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Abstract. Accurate high-resolution actual evapotranspiration (ET) and gross primary production (GPP) information is 10 

essential for understanding the large-scale water and carbon dynamics. However, substantial uncertainties exist in the current 

ET and GPP datasets in China because of insufficient local ground measurements used for model constrain. This study 

utilizes a water-carbon coupled model, Penman-Monteith-Leuning Version 2 (PML-V2), to estimate 500m ET and GPP at a 

daily scale. The parameters of PML-V2(China) were well-calibrated against observations of 26 eddy covariance flux towers 

across nine plant functional types in China, indicated by Nash-Sutcliffe Efficiency (NSE) of 0.75 and Root Mean Square 15 

Error (RMSE) of 0.69 mm d−1 for daily ET respectively, and NSE of 0.82 and RMSE of 1.71 g C m-2 d−1 for daily GPP. The 

model estimates get a small bias of 6.28% and a high NSE of 0.82 against water‐balance annual ET estimates across 10 

major river basins in China. Further evaluations suggest that the newly developed product outperforms its global version and 

other typical products (MOD16A2, SEBAL, GLEAM, MOD17A2H, VPM, and EC-LUE) in estimating both ET and GPP. 

Moreover, PML-V2(China) accurately monitors the intra-annual variations in ET and GPP in the croplands with a dual-20 

cropping system. Using the new data showed that, over the last 20 years, the annual GPP and water use efficiency 

experienced a significant (p < 0.001) increase (8.51 g C m-2 yr-1 and 0.02 g C mm-1 H2O yr-1, respectively), but annual ET 

showed a non-significant (p > 0.05) increase (0.65 mm yr-1). This indicates that vegetation in China exhibits a huge potential 

for carbon sequestration with little cost in water resources. The PML-V2(China) product provides a great opportunity for 

academic communities and various agencies for scientific studies and applications, freely available at 25 

http://dx.doi.org/10.11888/Terre.tpdc.272389 (Zhang and He, 2022). 

1 Introduction 

Terrestrial evapotranspiration (ET) and photosynthesis (or gross primary productivity, GPP) are indispensable processes in 

hydrological and carbon cycles at global and regional scales. Forming the second largest water flux after precipitation in the 

terrestrial hydrological cycle, ET is the sum of plant transpiration (Ec), evaporation from the soil (Es), and canopy 30 
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evaporation from precipitation interception (Ei). Photosynthesis rate, tightly coupled to Ec by leaf stomata, is a key indicator 

of plant growth and provides food and fibre for human society. 

In recent decades, numerous studies have been carried out to map ET at regional, continental, and global scales. Particular 

credit goes to remote sensing (RS)-based models that provide diagnostic ET estimates with a relatively high spatiotemporal 

continuity and reasonable biophysical significance. For example, Miralles et al. (2011b) and Martens et al. (2017) developed 35 

a global and daily ET product employing the Global Land Evaporation Amsterdam Model 3.0a (hereafter GLEAM) based on 

the Priestley-Taylor (P-T) equation. Although GLEAM does a good job in temporal resolution, it has a coarse spatial 

resolution of 0.25°. Another widely used semi-empirical formula is Penman-Monteith (PM) equation. Mu et al. (2011) 

generated the MOD16A2 ET with 500m and 8-day resolutions based on PM equation as one global product of Moderate 

Resolution Imaging Spectroradiometer (MODIS). Leuning et al. (2008) developed the Penman-Monteith-Leuning (PML) 40 

model that described the physical characteristics of canopy-soil water loss by improving the surface conductance (Gs) 

formulations and Zhang et al. (2010) estimated PML-based ET at 0.05° and 8-day resolution across the Australian continent. 

Cheng et al. (2021) produced a 1-km and daily ET dataset across China by the Surface Energy Balance Algorithm for Land 

(SEBAL), but only evaluated the SEBAL product at eight EC sites of three land cover types. 

Apart from methods and products for the ET estimated above, numerous approaches have been used to estimate GPP, such 45 

as the enzyme kinetic (process-based) models (Houborg et al., 2013; Arain et al., 2006; Grant et al., 2005; Hanson et al., 

2004; Medvigy et al., 2009), light use efficiency (LUE) principle (Liu et al., 2003; Turner et al., 2003; Yuan et al., 2007; 

Running et al., 2015; Zhang et al., 2017; Zheng et al., 2020), statistical methods (Potter et al., 1993; Hilker et al., 2008; 

Zhang et al., 2020b) and machine learning methods (Wolanin et al., 2019; Joiner et al., 2020; Huang et al., 2021). Among 

them, the LUE principle is well known because of its simple structure, strong portability, and relatively high temporal cover 50 

of inputs. Running et al. (2015) recently updated the global GPP product of MODIS (hereafter MOD17A2H) at 500m and 8-

day resolutions using the LUE principle. Zhang et al. (2017) and Zhang et al. (2021) also mapped global GPP for 2000 - 

2019 dubbed Vegetation Photosynthesis Model GPP V20 (hereafter VPM) with the same spatiotemporal resolution as 

MOD17A2H using an improved LUE model adding the energy absorbed by chlorophyll. Zheng et al. (2020) generated a 

global GPP dataset at 0.05° and 8-day intervals by a revised LUE model (hereafter EC-LUE) integrating the atmospheric 55 

CO2 concentration. 

Although significant efforts have been put into estimating ET and GPP, there are barely any coupled products available in 

China, which meet the requirement of high temporal (≤ 1 day) and high spatial (≤ 500m) resolutions simultaneously that is 

necessary to detect variations of the eco-hydrological cycle in diverse and large areas for a long term precisely (Table 1). For 

instance, products with low temporal resolutions cannot detect subtle seasonal changes in areas seriously affected by human 60 

activities and in arid regions, such as irrigated farmland with a dry climate (Bodner et al., 2015). On the other hand, products 

with high temporal resolutions like GLEAM can monitor the diurnal variability of ET, but their low spatial resolutions limit 

the effectiveness in fine-scale environment applications (Gevaert and García-Haro, 2015). 
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Secondly, the phenomenon of ignoring the water-carbon coupling process frequently appearing in the existing products has 

brought systematic errors. The photosynthesis and transpiration are coupled by the plant stomatal control on both water and 65 

carbon exchange between the land ecosystem and the atmosphere (Xiao et al., 2013; Zhang et al., 2019). As indicated in 

Table 1, MODIS ET and MODIS GPP products are independent of each other, and cannot ensure similar biophysical 

characteristics of vegetation in the same place. Furthermore, using ET and GPP from different products can lead to large 

uncertainty in analysing the interaction between ET and GPP such as water use efficiency of ecosystem (WUE is the ratio of 

GPP to ET). In that case, it is necessary to build a coupled ET and GPP model considering the water-carbon coupling 70 

process. Zhang et al. (2019) developed the second generation of PML (i.e., PML-V2 model) that estimates Gs using a water-

carbon coupled model and mapped global ET and GPP at 500m and 8-day resolutions in 2002-2017. 

More importantly, previous studies utilized sparse ground observations in China (as shown in Table 1) that covered few 

terrestrial ecosystems for models’ calibration and validation, resulting in improper input parameters, and making it difficult 

to obtain more reliable estimates of ET and GPP in diverse landcover types (Heinsch et al., 2006; Sjöström et al., 2013). 75 

Although the eddy-covariance (EC) flux sites have provided consecutive measurements of water and carbon fluxes since the 

early 1990s (Xiao et al., 2013; Wofsy et al., 1993; Baldocchi et al., 2001), the EC observed data in China remain much 

sparser than those in North America and Europe, and most of them are not publicly available, impeding a national scale 

constraint of RS-based models for improving ET and GPP estimates (Villarreal and Vargas, 2021; Chu et al., 2017). For 

instance, GLEAM which only employed 8 EC sites over China overestimates ET at a large scale, especially for evergreen 80 

needleleaf forest, evergreen broadleaf forest and mixed forest (Li et al., 2018). Therefore, the uncertainty in estimating ET 

and GPP is large, and it requests sufficient EC flux sites to calibrate and validate ET and GPP models for better local and 

regional applications. 

In addition, understanding the spatial and temporal pattern of ET and GPP is particularly important for China, the largest 

contributor to the absolute growth of greenhouse gases that directly induces global warming over the past decade (Minx et al., 85 

2021). While China owns huge carbon sequestration potential of terrestrial ecosystems for slowing accumulation of 

atmospheric carbon dioxide and mitigating climate change. Additionally, given China's water shortage, it is crucial to clearly 

understand water budgets and transportation (Ma et al., 2020). Therefore, it becomes vital to estimate GPP and ET accurately 

across China under changes in climate and land cover types. 

Facing the above challenges, this study utilizes a water-carbon coupled and remote sensing-based model, PML-V2 that is 90 

constrained against the most comprehensive observations in China (i.e. 26 EC observations across nine plant functional types 

(PFTs)), to generate daily and 500m ET and GPP data product from 2000 to 2020. We then test whether the newly 

developed product for China outperforms PML-V2(global) and other mainstream products (i.e., MOD16A2, SEBAL, 

GLEAM, MOD17A2H, VPM, and EC-LUE), and investigate spatial pattern and general trend over time in ET and its 

components (Ec, Ei, Es), GPP and WUE in 2001-2020 across China.  95 

The novelties of this study mainly include:  
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(i) Observation data from 26 EC flux stations in nine PFTs across China are employed for constraining the PML-V2 

calibration for estimating ET and GPP;  

(ii) The country-specific meteorological forcing, i.e., the CMFD, is used to drive the PML-V2 in China, which is more 

accurate than those forcings extracted from global forcing products; 100 

(iii) The PML-V2(China) product is generated with a daily resolution, compared to the previous global product with a 

temporal resolution of 8-day; and 

(v) Improving intra-annual ET and GPP dynamics for various ecosystems, particularly for the cropland ecosystem, which 

provides more accurate estimates and monitoring of agricultural water consumption, compared to other mainstream products. 

2 Materials and methods 105 

2.1 Description of the PML-V2 model 

The PML-V2 model was employed in this study (Zhang et al., 2019). The detailed descriptions of PML-V2 are provided in 

Gan et al. (2018) and Zhang et al. (2019). Here we summarize the general modelling framework for readers to easily follow. 

PML-V2 derives ET by separately estimating its three components, including Ec, Es and Ei (Eq.1). Es is calculated by a 

simple water availability model that requires only precipitation and equilibrium evapotranspiration (Zhang et al., 2010; 110 

Morillas et al., 2013), as shown in Eq.2. Ei is estimated by a modified Gash model (Eq.3) that has been adopted widely as a 

rainfall interception function (Van Dijk and Bruijnzeel, 2001; Zhang et al., 2016). PML-V2 applies an improved Ball-Berry 

stomatal conductance model (Yu et al., 2004; Gan et al., 2018; Ball et al., 1987; Collatz et al., 1991), which couples Ec 

calculated by PM equation (Eq.4) with GPP. Furthermore, GPP is constrained by vapor pressure deficit that shows the 

physiological significance of vegetation response, as shown in Eq.5 and Eq.6: 115 

𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑐𝑐 + 𝐸𝐸𝑠𝑠 + 𝐸𝐸𝑖𝑖,            (1) 

𝐸𝐸𝑠𝑠 = 𝑓𝑓𝑓𝑓𝐴𝐴𝑠𝑠
𝜀𝜀+1

,             (2) 

𝐸𝐸𝑖𝑖 = �
𝑓𝑓𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 <  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤

𝑓𝑓𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑓𝑓𝐸𝐸𝐸𝐸(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤),𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤
 ,        (3) 

𝐸𝐸𝑐𝑐 = 𝜀𝜀𝐴𝐴𝑐𝑐+ (𝜌𝜌𝑐𝑐𝑝𝑝/𝛾𝛾)𝐷𝐷𝑎𝑎𝐺𝐺𝑎𝑎
𝜀𝜀+1+𝐺𝐺𝑎𝑎/𝐺𝐺𝑐𝑐

 ,            (4) 

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐴𝐴𝑔𝑔 𝑓𝑓(𝐷𝐷𝑎𝑎) ,            (5) 120 

𝑓𝑓(𝐷𝐷𝑎𝑎) = �
1,𝐷𝐷𝑎𝑎 ≤ 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚−𝐷𝐷𝑎𝑎
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚−𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

,𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 < 𝐷𝐷𝑎𝑎 < 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 
1,𝐷𝐷𝑎𝑎 ≥ 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 

 ,         (6) 

where f is a unitless variable that is computed by a function of soil equilibrium evaporation and accumulated precipitation for 

each grid cell;𝜀𝜀 = 𝑠𝑠/𝛾𝛾  (unitless), in which 𝑠𝑠 = 𝑑𝑑𝑒𝑒∗/𝑑𝑑𝑑𝑑 is the curve slope relating saturation water vapor pressure to 

≥
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temperature (kPa °C-1) and 𝛾𝛾 is psychrometric constant (kPa °C); the total available energy absorbed by surface is partitioned 

by leaf area index (LAI, m2 m-2) into canopy absorption (Ac, MJ m-2 d-1) and soil absorption (As, MJ m-2 d-1); 𝜌𝜌 is the air 125 

density (g m-3); 𝑐𝑐𝑝𝑝represents specific heat of air at constant pressure (J g-1 °C-1); 𝐷𝐷𝑎𝑎 is vapor pressure deficit (VPD) at the air 

temperature;𝐺𝐺𝑎𝑎  (m s-1) is the aerodynamic conductance while Gc (m s-1) is the canopy conductance; fV is the area ratio 

covered by intercepting leaves (unitless), fER is the ratio of average evaporation rate over average precipitation (unitless) and 

assumes that it does not vary between the storms; 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is daily precipitation (mm d-1); 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤  is rainfall rate of the 

reference threshold if the vegetation canopy is wet (mm d-1); 𝐴𝐴𝑔𝑔 (µmol m-2 s-1) is the gross assimilation rate and 𝑓𝑓(𝐷𝐷𝑎𝑎) is a 130 

vapor pressure deficit constraint function where 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum threshold when there’s no vapor pressure constraint 

and 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 the maximum threshold when closing plant stomata leads to non-assimilation. 

2.2 Model input data 

2.2.1 Remote sensing data 

MODIS collections with 500m spatial resolutions from February 26, 2000 to December 31, 2020 (hereafter 2000-2020) are 135 

used, which includes the LAI from MOD15A2H.006 (Myneni et al., 2015), the albedo from MCD43A3.006 product (Schaaf 

and Wang, 2015), and the surface emissivity from MOD11A2.006 (Wan et al., 2015). The smoothed LAI inputs for PML-

V2(China) utilized the weighted Whittaker smoother with dynamic lambdas instead of a constant lambda to eliminate 

missing or unreliable pixels due to noise contaminations by snow, shadow, cloud, etc, compared with the PML-V2(Global) 

(Kong et al., 2019; Zhang et al., 2019). The improved LAI can better express peaks and seasonal changes. The albedo and 140 

surface emissivity inputs were gap-filled by the linear interpolation of the nearest good quality points (Zhang et al., 2019). If 

there were not enough good-quality points close to the point with missing value, it was filled by the historical averaged 

values for the same grid. Besides, the PML-V2 model needs land cover types to accurately estimate ET and GPP in different 

terrestrial ecosystems. Here we used the International Geosphere-Biosphere Program (IGBP) layer of MCD12Q1.006 land 

cover product (Sulla-Menashe et al., 2019) during 2000-2020 since IGBP classification is annually continuous and has the 145 

highest accuracy in China when compared with land cover products (Feng and Bai, 2019). 

2.2.2 Meteorological data 

The meteorological inputs of PML-V2 include specific humidity, air pressure, air temperature, wind speed, precipitation, 

downward longwave radiation, downward shortwave radiation, and land surface temperature. In this study, the main 

meteorological data came from the China Meteorological Forcing Dataset (CMFD) from 2000 to 2018 (He et al., 2020), 150 

which has spatial and temporal resolutions of 0.1° and 3-hr, respectively. Generated through the fusion of five RS or 

reanalysis datasets and 753 China Meteorological Administration stations, the CMFD dataset shows the best accuracy among 

most available meteorological datasets, and is widely employed in hydrological and land surface modelling of China (Zhang 

et al., 2019; Wang et al., 2020). The Global Land Data Assimilation System Version 2.1 (GLDAS-2.1) meteorological 
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forcing data with 0.25° and 3-hr resolutions (Beaudoing and Rodell, 2016) were used for 2019-2020, as the CMFD is not 155 

available during such a period. The land surface temperature during 2000-2020 was from the Land component of the fifth 

generation of European ReAnalysis (i.e., ERA5-Land; Muñoz-Sabater et al., 2021) with spatial and temporal resolutions of 

0.1° and 1-hr, respectively. Note that the above meteorological data were first aggregated into the daily scale, followed by 

resampling into 500m by the bilinear interpolation method (Zhang et al., 2019). The atmospheric CO2 concentration data 

came from the National Oceanic and Atmospheric Administration. The pro-processing of remote sensing data and 160 

meteorological data for model inputs is summarised in Figure 1. 

2.3 ET and GPP from eddy-covariance observations 

We collated EC flux towers and automatic weather stations (AWSs) data from 26 sites across China (Fig. 2 and Table 2) for 

calibration and validation of PML-V2. These data came from the following sources: FLUXNET2015 (Pastorello et al., 2020), 

the National Tibetan Plateau Data Center (Ma et al., 2020), the Heihe Integrated Observatory Network (Liu et al., 2011; Liu 165 

et al., 2018), and the Chinese Terrestrial Ecosystem Flux Research Network (ChinaFLUX) (Yu et al., 2006). These 26 sites 

encompass nine major PFTs in China, including two in evergreen needleleaf forests, one in evergreen broadleaf forests, one 

in mixed forests, one in open shrublands, one in savannas, eight in grasslands, three in wetlands, seven in croplands, and two 

in barren sparse vegetation. The observation variables, including air temperature, relative humidity, incoming shortwave 

radiation, latent heat flux, sensible heat flux, and net ecosystem exchange, were collected from the interval of 0.5-hour or 1-170 

hour to prepare for gap filling and flux partitioning (Reichstein et al., 2005; Wutzler et al., 2018). Considering certain gaps 

exist in the original half-hourly or hourly latent heat (LE) and net ecosystem exchange (NEE) fluxes data, we employed the 

marginal distribution sampling method (Reichstein et al., 2005) to fill these gaps using the station-observed air temperature, 

relative humidity, and solar radiation data. Subsequently, we partitioned NEE into gross carbon uptake (GPP) and respiration 

of ecosystem according to the night-time-based method of Reichstein et al. (2005). Because any gap-filling of EC data may 175 

introduce extra uncertainties, we only used the days during which the percentage of the original observed and good-quality 

gap-filled data was no less than 60% in the present study. Note that the data of the sites from the ChinaFLUX (i.e., CN-CBF, 

CF-HBG_S01, CF-HBG_W01, CF-NMG, CF-QYF, and CF-YCA) and the FLUXNET2015 (i.e., CN-Cng, CN-Du2, and 

CN-HaM) have already been gap-filled by original data providers. Therefore, they were used directly in this study. Note that 

while energy imbalance does exist in many EC sites, correcting such a problem may also introduce more uncertainties 180 

(Foken, 2008). Therefore, we used the observed LE directly in the present study. 

2.4 Basin-scale water balance-based evapotranspiration data 

The water balance method is generally regarded as a simple and accurate approach for calculating land evapotranspiration at 

the basin-scale (Liu et al., 2016). Here we used the water-balance-based evapotranspiration (𝐸𝐸𝐸𝐸𝑤𝑤𝑤𝑤, mm) of 10 major basins 

across China to evaluate PML-V2 ET estimates at a basin scale, that is, 185 

𝐸𝐸𝐸𝐸𝑤𝑤𝑤𝑤 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑄𝑄 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,          (7) 
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where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑄𝑄, and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(all with a unit of mm) are basin-wide precipitation, runoff, and change of terrestrial water 

storage at an annual scale, respectively. Among them, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑄𝑄 are the annual values of ten major river basins in China, 

including the Hai, Huai, Liao, Northwest, Pearl, Songhua, Southeast, Southwest, Yangtze, and Yellow (Fig. 2), from the 

National Water Resources Bulletin, which is extensively used in water resources calculation (Miao et al., 2022) and 190 

assessment (Yang et al., 2004; Xie et al., 2018). 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  was quantified using three Gravity Recovery and Climate 

Experiment (GRACE) products (Landerer and Swenson, 2012; Landerer, F. 2021) including the NASA Jet Propulsion 

Laboratory, the GeoForschungsZentrum Potsdam and the Center for Space Research, which are available since April 2002 at 

a monthly scale. For reducing the uncertainties, this study used the mean values of these three products. We regarded the 

differences in the terrestrial water storage anomaly between two consecutive Decembers as the annual TWSC. Note that the 195 

ETwb was only calculated from 2003 to 2013 in the present study since the December values from GRACE was not available 

in 2014. 

2.5 Model calibration of PML-V2 model 

The Genetic algorithm (Holland, 1992; Konak et al., 2006) was used to calibrate the 11 parameters of the PML-V2 model for 

each PFT. Specifically, all EC-observed ET and GPP data within a PFT are used to minimize the following objective 200 

function (𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜): 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 = 2 −𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸 − 𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 =
� (𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒−𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜)2𝑁𝑁

𝑖𝑖=1

� �𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜−𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜�
2𝑁𝑁

𝑖𝑖=1

 +
� (𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒−𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜)2𝑁𝑁

𝑖𝑖=1

� �𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑏𝑏𝑏𝑏−𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜�
2𝑁𝑁

𝑖𝑖=1

         (8) 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸 and 𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 are the Nash-Sutcliffe Efficiency of the daily ET and the daily GPP, respectively. The subscripts 

est and obs stand for the estimated and the observed, respectively. In this way, the calibrated parameter values for nine PFTs 

are illustrated in Table S1. 205 

2.6 Model validation and performance metrics 

The ‘leave-one-out’ cross-validation method was utilized to evaluate robustness of the PML-V2 model (Zhang et al., 2019). 

For each PFT, the data from one “ungauged” observation was excluded from the optimization while the data from all other 

observations at the same PFT were used for model calibration to obtain the simulated at the “ungauged” position. All nine 

PFTs were actualized in this way. Note that the PFT including EBF, MF, OSH, and SAV only has one ground site (Table 2). 210 

Therefore, it is appropriate to divide the data in each of the four sites into two sub-groups for cross-validation. The CF-CBF 

and the CF-HBG_S01 covering from 2003 to 2010, were divided into two sub-groups, each of which had 4 years: 2003-2006 

and 2007-2010. While both the BNXJL and YJGRHG only covered one year and were divided into two sub-groups by a 

two-day time step, separately. After that, the daily estimates in the cross-validation mode were against the daily observation 

from the 26 stations to explore the model transferability from known observations to any location. 215 

We assessed the performance of calibration and cross-validation of PML-V2 (and other seven mainstream ET and GPP 

products) against the observed sites or water-balance basins utilizing the following four metrics: 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋 = 1 −
� (𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒−𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜)2𝑁𝑁

𝑖𝑖=1

� �𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜�
2𝑁𝑁

𝑖𝑖=1

 ,          (9) 

𝑅𝑅𝑋𝑋 =
� �𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒−𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒��𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜�

𝑁𝑁

𝑖𝑖=1

�� �𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒−𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒�
2𝑁𝑁

𝑖𝑖=1
×� �𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜�

2𝑁𝑁

𝑖𝑖=1

 ,         (10) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑋𝑋 = �� (𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒−𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 ,           (11) 220 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑋𝑋 =
� (𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒−𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜)𝑁𝑁

𝑖𝑖=1
𝑁𝑁×𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜

 ,            (12) 

where 𝑁𝑁𝑁𝑁𝑁𝑁, 𝑅𝑅, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 are the Nash-Sutcliffe Efficiency, the correlation coefficient, the Root Mean Square Error, 

and the ratio of the difference between the estimated and the observed to the observed average. The subscript 𝑋𝑋 represents 

ET or GPP; the subscripts est and obs stand for the estimated and the observed, respectively. 

3 Results 225 

3.1 Model calibration and model validation 

The simulated ET and GPP from the calibrated PML-V2(China) were first evaluated against EC measurements of 26 flux 

sites at a daily scale (Fig. 3). Overall, PML-V2(China) shows an excellent performance in estimating daily ET and daily GPP, 

as evidenced by the NSE (0.75 and 0.82, respectively), R (0.88 and 0.9, respectively), RMSE (0.69 mm d-1 and 1.71 g C m-2 d-

1, respectively), and Bias (-5.81% and -2.3%, respectively). For the mean values of each site, the simulated daily ET and 230 

daily GPP show higher NSE (≥ 0.87) and R (≥ 0.93) values (Fig. 3). 

PML-V2(China) is only slightly degraded from calibration to cross-validation, indicated by slightly declined performance in 

ET and GPP (Fig. 3). For daily ET, the NSE and R values decrease by 0.06 and 0.04, respectively, from the calibration mode 

to the cross-validation mode. Correspondingly, the RMSE and Bias of ET in the cross-validation mode increase by 0.08 mm 

d-1 and 3.5%, respectively. For daily GPP, the NSE and R values in the cross-validation mode reduce by 0.11 and 0.06, 235 

respectively; the RMSE and Bias increase by 0.45 g C m-2 d-1 and 1.79%, respectively. A similarly slight degradation is 

applied to their site means. These results demonstrate that the PML-V2(China) is robust for estimating daily ET and daily 

GPP across large regions, and suitable for generating good quality daily ET and daily GPP data for China. 

Figure 4 further summarises PML-V2(China) performance at 26 flux sites across nine PFTs. The estimates of ET and GPP 

from the model calibration show high consistency with the EC-observed values in all terrestrial biomes. For daily ET (Fig. 240 

4a), the NSE values vary from the range of 0.36 ~ 0.82, the RMSE 0.39 ~ 0.88 mm d-1, and Bias -10.09% ~ -0.21%. For daily 

GPP (Fig. 4b), the ranges of statistical metrics become 0.41 ~ 0.91 for NSE, 0.3 ~ 3.19 g C m-2 d-1 for RMSE, and -10.52% ~ 

3.26% for Bias. In terms of cross-validation, nine PFTs all showed slight declines in the statistical metrics when compared to 

those in the calibration mode. For daily ET, the declines in NSE values are less than 0.14 in most PFTs except BSV and ENF, 

whose NSE decreased by 0.36 and 0.33, respectively. As expected, RMSE values all increased to some extent in all PFTs 245 
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(ranging from 0.002 to 0.305 mm d-1) when compared with those in calibration mode. The Bias values in the cross-validation 

mode were almost identical to those in the calibration mode for most PFTs except WET and ENF of which the absolute 

value of Bias increased by 10.59% and 17.42%, respectively (Fig. 4a). Regarding daily GPP, the NSE values all degraded by 

less than 0.04 for most PFTs except BSV, GRA and WET where there exists 0.21 ~ 0.32 NSE degradation. In the meantime, 

the declines in R values are all within 0.19. Regarding RMSE, the increases are particularly marginal for most PFTs except 250 

WET with an increase of 1.58 g C m-2 d-1. The Bias in the cross-validation mode is also similar to that in the calibration 

mode for most PFTs except for GRA and WET of which the absolute value Bias rose by 10.26% and 11.86%, respectively 

(Fig. 4b). The above PFT tests suggest that the present PML-V2(China), with parameter values being calibrated against 26 

EC flux stations, does perform satisfactorily in estimating both ET and GPP across different PFTs in China. 

To investigate the model performance at each EC site, this study also compares the variations in daily ET and GPP between 255 

PML-V2(China) in calibration mode and the EC observations (Fig. 5, Fig. 6, and Table S2). Overall, the estimates from 

PML-V2(China) show similar amplitude and phase to the EC observations, indicating that it performs well in capturing the 

seasonal phase of ET and GPP in most flux sites. From Figure 5, the PML-V2(China) ET reveals a single peak in each 

annual cycle for most flux sites, except those with double-cropping systems such as CF-YCA, DXZ, and GTZ cropland sites. 

In particular, the ET values are consistent with observed data at the desert site (e.g., HZZHMZ and QZ-NAMORS) with NSE 260 

ranging from 0.41 to 0.48, indicating that model performs well in the sparse vegetation area. The measurements fluctuate 

higher than PML-V2(China) ET at peak areas for most sites. For the site mean ET, the difference values between PML-

V2(China) and EC observations range from -0.46 to 0.21, with the minimum at QZ-NAMORS and the maximum at CN-

HaM.  

For daily GPP, the model also performs well in depicting the seasonal variation. However, in certain stations (e.g., DMCJZ) 265 

the peak GPP values within a year appear to be underestimated. In terms of the cropland flux sites, the GPP also shows 

double peaks within a year because of the double-cropping system (e.g., winter wheat and maize rotation), which is similar 

to ET. This is especially apparent for the GTZ, DXZ, and CF-YCA flux sites located in the North China Plain. For the site 

mean GPP, the discrepancies between the model and EC observations mainly range from -0.66 to 0.96 g C m-2 d-1 for most 

flux sites except CF-YCA, MYZ, and DXZ, where the differences exceed 1.3 g C m-2 d-1. 270 

3.2 Comparing with PML-V2 and other products 

3.2.1 Comparisons at a plot-scale using EC observed data 

To explore whether ET and GPP of PML-V2(China) simulations are more accurate than the previous products, we also 

evaluated ET and GPP accuracy from its global version, MOD16A2, MOD17A2H, and other five widely available ET or 

GPP products against EC observations from the 26 sites at a daily or 8-day resolution. In this study, PML-V2(China) uses its 275 

cross-validated simulations to compare with other products instead of the calibration results to avoid introducing a priori 

knowledge. Additionally, to compare at a consistent time resolution, PML-V2(China) estimates in cross-validation mode 
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need to be up-scaled to an 8-day average or remain a daily scale, depending on the temporal resolution of the comparison 

products. Specifically, PML-V2(China) is compared to GLEAM and SEBAL at the daily scale, compared to PML-

V2(Global), MOD16A2, MOD17A2H, EC-LUE, and VPM at the 8-day scale. 280 

Table 3 provides a direct comparison of model performance among varieties of ET or GPP products against observations 

overall from 26 ground stations. It is evident that PML-V2(China) excels other state-of-the-art ET or GPP products, 

presented by NSE being 0.12 ~ 7.76 higher for ET and 0.07 ~ 0.79 higher for GPP, R being 0.07 ~ 0.68 higher for ET and 

0.04 ~ 0.51 higher for GPP, and RMSE being 0.15 ~ 3.62 mm d-1 lower for ET and 0.24 ~ 1.98 g C m-2 d-1 lower for GPP. 

Specifically, at a daily scale, PML-V2(China) ET exhibits the highest NSE value of 0.66, followed by GLEAM (0.44) and 285 

SEBAL (-7.10). PML-V2(China) daily ET achieves the highest R (0.84), followed by GLEAM (0.69) and SEBAL (0.16); 

correspondingly it obtains the smallest RMSE (0.33 mm d-1), followed by GLEAM (1.04 mm d-1) and SEBAL (3.94 mm d-1). 

SEBAL is the worst performer, although its Bias of the closest to 0 (Table 3) because it is far away from the observed values 

significantly yielding a Bias value over 50% or less than -50% among five PFTs (Fig. 7). At the 8-day scale, PML-V2(China) 

outperforms PML-V2(Global) and MOD16A2 for estimating ET, with the highest value of NSE (0.74), R (0.87), and the 290 

lowest RMSE (0.66 mm d-1). Moreover, PML-V2(China) has also the best performance in estimating 8-daily GPP, followed 

by PML-V2(Global), MOD17A2H, VPM, and EC-LUE, indicated by three statistics: NSE, R, and RMSE. In summary, PML-

V2(China) performs well when compared with other mainstream ET or GPP products. 

Figure 7 displays the performance comparison of four ET products with PML-V2(China) under nine PFTs. The simulated 

ET by PML-V2(China) has greater NSE and R, and less RMSE values than the other four products in most PFTs, especially 295 

in EBF, SAV and WET. All models have poor performance with NSE being lower than 0 except for PML-V2(China) in EBF 

and SAV. But PML-V2(China) is not the best in both ENF and BSV. In BSV, most models perform poorly, rendered by NSE 

being lower than 0 except for GLEAM (0.50) and PML-V2(China) (0.07 for the daily scale; 0.11 for the 8-day scale). And 

only SEBAL achieves worse results than PML-V2(China) in ENF. As shown in Fig. 8, PML-V2(China) performs 

significantly better than other advanced methods in CRO, MF, ENF, EBF, SAV, and BSV, producing higher NSE, R, and 300 

lower RMSE and Bias. While PML-V2(China) ranked second in GRA (following MOD17A2H), OSH (following PML-

V2(Global)), and WET (following PML-V2(Global)). Synthetically, PML-V2(China) successfully captures the sites’ 

seasonality in most PFTs compared to the high-resolution ET/GPP datasets currently available. 

3.2.2 Comparisons at the basin-scale using ETwb 

In addition to testing the model at a plot-scale, Figure 9 (a-e) presents the ET validations from PML-V2(China) and four ET 305 

products based on RS against the annual ETwb in the 10 major river basins of China during 2003-2013. It illustrates that 

PML-V2(China) shows the best performance among them, as indicated by the highest NSE (0.82) and the lowest RMSE 

(69.59 mm yr-1) and Bias (6.28%) values. This is closely followed by the GLEAM and PML-V2(global) with NSE values of 

0.36 and 0.26, respectively. However, MOD16A2 and SEBAL tend to overestimate ET in the majority of basins with much 

smaller NSE values of -0.21 and 0.02, respectively, which are consistent with the performance evaluations using the EC 310 
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observation shown in Fig.7. Above basin-wide evaluations, together with the plot-scale validations against EC observation 

data, demonstrate PML-V2(China) overall performing best among the tested products selected in this study. 

Fig. 9 (f) illustrates an inter-basin comparison of the 11-year mean ET of 2003–2013 within the five ET products. PML-

V2(China) performs well in most basins (Biases within ±15%) except for the Northwest and Southwest Basins, where ET is 

overestimated by 24.96% and 61.57%, respectively. Even so, PML-V2(China) performs best in the Southeast River Basin 315 

with Bias of -3.80%, which is still better than the five ET products selected herewith Bias ranging from 15.93% to 62.42%. 

Although PML-V2(China) overestimates ET in the Northwest to a large extent, it performs best relative to its global version 

(84.88%) and another ET product MOD16A2 (152.70%). 

3.3 Spatial patterns and annual variations of ET, Ec, Ei, Es, GPP, and WUE 

Fig. 10 illustrates the spatial distribution of the multi-year (2001-2020) mean annual ET and three components (i.e., Ec, Ei, 320 

and Es) from PML-V2(China) across China. In general, the ET shows an increasing gradient from the northwest to the 

southeast (Fig. 10a). High annual ET (> 900 mm) is mainly located in the water bodies, Hainan Island, and western Taiwan, 

while most parts of the Northwest River Basin exist the low annual ET (< 100 mm), especially in the western Inner 

Mongolia and Gansu, and southern Xinjiang. Annual ET experiences a statistically insignificant increasing trend during 

2001-2020 with a tendency of 0.65 mm yr-1 (p > 0.05). On the whole, the mean annual ET over China is 393.41 ± 10.9 mm 325 

yr-1 (mean ± standard deviation) over the last 20 years. For three components, Ec and Ei products display a similar spatial 

distribution with annual ET, while high Es values (> 400 mm yr-1) are mainly scattered in higher soil moisture content areas 

including the Tibet Plateau, Pearl River Delta, and Yangtze River Delta (Fig. 10b-d). High Ec (> 600 mm yr-1) and Ei (> 80 

mm yr-1) values overall occur in the tropical and subtropical forests (e.g., Southwest River and Pearl River Basins), but low 

Ec (< 50 mm yr-1) and Ei (< 5 mm yr-1) values in the Northwest River Basin except for the Tianshan, Altai, and Qilian 330 

mountains. Especially, low Ei values also appear in the cropland areas, such as the Northeast Plain, North China Plain, and 

Sichuan Basin (Fig. 10c). For annual variation over China, Ec and Ei increase significantly during 2001-2020 with a rate of 

0.75 and 0.16 mm yr-1 (p < 0.001), respectively. However, annual Es shows a declining trend with an insignificant rate of 

−0.27 mm yr-1 (p < 0.05). 

The mean annual GPP shows similar spatial patterns compared to the mean annual ET, as indicated by Fig. 10a and Fig. 11a. 335 

High annual GPP (> 2000 g C m-2) mainly occurs in the tropical and subtropical forests and North China Plain where there 

exists the double-cropping system, but low annual GPP (< 100) in the arid zones such as the Northwest River Basin. On 

average, the multi-year GPP over China is 728.86 ± 53.9 g C m-2, and interannual change displays a steady rise trend with a 

rate of 8.51 g C m-2 yr-1 (p < 0.001) since 2001. Using the coupled estimation of PML-V2(China) model, we study WUE 

(GPP divided by ET) during 2001-2020 across China (Fig. 11b). This result indicates the high annual WUE (>3 g C m-2 H2O) 340 

occurring in the forests and cropland, particularly in Northeast China and North China Plain. The annual variation of WUE is 

similar to that of GPP, with a significant increasing trend (Slope = 0.02, p < 0.001). 
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4 Discussion 

4.1 Magnitude and trend in annual ET and GPP over China 

For annual ET over China, the multi-year (2001-2020) mean annual ET from PML-V2(China) is 393.41 ± 10.9 mm (Fig. 345 

10a). This result is overall consistent with previous studies (Yin et al., 2021; Cheng et al., 2021; Ma et al., 2019a), which 

also the country-wide averaged annual ET over China range from 359 ~ 482 mm yr-1 based on a variety of models including 

the machine learning, RS, and land surface models. Furthermore, previous studies by Ren et al. (2015) and Wang et al. 

(2012a) show that the long-term mean precipitation and runoff in China are about 720 mm yr-1 and 280 mm yr-1, respectively. 

Hence, it is believed that an annual ET less than 440 mm could be reasonable in China (Ma et al., 2019). The annual mean 350 

GPP over China from our results is 728.86 ± 53.9 g C m-2 (Fig. 11a), which is lower than that of Jia et al. (2020) (771 g C m-

2), and higher than those of Yao et al. (2018) and Ma et al. (2019b) (690 g C m-2 and 710 g C m-2, respectively). These 

differences may associate with the distinctions in the time window and data sources (Jia et al., 2020).  

The PML-V2(China) ET has a slightly increasing trend but with not statistically significant from 2001 to 2020, which is 

consistent with the calculated ET using the Budyko equation (Feng et al., 2018; Su et al., 2022). In terms of annual GPP, we 355 

found that there is a significant (p < 0.001) increasing trend with a rate of 8.51 g C m-2 yr-1 during 2001-2020, in line with 

some other studies (Ma et al., 2019b; Yao et al., 2018; Ma et al., 2018). The most likely reason for the remarkable rise in 

GPP is the positive effect of ecological restoration projects in China (Tong et al., 2018). In fact, a large number of ecological 

restoration projects have been conducted since the 1990s, such as the Grain for Green project (Cao et al., 2009). These 

findings also confirmed that a significant increase in vegetation growth occurred in China over the past years, which agreed 360 

well with Ma et al. (2018). 

4.2 Advantages of this new dataset 

The multi-scale testing using EC observations and water balance showed that accuracy in ET and GPP by the present PML-

V2(China) is better than the global product of PML-V2 and other mainstream ET or GPP models (Table 3). The reasons may 

be twofold. The first is that the water-carbon coupled process is particularly important for estimating ET and GPP since the 365 

water and carbon process are highly coupled by the stomatal aperture at the leaf level. This result was also supported by Xiao 

et al. (2013) and Zhang et al. (2019) in their recent studies. Second, this study employed 26 EC observations to calibrate the 

PML-V2 in China, which shows better accuracy than the previous global-scale ET and GPP estimates that were obtained 

using few EC observations to constrain the parameters. This indicates that more EC observations will facilitate the 

improvement of ET and GPP estimates. In fact, although the EC sites of MOD16A2 (72 EC sites), GLEAM (91 EC sites), 370 

and PML-V2(Global) (95 EC sites) are more than in this study, there are only 0, 8, and 8 sites in China, respectively (Table 

1). In particular, the SEBAL model only used eight EC sites for three PFTs (i.e., forests, cropland, and grassland).  

In addition to the advantages of the overall accuracy in ET and GPP in the present study, the PML-V2(China) showed its 

strong ability to reveal the characteristics of the water consumption from the croplands that have the double-cropping system. 
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The GTZ in Hebei, DXZ in Beijing, and CF-YCA in Shandong are the only three observed sites with winter wheat - summer 375 

maize rotation cropping systems. We compared the intra-annual variation of the simulated ET and GPP between PML-

V2(China) and other products against the EC-observed values at the three cropland sites (Fig. 12). In theory, when the winter 

wheat is harvested, the ET or GPP should decline to their valley values in June, which often occur between the two peaks 

(i.e., the reproductive growth stage of winter wheat and summer maize, respectively) within a given year. With this in mind, 

it can be seen that PML-V2(China) has improved its ability when compared to its global version, as has been indicated by its 380 

better performance in capturing the time when the lowest ET and GPP values emerged. This is mainly because an improved 

weighted Whittaker smoother was carried out to get better quality of LAI, as described in Section 2.2.1. While the GLEAM 

is also able to detect the time when the valley values appeared, it underestimates ET evidently during the wheat growing 

season. In terms of the SEBAL and MOD16A2, both have much poorer performances in detecting such intra-annual 

variations in ET. Regarding other GPP models, only MOD17A2H can catch the time when the valley values appear. 385 

However, it substantially underestimates GPP in winter both wheat and summer maize growing seasons. 

4.3 Implications of PML-V2(China) 

Based on the substantial advantages discussed above, PML-V2(China) has great implications and application prospects. For 

instance, daily outputs from PML-V2(China) can be better used by the agricultural and water sectors for operational 

applications. Timely access to daily data at the regional or national scale helps the Ministry of Agriculture and Water 390 

Resources to develop better policies. Indeed, there is a remarkable relationship between soil water content and ET (Graf et 

al., 2014; Brust et al., 2021), so getting daily ET information accurately is of great significance for soil water depletion 

assessment, irrigation system design, and water resources management in agricultural areas, such as in the North China Plain. 

On the other hand, this dataset has better simulations of carbon consequences and water use efficiency, which is important 

for carbon-neutron policy (Yang et al., 2022). According to this study, vegetation in China exhibits a huge potential for 395 

carbon sequestration in the water-carbon cycles and plays an important role in the global carbon cycle. 

4.4 Uncertainties 

4.4.1 Eddy-covariance method and water-balance formula 

Although PML-V2(China) showed relatively good performance when compared to the EC sites and water-balance-based 

evapotranspiration (ETwb), there exist several uncertainties related to the observed data (i.e., flux sites and ETwb). First, the 400 

EC technique, considered as a standard way to measure surface fluxes (Aubinet et al., 1999; Liu et al., 2011; Baldocchi, 

2014), meets some issues as well including corrections when processing the turbulence data and from energy non-closure 

problem. The corrections, such as the spike detection, lag correction of H2O and CO2 based on the vertical wind, 

coordinating rotation, corrections for density fluctuation, and frequency response correction, had been pre-processed before 

the investigators shared data. Nevertheless, there is evidence that diverse data processing designs may lead to errors of 10% 405 
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~ 15% (Mauder et al., 2007). Besides, systematic bias in device, the loss from the contribution of low-frequency eddies to 

energy transmission and the ability to capture larger eddies and the secondary circulations, could cause the energy-imbalance 

problem (Liu et al., 2011). Hence, there are usually two schemes to deal with the energy non-closure issue for EC users, that 

is, to perform energy closure correction (Cheng et al., 2021), or to maintain the original four-component data including latent 

heat (LE), sensible heat (H), soil heat flux (G) and net radiation (Rn) (Zhang et al., 2019; Ma and Zhang, 2022). We chose 410 

the second method in this study, considering that (i) forcing energy closure will introduce new errors artificially, and (ii) 

most Chinese EC observation towers lack G and Rn. The observed ET calculated from latent heat flux of the site without 

energy closure correction will be slightly less than the real value, resulting in a smaller ET simulated by the model 

determined by calibration using the sites. This phenomenon is not fully reflected in comparing with the basin ET based on 

the water-balance calculation that only in the Pearl and Southeast River Basin PML-V2(China) underestimates multi-year 415 

mean ET (Fig. 9f), because the ETwb used for assessing the simulation performance of models also needs to be explored its 

accuracy. 

Second, the inconsistency of the grid cell and EC footprint could also result in uncertainty when compared rudely to the 

measurements. Generally, the EC towers have a footprint of 100 -1000 m2, which is usually decided by tower height and 

heterogeneity of the underlying surface (Liu et al., 2016; Xu et al., 2017). For example, the footprint of the forest sites is 420 

larger than the grassland and wetland sites (Chen et al., 2012). In this study, PML-V2(China) model is first calibrated at 

500m grid cell avoiding the inconsistency issue to some extent. However, there still exists a mismatch between the grid cell 

center and EC sites. In this regard, higher spatial resolution products or additional ground observations at relevant scales 

would be beneficial for the cross-validation of the modelling grid cell (Ma et al., 2019a). Note also that the limited flux sites 

for some PFTs may introduce extra uncertainties for model parameters since only one site was available for the OSH, SAV, 425 

EBF, and MF in this study. In fact, we artificially construct multiple site samples in the above PFTs sites, utilizing the 

characteristics of the long time series of these sites. Nevertheless, the terrestrial biome of the sole flux site maybe not typical 

in other climate zones for the same PFT (Cheng et al., 2021). Therefore, more flux sites for the same PFT are necessary to 

calibrate the model. 

Third, ET derived from water-balance over China was invested as a reference at the basin-scale, although the results may be 430 

affected by some sources of uncertainty. For instance, the applicability of water-balance relies on its formula composition. In 

this paper, the water storage change (in Equation 7) from GRACE was included for purpose of reducing the uncertainties in 

estimating annual ETwb. Those studies not using TWSC in ETwb may not explain the decreasing groundwater such as in the 

Hai River Basin due to the human water extraction, which is not conducive to the credibility of the verification results 

(Cheng et al., 2021). In addition, the precision of its input data also affects the reliability of ETwb (Mao and Wang, 2017). 435 

Precipitation, as the main source for ET, impacts ETwb to varying extent. Nevertheless, precipitation data are derived from 

observations of field rain gauge network and its usability relies on the intensive and high-quality ground observations, which 

makes the Prcp estimates from statistics of stations worse in the less populated remote regions or areas having highly various 

topography, particularly in the west China (Immerzeel et al., 2015; Tang et al., 2016; Zhong et al., 2019). Zhong et al. (2019) 
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evaluated three precipitation products in China and found that there was a slight overestimation in the west of China and an 440 

obvious underestimation in the west-Tibet Plateau. Accordingly, it could be stated that ETwb was overestimated in Pearl and 

the Southeast and underestimated in the Southwest River basin using Eq. 7. 

4.4.2 Input data 

While the daily ET and GPP of the PML-V2(China) product (in the calibration mode) simulated well against 26 flux sites 

overall (Fig. 3) and in most PFTs (Fig. 4), PML-V2(China) in calibration is degraded compared to its cross-validation (Fig. 445 

4), such as in GRA. In this study, we got one parameter set for the GRA type by employing eight sites, including the sparse 

grassland (QZ-BJ) and the dense grassland (QZ-NAMORS). Although it may be appropriate to use diverse parameter values 

for estimating ET and GPP by further dividing the grassland type into finer land types, this comes at the expense of ignoring 

the possible interannual changes in land types because few LUCC maps with fine classifications and annual resolutions 

simultaneously (Ma and Zhang, 2022). 450 

PML-V2(China) mainly used the remote sensing and meteorological data (e.g., MODIS, CMFD, GLDAS-2.1, and ERA5) as 

the inputs (see section 2.2). However, there are still some uncertainties in these data (Zhang et al., 2019; Cheng et al., 2021). 

For example, we used the land cover datasets (MCD12Q1.006) as the PFTs data across China. However, there exist 

misclassification issues for MCD12Q1 because of spectral confusion (e.g., savannas and grasslands) and coarse resolution 

(e.g., the mixed pixel of cropland and natural vegetation) (Zhang et al., 2019; Liang et al., 2015; Adzhar et al., 2022). 455 

Moreover, LAI is a critical variable describing vegetation growth, and its temporal changes affect stomatal conductance and 

further affect the transpiration rate from the vegetation canopy. Using LAI, PML-V2(China) model simulated Ec and Ei 

components at the canopy scale. To avoid noise issues caused by clouds, shadows, snow, and so on, MODIS LAI in this 

study has been smoothed by the weighted Whittaker smoother which can deal with underestimation and inefficiency issues 

(Kong et al., 2019). However, there are still underestimates in the sparse vegetation areas. This may explain why the ET and 460 

GPP estimates are poor in BSV (Fig. 7 and Fig. 8). 

To extend the simulation period, we used GLDAS-2.1 meteorological forcing data during 2019-2020 since the CMFD 

dataset is only up to 2018. To check if using these two datasets generates a systematic bias, we reran the PML-V2(China) in 

2001-2018 using GLDAS-2.1 and compared the modelling results with those obtained using CMFD (Fig. S1). At the 

national scale, the mean difference, calculated by (PML-V2(China)GLDAS-2.1 − PML-V2(China)CMFD)/PML-V2(China)CMFD, 465 

varied from -1.22% to 1.62% among Ei, Ec and GPP, and was 13.72% for Es and 7.78% for ET. The difference is within -25% 

~ 25% in more than 66% of the research region for all five variables (Fig. S1b2-e2), specifically 100% for GPP, 95% for Ec, 

84% for ET, 73% for Ei, and 66% for Es (Fig. S1b3-e3). This illustrates that PML-V2(China) using the GLDAS-2.1 in 2019-

2020 does not generate a noticeable systematic deviation. 

Additionally, downscaling uncertainties could be also introduced by the bilinear interpolation method which has been 470 

applied to minimize the footprint impact of coarse meteorological inputs, such as CMFD (Fig. 1). This approach depends 

only on nearby grid cells to downscale, which could neglect the other relative supports. For instance, precipitation is not only 
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related to the surrounding precipitation but also location and terrain (e.g., elevation and aspect) (Yue et al., 2020). Chao et al. 

(2018) found that gridded precipitation products in the high-altitude regions are far below what is inversely inferred by 

glacier mass balances. Consequently, the geographically weighted regression method coupled with a weighting function 475 

could work well to interpolate meteorological data (Chao et al., 2018). 

5 Conclusions 

This study developed a daily, 500m ET and GPP data product (PML-V2(China)) using the locally calibrated water-carbon 

coupled model, PML-V2. The model has been well-calibrated against observations at 26 flux sites across nine plant 

functional types, and it performs satisfactorily in the cross-validation mode. More importantly, the plot- and basin-scale 480 

evaluations suggest that the newly developed product outperforms not only the global version of PML-V2 but also other 

mainstream RS-based ET and/or GPP products. With such a new product, we investigated spatial patterns and trends in ET 

and its components (Ec, Ei, Es), GPP, and WUE from 2001-to 2020 across China. In short, the present PML-V2(China) 

product has the following advantages: (i) the water output is tightly constrained by carbon flux; (ii) it has high spatial and 

temporal resolutions simultaneously; (iii) it obtains the improved accuracy in ET and GPP across different plant functional 485 

types because of the optimal parameter sets for China by exploiting 26 EC sites; and (iv) showing the better ability to reveal 

the ET and GPP for the croplands with the double-cropping system. In summary, we provide a novel daily and 500m 

resolution ET and GPP product across China, which can be used by research communities and various water and ecological 

departments for operational applications. 
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Table 1: Summary of typical ET and GPP products with high temporal and/or high spatial resolutions. 

Variable 
 

Dataset 

abbreviation  

Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

Principle or 

model 
EC evaluation Reference 

 

ET MOD16A2 500m 8-day 2001-present PM 

72 EC sites in 

AmeriFlux (no 

using sites in 

China) 

Mu et al. (2011) 

ET SEBAL 1000m daily 2001-2018 

one-source 

model of 

surface energy 

balance 

residual 

8 EC sites in 

China  

Cheng et al. 

(2021) 

ET GLEAM 0.25° daily 1980-2020 P-T 

91 global EC 

sites (including 

8 sites in China) 

Miralles et al. 

(2011a) and 

Martens et al. 

(2017) 

GPP MOD17A2H 500m 8-day 2000-present  LUE Not performed. 
Running et al. 

(2015) 

GPP VPM 500m 8-day 2000-2019  LUE 

113 global EC 

sites (including 

8 sites in China) 

Zhang et al. 

(2017), Zhang et 

al. (2017); 

Zhang et al. 

(2021) 

GPP EC-LUE 0.05° 8-day 1982-2018  LUE 

95 global EC 

sites (including 

7 sites in China) 

Zheng et al. 

(2020) 

ET, GPP 
PML-V2 

(Global) 
500m 8-day 2000-2020 PML-V2 

95 global EC 

sites (including 

8 sites in China) 

Zhang et al. 

(2019) 

ET, GPP 
PML-V2 

(China) 
500m daily 2000-2020 PML-V2 

26 EC sites in 

China  
This study 
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Figure 1: Flowchart of EC flux and AWSs data pre-processing and PML-V2 model processing which is used to convert RS images 825 
and meteorological forcing images into GPP, Ec, Ei, Es, Ew, and ET. For pre-processing part: NEE (Net Ecosystem Exchange, µmol 

m-2 s-1), LE (Latent heat, W m-2), Rg (incoming radiation, W m-2), rH (relative humidity, %), Ta (air temperature, °C), and QC 

(Quality Control). For the PML-V2 model part: Tmax (daily maximum temperature, °C), Tmin (daily minimum temperature, °C), 

Tavg (daily mean temperature, °C), Pa (atmosphere pressure, kPa), U (wind speed at 10-m height, m s-1), q (specific humidity, kg 

kg-1), Prcp (precipitation, mm d-1), Rl (inward longwave solar radiation, W m-2), Rs (inward shortwave solar radiation, W m-2), Pi 830 
(the difference of Prcp and Ei, mm d-1), Es_eq (equilibrium evaporation, mm d-1), ET_w (evaporation from water body, snow and 

ice, mm d-1) and GEE (Google Earth Engine).  
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mean:
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Fill gap and partition flux to get observed 
ET  and GPP of 0.5-hr
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Figure 2: Geographical locations of 26 EC flux towers for nine major IGBP PFTs, the main rivers and the ten major river basins 835 
in China. Overlain are 20-year mean annual aridity index (AI) values during 2001-2020 using GLDAS-2.1, that is, the ratio of 

annual precipitation to Penman potential evapotranspiration. PFTs shown in legend are ENF (Evergreen Needleleaf Forests), EBF 

(Evergreen Broadleaf Forests), MF (Mixed Forests), OSH (Open Shrublands), SAV (Savannas), GRA (Grasslands), WET 

(Permanent Wetlands), CRO (Croplands), and BSV (Barren Sparse Vegetation). 

 840 
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Table 2: Details of 26 EC flux towers employed in this study. Note that AP indicates mean annual precipitation and AT refers to 

mean annual temperature in its observed period. 

Site code Site name IGBP 
Latitude 

(°E) 

Longitude 

(°N) 

AP 

(mm 

yr-1) 

AT 

(˚C) 

 

Time 

coverage 
References 

ARCJZ Arou GRA 38.0473  100.4643  521  -2.7  2013-2017 Liu et al. (2018) 

BNXJL 
Xishuangbanna 

rubber 
EBF 21.9000  101.2667  1765  22.1  2013 Yu et al. (2021) 

CF-CBF 
Chinaflux 

Changbai forest 
MF 42.4025  128.0958  608  4.3  2003-2010 

Zhang et al. 

(2006a) 

CF-HBG_S01 
Chinaflux Haibei 

grassland 
OSH 37.6653  101.3311  610  -5.9  2003-2010 Hui et al. (2021) 

CF-

HBG_W01 

Chinaflux Haibei 

wetland 
WET 37.6086  101.3269  616  -3.9  2004-2006 

Zhang et al. 

(2020a) 

CF-NMG 

Chinaflux 

Neimengu 

grassland 

GRA 43.3233  116.4036  387  1.2  2004 Hao et al. (2020) 

CF-QYF 
Chinaflux 

Qianyanzhou forest 
ENF 26.7414  115.0581  1490  19.3  2004-2006 Wen et al. (2006) 

CF-YCA Chinaflux Yucheng CRO 36.8290  116.5702  602  14.8  2006-2007 Zhao et al. (2021) 

CN-Cng Changling GRA 44.5934  123.5092  364  6.5  2007-2010 
Dong et al. 

(2011) 

CN-Du2 
Duolun_grassland 

(D01) 
GRA 42.0467  116.2836  388  3.0  2006-2008 Chen et al. (2009) 

CN-HaM 
Haibei Alpine 

Tibet site 

GRA 37.6975  101.2733  534  -4.0  2002-2004 Kato et al. (2006) 

DMCJZ Daman CRO 38.8555  100.3722  163  9.2  2017 Liu et al. (2018) 

DSLZ Dashalong WET 38.8399  98.9406  346  -8.3  2015-2018 Liu et al. (2018) 

DXZ Daxing CRO 39.6213  116.4271  547  12.7  2010 Liu et al. (2013) 

DYKGTSLZ 
Dayekouguantan 

forest 
ENF 38.5337  100.2502  228  0.2  2010-2011 Li et al. (2009) 

GTZ Guantao CRO 36.5150  115.1274  433  14.0  2008 Liu et al. (2013) 

HLZ Huailai CRO 40.3491  115.7880  377  10.2  2014 Liu et al. (2013) 

HZZHMZ 
Huazhaizi Desert 

Steppe 
BSV 38.7659  100.3201  167  8.7  2017 Liu et al. (2018) 

MYZ Miyun CRO 40.6308  117.3233  584  9.0  2008 Liu et al. (2013) 

QZ-BJ Tibetan Plateau BJ GRA 31.3688  91.8988  460  0.2  2011-2013 Ma et al. (2020) 
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QZ-

NAMORS 

Tibetan Plateau 

NAMORS 
GRA 30.7730  90.9632  405  -0.3  2008-2009 Ma et al. (2020) 

QZ-QOMS 
Tibetan Plateau 

QOMS 
BSV 28.3607  86.9491  199  1.2  2015 Ma et al. (2020) 

YJGRHG 
Yuanjiang dry-hot 

valley 
SAV 101.2667  21.9000  876  20.2  2014 Yang et al. (2021) 

YKGQLZZ Yingke CRO 38.8569  100.4103  85  8.3  2011 Liu et al. (2018) 

YKZ Yakou GRA 38.0142  100.2421  484  -1.2  2016-2018 Liu et al. (2018) 

ZYSDZ Zhangye wetland WET 38.9751  100.4464  146  8.8  2013-2018 Liu et al. (2018) 
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Figure 3: Scatter plots between the observed ET and GPP against PML-V2(China) simulations in calibration and cross-validation 845 
modes: daily comparisons in the left panels and site mean comparison in the right panels. 
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Figure 4: Comparison of ET and GPP between PML-V2(China) model calibration and validation across ten PFTs. 
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Figure 5: The daily ET simulated by PML-V2(China) in calibration mode and the observed daily ET variation in time series from 

26 EC sites (see Figure 2) across China. ‘ALL’ represents the site mean value for each EC site. 
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 855 
Figure 6: The daily GPP simulated by PML-V2(China) in calibration mode and the observed daily GPP variation in time series 

from 26 EC (see Figure 2) sites over China. ‘ALL’ represents the site mean value for each EC site. 
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Table 3: Statistical indicators of PML-V2(China) and other models for simulating ET and GPP at 26 EC flux towers. NSE and R 

values are unitless. The unit of RMSE for ET is mm d-1 while it is g C m-2 d-1 for GPP. The unit of Bias is %. 

Scale Variable Models NSE R RMSE Bias 

daily ET PML-V2(China) 0.66 0.84 0.33 -7.97 

    GLEAM 0.44  0.69  1.04  -14.45  

    SEBAL -7.10  0.16  3.95  5.31  

8-day ET PML-V2(China) 0.74  0.87  0.66  -11.54  

    PML-V2(Global) 0.62  0.80  0.81  -5.05  

    MOD16A2 0.37  0.63  1.07  -10.90  

8-day GPP PML-V2(China) 0.75  0.87  1.93  -6.51  

    PML-V2(Global) 0.68  0.82  2.17  -1.74  

    MOD17A2H 0.49  0.78  2.74  -38.79  

    EC-LUE -0.04  0.35  3.91  -41.91  

    VPM 0.21  0.60  3.41  -8.21  

 865 
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Figure 7: Statistical indicators of PML-V2(China) and other models for estimating ET at each PFTs. Open and solid dots 

represent PML-V2(China) estimated ET in cross-validation mode and other models. For the daily temporal resolution of GLEAM 

and SEBAL, PML-V2(China) is also daily scale; while for 8-day resolution of PML-V2(Global) and MOD16A2, the referred PML-

V2(China) is upscaled to 8-day. Note that ‘(+)’ indicates the model’s simulation statistics dot is more than the upper bound while 870 
‘(-)’ indicates the model’s simulation statistics dot is less than the low bound. 
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Figure 8: Statistical indicators of PML-V2(China) and other models for estimating GPP at each PFTs. Open and solid dots 

represent PML-V2(China) estimated GPP in cross-validation mode and other models. PML-V2(China) is upscaled to 8-day to 875 
compare with the 8-day resolution of PML-V2(Global), MOD17A2H, EC-LUE, and VPM. Note that ‘(+)’ indicates the model’s 

simulation statistics dot is more than the upper bound while ‘(-)’ indicates the model’s simulation statistics dot is less than the low 

bound. 
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 880 
Figure 9: Annual evapotranspiration (ET) of (a) PML-V2(China), (b) PML-V2(Global), (c) MOD16A2, (d) GLEAM, and (e) 

SEBAL plotted against the water-balanced derived ET (ETwb) values for ten major river basins over China during 2003–2013. The 

boxplot in (f) shows a multi-year mean of the five ET products above per river basin. 
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 885 
Figure 10: Spatial pattern of mean annual ET, Ec, Ei, Es and their interannual changes during 2001–2020. In all insets, the shaded 

area represents the standard deviation of the simulated data. The number in the parentheses of each inset is mean ± standard 

deviation in the past 20 years over China. 
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  890 
Figure 11: Spatial pattern of mean annual GPP and WUE and their interannual changes during 2001–2020. The shaded area in 

the inset represents the standard deviation of the simulated data. The number in the parentheses of each inset is mean ± standard 

deviation in the past 20 years over China. 
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 895 
Figure 12: The intra-annual variation of (a) ET at three crop-rotation stations between the observed and the simulated by PML-

V2(China) in validation mode, PML-V2(Global), SEBAL, GLEAM, and MOD16A2, respectively; (b) GPP at three crop-rotation 

stations between the observed and the simulated by PML-V2(China) in validation mode, PML-V2(Global), EC-LUE, VPM, and 

MOD17A2H, respectively. The blue dotted lines above pass through the lowest values between the two peaks of the observed ET or 

GPP per year. Note that all variables are averages every 8 days although units are per day. 900 
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