image samples are is developed to detect RNBs 

from the large volume of BSV images collected. According to their physical shapes, the RNBs identified in this study can be 

categorized into four distinct types: upright noise barrier, top curved noise barrier, noise barrier with folded corners at the top, 165 

and huge curved noise barrier, as depicted in Fig. 5. Figure 1 illustrates the different steps followed in the data preparation 

stage. The BSV images are classified into four tiers based on their location within the city administration hierarchy. 

Subsequently, the training, validation, and test sampling set are subdivided from the entire imagessamples, accounting for 

60 %, 20 %, and 20 % of images, respectively. These sampling sets can be used to collect the corresponding samples and 

benefit by avoiding the mixing of samples. 170 

 

Previous investigations revealed that BSV images with RNBs are rare, accounting for fewer than 5 % of the sampled images. 

To alleviate the impact of class imbalance problem on model training, 50,000 images are randomly selected from each city 

tier based on the training sampling set. These samples are labelled as positive type (i.e., image with RNB) or negative type 

(i.e., image without RNB) by manual visual interpretation, the details of which is shown in Fig. 6). Subsequently, the same 175 

number of positive and negative samples are maintained. Certain objects, such as tunnel inner walls, billboards, and guardrails, 

seem like RNBs in images, which intensifies the difficulty of deep learning, as shown in Fig. 45. Therefore, 500 images of 

each of these objects are added as confusing negative samples to the training samples. The ultimate training sample size is 
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14,484, including 6,492 positive and 7,992 negative samples. To generate the validation and test samples, 500 and 2,500 image 

samples from each city tier are chosen. There are 79 positive samples and 1,921 negative samples in the validation samples, 180 

while there are 350 positive samples and 9,650 negative samples in the test samples. The details of sample collection results 

are shown in Table 1. The labelled BSV images are available at https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). 

 

https://doi.org/10.11888/Others.tpdc.271914
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Figure 5: Illustration of BSV samples, including four typical types of RNBs based on physical shapes (a) and Three three types of 185 
confusing negative samples which look like RNBs (b), including (a) tunnel inner wall, (b) billboard, and (c) guardrail. (BSV images 

are from Baidu Maps) 

 

Figure 6: The flow chart of BSV image labeling. 

Table 1: Details of sample collection results. 190 

 Type Tier 1 Tier 2 Tier 3 Tier 4 Confusing sample Total 

Training samples 

Positive 2,886 2,191 870 545 / 6,492 

Negative 2,886 2,191 870 545 1,500 7,992 

Total 5,772 4,382 1,740 1,090 1,500 14,484 

Validation samples 
Positive 40 18 18 3 / 79 

Negative 460 482 482 497 / 1,921 
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Total 500 500 500 500 / 2,000 

Test samples 

Positive 129 115 77 29 / 350 

Negative 2,371 2,385 2,423 2,471 / 9,650 

Total 2,500 2,500 2,500 2,500 / 10,000 

2.3 Modelling 

2.3.1 Convolutional neural network incorporating image context information (IC-CNN) 

RNBs are widely placed on the roadside in densely populated regions, such as residential, educational, and government 

institutions, as previouslyy described in studies (Arenas, 2008; Wang et al., 2018; Zhang et al., 2022a). Therefore, based on 

this prior geographic knowledge, an IC-CNN that leverages the context information contained in BSV images is developed, 195 

which aims at enhancing the RNB detection accuracy. Figure 75 illustrates the construction of IC-CNN, which adopts the 

ResNet architecture (He et al., 2016). In this workflow, prior geographic knowledge is incorporated into the neural network 

by means of transferring learning. Initially, 500 samples are randomly selected from positive and negative training samples in 

each tier. Three context labels are added depending on the context of these BSV images: building dominated, non-building 

dominated, and uncertain (unable to judge the background of the BSV image because it is obscured by objects), as shown in 200 

Fig. 6.. The context labels are interpreted by semantic segmentation models released by MIT Computer Vision team (Zhou et 

al., 2019a). Besides the sky and ground objects, images are judged to be building dominated if the ratio of building objects 

occupy the majority of the imageis the most; otherwise, they are evaluated to be non-building dominated. Additionally, the 

uncertain type is classified by visual interpretation of whether the background environment in image is obscured. These 

labelled images are available at https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). Next, 4,000 samples with image 205 

context labels are used to train the IC-CNN on a preliminary basis, where using hybrid loss to optimize parameters in IC-CNN 

for image context and RNB identification, as formulated in Eq. (1). After the network has converged, the IC-CNN’s classifier 

is replaced with a binary classification, and all the training samples are supplemented to fine-tune and intensively train the 

network. 

https://doi.org/10.11888/Others.tpdc.271914
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 210 

Figure 7: The construction of convolutional neural network incorporating image background information. (BSV images are from 

Baidu Maps) 

Hybrid loss = CE(p𝑖𝑚𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) + 2 × CE(p𝑛𝑜𝑖𝑠𝑒 𝑏𝑎𝑟𝑟𝑖𝑒𝑟) ,       (1) 

CE(p) = −∑p ∙ log(p) ,           (2) 

where p𝑖𝑚𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑒𝑥𝑡  is the confidence of image context identification, pnoise barrier is the confidence of RNB identification, 215 

and CE(p) refers to the cross-entropy loss function (Hu et al., 2018). 
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2.3.2 Ensemble learning strategy 

Owing to the high cost of labelling and the restricted quantity of trained samples, an ensemble learning strategy for enhancing 

RNB detection accuracy is utilized in this study based on the “no free lunch” theory (Wolpert and Macready, 1997). In 

ensemble learning domain, the effective strategy to boost performance is to integrate the numerous high-variance models 220 

together (Cao et al., 2020). Therefore, this study integrates four IC-CNNs, and their convolutional layers are chosen from the 

ResNet family (He et al., 2016; Zagoruyko and Komodakis, 2016), including ResNet101, ResNet152, Wide ResNet50, and 

Wide ResNet101. The integration of the four IC-CNNs with varying capacities for feature extraction can make a significant 

contribution to achieve high detection accuracy. 

2.3.3 Vectorization post-processing  225 

After performing detection by an ensemble of IC-CNNs, the identified and scattered RNB locations are connected to create a 

vectorized RNB dataset by a post-processing technique, which is based on the spatial neighbour relationship between samples. 

Specifically, if adjacent sample images of the same road contain RNB objects, their locations will be connected. Furthermore, 

the findings of Sainju and Jiang (2020) demonstrated that “near objects are more related” principle (Tobler, 1970, 2004) holds 

true when using street view imagery to detect objects at the urban scale. Therefore, in this study, given the likelihood of RNB 230 

misidentification, if a sample image is flanked by images containing RNBs in the same wayroad, it will be considered as a 

positive type to minimize the impact of misidentification. 

2.4 Evaluation methods 

2.4.1 Metrics for detection accuracy 

To evaluate the accuracy of RNB detection, four quantitative metrics in the deep learning classification task, including overall 235 

accuracy (OA), recall, precision, and F1-score (Thomas et al., 2020) are analyzed. Due to the class imbalance problem in SVI 

imagery, OA is susceptible to being affected by a large amount of sample type in this study (i.e., negative type sample). In 

comparison, precision and recall can concentrate on positive type samples. F1-score is the most comprehensive of these metrics 

because it considers both precision and recall. After detecting the RNBs in BSV images, the number of false-negative (FN), 

true-negative (TN), true-positive (TP), and false-positive (FP) images is calculated. True positive means the prediction and 240 

ground truth of images are both positive. Conversely, false negative means the predictions are negative while the ground truths 

are positive. The four metrics are calculated based on the following Eqs. (3)-(6) (Thomas et al., 2020): 

𝑂𝐴 =
TP+TN

TP+FP+TN+FN
 ,           (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
 ,           (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN
 ,            (5) 245 
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∙Precision∙Recall

Precision+Recall
 ,          (6) 

2.4.2 Metrics for completeness and positional accuracy 

To quantitatively evaluate completeness and positional accuracy of generated RNBs, two quantitative metrics, including the 

root-mean-squared error (RMSE) and the intersection over union (IoU) are adopted (Rezatofighi et al., 2019). For calculating 

these metrics, numerous roads are selected from various cities and are surveyed manually as ground truths based on BSV 250 

imagery. Based on the mileage deviation and overlap relationship between the generated and surveyed RNBs, RMSE and IoU 

are calculated following Eqs. (7) and (8), respectively: 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑙𝑖 − 𝑙�̂�)

2𝑚
𝑖=1  ,          (7) 

where m is the number of selected roads, 𝑙𝑖 is the surveyed RNB mileage of the ith road, and 𝑙�̂� is the generated RNB mileage 

of the ith road. 255 

𝐼𝑜𝑈 =
L𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

L𝑢𝑛𝑖𝑜𝑛
 ,           (8) 

where L𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛  is intersection mileage of generated and surveyed RNB, and L𝑢𝑛𝑖𝑜𝑛  is union mileage of generated and 

surveyed RNB. 

2.5 Implementation configuration 

 Several techniques to enhance the performance of the model throughout the training and inference stages are employed in this 260 

study. Data augmentation techniques such as random resized cropping and random horizontal flipping are utilized to increase 

data volume and decrease model bias error. Subsequently, tThe model parameters are optimized using the cosine annealing 

learning rate scheduler (Bhattacharyya et al., 2021) and AdamW optimizer (Loshchilov and Hutter, 2017). Additionally, lLong 

training and inference resized tuning (Touvron et al., 2019) are employed to improve the model’s performance. Finally, an 

ensemble of models identifies RNBs based on the voting mechanism. 265 

3 Results 

3.1 RNB mapping result 

The final RNBs dataset are available at https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). Details of the BSV image 

identification results are shown in Appendix A, and details of RNB mileage by city in China are shown in Appendix B, with 

the total RNB mileage of 2227 2,667.02 km and the average RNB mileage for each city tier of 102.39 km (± 117.83 km), 66.36 270 

km (± 18.70 km), 22.19 km (±12.52 km), and 1.12 km (± 0.42 km), respectivelym. The quantitative results suggest that there 

are substantial variations between the different city tiers. Tier 1 and Tier 2 contain a major portion of the total RNB mileage 

https://doi.org/10.11888/Others.tpdc.271914
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compared with the other city tiers; moreover, confidence intervals show that the higher the city tier, the greater the difference 

in the level of RNB construction in that city tier. The reason for these variances is that Because unique urban administration 

system in China mandates lower-tier cities to rigidly follow the "leadership" of higher-tier cities (Ma, 2005; Zhao et al., 2003), 275 

higher-tier cities are rapidly increasing in size and occupying considerable resources, while lower-tier cities are developing 

slowly (Au and Henderson, 2006; Lin, 2002). The spatial distribution of RNB mileage among cities is further depicted in Fig. 

68, where blank areas indicate no the absence of RNBs or lack of BSV images (there are 17 cities lack BSV images, as shown 

in Appendix B). Figure 6 8 suggests that RNBs in eastern China are more densely distributed and have longer mileage. 

Furthermore, Tier 1 and Tier 2 contain major portion of the total RNB mileage. Because unique urban administration system 280 

in China mandates lower-tier cities to rigidly follow the "leadership" of higher-tier cities (Ma, 2005; Zhao et al., 2003), higher-

tier cities are rapidly increasing in size and occupying considerable resources, while lower-tier cities are developing slowly 

(Au and Henderson, 2006; Lin, 2002). Therefore, tTo a certain extent, it shows that the statistics correlate with the development 

of Chinese cities, implying that higher-tier cities have a high probability of covering and updating BSV imagery or laying 

down RNBs. 285 
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Figure 8: Zonal statistics of RNB Mileage mileage zonal statistic in China. The blank areas indicate no RNBs or lack of BSV images. 

After analyzing the generated RNB dataset from a national scale, three cities with the highest RNB mileage in each tier are 

selected to analyze the citywide mapping results, as shown in Fig. 97. The figure shows that RNBs are generally clustered in 290 

the central areas of these cities. For example, the RNBs in Shanghai are mainly clustered on the third ring road, while those in 
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Beijing are mainly clustered on the sixth ring road.  As a result, when combined with the planed layout and actual mapping of 

RNB distribution, the the generated RNB dataset can partially reflect the rationality of urban infrastructure planning and layout. 
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 295 

Figure 9: Distribution of RNBs in several representative cities. (BSV images are from Baidu Maps and bBase maps are from ESRI) 

3.2 Evaluation and analysis 

3.2.1 RNB detection accuracy 

Table 2 summarizes the evaluation results of RNB identification at different city tiers based on test samples. The OA and the 

F1-score for the overall city tiers are 98.61 % and 81.44 %, respectively. However, the accuracy is greater for higher-tier cities 300 

than for lower-tier cities. This may be attributed to the fact that cities with lower tiers appear to have less RNB infrastructure, 

resulting in a more severe class imbalance problem for deep learning methods, which impacts the training and generalization 

of the model.This may be attributed to the fact that cities with lower tiers appear to have a more severe class imbalance problem 

for deep learning methods, which affects the training and generalization of the model. Therefore, the results indicate that prior 

to using this dataset, an assessment of the influence of regional quality differences on specific applications is required. 305 

Table 2: Evaluation results of RNB identification in different city tiers. The evaluation results of every city tier are calculated using 

the test samples of the corresponding city tier, while the overall evaluation results are calculated using the entire test samples. 

City tier OA Recall Precision F1-score 
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(%) (%) (%) (%) 

Tier 1 98.12 88.37 78.08 82.91 

Tier 2 98.28 86.09 78.57 82.16 

Tier 3 98.68 87.01 74.44 80.24 

Tier 4 99.36 86.21 67.57 75.76 

Overall 98.61 87.14 76.44 81.44 

3.2.2 RNB completeness and positional accuracy 

To evaluate the completeness and positional accuracy of the RNB dataset, approximately 254.45 km of roads are selected from 

different city tiers and manually surveyed using the BSV imagery. Appendix C summarizes the detailed quantitative 310 

differences between generated and surveyed RNBs in terms of mileage deviation and level of overlap. The overall RMSE for 

mileage deviation is 0.08 km and IoU for overlay level is 88.08 % ± 2.95 %. The results shows that the generated and surveyed 

RNBs are highly consistent in terms of mileage and distribution, demonstrating the high completeness and positional accuracy 

of the generated RNB dataset. 

Moreover, as illustrated in Fig. 810, the visual comparison between surveyed and generated RNBs on various roads depicts 315 

that the generated and surveyed RNBs on the road are overall consistent in terms of mapping. However, several validated 

points demonstrated that the proposed deep learning approach incorrectly recognized small RNB objects in the images, such 

as validated points IV, II, and III on Beijing's Jingmen motorway, Zhengzhou's Longhai Road, and Wenzhous’s Ouhai Avenue, 

respectively. Additionally, several objects that looked similar to RNBs, such as multi-windowed buildings, are misclassified 

as positive type; for example, point IV on Wenzhou’s Ouhai AAvenue as well as points II and III on Nantong’s Binjiang 320 

Bridge. Despite these misclassifications, most of the validated points demonstrated a high accuracy of the RNB prediction and 

the high performance of the proposed framework, implying the reliability of the generated RNB dataset. 
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 325 

Figure 10: RNB mapping result in city scale. (BSV images are from Baidu Maps) 

 

4 Discussion 

4.1 Model capability 

An ablation study is conducted to demonstrate the quality of the generated dataset and validate the effectiveness of developed 330 

methods (Table 3). As shown in Table 4, the combination of proposed strategies achieves the highest performance. The ablation 

results illustrate that the effectiveness of proposed strategies, including integrating image context information into CNN, 

adding confusing negative samples, and ensemble learning strategy. Additionally, Figure 9 11 depicts the areas of IC-CNNs’ 

attention, revealing that IC-CNNs not only have a capacity for focusing on RNB objects in BSV images, but also have a sense 

of their surrounds. The results suggest the reliability of the generated dataset and partially decipher the “black box” of deep 335 

learning to explain the high performance of the developed methods. Notably, this study successfully achieves incorporating 

some of the prior geographic knowledge into the deep learning method. RNB detection accuracy can be increased further by 

combining more comprehensive knowledge of geographic scenes from BSV images into deep learning network, such as 

various geographic elements and processes as well as the associated construction theory (Lü et al., 2018). 

Table 3: Ablation study design. The ablation study combines the four strategies used in this study to illustrate their effectiveness. 340 
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Ablation 
Baseline 

(ResNet101) 

Incorporate image 

context information 

Add confusing 

negative samples 
Ensemble learning strategy 

I ✓    

II ✓ ✓   

III ✓ ✓ ✓  

IV ✓ ✓ ✓ ✓ 

Table 4: Quantitative results of ablation. The ablation results show that the proposed methods have the highest RNB detection 

accuracy. 

Ablation OA Recall Precision F1-score 

I 97.81 % (± 0.01 %) 62.91 % (± 0.41 %) 74.14 % (± 0.16 %) 64.62 % (± 0.25 %) 

II 97.50 % (± 0.03 %) 86.00 % (± 0.09 %) 63.67 % (± 0.25 %) 72.05 % (± 0.15 %) 

III 98.02 % (± 0.01 %) 81.71 % (± 0.07 %) 68.82 % (± 0.13 %) 74.41 % (± 0.07 %) 

IV 98.32 % (± 0.00 %) 85.60 % (± 0.08 %) 71.87 % (± 0.04 %) 78.09 % (± 0.05 %) 
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Figure 11: Attention maps of IC-CNNs on BSV images with RNB. The hotspots indicate the area where the attention of IC-CNN is 345 
focused. (BSV images are from Baidu Maps) 

4.2 Limitations and future work 

This study has several limitations in the process of dataset generation, which can be grouped into three categories, namely data 

source, ground scenario, and modelling: 

(1) Due to economic status, topographical conditions, or government policies, not all Chinese cities are covered by BSV 350 

imagery, with data not available for 178 cities (Deng et al., 2021; Du et al., 2020). In addition, challenges owing to 

overexposure or obstruction of the sensors by vehicles hinder capturing a complete street scene. As a result, the natural 

characteristics of the data source can have certain impacts on the accuracy of the RNB dataset. 

 

(3)(2) The road/traffic environment is often complex.  ConcretelyConcretely, BSV sensors can detect RNBs on distant 355 

highways or other lanes, and it may result in some mistakes during RNB detection and mapping. However, the likelihood 

of this occurring is small (about 4 % of RNB samples) by sampling investigation. 

(3)  This study implicitly presupposes that BSV images are independent and identically distributed. As shown in Fig. 89, the 

developed GeoAI framework can achieve high performance in continuous RNB mapping. However, spatial 
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autocorrelation effect in BSV images is overlooked, as BSV images taken along the same road network path frequently 360 

resemble adjacent one (Sainju and Jiang, 2020). 

Moreover, there are some uncertainties in cities with short-mileage RNBs which may be generated due to misidentification. 

Manual survey is performed to verify the confidence level of these cities. Table 5 shows the quantitative results, which indicate 

that the shorter the RNBs, the lower the confidence level. In addition, the results show that the confidence level is lowest for 

cities with RNBs less than 0.2 km, so further validation is needed when applying them in specific applications. 365 

Table 5: Confidence assessment in the mapping accuracy for Cities with low-mileage RNBs. 

Mileage interval (km) 0 - 0.1 0.1 – 0.2 0.2 - 0.3  0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7 0.7 - 0.8 

Confidence (%) 14.80 29.48 48.97 48.11 62.96 70.09 72.02 81.31 

 

 

In the future, to address the data shortage issue, more data sources, such as Google Maps and Tencent Maps, will be used. 

Additionally, approaches for photogrammetry and image scene understanding techniques will be developed to tackle the 370 

complex ground scenario. Finally, end-to-end deep learning algorithms will be constantly enhanced by the addition of more 

powerful units and structures to account for spatial autocorrelation in street view imagery. 

5 Code availability 

The codes of deep learning approaches in this study are available at https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021) 

and https://github.com/ChanceQZ/NoiseBarrierIdentification. Python3 packages such as PyTorch, NumPy, and OpenCV are 375 

used to develop the code. The vectorization post-processing procedure is performed in the ArcGIS Pro platform. 

6 Data availability 

The road data comes from OSM (https://www.openstreetmap.org/), a collaborative project dedicated to providing many types 

of freely editable geographic data for the world. City boundaries can be obtained from http://bzdt.ch.mnr.gov.cn/. In addition, 

BSV images can be downloaded by using BSV API (https://api.map.baidu.com/panorama/v2?key=parameters). Finally, the 380 

generated RNB dataset, labelled BSV image benchmark, and RNB detection results are available to the public at 

https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). Specifically, the generated RNB dataset is grouped by city level, 

with attributes of city tier, city name, province, and RNB mileage; the image labels is documented in *.csv file for benchmark 

of image context, and all images are categorized into specific folders; the RNB detection results include meta information of 

all BSV samples, such as longitude, latitude, city name, city tier, timing of imaging, and detection label (0 presents non-RNB 385 

type, while 1 presents RNB type). The mileage of RNB in RNB dataset is calculated in Albers equal-area conical projection. 

https://doi.org/10.11888/Others.tpdc.271914
https://github.com/ChanceQZ/NoiseBarrierIdentification
https://www.openstreetmap.org/
http://bzdt.ch.mnr.gov.cn/
https://doi.org/10.11888/Others.tpdc.271914
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7 Conclusion 

This study presents the first nationwide vectorized dataset of RNB datasetand the benchmark dataset of the labeled BSV images  

in China using BSV imagery based onand a GeoAI framework as well as the labelled BSV image benchmark. In this study, 

based on prior geographic knowledge in BSV imagery, RNB samples are identified based on deep learning approaches., and 390 

Subsequently, t the vectorized RNB dataset is subsequently constructed using the vectorization post-processing procedure. 

Finally, tThe created RNB dataset is evaluated from two perspectives, i.e., the detection accuracy as well as the completeness 

and positional accuracy. The four quantitative metrics, OA, recall, precision, and F1-score, analyzed are all highwith values 

of 98.61 %, 87.14 %, 76.44 %, and 81.44 %, showingillustrate high accuracy of the model in RNB detection. Additionally, 

tThe level of mileage deviation and overlay between the generated and surveyed RNBs are further determined via a manual 395 

survey of around 254.45 km of roads in various cities, . Thewith RMSE of 0.08 km andfor mileage deviation and the IoU of 

88.08 % ± 2.95 %for overlay level revealed that the created and surveyed RNBs are consistent and reliable.   

The intended applications for the two datasets are diverse. In terms of the vectorized dataset of RNBs, urban studies can benefit 

from accurate information of RNB mileages, locations, and distributions. For example, the regional energy potential of solar 

photovoltaic panels on RNB can be estimated, finer 3D urban models are enabled to develop, and the sustainability of urban 400 

layouts can be evaluated. On the other hand, the benchmark dataset of labeled BSV images may contribute to multiple other 

research and applications related to RNBs identification, such as developing advanced deep learning algorithms and fine-

tuning existing computer vision models to detect RNBs more accurately, as well as exploring the further relationship between 

RNBs’ locations and surrounding environment.The results indicate that the created RNB dataset can serve as a reliable dataset 

for local governments and urban research institutions in terms of data support and decision-making., with the support of the 405 

RNB dataset, the improved energy conversion estimation at a large scale can enable more precise modeling and analysis. 

Besides, the dataset can be used to assist in urban planning and regional economic research. Furthermore, the labelled BSV 

image benchmark aids in the development and training of deep learning models for additional urban studies. 
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Appendix A 410 

Table A1: Details of the BSV image identification results. 

City tier 
Negative 

(BSV image count) 

Positive 

(BSV image count) 

Total 

(BSV image count) 

Tier 1 764,155636,566 64,56348,159 828,718684,725 

Tier 2 1,600,3461,594,057 138,013137,686 1,738,3591,731,743 

Tier 3 1,425,4021,308,692 89,38983,264 1,514,7911,391,956 

Tier 4 1,890,3691,746,742 36,43734,525 1,926,8061,781,267 

Overall 5,680,2725,286,057 328,402303,634 6,008,6745,589,691 

Table A2: Identification confusion matrix based on test samples. 

Tier 1 
Predicted class 

Negative Positive 

True class 
Negative 2,339 32 

Positive 15 114 

Tier 2 
Predicted class 

Negative Positive 

True class 
Negative 2,358 27 

Positive 16 99 

Tier 3 
Predicted class 

Negative Positive 

True class 
Negative 2,400 23 

Positive 10 67 

Tier 4 
Predicted class 

Negative Positive 

True class 
Negative 2,459 12 

Positive 4 25 

Overall 
Predicted class 

Negative Positive 

True class 
Negative 9,556 94 

Positive 45 305 
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Appendix B 415 

The total RNB mileage in China is 2,667.022226.85 km. The RNB mileage in different city tiers are 614.34369.42 km, 

995.45941.72 km, 710.25605.21 km, and 346.32310.49 km, respectively. The average RNB mileage in different city tiers are 

102.39 km (± 117.83 km), 66.36 km (± 18.70 km), 22.19 km (±12.52 km), and 1.12 km (± 0.42 km), respectively. 

Table B1: Details of RNB mileage by city in China. The RNB mileages of some cities are 0 km, indicating that they lack RNBs or 

BSV images, or that the BSV images are out of date. Specifically, there are 17 cities lack RNBs, e.g., Baisha, Baoting, Changjiang, 420 
Dingan, Ledong, Lingao, Sansha, Wenchang, Jiyuan, Daxinganling, Shuangyashan, Guoluo, Huangnan, Bazhong, Nujiang, 

Zhoushan, Xingji. 

Tier 1 Tier 4 

City 
Mileage 

(km) 
City 

Mileage 

(km) 
City 

Mileage 

(km) 
City 

Mileage 

(km) 

Shanghai 394.63 Foshan 41.42 Xinxiang 1.05 Jining 0.16 

Beijing 99.83 Dongguan 26.48 Taizhou (Zhe) 1.04 Sanmenxia 0.15 

Tianjin 57.07 Ganzhou 20.91 Hainan 0.99 Liupanshui 0.13 

Hong Kong 46.20 Nantong 19.79 Jincheng 0.97 Karamay 0.12 

Chongqing 15.39 Quanzhou 19.39 Hanzhong 0.95 Suqian 0.12 

Macao 1.23 Zhongshan 16.61 Ya’an 0.89 Leshan 0.12 

Tier 2 Wenzhou 11.59 Jiayuguan 0.88 Jingdezhen  0.11 

City 
Mileage 

(km) 
Yangzhou 10.80 Anyang 0.88 Wuzhou 0.11 

Guangzhou 133.72 Changzhou 10.53 Nanping 0.86 Shaoyang 0.10 

Wuhan 118.20 Zunyi 9.46 Longyan 0.79 Chongzuo 0.10 

Shenyang 106.46 Jiangmen 9.39 Jiaxing 0.78 Haidong 0.10 

Hangzhou 102.97 Rizhao 6.31 Jiujiang 0.74 Shangqiu 0.09 

Nanjing 80.57 Yichang 5.72 Xianyang 0.71 Xiangxi 0.08 

Ningbo 78.13 Linyi 5.66 Liaoyang 0.70 Xuchang 0.08 

Jinan 74.99 Deyang 5.61 Panjin 0.66 Xuancheng 0.08 

Shenzhen 58.92 Kaifeng 5.61 Pingdingshan 0.65 Huangshan 0.08 

Xiamen 52.62 Chifeng 4.74 Qingyuan 0.64 Xiangtan 0.08 

Changchun 44.80 Zhuhai 4.17 Bayingolin 0.62 Bijie 0.08 

Qingdao 39.01 Maanshan 4.14 Nanchong 0.56 Pingxiang 0.08 

Dalian 38.15 Xingtai 3.76 Liuzhou 0.54 Changzhi 0.07 

Chengdu 34.73 Zhenjiang 3.59 Zhangjiakou 0.51 Yichun(Hei) 0.07 

Xi’an 26.73 Baoji 3.55 Sanming 0.5 Zhangzhou 0.06 

Harbin 5.47 Shantou 3.13 Zhuzhou 0.49 Meizhou 0.06 

Tier 3 Weifang 2.80 Xinyu 0.38 Ezhou  0.06 
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City 
Mileage 

(km) 
Huizhou 2.78 Jinzhong 0.37 Hinggan 0.06 

Suzhou (Su) 183.04 Zhaoqing 2.77 Jiuquan 0.35 Fuxin 0.05 

Zhengzhou 82.56 Weinan 2.76 Lu'an 0.35 Tongchuan 0.05 

Hefei 58.62 Hengyang 2.76 Cangzhou 0.34 Yichun(Gan) 0.05 

Guiyang 50.87 Jinhua 2.73 Nanyang 0.33 Yingkou 0.05 

Changsha 49.60 Baoding 2.69 Heyuan 0.33 Honghe 0.04 

Fuzhou (Min) 49.33 Huzhou 2.63 Tieling 0.28 Gannan 0.04 

Nanchang 37.19 Xiangyang 2.51 Qinhuangdao 0.28 Zigong 0.04 

Urumqi 30.56 Haixi 2.43 Tianmen 0.26 Shaoguan 0.04 

Wuxi 24.54 Taian 2.35 Kizilsu Kirgiz 0.26 Bayannur 0.04 

Kunming 24.49 Ordos 2.26 Xinzhou 0.25 Qujing 0.04 

Shijiazhuang 21.97 Sanya 2.16 Changde 0.25 Chuxiong 0.04 

Naning 15.84 Mianyang 2.08 Tonghua 0.25 Suining 0.04 

Taiyuan 14.91 Wuhu 2.05 Fuzhou (Gan) 0.24 Zhumadian 0.02 

Xuzhou 12.49 Shangrao 2.01 Baiyin 0.24 Chuzhou 0.02 

Xining 9.79 Lianyungang 1.97 Guilin 0.24 Yuncheng 0.02 

Hohhot 9.59 Taizhou (Su) 1.93 Pu'er 0.24 Fuyang 0.02 

Haikou 8.11 Shaoxing 1.89 Yunfu 0.23 Chaoyang 0.02 

Luoyang 7.61 Dali 1.74 Dandong 0.22 Lincang 0.02 

Datong 7.45 Chengde 1.55 Xiantao 0.22 Ankang 0.02 

Lanzhou 4.26 Wuhai 1.53 Jingzhou 0.21 Shanwei 0.02 

Zibo 1.67 Yuxi 1.45 Yanan 0.21 Fangchenggang 0.02 

Anshan 1.25 Yanbian 1.43 Putian 0.21 Yongzhou 0.02 

Tangshan 1.25 Songyuan 1.39 Ningde 0.2 Jieyang 0.02 

Handan 1.15 Daqing 1.34 Qiannan 0.2 Maoming 0.02 

Yinchuan 1.05 Shiyan 1.28 Yangquan 0.19 Hechi 0.02 

Benxi 0.43 Yantai 1.25 Yulin(Qin) 0.19 Shannan 0.02 

Jilin 0.33 Yancheng 1.25 Yibin 0.19 Bengbu 0.02 

Baotou 0.18 Anqing 1.23 Langfang 0.17 Quzhou 0.02 

Lhasa 0.06 Dezhou 1.23 Ulanqab 0.17 Jingmen 0.02 

Fushun 0.06 Dongying 1.11 Huai’an 0.17 Lvliang 0.02 

  Huangshi 1.08 Qionghai 0.16 Xinyang 0.02 

  Heze 1.08 Ngari 0.16 Linfen 0.02 

The RNB mileages of other cities are 0 km. 
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Appendix C 425 

Table C1: Quantitative comparison with the generated and surveyed RNBs in different roads in different city tiers. The 4 km - 7.5 

km of roads with RNBs are selected as surveyed objects. The total road mileage is around 254.45 km. 

Tier City Road name 
Road mileage 

(km) 

Surveyed 

RNB mileage 

(km) 

Generated 

RNB mileage 

(km) 

IoU 

(%) 

1 

Beijing 

Guangqu motorway 6.37 1.81 1.29 71.52 

Beijing-Urumqi motorway 4.13 3.07 2.95 96.06 

Jingmen motorway 5.23 1.58 1.46 92.41 

Chongqing 

Tushan road 5.58 0.77 0.43 56.19 

Jichang road 5.24 2.16 1.56 71.24 

Inner ring motorway 4.63 0.39 0.34 89.41 

Shanghai 

Shanghai-Kunming motorway 6.17 4.19 4.19 100.00 

Shanghai-Jinshan motorway 6.55 5.50 5.34 97.07 

Humin elevated road 6.43 3.10 3.10 92.69 

Tianjin 

Hongqi south road 4.97 0.91 0.91 95.05 

Kunlun road 5.03 2.01 1.89 93.80 

Ninghe-Jinghai motorway 6.23 2.60 2.07 78.22 

2 

Chengdu 

No.2 Elevated ring road 4.80 0.93 0.91 83.80 

Chengbei motorway 4.54 2.32 2.32 100.00 

Cheng-Yu Area ring 

motorway 
4.65 3.14 2.15 68.48 

Guangzhou 

City ring motorway 5.10 1.83 1.83 100.00 

Huanan motorway 4.29 1.22 1.22 100.00 

Liede avenue 4.85 0.89 0.98 91.20 

Nanjing 

Airport motorway 5.95 1.43 0.91 63.35 

Shanghai-Chengdu motorway 5.28 1.48 1.16 78.52 

Jiangbei avenue 5.51 1.89 2.15 86.20 

Wuhan 

Longyang avenue 4.99 0.61 0.74 77.76 

Second ring road 5.23 2.31 2.31 93.35 

Baishazhou elevated road 7.08 2.76 2.74 97.64 

3 

Fuzhou 

Airport motorway 5.82 1.36 1.16 85.53 

East No.3 ring road 4.60 1.38 1.34 96.43 

North No.3 ring road 4.61 2.04 1.84 90.19 

Hefei 

Tongling road 6.66 2.44 2.35 83.76 

North South No.1 elevated 

road 
6.35 2.66 2.23 83.98 
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Co-operative south road 4.51 2.04 1.99 97.66 

Suzhou 

Youxin motorway 6.27 2.75 2.73 99.21 

South ring motorway 7.15 4.99 4.85 96.42 

Central west road 5.79 3.34 2.98 89.36 

Zhengzhou 

Longhai east road 4.51 3.19 2.88 85.44 

Longhai road 4.55 2.62 2.54 96.99 

East No.3 ring road 4.80 1.01 1.20 73.72 

4 

Dongguan 

South ring road 4.88 1.04 0.94 90.29 

Shenyang-Haikou motorway 4.70 1.86 1.91 95.68 

Huancheng Road 4.72 0.91 0.87 95.30 

Nantong 

Changjiang middle road 4.46 1.86 1.80 96.57 

Hongjiang elevated road 5.07 0.85 0.80 94.40 

Binjiang bridge 6.14 1.70 1.98 79.75 

Quanzhou 

Shenyang-Haikou motorway 4.21 2.45 1.79 73.16 

Huacheng south road 5.73 1.08 1.10 94.21 

Airport motorway 4.73 0.68 0.61 90.32 

Wenzhou 

Ouhai avenue 4.74 2.31 2.08 87.12 

National highway 104 5.46 0.31 0.35 88.31 

Wenzhou bridge 5.16 0.66 0.60 90.00 
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