
1 

 

Reconstructed daily ground-level O3 in China over 2005-2021 for 

climatological, ecological, and health research  

Chenhong Zhou1,*, Fan Wang2,*, Yike Guo1, Cheng Liu3, Dongsheng Ji4, Yuesi Wang4, Xiaobin Xu5, 

Xiao Lu6, Yan Wang7, Gregory R. Carmichael8, Meng Gao2 

1Department of Computer Science, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China 5 
2Department of Geography, Faculty of Social Sciences, Hong Kong Baptist University, Hong Kong SAR, China 
3Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 

230026, Anhui Province, China 
4State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric 

Physics, Chinese Academy of Sciences, Beijing, 100029, China 10 
5State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of China Meteorological 

Administration, Chinese Academy of Meteorological Sciences, Beijing, 100081, China 
6School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, 519082, Guangdong Province, China 
7Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, 

China 15 
8Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA 
*These authors contributed equally to this work. 

Correspondence to: Meng Gao (mmgao2@hkbu.edu.hk) 

 

Abstract. Accompanied by the continuous declines of PM2.5, O3 pollution has become increasingly prominent and has been 20 

targeted by the Government of China to protect climate, ecosystem, and human health. Although satellite retrievals of 

column O3 have been operated for decades and nationwide monitoring of ground-level O3 has been offered since 2013 in 

China, climatological variability of ground-level O3 remains unknown, which impedes understanding of the long-term driver 

and impacts of O3 pollution in China. Here we develop an eXtreme Gradient Boosting (XGBoost) model integrating high-

resolution meteorological data, satellite retrievals of trace gases, etc. to provide reconstructed daily ground-level O3 over 25 

2005-2021 in China. Model validation confirms the robustness of this dataset, with R2 of 0.89 for sample-based cross-

validation. The accuracy of the long-term variations has also been confirmed with independent historical observations 

covering the same period from urban, rural and background sites. Our dataset covers the long time period of 2005-2021 with 

0.1°×0.1° gap-free grids, which can facilitate climatological, ecological, and health research. The dataset is freely available 

at Zenodo (https://zenodo.org/record/6507706#.Yo8hKujP13g; Zhou, 2022). 30 
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1 Introduction 

Tropospheric ozone (O3) is an important air pollutant (Fishman and Crutzen, 1978) and the third most potent greenhouse gas 

(IPCC, 2021). It also produces hydroxyl, a key oxidant in atmospheric chemistry, to modulate levels of secondary pollutants 

(Crutzen 1988; Gao et al., 2020). Many studies confirm that exposure to high surface O3 levels is harmful to plant growth, 35 

crop yields, and human health (Sandermann, 1996; Tingey and Taylor, 1980; Heagle, 1989; Heck et al., 1982; Lippmann, 

1989). With accelerated industrialization and urbanization since 2000 in China, emissions of O3 precursors (nitrogen oxides 

and volatile organic compounds) have increased substantially (Kurokawa et al., 2013; Ohara et al., 2007; Zheng et al., 2018), 

leading to emerging and widespread O3 pollution with threats to health and food security (Lu et al., 2018, 2020).  

To better manage air quality, the Chinese government has operated a nationwide monitoring network since 2013 (Liu et al., 40 

2021) to measure concentrations of six air pollutants, including O3. In the same year, the Chinese government implemented a 

series of strengthened emission control measures to tackle the rising public discontent with poor air quality. Since then, 

PM2.5 has exhibited a persistent decrease, yet an increasing trend of O3 has been observed (Li et al., 2019; Lu et al., 2018). 

This nationwide network makes it possible to understand recent trends and causes of O3 pollution in urban regions of China. 

However, most of the sites of the network have been distributed in major populated centers and in urban areas. The unequal 45 

allocation of monitoring sites hinders comprehensive assessments of the impacts of O3 on human health and the ecosystem, 

particularly in rural and less-settled areas (Liu et al., 2020). Besides, the long-term variations of ground-level O3 in many 

regions remain unknown, leading to difficulties in understanding how climate variability influences ground-level O3 in 

China. 

To fill these gaps, satellite retrievals of trace gases have been used to supplement surface observations as satellite monitoring 50 

has a longer history and global coverage (Ziemke et al., 2019). Unfortunately, it is challenging to infer near-surface O3 using 

satellite column O3 retrievals, as near-surface O3 typically occupies only a few percent and there is a weak correlation 

between ground-level O3 and satellite-retrieved O3 (Hayashida et al., 2018; Liu et al., 2020; Wei et al., 2022; Zhang et al., 

2020; Shen et al., 2019). Consequently, accurate and long-term near-surface O3 concentrations cannot be derived from 

satellite measurements alone. To estimate surface O3 concentrations with complete spatiotemporal coverage, statistical 55 

methods have been widely used (Chen et al., 2021; Kerckhoffs et al., 2015; Qiao et al., 2019; Zhang et al., 2020), including 

both traditional statistical methods and machine learning algorithms. Traditional statistical models, such as land-use 

regression (LUR) and geographically weighted regression (GWR), were built to explore relationships between surface O3 

and potentially influencing factors, including O3 precursors, land-use types, elevation, and meteorological variables (Liu et 

al., 2020; Wei et al., 2022). For example, Chen et al. (2021) developed a hybrid land-use regression (LUR) and Bayesian 60 

Maximum Entropy (BME) to predict daily surface O3 concentrations in China over 2015-2017. Zhang et al. (2020) proposed 

a geographically weighted regression (GWR) model with spatial information embed into the linear regression model to 

predict O3 concentrations. Generally, most of these traditional statistical methods are based on linear regression, which is not 

ideal to handle the non-linearity and high-order interactions between predictors and O3.  
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Machine learning algorithms are capable of mining and fitting nonlinear relationships from big data. Multiple machine 65 

learning algorithms, including neural network (Di et al., 2017), random forests (RF) (Li et al., 2020; Zhan et al., 2018), 

extreme gradient boosting (XGBoost) (Liu et al., 2020), and extremely randomized trees (ERT) (Wei et al., 2022), have been 

adopted to predict ground-level O3, and superior performances have been achieved compared to traditional statistical models. 

Most of these related studies presented results over a relatively short time period due to lack of ground-level observations. 

Liu et al. (2020) used XGBoost model and independent validation to offer nationwide daily estimations of O3 in China from 70 

2005 to 2017. However, R2 values of cross-validation were generally lower than 0.80. Considering the spatiotemporal 

heterogeneity of O3, Wei et al. (2022) employed an extended ERT model, named space-time extremely randomized trees 

(STET), to integrate space and time information with other independent variables during model training, which enhanced the 

performance of prediction.  

With a thorough review of existing studies of surface O3 estimation, we found most of them more or less suffer from 75 

drawbacks in terms of coarse spatial resolution, short-covering period, or low prediction accuracy. To facilitate 

climatological, ecological, and health research of O3, we aim to provide a long-term, full-coverage, and high-resolution daily 

ground-level O3 across China. We trained a nationwide ozone prediction model based on the XGBoost algorithm using 

atmospheric reanalysis, remote sensing products, emission estimates, etc. as predictors, and ground-based observations from 

2013 to 2021 as predictands. Both sample-based and station-based cross-validation methods were conducted to evaluate the 80 

spatial and temporal predictive ability of the model. Then we used the well-trained model to generate long-term and full-

coverage ground-level O3 concentrations in China for a 17-year-long period from 2005 to 2021 at a spatial resolution of 0.1° 

× 0.1°. To test the model generalization performance, we conducted independent validation over 2005-2021 by comparing 

the generated O3 predictions with observations from several stations covering urban, rural and background areas. 

2 Materials and methods 85 

2.1 Meteorological and air pollution data 

Table 1 summarizes the ground-based observations, atmospheric reanalysis, satellite remote sensing products, and 

anthropogenic emission estimates used in this study.  Hourly observations of ground-level O3 across mainland China from 

the year 2013 to 2021 were obtained from the China National Environmental Monitoring Center (CNEMC) network 

(http://www.cnemc.cn/en/). It started from ~900 monitoring stations in 2013 to ~1600 in 2021. We removed negative O3 90 

values and then calculated the daily maximum 8 h average (MDA8) ozone concentrations for each monitoring site. As the 

abundance of O3 in the troposphere is affected by both emissions (anthropogenic and natural) and meteorological conditions 

(Gao et al., 2016; Jacob and Winner, 2009), we considered meteorological variables, anthropogenic emission inventory, 

elevation, land use, normalized difference vegetation index (NDVI), etc. as input variables for the machine learning model 

(Table 1).  95 

https://doi.org/10.5194/essd-2022-187

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 7 June 2022
c© Author(s) 2022. CC BY 4.0 License.



4 

 

Nine considered meteorological variables include downward shortwave radiation (DSR), near-surface air temperature 

(TEM), relative humidity (RH), surface pressure (SP), boundary layer height (BLH), precipitation (PRE), evaporation (ET) 

and winds (horizontal and vertical components, WU and WV). DSR, TEM, RH, and ET affect the photochemical production 

of O3, while SP, BLH, PRE, and winds are essential for the transport, diffusion, and deposition of O3 (Jacob and Winner 

2009). We obtained these meteorological variables from the hourly ERA5 reanalysis dataset (Hersbach et al., 2020) at a high 100 

spatial resolution of 0.1° × 0.1°. Daily column concentrations of tropospheric O3 and NO2 were recorded by the Ozone 

Monitoring Instrument (OMI) onboard NASA’s Aura satellite and offered at a relatively coarser spatial resolution of 0.25° × 

0.25°. Land use cover (LUC) and NDVI products were collected from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite retrievals (Justice et al., 2002), while digital elevation model (DEM) data were taken from the Shuttle 

Radar Topography Mission (SRTM) dataset (Reuter, Nelson, and Jarvis 2007).   105 

Emissions of major O3 precursors, namely nitrogen oxides (NOx), volatile organic compounds (VOCs), and carbon 

monoxide (CO), over 2005-2020 were provided by the Multiresolution Emission Inventory for China (MEIC) (Zheng et al., 

2018; Zheng, Cheng, et al., 2021; Zheng, Zhang, et al., 2021). As the emission estimates for 2021 are not currently available 

from MEIC, we took the average of estimates for 2019 and 2020 as the conditions for 2021. Similarly, we used LUC in 2020 

for 2021 considering the negligible change of LUC over such a short period of time. To deal with the mismatch of spatial 110 

resolution of these inputs, we followed previous studies (Liu et al., 2020; Wei et al., 2022; Zhan et al., 2018; Zhang et al., 

2020) and used the bilinear interpolation to resample satellite O3 and NO2, and MEIC emission estimates at a coarser 

resolution to 0.1° × 0.1° grids. All these variables were converted into daily data to build the model at daily resolution. 

2.2 Construction of a machine learning model 

2.2.1 Spatiotemporal terms 115 

Previous studies have shown that spatiotemporal heterogeneities are valuable to characterize the variations in O3 but are 

usually neglected in most regression and machine learning explorations (Liu et al., 2020; Wei et al., 2020; Wei et al., 2022; 

Wei et al., 2021). To capture the relationship between O3 concentrations and covariates that change over time and space, we 

introduced spatial and temporal information as additional input variables for model training. Similar to previous studies (Liu 

et al., 2020; Wei et al., 2020; Wei et al., 2022; Wei et al., 2021), we represented spatial information of one point in grid 120 

space as the Haversine great-circle distances between its longitude and latitude to the four corners and the center of the study 

region (i.e., 70.0°E-135.0°E, 15.0°N- 55.0°N). The time term was expressed by the day of the year (DOY) to capture O3 

variations along with seasonal cycles. These two spatiotemporal terms can account for spatial non-stationarity and 

spatiotemporal autocorrelations of O3.  
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2.2.2 Feature selection 125 

Different variables play more or less influences on prediction, and we evaluated the importance of each independent variable 

for ground-level O3 estimation. XGBoost library in Python was used to automatically measure the importance score for each 

variable and provide estimates of feature importance for the model decision-making process. The importance score indicates 

how useful or valuable each feature/variable is during model construction. A higher importance score suggests a more 

predominant role of the feature in making key decisions with decision trees. We show the feature importance of predictors in 130 

Figure 1, which also displays the changes of feature importance brought by introduction of the spatiotemporal terms.  All 17 

independent variables have importance scores >1% in Figure 1a, and we thus kept these variables in the model. In Figure 1b, 

we summarized the importance scores of five Haversine distances in the space term to explicitly indicate the contribution of 

spatial information. We found that DSR, Space, TEM, ET, and Time are the five most important variables for predicting 

daily O3, with importance scores of 24.8%, 22.1%, 10.0%, 5.9%, and 4.4%, respectively. This also demonstrates that 135 

introducing spatiotemporal terms is valuable and necessary. Other meteorological variables and three main O3 precursors 

influence the model to some degree, with importance scores ranging from 2% to 5%. OMI NO2 and O3 column products 

exhibit the least impact on O3 estimates.  

2.2.3 XGBoost modeling 

We employed the extreme gradient boosting (XGBoost) (Chen and Guestrin 2016) algorithm to predict ground-level ozone 140 

(O3) concentrations using a set of related predictor variables. XGBoost is a highly efficient machine learning algorithm based 

on gradient tree boosting and has been widely applied in many tasks. Previously, we adopted it to correct systematic bias of 

chemical transport model (Yin et al., 2021). XGBoost is one of the ensemble learning techniques that combine several weak 

models (e.g., decision trees) to generate a strong model for better performance. The combination ways in ensemble learning 

have three main classes: bagging, stacking, and boosting. Different from random forests (RF) that generate predictions by 145 

averaging predictions from all the individual trees (tree bagging models), XGBoost, as a scalable tree boosting model, can 

capture the nonlinearity feature by constructing the weighted ensemble of weak prediction models. Due to its regularized 

boosting and parallel processing nature, XGBoost algorithm is not prone to overfitting and shows superiority in both speed 

and performance compared with other tree bagging models.  

In this study, the open-source Python package XGBoost was used and we tuned hyperparameters of the model by a grid 150 

search to obtain optimal hyperparameter values and considerably narrowed search space (Liu et al., 2020; Xiao et al., 2018). 

Specifically, three hyperparameters: namely the number of trees (n_estimators), the maximum depth of the tree (max_depth), 

and the sample weight of the smallest leaf node (min_child_weight), exhibited great effects on model performance in our 

experiments. We thus took them as tunable parameters and adjusted them carefully. After determining the optimal form of 

hyperparameters, we trained the XGBoost model using all available training data to generate a long-term, full-coverage, and 155 

high-resolution daily O3 in China from 2005 to 2021, and flowchart is shown in Figure 2.  
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2.3 Model validation  

To evaluate the overall model performance in estimating daily MDA8 O3 concentrations, we adopted both sample-based 

(out-of-sample) and station-based (out-of-station) 10-fold cross-validation (CV). In the sample-based CV scheme, all data 

samples were randomly divided into 10 groups where 1 group was selected as the validation data and the rest 9 groups were 160 

used for model training. This operation was repeated 10 times until all samples had been tested (Molinaro, Simon, and 

Pfeiffer 2005). The data in a station-based CV scheme were separated by their locations, and training and validation samples 

did not overlap in space. Therefore, the station-based CV scheme was capable of testing the estimation accuracy at locations 

where ground-based O3 measurements were not available during training. 

We used multiple statistical indicators, including coefficient of determination (R2), root-mean-square error (RMSE), mean 165 

absolute error (MAE), mean absolute percent error (MAPE), and ordinary least squares (OLS) regression (e.g., slope and 

intercept) to present the estimation accuracy of the model at the daily and monthly scales. We also used observations of 

MDA8 O3 from independent stations (stations not used in training) and over a longer time period (beyond the training time 

period) to demonstrate the reliability of our predictions. Independent observations of MDA8 O3 at three stations were taken 

from Xu et al. (2020), and these stations are being maintained by China Meteorological Administration (CMA) as a part of 170 

the Global Atmosphere Watch (GAW) programme. We used a rural site (Gucheng), an urban site (CMA campus, CMA) and 

a background site (Shangdianzi) in the comparison. The locations and more descriptions of these sites are documented in Xu 

et al. (2020).  

3 Results and discussion 

3.1 Sample-based cross-validation  175 

Table 2 displays cross-validation results for each year and for years of 2013-2021. The total number of data samples over 

2013-2021 across China is over 3.9 million (N=3,957,573). The R2, RMSE, MAE, and MAPE of sample-based CV are 0.89, 

15.22 µg/m3, 10.18 µg/m3, and 17.82%, respectively. This indicates that our predicted daily MDA8 O3 concentrations are in 

good agreement with ground-measured O3 concentrations, with the slope and y-intercept from linear regression equal to 0.86 

and 12.25 µg/m3, respectively (Figure 3a). The R2 values of sample-based CV for each year exhibit continuous increases and 180 

the estimation errors (i.e., RMSE, MAE, MAPE) decrease over the period of 2013-2021. This is associated with the 

increased number of monitoring stations built in recent years in China and the better quality-control of data (Wei et al., 2021, 

2022). Except for 2013, the R2 values for 2014-2021 are generally over 0.87 (Table 2). The slightly worse performance for 

2013 is due to the significantly lower number of data samples.  

We also validated model performance for five populated and economically dynamic regions, namely the Beijing-Tianjin-185 

Hebei (BTH), the North China Plain (NCP), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan 

Basin (SCB) regions. According to the definitions of these five regions in (Lu et al., 2019), there are 90, 308, 230, 57, and 99 
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monitoring stations located in the BTH, NCP, YRD, PRD, and SCB, respectively. Figure 3b-f shows that all the R2 values 

are generally over 0.88 and all the slopes are close to 1.0. Besides, small prediction errors (e.g., RMSE = 14.8–17.1 µg/m3, 

MAE = 9.1–11.2 µg/m3, and MAPE = 14.9–19.6%) have been achieved.  190 

Considering the spatial inhomogeneity of O3 monitoring stations, we performed an additional validation on the individual-

station scale, and performance for each monitoring station is displayed in Figure 4. We can find that stations with high 

estimation accuracy are mostly located in eastern China, especially in the BTH, NCP, and YRD regions, which agree with 

the results shown in Figure 3b-d.  The stations with slightly worse performance are generally located in the northeastern and 

northwestern China, which is associated with the lower number of stations there. In general, ~ 85% of the stations have R2 195 

values exceeding 0.8, RMSE < 15 µg/m3, MAE ~ 10 µg/m3, and MAPE < 18%. When we evaluated the predicted monthly 

mean MDA8 O3 estimates from 2013 to 2021, we found notable improvements, with R2 = 0.92, RMSE = 9.45 µg/m3, and 

MAE = 5.34 µg/m3 (Figure S1). Similarly, relatively poor performances are seen for 2013, and higher R2 values of 0.86–

0.97 are found for other years (Figure S1).    

3.2 Station-based cross-validation and Independent validation 200 

The station-based CV results are slightly worse than those of sample-based, whereas R2 values still reach 0.79 (Table 2, 

Figure S2). The spatial predictive performance is also observed to gradually increase over years (Table 2). O3 pollution has 

distinct contrasts in different regions of China, leading to notable differences between training and validation samples in 

station-based CV. Degraded performance in station-based CV was also found in previous studies (Liu et al., 2020; Wei et al., 

2022). Due to different densities of monitoring stations, predictive ability varies in the five concerned regions (Figure S2b-f). 205 

The performances are better in BTH and NCP (R2 ~ 0.85) than those in the YRD, PRD, and SCB regions (R2 ~ 0.8). 

Besides, the model displays notable spatial differences in the spatial predictive ability, as shown in Figure S3. Better 

predictive ability is found for most stations in eastern and central China, with high R2 values > 0.8 and small RMSE, MAE, 

and MAPE values of < 18 µg/m3, 12 µg/m3, and 18%, respectively. This is consistent with the results displayed in Figure 

S2b-f that more accurate predictions are found for the BTH and NCP regions.  210 

To demonstrate the accuracy of this long-term dataset, we used O3 observations from four stations that cover periods before 

2013.  As shown in Figure 5, reconstructed O3 values are generally consistent with observations with respect to the temporal 

variations, with high R2 values ranging from 0.71 to 0.89 and RMSE varying between 17.38 and 22.13 µg/m3. The accuracy 

of this dataset is thus confirmed in urban, rural and background sites.  

3.3 Comparison with related studies 215 

A comprehensive comparison between this study and related studies was conducted and the results are listed in Table 3. CV-

R2 and RMSE values from sample-based CV are reported. (Zhang et al., 2018) generated a nationwide O3 dataset for China 

with the RF algorithm. However, data for only year 2015 was provided and a much lower R2 of 0.69 and a higher RMSE of 

26.00 µg/m3 were achieved. With the GWR method, (Zhang et al., 2020) estimated monthly O3 concentrations in 2014 
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based on satellite-based precursors, while their study achieved inferior performance (R2= 0.77) compared to our predictions 220 

on monthly scale (Figure S1b, R2= 0.86 and RMSE = 14.17 µg/m3 for 2014). (Liu et al., 2020) slightly improved the 

prediction accuracy with R2 values of 0.78 based on the XGBoost algorithm and conducted independent validation of the 

data accuracy before 2013. Later on, Chen et al. (2021), Xue et al. (2020), and Wei et al. (2022) adopted other algorithms to 

improve the prediction accuracy or spatial resolution.  

In this study, our model yielded a higher accuracy with R2 = 0.89 and RMSE = 15.22 µg/m3. The dataset covers 225 

unprecedent long term coverage, and the accuracy before 2013 was also validated although observations are rare. We 

compared the spatial distribution of predicted O3 in this study and that from ChinaHighO3 provided by Wei et al. (2022). As 

other O3 datasets are not accessible online, we do not show the comparison. As shown in Figure 6, ChinaHighO3 fails to 

capture O3 hotspots on June 18 of 2015 and August 13 of 2019, especially for the areas circled in red rectangular boxes. 

More inter-comparisons are provided in Figure S4.  230 

3.4 Long-term spatiotemporal variations of surface O3  

By integrating a variety of predictors, including ground-based observations, satellite remote sensing data, emission 

inventory, and atmospheric reanalysis data, we employed the XGBoost model to generate a long-term full-coverage ground-

level daily O3 dataset in China, which covers the long time period of 2005–2021 with a fine spatial resolution of 0.1° × 0.1°. 

By taking advantage of the long-temporal coverage, full-coverage, and high-resolution of this dataset, we analyzed the 235 

seasonal variation and trends of surface O3 pollution in China. As displayed in Figure 7, significant variations in surface O3 

concentrations for different seasons are seen in northern, central and southern China. In particular, summertime mean MDA8 

O3 concentrations in NCP and BTH regions are extremely high (NCP: mean O3 = 133.4 ± 12.6 µg/m3; BTH: mean O3 = 

135.9 ± 14.7 µg/m3), whereas wintertime mean O3 concentrations are much lower (NCP: mean O3 = 60.3 ± 7.0 µg/m3; 

BTH: mean O3 = 58.7 ± 7.8 µg/m3). In general, severe O3 pollution occurs mainly in northern and central China during the 240 

summertime, O3 concentrations in the PRD peak in the autumn (Figure 7), which is consistent with our previous 

investigation using chemical transport modeling (Gao et al., 2021). Besides, we noticed that O3 concentrations in Yunnan 

Province peak in spring. Lower O3 concentrations are found in most regions of China in winter due to inhibited 

photochemistry (Gao et al., 2016b).   

Figure 8 presents the trends of annual mean MDA8 O3 during the period of 2005-2013 and 2014-2021, and the trends for 245 

four seasons are shown in Figure 9. Over the period of 2005-2013, annual mean MDA8 O3 declined significantly over 

eastern China, particularly in the NCP and YRD region. This trend reversed after 2013, and the increasing severity of O3 

pollution over China has been well documented previously (Li et al., 2019; Lu et al., 2018, 2020). The contrast trends are 

mainly due to China’s clean air actions initiated in 2013 (Liu and Wang 2020). Since 2013, the dramatic decreases in PM2.5 

led to increases in O3 concentrations by enhanced photolysis rates (Liu and Wang 2020). We also found that the declines of 250 

O3 over the period of 2005-2013 mainly happened in spring while the recent enhancement mainly occurred in summer and 

autumn (Figure 9). Our ongoing study using this dataset aims to elucidate the reasons.   
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4 Summary  

O3 has emerged as a pollutant of growing concern in China, posing threats to both human health and ecosystem. Due to 

uneven and limited ground-based observations, the nationwide spatiotemporal patterns of O3 pollution, especially their 255 

historical records remain unclear. In this study, we developed a nationwide daily MDA8 O3 prediction model based on the 

XGBoost algorithm, together with meteorological variables, remote sensing products, and emission inventory as input 

predictors and ground-based observations as predictand. In addition to the core input variables (i.e., downwelling solar 

surface radiation, air temperature, evaporation), we considered spatiotemporal information, which were demonstrated to 

account for a large proportion of importance in the model decision-making process. The model performance were evaluated 260 

at varying spatiotemporal scales, and it indicated that the model has a strong predictive power by yielding high prediction 

accuracy and small estimation uncertainties, i.e., sample-based (station-based) CV-R2, RMSE, MAE, and MAPE values of 

0.89 (0.79), 15.22 (21.16) µg/m3, 10.18 (14.06) µg/m3, and 17.82 (25.24) %, respectively. 

A long-term, full-coverage, and high-quality daily O3 concentration dataset with a spatial resolution of 0.1° × 0.1° covering 

the period of 2005–2021 in China was generated using the final model. Compared to other O3 datasets, our dataset shows 265 

superiority in terms of data accuracy, spatial coverage and resolution, and data time span. To assess the data accuracy 

beyond the training data, independent validation was conducted using observations of O3 over 2005-2021 from four sites. 

These four sites are typical urban, rural and background stations, and high degree of consistency has been found. Overall, 

our dataset exhibits a high prediction accuracy and can be used to characterize long-term surface O3 variations over space 

and time, which is of great significance for policy-making for pollution control and relevant climatological, ecological, and 270 

health research.  
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Table 1. Summary of the data sources used in this study. 380 

Category 
Variables Description Units Time range 

Spatial 

resolution 

Temporal 

resolution 
Data source 

Ground 

measurement 

O3 Ozone μg/m3 2013-2021 - Hourly CNEMC 

Atmospheric 

reanalysis 

DSR Downwelling surface 

radiation 

W/m2 2005-2021 0.1°×0.1° Hourly ERA5 Land 

ET Evaporation mm     

PRE Precipitation mm     

RH Relative humidity %     

TEM 2-m air temperature K     

SP Surface pressure hPa     

WU 10-m u-component m/s     

WV 10-m v-component m/s     

BLH Boundary layer height m     

Satellite 

remote 

sensing 

products 

O3 tropospheric O3 DU 2005-2021 0.25°×0.25° Daily OMI/Aura 

products NO2 tropospheric NO2 molecule/cm2  

NDVI Normalized difference 

vegetation index 

- 2005-2021 0.1°×0.1° Monthly MODIS 

products 

LUC Land-use cover - 2005-2020 0.1°×0.1° Annual 

DEM Surface elevation m - 0.1°×0.1° - SRTM 

Emission 

inventory 

NOx Nitrogen oxides Mg/grid 2005-2020 0.25°×0.25° Monthly MEIC 

VOCs Volatile organic compounds  

CO Carbon monoxide  
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Table 2. Cross-validation results of MDA8 O3 estimation (μg/m3) for each year from 2013 to 2021 in China. 

Year Sample size Sample-based cross-validation Station-based cross-validation 

 N R2 RMSE MAE MAPE R2 RMSE MAE MAPE 

2013 193,613 0.79 23.34 14.37 38.08 0.53 35.27 23.83 65.77 

2014 301,914 0.87 18.00 11.59 25.72 0.65 29.34 20.67 49.67 

2015 504,888 0.88 16.46 10.48 21.03 0.66 27.07 19.06 40.07 

2016 490,097 0.89 14.98 9.70 16.24 0.73 22.84 16.33 28.24 

2017 512,664 0.93 12.41 8.28 11.62 0.86 17.80 12.60 17.13 

2018 515,538 0.94 11.34 7.45 10.73 0.90 15.07 10.49 14.63 

2019 402,519 0.95 10.69 7.03 9.51 0.91 14.26 9.89 13.02 

2020 530,003 0.95 9.24 5.99 8.54 0.92 11.70 7.98 11.18 

2021 506,337 0.95 9.07 5.94 8.38 0.92 11.17 7.67 10.67 

All 3,957,573 0.89 15.22 10.18 17.82 0.79 21.16 14.06 25.24 

 

 

 385 

 

 

 

 

Table 3. Comparison of the data quality of this study with other related studies focused on China. 390 

 

 

 

 

 395 

 

 

 

 

Sources Model Training 

data period 

Temporal 

resolution 

Spatial 

resolution 

CV-

R2 

RMSE 

(µg m−3) 

Independent 

validation 

Products 

time range 

Zhan et al. (2018) RF 2015 Daily 0.1° × 0.1° 0.69 26.00 No 2015 

Zhang et al. (2020) GWR 2014 Monthly 0.25◦ × 0.25◦ 0.77 - No 2014 

Liu et al. (2020) XGBoost 2013–2017 Daily 0.1° × 0.1° 0.78 21.47 Yes 2005-2017 

Xue et al. (2020) Data fusion 2013–2017 Daily 0.1° × 0.1° 0.70 26.20 No 2013–2017 

Chen et al. (2021) LUR/BME 2015–2017 Daily 1km × 1km 0.80 23.50 No 2015–2017 

Chen et al. (2016) Iterative RF 2014–2019 Daily 0.0625◦ 0.84 18.4 No 2008–2019 

Wei et al. (2022) STET 2013–2020 Daily 0.1° × 0.1° 0.87 17.10 No 2013–2020 

This study XGBoost 2013–2021 Daily 0.1° × 0.1° 0.89 15.22 Yes 2005-2021 
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 400 
Figure 1. Importance scores of variables before (a) and after adding spatiotemporal terms (b). 

 

 

 

 405 
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Figure 2. Flowchart for generating daily MDA8 O3 dataset using the XGBoost model. 
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 410 

 
Figure 3. Density scatterplots of the sample-based cross-validation results of O3 estimates from 2013 to 2021 (a) in China, (b) the Beijing-

Tianjin-Hebei (BTH), (c) the North China Plain (NCP), (d) the Yangtze River Delta (YRD), (e) the Pearl River Delta (PRD), and (f) the 

Sichuan Basin (SCB). 

 415 
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Figure 4. Individual-station-scale sample-based cross-validation results of O3 estimates from 2013 to 2021 in China. 420 
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Figure 5. Time series of observed and estimated monthly mean MDA8 O3 at four independent stations: Beijing IAP (Institute of 425 

Atmospheric Physics, Chinese Academy of Sciences) site, CMA (China Meteorological Administration) site, and Shangdianzi site, and 

Gucheng site in Hebei Province. Exact latitude and longitude information of each station is also provided. 

 

 

 430 

 

 

 
Figure 6. Comparison of O3 distribution. From the left to right, it shows in situ O3 concentration measurements, the O3 dataset generated in 

this study, and ChinaHighO3, respectively. Dates are given in the format year/month/day. 435 

 

https://doi.org/10.5194/essd-2022-187

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 7 June 2022
c© Author(s) 2022. CC BY 4.0 License.



20 

 

 
Figure 7. Multi-year (2005–2021) seasonal mean MDA8 O3 distributions across China. 

 

 440 

 

Figure 8. O3 variation trends during the period of 2005-2013 (a) and 2014-2021 (b). Insignificant trends (p>0.05) are not shown. 
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Figure 9. Trends of seasonal mean MDA8 O3 during the period of 2005-2013 (column (a)) and 2014-2021 (column (b)). Insignificant 445 

trends (p>0.05) are not shown. 
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