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Abstract. Accurate high-resolution actual evapotranspiration (ET) and gross primary production (GPP) information is 10 

essential for understanding the large-scale water and carbon dynamics. However, substantial uncertainties exist in the current 

ET and GPP datasets in China because of insufficient local ground measurements used for model constrain. This study utilizes 

a water-carbon coupled model, Penman-Monteith-Leuning Version 2 (PML-V2), to estimate 500m ET and GPP at a daily 

scale. The parameters of PML-V2(China) were well-calibrated against observations of 26 eddy covariance flux towers across 

nine plant functional types in China, indicated by Nash-Sutcliffe Efficiency (NSE) of 0.75 and Root Mean Square Error (RMSE) 15 

of 0.69 mm d−1 for daily ET respectively, and NSE of 0.82 and RMSE of 1.71 g C m-2 d−1 for daily GPP. The model estimates 

get a small bias of 6.28% and a high NSE of 0.82 against water‐balance annual ET estimates across 10 major river basins in 

China. Further evaluations suggest that the newly developed product is better than other typical products (MOD16A2, SEBAL, 

GLEAM, MOD17A2H, VPM, and EC-LUE) in estimating both ET and GPP. Moreover, PML-V2(China) accurately monitors 

the intra-annual variations in ET and GPP in the croplands with a dual-cropping system. Using the new data showed that during 20 

2001-2018, the annual GPP and water use efficiency experienced a significant (p < 0.001) increase (8.99 g C m-2 yr-2 and 0.02 

g C mm-1 H2O yr-1, respectively), but annual ET showed a non-significant (p > 0.05) increase (0.43 mm yr-2). This indicates 

that vegetation in China exhibits a huge potential for carbon sequestration with little cost in water resources. The PML-

V2(China) product provides a great opportunity for academic communities and various agencies for scientific studies and 

applications, freely available at http://dx.doi.org/10.11888/Terre.tpdc.272389 (Zhang and He, 2022). 25 

1 Introduction 

Terrestrial evapotranspiration (ET) and photosynthesis (or gross primary productivity, GPP) are indispensable processes in 

hydrological and carbon cycles at global and regional scales. Forming the second largest water flux after precipitation in the 

terrestrial hydrological cycle, ET is the sum of plant transpiration (Ec), evaporation from the soil (Es), and canopy evaporation 
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from precipitation interception (Ei). Photosynthesis rate, tightly coupled to Ec by leaf stomata, is a key indicator of plant growth 

and provides food and fibre for human society. 

In recent decades, numerous studies have been carried out to map ET at regional, continental, and global scales. Particular 

credit goes to remote sensing (RS)-based models that provide diagnostic ET estimates with a relatively high spatiotemporal 

continuity and reasonable biophysical significance. For example, Miralles et al. (2011b) and Martens et al. (2017) developed 40 

a global and daily ET product employing the Global Land Evaporation Amsterdam Model 3.0a (hereafter GLEAM) based on 

the Priestley-Taylor (P-T) equation. Although GLEAM does a good job in temporal resolution, it has a coarse spatial resolution 

of 0.25°. Another widely used semi-empirical formula is Penman-Monteith (PM) equation. Mu et al. (2011) generated the 

MOD16A2 ET with 500m and 8-day resolutions based on PM equation as one global product of Moderate Resolution Imaging 

Spectroradiometer (MODIS). Leuning et al. (2008) developed the Penman-Monteith-Leuning (PML) model that described the 45 

physical characteristics of canopy-soil water loss by improving the surface conductance (Gs) formulations and Zhang et al. 

(2010) estimated PML-based ET at 0.05° and 8-day resolution across the Australian continent. Cheng et al. (2021) produced 

a 1-km and daily ET dataset across China by the Surface Energy Balance Algorithm for Land (SEBAL), but only evaluated 

the SEBAL product at eight EC sites of three land cover types. 

Apart from methods and products for the ET estimated above, numerous approaches have been used to estimate GPP, such as 50 

the enzyme kinetic (process-based) models (Houborg et al., 2013; Arain et al., 2006; Grant et al., 2005; Hanson et al., 2004; 

Medvigy et al., 2009), light use efficiency (LUE) principle (Liu et al., 2003; Turner et al., 2003; Yuan et al., 2007; Running et 

al., 2015; Zhang et al., 2017; Zheng et al., 2020), statistical methods (Potter et al., 1993; Hilker et al., 2008; Zhang et al., 2020b) 

and machine learning methods (Wolanin et al., 2019; Joiner and Yoshida, 2020; Huang et al., 2021). Among them, the LUE 

principle is well known because of its simple structure, strong portability, and relatively high temporal cover of inputs. Running 55 

et al. (2015) recently updated the global GPP product of MODIS (hereafter MOD17A2H) at 500m and 8-day resolutions using 

the LUE principle. Zhang et al. (2017) and Zhang et al. (2021) also mapped global GPP for 2000 - 2019 dubbed Vegetation 

Photosynthesis Model GPP V20 (hereafter VPM) with the same spatiotemporal resolution as MOD17A2H using an improved 

LUE model adding the energy absorbed by chlorophyll. Zheng et al. (2020) generated a global GPP dataset at 0.05° and 8-day 

intervals by a revised LUE model (hereafter EC-LUE) integrating the atmospheric CO2 concentration. 60 

Although significant efforts have been put into estimating ET and GPP, there are barely any coupled products available in 

China, which meet the requirement of high temporal (≤ 1 day) and high spatial (≤ 500m) resolutions simultaneously that is 

necessary to detect variations of the eco-hydrological cycle in diverse and large areas for a long term precisely (Table 1). For 

instance, products with low temporal resolutions are erratic to detect subtle seasonal changes in areas seriously affected by 

human activities and in arid regions, such as irrigated farmland with a dry climate (Bodner et al., 2015) and an evergreen 65 

broad-leaf Mediterranean forest during severe summer drought (Liu et al., 2015). On the other hand, products with high 

temporal resolutions like GLEAM can monitor the diurnal variability of ET, but their low spatial resolutions limit the 

effectiveness in fine-scale environment applications (Gevaert and García-Haro, 2015). 
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Secondly, the phenomenon of ignoring the water-carbon coupling process frequently appearing in the existing products has 70 

brought systematic errors. The photosynthesis and transpiration are coupled by the plant stomatal control on both water and 

carbon exchange between the land ecosystem and the atmosphere (Xiao et al., 2013; Zhang et al., 2019). As indicated in Table 

1, MODIS ET and MODIS GPP products are independent of each other, and cannot ensure similar biophysical characteristics 

of vegetation in the same place. Furthermore, using ET and GPP from different products can lead to large uncertainty in 

analysing the interaction between ET and GPP such as water use efficiency of ecosystem (WUE is the ratio of GPP to ET). In 75 

that case, it is necessary to build a coupled ET and GPP model considering the water-carbon coupling process. Zhang et al. 

(2019) developed the second generation of PML (i.e., PML-V2 model) that estimates Gs using a water-carbon coupled model 

and mapped global ET and GPP at 500m and 8-day resolutions in 2002-2017. 

More importantly, previous studies utilized sparse ground observations in China (as shown in Table 1) that covered few 

terrestrial ecosystems for models’ calibration and validation, resulting in improper input parameters, and making it difficul t to 80 

obtain more reliable estimates of ET and GPP in diverse landcover types (Heinsch et al., 2006, Anon, 2013). Although the 

eddy-covariance (EC) flux sites have provided consecutive measurements of water and carbon fluxes since the early 1990s 

(Xiao et al., 2013; Wofsy et al., 1993; Baldocchi et al., 2001), the EC observed data in China remain much sparser than those 

in North America and Europe, and most of them are not publicly available, impeding a national scale constraint of RS-based 

models for improving ET and GPP estimates (Villarreal and Vargas, 2021; Chu et al., 2017). For instance, GLEAM which 85 

only employed 8 EC sites over China overestimates ET at a large scale, especially for evergreen needleleaf forest, evergreen 

broadleaf forest and mixed forest (Li et al., 2018). Therefore, the uncertainty in estimating ET and GPP is large, and it requests 

sufficient EC flux sites to calibrate and validate ET and GPP models for better local and regional applications. 

In addition, understanding the spatial and temporal pattern of ET and GPP is particularly important for China, the largest 

contributor to the absolute growth of greenhouse gases that directly induces global warming over the past decade (Minx et al., 90 

2021). On the other hand, China owns huge carbon sequestration potential of terrestrial ecosystems for slowing accumulation 

of atmospheric carbon dioxide and mitigating climate change. Additionally, given China's water shortage, it is crucial to clearly 

understand water budgets and transportation (Ma et al., 2020). Therefore, it becomes vital to estimate GPP and ET accurately 

across China under changes in climate and land cover types. 

Facing the above challenges, this study utilizes a water-carbon coupled and remote sensing-based model, PML-V2 that is 95 

constrained against the most comprehensive observations in China (i.e., 26 EC observations across nine plant functional types 

(PFTs)), to generate daily and 500m ET and GPP gridded products from 2000 to 2020. We then test whether the newly 

developed product for China outperforms PML-V2(global) and other mainstream products (i.e., MOD16A2, SEBAL, GLEAM, 

MOD17A2H, VPM, and EC-LUE), and investigate annual change and spatial pattern in ET and its components: plant 

transpiration (Ec), evaporation from the soil (Es), and canopy evaporation from precipitation interception (E i) , GPP and WUE 100 

in 2001-2018 across China. It is noted that that the years of 2019-2020 have not been selected for trend analysis. This is because 

that a different forcing dataset was used to drive PML-V2 (details are provided in section 2.2.2). 

The novelties of this study mainly include:  
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(i) Observation data from 26 EC flux stations in nine PFTs across China are employed for constraining the PML-V2 calibration 110 

for estimating ET and GPP;  

(ii) The country-specific meteorological forcing, i.e., the China Meteorological Forcing Dataset (CMFD), is used to drive the 

PML-V2 in China, which is more accurate than those forcings extracted from global forcing products; 

(iii) The PML-V2(China) product is generated with a daily resolution, compared to the previous global product with a temporal 

resolution of 8-day; and 115 

(v) Improving intra-annual ET and GPP dynamics for various ecosystems, particularly for the cropland ecosystem, which 

provides more accurate estimates and monitoring of agricultural water consumption, compared to other mainstream products. 

2 Materials and methods 

2.1 Description of the PML-V2 model 

PML-V2 model is a water–carbon coupled diagnostic biophysical model. Compared to the old version that does not calculate 120 

GPP and the effect of CO2 on evapotranspiration, PML-V2 adopted coupling a photosynthesis model (Farquhar et al., 1980) 

and an improved canopy stomatal conductance model (Yu et al., 2004) with the Penman–Monteith (P-M) equation to estimate 

GPP and 𝐸𝑐 collectively (Gan et al., 2018). Zhang et al. (2019) further improved PML-V2 by incorporating the vapor pressure 

deficit constraint to GPP that is then used to constrain canopy conductance and 𝐸𝑐. The detailed descriptions of PML-V2 are 

provided in the supplement. 125 

2.2 Model input data 

2.2.1 Remote sensing data 

MODIS collections with 500m spatial resolutions from February 26, 2000 to December 31, 2020 (hereafter 2000-2020) are 

used, which includes the LAI from MOD15A2H.006 (Myneni et al., 2015), the albedo from MCD43A3.006 product (Schaaf 

and Wang, 2015), and the surface emissivity from MOD11A2.006 (Wan et al., 2015). The smoothed LAI inputs for PML-130 

V2(China) utilized the weighted Whittaker smoother with dynamic lambdas instead of a constant lambda to eliminate missing 

or unreliable pixels due to noise contaminations by snow, shadow, cloud, etc, compared with the PML-V2(Global) (Kong et 

al., 2019; Zhang et al., 2019). The improved LAI can better express peaks and seasonal changes. The albedo and surface 

emissivity inputs were gap-filled by the linear interpolation of the nearest good quality points (Zhang et al., 2019). If there 

were not enough good-quality points close to the point with missing value, it was filled by the historical averaged values for 135 

the same grid. Besides, the PML-V2 model needs land cover types to accurately estimate ET and GPP in different terrestrial 

ecosystems. Here we used the International Geosphere-Biosphere Program (IGBP) layer of MCD12Q1.006 land cover product 

(Sulla-Menashe et al., 2019) during 2000-2020 since IGBP classification is annually continuous and has acceptable accuracy 

in China when compared with other land cover products (Feng and Bai, 2019). 
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+ +,  (1)

=,  (2)

= ,  (3)

= ,  (4)160 
𝐺𝑃𝑃 =  𝑓() ,  (5)

𝑓 = ,  (6)

where f is a unitless variable that is computed by a function of soil 

equilibrium evaporation and accumulated precipitation for each grid 

cell;𝜀 = 𝑠/𝛾 (unitless), in which 𝑠 = 𝑑/𝑑𝑇is the curve slope 165 
relating saturation water vapor pressure to temperature (kPa °C-1) 

and 𝛾 is psychrometric constant (kPa °C); the total available energy 

absorbed by surface is partitioned by leaf area index (LAI, m2 m-2) 

into canopy absorption (Ac, MJ m-2 d-1) and soil absorption (As, MJ 

m-2 d-1); 𝜌 is the air density (g m-3); represents specific heat of air at 170 
constant pressure (J g-1 °C-1);  is vapor pressure deficit (VPD) at the 
air temperature; (m s-1) is the aerodynamic conductance while Gc (m 

s-1) is the canopy conductance; fV is the area ratio covered by 

intercepting leaves (unitless), fER is the ratio of average evaporation 

rate over average precipitation (unitless) and assumes that it does 175 
not vary between the storms; 𝑃𝑟𝑐𝑝 is daily precipitation (mm d-1);  

is rainfall rate of the reference threshold if the vegetation canopy is 

wet (mm d-1);  (µmol m-2 s-1) is the gross assimilation rate and 𝑓 is a 

vapor pressure deficit constraint function where  is the minimum 

threshold when there’s no vapor pressure constraint and  the 180 
maximum threshold when closing plant stomata leads to non-

assimilation.…
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2.2.2 Meteorological data 185 

The meteorological inputs of PML-V2 include specific humidity, air pressure, air temperature, wind speed, precipitation, 

downward longwave radiation, downward shortwave radiation, and land surface temperature. In this study, the main 

meteorological data came from the CMFD from 2000 to 2018 (He et al., 2020), which has spatial and temporal resolutions of 

0.1° and 3-hr, respectively. Generated through the fusion of five RS or reanalysis datasets and 753 China Meteorological 

Administration stations, the CMFD dataset shows the best accuracy among most available meteorological datasets, and is 190 

widely employed in hydrological and land surface modelling of China (Zhang et al., 2019; Wang et al., 2020). The Global 

Land Data Assimilation System Version 2.1 (GLDAS-2.1) forcing data with 0.25° and 3-hr resolutions (Beaudoing and Rodell, 

2016) were used for 2019-2020, as the CMFD was not available during such a period. Since the CMFD and the GLDAS-2.1 

are different meteorological forcing datasets for driving the PML-V2 model, it is necessary to correct bias of 2019-2020. Here, 

a widely used methodology: delta change (i.e., DC, also called change factor), was selected for bias-correction (Anandhi et al., 195 

2011; Teutschbein and Seibert, 2012; Rasmussen et al., 2012; Hempel et al., 2013; Beck et al., 2018; Haro-Monteagudo et al., 

2020). The underlying idea of the DC method is to use simulated future anomalies (i.e., GLDAS-2.1 in this study) for a 

perturbation of observed data (i.e., CMFD) rather than to use the simulations of future conditions directly. For each grid ce ll, 

we bias-corrected the daily meteorological data during 2019-2020 by monthly scaling factors. Specifically, A multiplicative 

approach applied for precipitation (Eqs.1 to 2). 200 

𝑃(𝑖,𝑗) =  ∆𝑃(𝑗) ∙ 𝑃(𝑖,𝑗)
∗ ; 𝑖 = 1,2, … ,31;  𝑗 = 1,2, … ,12                                                                                                              (1) 

where  𝑃(𝑖,𝑗) is the precipitation corrected by the relative change factor for day i and month j; and 𝑃(𝑖,𝑗)
∗

 is the multi-year daily 

mean observed precipitation at the 𝑖th day, 𝑗th month in the historical or reference period (2000-2018 in this study). ∆𝑃(𝑗) is 

the change factor that can be formulated as: 

∆𝑃(𝑗) =  𝑃𝑓𝑢𝑡
̅̅ ̅̅ ̅ /  𝑃ℎ𝑖𝑠

̅̅ ̅̅ ̅ ;  𝑗 = 1,2, … ,12                                                                                                                (2) 205 

where  𝑃ℎ𝑖𝑠
̅̅ ̅̅ ̅ is the daily mean precipitation of the 𝑗th month in the historic simulation (i.e., 2000-2018) and 𝑃𝑓𝑢𝑡

̅̅ ̅̅ ̅ is similar but 

the average of the future simulation (i.e., 2019 or 2020). The multiplicative approach is also used for the variables: radiation, 

air pressure, and wind speed, whereas an additive approach was used to adjust temperature and specific humidity (Eqs 3 to 4).  

𝑋(𝑖,𝑗) =  ∆𝑋(𝑗) +  𝑋(𝑖,𝑗)
∗ ;  𝑖 = 1,2, … ,31;  𝑗 = 1,2, … ,12                                                                                                              (3) 

in which ∆𝑋(𝑗) is calculated as: 210 

∆𝑋(𝑗) =  𝑋𝑓𝑢𝑡
̅̅ ̅̅ ̅ −   𝑋ℎ𝑖𝑠

̅̅ ̅̅ ̅ ;  𝑗 = 1,2, … ,12                                                                                                                             (4) 

The land surface temperature during 2000-2020 was from the Land component of the fifth generation of European ReAnalysis 

(i.e., ERA5-Land; Muñoz-Sabater et al., 2021) with spatial and temporal resolutions of 0.1° and 1-hr, respectively. Note that 

the above meteorological data were first aggregated into the daily scale, followed by resampling into 500m by the bilinear 

interpolation method (Zhang et al., 2019). The atmospheric CO2 concentration data came from the National Oceanic and 215 
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Atmospheric Administration. The pro-processing of remote sensing data and meteorological data for model inputs is 220 

summarised in Figure 1. 

2.3 ET and GPP from eddy-covariance observations 

We collated EC flux towers and automatic weather stations (AWSs) data from 26 sites across China (Fig. 2 and Table 2) and 

generated the high-quality ET and GPP observed for calibration and validation of PML-V2. These data came from the 

following sources: FLUXNET2015 (Pastorello et al., 2020), the National Tibetan Plateau Data Center (Ma et al., 2020), the 225 

Heihe Integrated Observatory Network (Liu et al., 2011; Liu et al., 2018), and the Chinese Terrestrial Ecosystem Flux Research 

Network (ChinaFLUX) (Yu et al., 2006). These 26 sites encompass nine major PFTs in China, including two in evergreen 

needleleaf forests, one in evergreen broadleaf forests, one in mixed forests, one in open shrublands, one in savannas, eight in 

grasslands, three in wetlands, seven in croplands, and two in barren sparse vegetation. The observation variables, including air 

temperature, relative humidity, incoming shortwave radiation, latent heat flux, sensible heat flux, and net ecosystem exchange, 230 

were collected from the interval of 0.5-hour or 1-hour to prepare for gap filling and flux partitioning (Reichstein et al., 2005; 

Wutzler et al., 2018). Considering certain gaps exist in the original half-hourly or hourly latent heat (LE) and net ecosystem 

exchange (NEE) fluxes data, we employed the marginal distribution sampling method (Reichstein et al., 2005) to fill these 

gaps using the station-observed air temperature, relative humidity, and solar radiation data. Subsequently, we partitioned NEE 

into gross carbon uptake (GPP) and respiration of ecosystem according to the night-time-based method of Reichstein et al. 235 

(2005). Because any gap-filling of EC data may introduce extra uncertainties, we only used the days during which the 

percentage of the original observed and good-quality gap-filled data was no less than 60% in the present study. Note that the 

data of the sites from the ChinaFLUX (i.e., CN-CBF, CF-HBG_S01, CF-HBG_W01, CF-NMG, CF-QYF, and CF-YCA) and 

the FLUXNET2015 (i.e., CN-Cng, CN-Du2, and CN-HaM) have already been gap-filled by original data providers. Therefore, 

they were used directly in this study. Note that while energy imbalance does exist in many EC sites, correcting such a problem 240 

may also introduce more uncertainties (Foken, 2008). Therefore, we used the observed LE directly in the present study. 

2.4 Basin-scale water balance-based evapotranspiration data 

The water balance method is generally regarded as a simple and accurate approach for calculating land evapotranspiration at 

the basin-scale (Liu et al., 2016). Here we used the water-balance-based evapotranspiration (𝐸𝑇𝑤𝑏, mm) of 10 major basins 

across China to evaluate PML-V2 ET estimates at a basin scale, that is, 245 

𝐸𝑇𝑤𝑏 = 𝑃𝑟𝑐𝑝 − 𝑄 − 𝑇𝑊𝑆𝐶,                   (5) 

where 𝑃𝑟𝑐𝑝, 𝑄, and 𝑇𝑊𝑆𝐶(all with a unit of mm) are basin-wide precipitation, runoff, and change of terrestrial water storage 

at an annual scale, respectively. Among them, 𝑃𝑟𝑐𝑝 and 𝑄 are the annual values of ten major river basins in China from 2003 

to 2013, including the Hai, Huai, Liao, Northwest, Pearl, Songhua, Southeast, Southwest, Yangtze, and Yellow (Fig. 2), from 

the National Water Resources Bulletin, which is extensively used in water resources calculation (Miao et al., 2022) and 250 

assessment (Yang et al., 2004; Xie et al., 2018). 𝑇𝑊𝑆𝐶 was quantified using three Gravity Recovery and Climate Experiment 
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(GRACE) products (Landerer and Swenson, 2012; Landerer, F. 2021) including the NASA Jet Propulsion Laboratory, the 

GeoForschungsZentrum Potsdam and the Center for Space Research, which are available since April 2002 at a monthly scale. 

For reducing the uncertainties, this study used the mean values of these three products. We regarded the differences in the 255 

terrestrial water storage anomaly between two consecutive Decembers as the annual TWSC. Note that the ETwb was only 

calculated from 2003 to 2013 in the present study since the December values from GRACE was not available in 2014. 

2.5 Model calibration and model validation  

The 11 parameters of the PML-V2 model for each PFT were calibrated and cross-validated against 26 EC sites by a global 

optimisation method -  genetic algorithm (GA). The GA generates a randomly initialized population, and then evaluates the 260 

fitness of solutions according to its objective function. As generations iterate, the population includes more appropriate 

solutions, and eventually it will converge (Holland, 1992; Konak et al., 2006). Specifically, we applied the GA algorithm with 

a population size of 1000 and number generations of 50.  All EC-observed ET and GPP data within a PFT are used to minimize 

the following objective function (𝐹𝑜𝑝𝑡): 

𝐹𝑜𝑝𝑡 = 2 − 𝑁𝑆𝐸𝐸𝑇 − 𝑁𝑆𝐸𝐺𝑃𝑃 =
∑ (𝐸𝑇𝑒𝑠𝑡−𝐸𝑇𝑜𝑏𝑠)2𝑁

𝑖=1

∑ (𝐸𝑇𝑜𝑏𝑠−𝐸𝑇𝑜𝑏𝑠)
2𝑁

𝑖=1

 +
∑ (𝐺𝑃𝑃𝑒𝑠𝑡−𝐺𝑃𝑃𝑜𝑏𝑠)2𝑁

𝑖=1

∑ (𝐺𝑃𝑃𝑜𝑏𝑠−𝐺𝑃𝑃𝑜𝑏𝑠)
2𝑁

𝑖=1

                 (6) 265 

where 𝑁𝑆𝐸𝐸𝑇  and 𝑁𝑆𝐸𝐺𝑃𝑃 are the Nash-Sutcliffe Efficiency of the daily ET and the daily GPP, respectively. The subscripts 

est and obs stand for the estimated and the observed, respectively. In this way, each of the nine PFTs gained a unique set with 

11 calibrated parameter values, illustrated in Table S1. 

The ‘leave-one-out’ cross-validation method was utilized to evaluate robustness of the PML-V2 model (Zhang et al., 2019). 

For each PFT, the data from one “ungauged” observation was excluded from the optimization while the data from all other 270 

observations at the same PFT were used for model calibration to obtain the simulated at the “ungauged” position. All nine 

PFTs were actualized in this way. Note that the PFT including EBF, MF, OSH, and SAV only has one ground site (Table 2). 

Therefore, it is appropriate to divide the data in each of the four sites into two sub-groups for cross-validation. The CF-CBF 

and the CF-HBG_S01 covering from 2003 to 2010, were divided into two sub-groups, each of which had 4 years: 2003-2006 

and 2007-2010. While both the BNXJL and YJGRHG only covered one year and were divided into two sub-groups by a two-275 

day time step, separately. After that, the daily estimates in the cross-validation mode were against the daily observation from 

the 26 stations to explore the model transferability from known observations to any location. 

2.6 Model performance metrics 

We assessed the performance of calibration and cross-validation of PML-V2 (and other seven mainstream ET and GPP 

products) against the observed sites or water-balance basins utilizing the following four metrics: 280 

𝑁𝑆𝐸𝑋 = 1 −
∑ (𝑋𝑒𝑠𝑡−𝑋𝑜𝑏𝑠)2𝑁

𝑖=1

∑ (𝑋𝑜𝑏𝑠−𝑋𝑜𝑏𝑠)
2𝑁

𝑖=1

 ,                    (7) 
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𝑅𝑋 =
∑ (𝑋𝑒𝑠𝑡−𝑋𝑒𝑠𝑡)(𝑋𝑜𝑏𝑠−𝑋𝑜𝑏𝑠)

𝑁

𝑖=1

√∑ (𝑋𝑒𝑠𝑡−𝑋𝑒𝑠𝑡)
2𝑁

𝑖=1
×∑ (𝑋𝑜𝑏𝑠−𝑋𝑜𝑏𝑠)

2𝑁

𝑖=1

 ,                   (8) 295 

𝑅𝑀𝑆𝐸𝑋 = √∑ (𝑋𝑒𝑠𝑡−𝑋𝑜𝑏𝑠)2𝑁

𝑖=1

𝑁
 ,                    (9) 

𝐵𝑖𝑎𝑠𝑋 =
∑ (𝑋𝑒𝑠𝑡−𝑋𝑜𝑏𝑠)

𝑁

𝑖=1

𝑁×𝑋𝑜𝑏𝑠
 ,                    (10) 

where 𝑁𝑆𝐸, 𝑅, 𝑅𝑀𝑆𝐸, and 𝐵𝑖𝑎𝑠 are the Nash-Sutcliffe Efficiency, the correlation coefficient, the Root Mean Square Error, 

and the ratio of the difference between the estimated and the observed to the observed average. The subscript 𝑋 represents ET 

or GPP; the subscripts est and obs stand for the estimated and the observed, respectively. 300 

3 Results 

3.1 Model calibration and model validation 

The simulated ET and GPP from the calibrated PML-V2(China) were first evaluated against EC measurements of 26 flux sites 

at a daily scale (Fig. 3). Overall, PML-V2(China) shows an excellent performance in estimating daily ET and daily GPP, as 

evidenced by the NSE (0.75 and 0.82, respectively), R (0.88 and 0.90, respectively), RMSE (0.69 mm d-1 and 1.71 g C m-2 d-1, 305 

respectively), and Bias (-5.81% and -2.3%, respectively). For the mean values of each site, the simulated daily ET and daily 

GPP show higher NSE (≥ 0.87) and R (≥ 0.93) values (Fig. 3). 

PML-V2(China) is only slightly degraded from calibration to cross-validation, indicated by slightly declined performance in 

ET and GPP (Fig. 3). For daily ET, the NSE and R values decrease by 0.06 and 0.04, respectively, from the calibration mode 

to the cross-validation mode. Correspondingly, the RMSE and Bias of ET in the cross-validation mode increase by 0.08 mm 310 

d-1 and 3.5%, respectively. For daily GPP, the NSE and R values in the cross-validation mode reduce by 0.11 and 0.06, 

respectively; the RMSE and Bias increase by 0.45 g C m-2 d-1 and 1.79%, respectively. A similarly slight degradation is applied 

to their site means. These results demonstrate that the PML-V2(China) is robust for estimating daily ET and daily GPP across 

large regions, and suitable for generating good quality daily ET and daily GPP data for China. 

Figure 4 further summarises PML-V2(China) performance at 26 flux sites across nine PFTs. The estimates of ET and GPP 315 

from the model calibration show high consistency with the EC-observed values in all terrestrial biomes. For daily ET (Fig. 4a), 

the NSE values vary from the range of 0.36 ~ 0.82, the RMSE 0.39 ~ 0.88 mm d-1, and Bias -10.09% ~ -0.21%. For daily GPP 

(Fig. 4b), the ranges of statistical metrics become 0.41 ~ 0.91 for NSE, 0.3 ~ 3.19 g C m-2 d-1 for RMSE, and -10.52% ~ 3.26% 

for Bias. In terms of cross-validation, nine PFTs all showed slight declines in the statistical metrics when compared to those 

in the calibration mode. For daily ET, the declines in NSE values are less than 0.14 in most PFTs except BSV and ENF, whose 320 

NSE decreased by 0.36 and 0.33, respectively. As expected, RMSE values all increased to some extent in all PFTs (ranging 

from 0.002 to 0.305 mm d-1) when compared with those in calibration mode. The Bias values in the cross-validation mode 

were almost identical to those in the calibration mode for most PFTs except WET and ENF of which the absolute value of 
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Bias increased by 10.59% and 17.42%, respectively (Fig. 4a). From calibration to cross-validation, the degradation of BSV, 

ENF, and WET is more serious than that for the remaining PFTs, which is mainly caused by the small samples (2, 2, and 3, 

respectively) for ET estimates. Regarding daily GPP, the NSE values all degraded by less than 0.04 for most PFTs except BSV, 

GRA and WET where there exists 0.21 ~ 0.32 NSE degradation. In the meantime, the declines in R values are all within 0.19. 330 

Regarding RMSE, the increases are particularly marginal for most PFTs except WET with an increase of 1.58 g C m-2 d-1 (Fig. 

4b). The above PFT tests suggest that the present PML-V2(China), with parameter values being calibrated against 26 EC flux 

stations, does perform satisfactorily in estimating both ET and GPP across different PFTs in China. 

To investigate the model performance at each EC site, this study also compares the variations in daily ET and GPP between 

PML-V2(China) in calibration mode and the EC observations (Fig. 5, Fig. 6, and Table S2). Overall, the estimates from PML-335 

V2(China) show similar amplitude and phase to the EC observations, indicating that it performs well in capturing the seasonal  

phase of ET and GPP in most flux sites. From Figure 5, the PML-V2(China) ET reveals a single peak in each annual cycle for 

most flux sites, except those with double-cropping systems such as CF-YCA, DXZ, and GTZ cropland sites. In particular, the 

ET values are consistent with observed data at the desert site (e.g., HZZHMZ and QZ-NAMORS) with NSE ranging from 0.41 

to 0.48, indicating that model performs well in the sparse vegetation area. The measurements fluctuate higher than PML-340 

V2(China) ET at peak areas for most sites. For the site mean ET, the difference values between PML-V2(China) and EC 

observations range from -0.46 to 0.21, with the minimum at QZ-NAMORS and the maximum at CN-HaM.  

For daily GPP, the model also performs well in depicting the seasonal variation. However, in certain stations (e.g., DMCJZ) 

the peak GPP values within a year appear to be underestimated. In terms of the cropland flux sites, the GPP also shows double 

peaks within a year because of the double-cropping system (e.g., winter wheat and maize rotation), which is similar to ET. 345 

This is especially apparent for the GTZ, DXZ, and CF-YCA flux sites located in the North China Plain. For the site mean GPP, 

the discrepancies between the model and EC observations mainly range from -0.66 to 0.96 g C m-2 d-1 for most flux sites except 

CF-YCA, MYZ, and DXZ, where the differences exceed 1.3 g C m-2 d-1. 

3.2 Comparing with other products 

3.2.1 Comparisons at a plot-scale using EC observed data 350 

To explore whether ET and GPP of PML-V2(China) simulations are more accurate than the previous products, we also 

evaluated ET and GPP accuracy from its global version, MOD16A2, MOD17A2H, and other five widely available ET or GPP 

products against EC observations from the 26 sites at a daily or 8-day resolution. In this study, PML-V2(China) uses its cross-

validated simulations to compare with other products instead of the calibration results to avoid introducing a priori knowledge. 

Additionally, to compare at a consistent time resolution, PML-V2(China) estimates in cross-validation mode need to be up-355 

scaled to an 8-day average or remain a daily scale, depending on the temporal resolution of the comparison products. 

Specifically, PML-V2(China) is compared to GLEAM and SEBAL at the daily scale, compared to PML-V2(Global), 

MOD16A2, MOD17A2H, EC-LUE, and VPM at the 8-day scale. 
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Table 3 provides a direct comparison of model performance among varieties of ET or GPP products against observations 

overall from 26 ground stations. It is evident that PML-V2(China) excels other state-of-the-art ET or GPP products, presented 365 

by NSE being 0.12 ~ 7.76 higher for ET and 0.07 ~ 0.79 higher for GPP, R being 0.07 ~ 0.68 higher for ET and 0.04 ~ 0.51 

higher for GPP, and RMSE being 0.15 ~ 3.62 mm d-1 lower for ET and 0.24 ~ 1.98 g C m-2 d-1 lower for GPP. Specifically, at 

a daily scale, PML-V2(China) ET exhibits the highest NSE value of 0.66, followed by GLEAM (0.44) and SEBAL (-7.10). 

PML-V2(China) daily ET achieves the highest R (0.84), followed by GLEAM (0.69) and SEBAL (0.16); correspondingly it 

obtains the smallest RMSE (0.33 mm d-1), followed by GLEAM (1.04 mm d-1) and SEBAL (3.94 mm d-1). SEBAL is the worst 370 

performer, although its Bias of the closest to 0 (Table 3) because it is far away from the observed values significantly yielding 

a Bias value over 50% or less than -50% among five PFTs (Fig. 7). At the 8-day scale, PML-V2(China) outperforms PML-

V2(Global) and MOD16A2 for estimating ET, with the highest value of NSE (0.74), R (0.87), and the lowest RMSE (0.66 mm 

d-1). Moreover, PML-V2(China) has also the best performance in estimating 8-daily GPP, followed by PML-V2(Global), 

MOD17A2H, VPM, and EC-LUE, indicated by three statistics: NSE, R, and RMSE. In summary, PML-V2(China) performs 375 

well when compared with other mainstream ET or GPP products in China. 

Figure 7 displays the performance comparison of four ET products with PML-V2(China) under nine PFTs. The simulated ET 

by PML-V2(China) has greater NSE and R, and less RMSE values than the other four products in most PFTs, especially in 

EBF, SAV and WET. All models have poor performance with NSE being lower than 0 except for PML-V2(China) in EBF and 

SAV. But PML-V2(China) is not the best in both ENF and BSV. In BSV, most models perform poorly, rendered by NSE being 380 

lower than 0 except for GLEAM (0.50) and PML-V2(China) (0.07 for the daily scale; 0.11 for the 8-day scale). And only 

SEBAL achieves worse results than PML-V2(China) in ENF. As shown in Fig. 8, PML-V2(China) performs significantly 

better than other advanced products in simulating the GPP of CRO, MF, ENF, EBF, SAV, and BSV, producing higher NSE, 

R, and lower RMSE and Bias. While PML-V2(China) ranked second in GRA (following MOD17A2H), OSH (following PML-

V2(Global)), and WET (following PML-V2(Global)). Synthetically, PML-V2(China) successfully captures the sites’ 385 

seasonality in most PFTs compared to the high-resolution ET/GPP datasets currently available. 

3.2.2 Comparisons at the basin-scale using ETwb 

In addition to testing the model at a plot-scale, Figure 9 (a-e) presents the ET validations from PML-V2(China) and four ET 

products based on RS against the annual ETwb in the 10 major river basins of China during 2003-2013. It illustrates that PML-

V2(China) shows the best performance among them, as indicated by the highest NSE (0.82) and the lowest RMSE (69.59 mm 390 

yr-1) and Bias (6.28%) values. This is closely followed by the GLEAM and PML-V2(global) with NSE values of 0.36 and 0.26, 

respectively. However, MOD16A2 and SEBAL tend to overestimate ET in the majority of basins with much smaller NSE 

values of -0.21 and 0.02, respectively, which are consistent with the performance evaluations using the EC observation shown 

in Fig.7. Above basin-wide evaluations, together with the plot-scale validations against EC observation data, demonstrate 

PML-V2(China) overall performing best among the tested products selected in this study. 395 
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Fig. 9 (f) illustrates an inter-basin comparison of the 11-year mean ET of 2003–2013 within the five ET products. PML-

V2(China) performs well in most basins (Biases within ±15%) except for the Northwest and Southwest Basins, where ET is 

overestimated by 24.96% and 61.57%, respectively. Even so, PML-V2(China) performs best in the Southeast River Basin with 

Bias of -3.80%, which is still better than the five ET products selected herewith Bias ranging from 15.93% to 62.42%. Although 400 

PML-V2(China) overestimates ET in the Northwest to a large extent, it performs best relative to its global version (84.88%) 

and another ET product MOD16A2 (152.70%). 

3.3 Spatial patterns and annual variations of ET, Ec, Ei, Es, GPP, and WUE 

Fig. 10 illustrates the spatial distribution of the multi-year (2001-2018) mean annual ET and three components (i.e., Ec, Ei, and 

Es) from PML-V2(China) across China. In general, the ET shows an increasing gradient from the northwest to the southeast 405 

(Fig. 10a). High annual ET (> 900 mm yr-1) is mainly located in the water bodies, Hainan Island, and western Taiwan, while 

most parts of the Northwest River Basin exist the low annual ET (< 100 mm yr-1), especially in the western Inner Mongolia 

and Gansu, and southern Xinjiang. Annual ET experiences a statistically insignificant increasing trend during 2001-2018 with 

a tendency of 0.43 mm yr-2 (p > 0.05). On the whole, the mean annual ET over China is 392.12 ± 10.67 mm yr-1 (mean ± 

standard deviation) over the last 18 years. For three components, Ec and Ei products display a similar spatial distribution with 410 

annual ET, while high Es values (> 400 mm yr-1) are mainly scattered in higher soil moisture content areas including the Tibet 

Plateau, Pearl River Delta, and Yangtze River Delta (Fig. 10b-d). High Ec (> 600 mm yr-1) and Ei (> 80 mm yr-1) values overall 

occur in the tropical and subtropical forests (e.g., Southwest River and Pearl River Basins), but low Ec (< 50 mm yr-1) and Ei 

(< 5 mm yr-1) values in the Northwest River Basin except for the Tianshan, Altai, and Qilian mountains. Especially, low E i 

values also appear in the cropland areas, such as the Northeast Plain, North China Plain, and Sichuan Basin (Fig. 10c). For 415 

annual variation over China, Ec and Ei increase significantly during 2001-2018 with a rate of 0.91 and 0.16 mm yr-2 (p < 0.001), 

respectively. However, annual Es shows a declining trend with an insignificant rate of −0.69 mm yr-2 (p < 0.05). 

The mean annual GPP shows similar spatial patterns compared to the mean annual ET, as indicated by Fig. 10a and Fig. 11a. 

High annual GPP (> 2000 g C m-2 yr-1) mainly occurs in the tropical and subtropical forests and North China Plain where there 

exists the double-cropping system, but low annual GPP (< 100 g C m-2 yr-1) in the arid zones such as the Northwest River 420 

Basin. On average, the multi-year GPP over China is 721.62 ± 51.83 g C m-2 yr-1, and interannual change displays a steady 

rise trend with a rate of 8.99 g C m-2 yr-2 (p < 0.001) since 2001. Using the coupled estimation of PML-V2(China) model, we 

study WUE (GPP divided by ET) during 2001-2018 across China (Fig. 11b). This result indicates the high annual WUE (>3 g 

C mm-1 H2O) occurring in the forests and cropland, particularly in Northeast China and North China Plain. The annual variation 

of WUE is similar to that of GPP, with a significant increasing trend (Slope = 0.02 g C mm-1 H2O yr-1, p < 0.001). 425 
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4 Discussion 

4.1 Magnitude and trend in annual ET and GPP over China 

For annual ET over China, the multi-year (2001-2018) mean annual ET from PML-V2(China) is 392.12 ± 10.67 mm yr-1 (Fig. 

10a). This result is overall consistent with the country-wide averaged annual ET estimated by the machine learning method 445 

(Yin et al., 2021: 397.65 mm yr-1 for 2000-2018) and land surface models (Ma et al., 2019a: 395.34 mm yr-1 for 2001-2012), 

and slightly higher than MOD16A2 ET about 359.61 ± 59.52 mm yr-1 for 2001-2018 (Cheng et al., 2021). But they are all less 

than the annual ET about 482.27 ± 192.31 mm yr-1 from SEBAL for 2001-2018 (Cheng et al., 2021). Furthermore, previous 

studies by Ren et al. (2015) and Wang et al. (2012a) show that the long-term mean precipitation and runoff in China are about 

720 mm yr-1 and 280 mm yr-1, respectively. Hence, it is believed that an annual ET less than 440 mm could be reasonable in 450 

China (Ma et al., 2019a). The annual mean GPP over China from our results is 721.62 ± 51.83 g C m-2 yr-1 during 2001-2018 

(Fig. 11a), which is lower than that of Jia et al. (2020) (771 g C m-2 yr-1), and higher than those of Yao et al. (2018) and Ma et 

al. (2019b) (690 g C m-2 yr-1 and 710 g C m-2 yr-1, respectively). These differences may associate with the distinctions in the 

time window and data sources (Jia et al., 2020).  

The annual ET displays a statistically insignificant increasing trend from 2001 to 2018, which is consistent with the calculated 455 

ET using the Budyko equation (Feng et al., 2018; Su et al., 2022). In terms of annual GPP, we found that there is a significant 

(p < 0.001) increasing trend with a rate of 8.99 g C m-2 yr-2 during 2001-2018, in line with some other studies (Ma et al., 2019b; 

Yao et al., 2018 ; Ma et al., 2018). The most likely reason for the remarkable rise in GPP is the effect of ecological restoration 

projects in China (Tong et al., 2018). In fact, a large number of ecological restoration projects have been conducted since the 

1990s, such as the Grain for Green project (Cao et al., 2009). These findings also confirmed that a significant increase in 460 

vegetation growth occurred in China over the past years, which agreed well with Ma et al. (2018). 

4.2 Advantages of this new dataset 

The multi-scale testing using EC observations and water balance showed that accuracy in ET and GPP by the present PML-

V2(China) is better than the global product of PML-V2 and other mainstream ET or GPP models (Table 3). The reasons may 

be twofold. The first is that the water-carbon coupled process is particularly important for estimating ET and GPP since the 465 

water and carbon process are highly coupled by the stomatal aperture at the leaf level. This result was also supported by Xiao 

et al. (2013) and Zhang et al. (2019) in their recent studies. Second, this study employed 26 EC observations to calibrate the 

PML-V2 in China, which shows better accuracy than the previous global-scale ET and GPP estimates that were obtained using 

few EC observations to constrain the parameters. This indicates that more local observations will facilitate the improvement 

of ET and GPP estimates at regional and national scales. In fact, although the EC sites of MOD16A2 (72 EC sites), GLEAM 470 

(91 EC sites), and PML-V2(Global) (95 EC sites) are more than in this study, there are only 0, 8, and 8 sites in China, 

respectively (Table 1). In particular, the SEBAL model only used eight EC sites for three PFTs (i.e., forests, cropland, and 

grassland).  
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In addition to the advantages of the overall accuracy in ET and GPP in the present study, the PML-V2(China) showed its 490 

strong ability to reveal the characteristics of the water consumption from the croplands that have the double-cropping system. 

The GTZ in Hebei, DXZ in Beijing, and CF-YCA in Shandong are the only three observed sites with winter wheat - summer 

maize rotation cropping systems. We compared the intra-annual variation of the simulated ET and GPP between PML-

V2(China) and other products against the EC-observed values at the three cropland sites (Fig. 12). In theory, when the winter 

wheat is harvested, the ET or GPP should decline to their valley values in June, which often occur between the two peaks (i.e., 495 

the reproductive growth stage of winter wheat and summer maize, respectively) within a given year. With this in mind, it can 

be seen that PML-V2(China) has improved its ability when compared to its global version, as has been indicated by its better 

performance in capturing the time when the lowest ET and GPP values emerged. This is mainly because an improved weighted 

Whittaker smoother was carried out to get better quality of LAI, as described in Section 2.2.1. While the GLEAM is also able 

to detect the time when the valley values appeared, it underestimates ET evidently during the wheat growing season. In terms 500 

of the SEBAL and MOD16A2, both have much poorer performances in detecting such intra-annual variations in ET. Regarding 

other GPP models, only MOD17A2H can catch the time when the valley values appear. However, it substantially 

underestimates GPP in winter both wheat and summer maize growing seasons. Moreover, this study also estimated the ability 

of the simulated ET to identify the crop phenology at the regional scale (Fig. S1). We extracted the cropland with peaks and 

identified the dates of peaks appearing within a year at each pixel by a faster peak detection algorithm (Liu et al., 2020). Taking 505 

the typical double-cropping system as an example, we quantified the cropping intensity in croplands (Fig. S1a1) and identified 

the dates of the first peak and the second peak appearing in one year (Fig. S1a2, a3). To verify the reliability of the results, we 

mapped the double-cropping cropland areas of winter wheat and summer maize rotations (Fig. S1b1), the heading dates 

distribution of winter wheat and summer maize (Fig. S1b2, b3) in 2015 based on the crop phenological dataset (Luo et al., 

2020). The croplands with a double-cropping show similar spatial patterns, as indicated by Fig. S1a1 and b1. In particular, we 510 

also compared the first ET peak date (Fig. S1a2) with the heading date of winter wheat (Fig. S1b2) in 2015. The first ET peak 

date (i.e., day of the year (DOY)) is mainly between DOY 120 and 150, occurring after the heading date of winter wheat about 

DOY 100 to 130. During the entire growth period of winter wheat, the ET intensity was the highest from the heading date to 

the filling date, although the critical periods of water demand for winter wheat are the “jointing date-heading date-filling date” 

(He et al., 2022). This is consistent with our result that the ET peak appears slightly later than the crop heading date. Similarly, 515 

the heading date of summer maize also occurs early than the second ET peak date (Fig. S1a3, b3), which further proves the 

ability of the simulated ET in evaluating crop phenology. 

4.3 Implications of PML-V2(China) 

Based on the substantial advantages discussed above, PML-V2(China) has great implications and application prospects. For 

instance, daily outputs from PML-V2(China) can be better used by the agricultural and water sectors for operational 520 

applications. Timely access to daily data at the regional or national scale helps the Ministry of Agriculture and Water Resources 

to develop better policies. Indeed, there is a remarkable relationship between soil water content and ET (Graf et al., 2014; 
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Brust et al., 2021), so getting daily ET information accurately is of great significance for soil water depletion assessment, 

irrigation system design, and water resources management in agricultural areas, such as in the North China Plain. On the other 

hand, this dataset has better simulations of carbon consequences and water use efficiency, which is important for carbon-525 

neutron policy (Yang et al., 2022). Specifically, for 2001-2018, the annual GPP and water use efficiency experienced a 

significant increase (8.99 g C m-2 yr-2 and 0.02 g C mm-1 H2O yr-1, respectively), but annual ET showed a non-significant 

increase (0.43 mm yr-2). This indicates that vegetation in China exhibits a huge potential for carbon sequestration with little 

cost in water resources, which plays an important role in the global carbon cycle. 

4.4 Uncertainties 530 

4.4.1 Eddy-covariance method and water-balance formula 

Although PML-V2(China) showed relatively good performance when compared to the EC sites and water-balance-based 

evapotranspiration (ETwb), there exist several uncertainties related to the observed data (i.e., flux sites and ETwb). First, the EC 

technique, considered as a standard way to measure surface fluxes (Aubinet et al., 1999; Liu et al., 2011; Baldocchi, 2014), 

meets some issues as well including corrections when processing the turbulence data and from energy non-closure problem. 535 

The corrections, such as the spike detection, lag correction of H2O and CO2 based on the vertical wind, coordinating rotation, 

corrections for density fluctuation, and frequency response correction, had been pre-processed before the investigators shared 

data. Nevertheless, there is evidence that diverse data processing designs may lead to errors of 10% ~ 15% (Mauder et al., 

2007). Besides, systematic bias in device, the loss from the contribution of low-frequency eddies to energy transmission and 

the ability to capture larger eddies and the secondary circulations, could cause the energy-imbalance problem (Liu et al., 2011). 540 

Hence, there are usually two schemes to deal with the energy non-closure issue for EC users, that is, to perform energy closure 

correction (Cheng et al., 2021), or to maintain the original four-component data including latent heat (LE), sensible heat (H), 

soil heat flux (G) and net radiation (Rn) (Zhang et al., 2019; Ma and Zhang, 2022). We chose the second method in this study, 

considering that (i) forcing energy closure will introduce new errors artificially, and (ii) most Chinese EC observation towers 

lack G and Rn. The observed ET calculated from latent heat flux of the site without energy closure correction will be slightly 545 

less than the real value, resulting in a smaller ET simulated by the model determined by calibration using the sites.  This 

phenomenon is not fully reflected in comparing with the basin ET based on the water-balance calculation that only in the Pearl 

and Southeast River Basin PML-V2(China) underestimates multi-year mean ET (Fig. 9f), because the ETwb used for assessing 

the simulation performance of models also needs to be explored its accuracy. 

Second, the inconsistency of the grid cell and EC footprint could also result in uncertainty when compared rudely to the 550 

measurements. Generally, the EC towers have a footprint of 100 - 1000 m2, which is usually decided by tower height and 

heterogeneity of the underlying surface (Liu et al., 2016; Xu et al., 2017). For example, the footprint of the forest sites is larger 

than the grassland and wetland sites (Chen et al., 2012). In this study, PML-V2(China) model is first calibrated at 500m grid 

cell avoiding the inconsistency issue to some extent. However, there still exists a mismatch between the grid cell center and 
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EC sites. In this regard, higher spatial resolution products or additional ground observations at relevant scales would be 560 

beneficial for the cross-validation of the modelling grid cell (Ma et al., 2019a). Note also that the limited flux sites for some 

PFTs may introduce extra uncertainties for model parameters since only one site was available for the OSH, SAV, EBF, and 

MF in this study. In fact, we artificially construct multiple site samples in the above PFTs sites, utilizing the characteristics of 

the long time series of these sites. Nevertheless, the terrestrial biome of the sole flux site maybe not typical in other climate 

zones for the same PFT (Cheng et al., 2021). Therefore, more flux sites for the same PFT are necessary to calibrate the model. 565 

Third, ET derived from water-balance over China was invested as a reference at the basin-scale, although the results may be 

affected by some sources of uncertainty. For instance, the applicability of water-balance relies on its formula composition. In 

this paper, the water storage change (in Equation 5) from GRACE was included for purpose of reducing the uncertainties in 

estimating annual ETwb. Those studies not using TWSC in ETwb may not explain the decreasing groundwater such as in the 

Hai River Basin due to the human water extraction, which is not conducive to the credibility of the verification results (Cheng 570 

et al., 2021). In addition, the precision of its input data also affects the reliability of ETwb (Mao and Wang, 2017). Precipitation, 

as the main source for ET, impacts ETwb to varying extent. Nevertheless, precipitation data are derived from observations of 

field rain gauge network and its usability relies on the intensive and high-quality ground observations, which makes the Prcp 

estimates from statistics of stations worse in the less populated remote regions or areas having highly various topography, 

particularly in the west China (Immerzeel et al., 2015; Tang et al., 2016; Zhong et al., 2019). Zhong et al. (2019) evaluated  575 

three precipitation products in China and found that there was a slight overestimation in the west of China and an obvious 

underestimation in the west-Tibet Plateau. Accordingly, it could be stated that ETwb was overestimated in Pearl and the 

Southeast and underestimated in the Southwest River basin using Eq. 7. 

4.4.2 Input data 

While the daily ET and GPP of the PML-V2(China) product (in the calibration mode) simulated well against 26 flux sites 580 

overall (Fig. 3) and in most PFTs (Fig. 4), PML-V2(China) in calibration is degraded compared to its cross-validation (Fig. 4), 

such as in GRA. In this study, we got one parameter set for the GRA type by employing eight sites, including the sparse 

grassland (QZ-BJ) and the dense grassland (QZ-NAMORS). Although it may be appropriate to use diverse parameter values 

for estimating ET and GPP by further dividing the grassland type into finer land types, this comes at the expense of ignoring 

the possible interannual changes in land types because few LUCC maps with fine classifications and annual resolutions 585 

simultaneously (Ma and Zhang, 2022). 

PML-V2(China) mainly used the remote sensing and meteorological data (e.g., MODIS, CMFD, GLDAS-2.1, and ERA5) as 

the inputs (see section 2.2). However, there are still some uncertainties in these data (Zhang et al., 2019; Cheng et al., 2021). 

For example, we used the land cover datasets (MCD12Q1.006) as the PFTs data across China. However, there exist 

misclassification issues for MCD12Q1 because of spectral confusion (e.g., savannas and grasslands) and coarse resolution 590 

(e.g., the mixed pixel of cropland and natural vegetation) (Zhang et al., 2019; Liang et al., 2015; Adzhar et al., 2022). Moreover, 

LAI is a critical variable describing vegetation growth, and its temporal changes affect stomatal conductance and further affect 
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the transpiration rate from the vegetation canopy. Using LAI, PML-V2(China) model simulated Ec and Ei components at the 

canopy scale. To avoid noise issues caused by clouds, shadows, snow, and so on, MODIS LAI in this study has been smoothed 

by the weighted Whittaker smoother which can deal with underestimation and inefficiency issues (Kong et al., 2019). However, 

there are still underestimates in the sparse vegetation areas. This may explain why the ET and GPP estimates are poor in BSV 

(Fig. 7 and Fig. 8). 600 

Additionally, downscaling uncertainties could be also introduced by the bilinear interpolation method which has been applied 

to minimize the footprint impact of coarse meteorological inputs, such as CMFD (Fig. 1). This approach depends only on 

nearby grid cells to downscale, which could neglect the other relative supports. For instance, precipitation is not only related 

to the surrounding precipitation but also location and terrain (e.g., elevation and aspect) (Yue et al., 2020). Chao et al. (2018) 

found that gridded precipitation products in the high-altitude regions are far below what is inversely inferred by glacier mass 605 

balances. Consequently, the geographically weighted regression method coupled with a weighting function could work well 

to interpolate meteorological data (Chao et al., 2018). 

5 Conclusions 

This study developed a daily, 500m ET and GPP data product (PML-V2(China)) using the locally calibrated water-carbon 

coupled model, PML-V2. The model has been well-calibrated against observations at 26 flux sites across nine plant functional 610 

types, and it performs satisfactorily in the cross-validation mode. More importantly, the plot- and basin-scale evaluations 

suggest that the newly developed product outperforms not only the global version of PML-V2 but also other mainstream RS-

based ET and/or GPP products. With such a new product, we investigated spatial patterns and trends in ET and its components 

(Ec, Ei, Es), GPP, and WUE from 2001 to 2018 across China. In short, the present PML-V2(China) product has the following 

advantages: (i) the water output is tightly constrained by carbon flux; (ii) it has high spatial and temporal resolutions 615 

simultaneously; (iii) it obtains the improved accuracy in ET and GPP across different plant functional types because of the 

optimal parameter sets for China by exploiting 26 EC sites; and (iv) showing the better ability to reveal the ET and GPP for 

the croplands with the double-cropping system. In summary, we provide a novel daily and 500m resolution ET and GPP 

product across China, which can be used by research communities and various water and ecological departments for 

operational applications. 620 
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Table 1: Summary of typical ET and GPP products with high temporal and/or high spatial resolutions. 

Variable 
 

Dataset 

abbreviation  

Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

Principle or 

model 
EC evaluation Reference 

 

ET MOD16A2 500m 8-day 
2001-

present 
PM 

72 EC sites in 

AmeriFlux (no 

using sites in 

China) 

Mu et al. (2011) 

ET SEBAL 1000m daily 2001-2018 

one-source 

model of 

surface energy 

balance 

residual 

8 EC sites in 

China  

Cheng et al. 

(2021) 

ET GLEAM 0.25° daily 1980-2020 P-T 

91 global EC 

sites (including 

8 sites in China) 

Miralles et al. 

(2011a) and 

Martens et al. 

(2017) 

GPP MOD17A2H 500m 8-day 
2000-

present 
 LUE Not performed. 

Running et al. 

(2015) 

GPP VPM 500m 8-day 2000-2019  LUE 

113 global EC 

sites (including 

8 sites in China) 

Zhang et al. 

(2017), Zhang 

et al. (2017); 

Zhang et al. 

(2021) 

GPP EC-LUE 0.05° 8-day 1982-2018  LUE 

95 global EC 

sites (including 

7 sites in China) 

Zheng et al. 

(2020) 

ET, GPP 
PML-V2 

(Global) 
500m 8-day 2000-2020 PML-V2 

95 global EC 

sites (including 

8 sites in China) 

Zhang et al. 

(2019) 

ET, GPP 
PML-V2 

(China) 
500m daily 2000-2020 PML-V2 

26 EC sites in 

China  
This study 
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Figure 1: Flowchart of EC flux and AWSs data pre-processing and PML-V2 model processing which is used to convert RS images 

and meteorological forcing images into GPP, Ec, Ei, Es, Ew, and ET. For pre-processing part: NEE (Net Ecosystem Exchange, µmol 

m-2 s-1), LE (Latent heat, W m-2), Rg (incoming radiation, W m-2), rH (relative humidity, %), Ta (air temperature, °C), and QC 1025 

(Quality Control). For the PML-V2 model part: Tmax (daily maximum temperature, °C), Tmin (daily minimum temperature, °C), 

Tavg (daily mean temperature, °C), Pa (atmosphere pressure, kPa), U (wind speed at 10-m height, m s-1), q (specific humidity, kg 

kg-1), Prcp (precipitation, mm d-1), Rl (inward longwave solar radiation, W m-2), Rs (inward shortwave solar radiation, W m-2), Pi 

(the difference of Prcp and Ei, mm d-1), Es_eq (equilibrium evaporation, mm d-1), ET_w (evaporation from water body, snow and 

ice, mm d-1) and GEE (Google Earth Engine).  1030 
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Figure 2: Geographical locations of 26 EC flux towers for nine major IGBP PFTs, the main rivers, and the ten major river basins 

in China. Overlain are 20-year mean annual aridity index (AI) values during 2001-2020 using GLDAS-2.1, that is, the ratio of annual 1035 

precipitation to Penman potential evapotranspiration. PFTs shown in legend are ENF (Evergreen Needleleaf Forests), EBF 

(Evergreen Broadleaf Forests), MF (Mixed Forests), OSH (Open Shrublands), SAV (Savannas), GRA (Grasslands), WET 

(Permanent Wetlands), CRO (Croplands), and BSV (Barren Sparse Vegetation). 
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Table 2: Details of 26 EC flux towers employed in this study. Note that AP indicates mean annual precipitation and AT refers to 

mean annual temperature in its observed period. 

Site code Site name IGBP 
Latitude 

(°E) 

Longitude 

(°N) 

AP 

(mm 

yr-1) 

AT 

(˚C) 

 

Time 

coverage 
References 

ARCJZ Arou GRA 38.0473  100.4643  521  -2.7  2013-2017 Liu et al. (2018) 

BNXJL 
Xishuangbanna 

rubber 
EBF 21.9000  101.2667  1765  22.1  2013 Yu et al. (2021) 

CF-CBF 
Chinaflux 

Changbai forest 
MF 42.4025  128.0958  608  4.3  2003-2010 

Zhang et al. 

(2006a) 

CF-

HBG_S01 

Chinaflux Haibei 

grassland 
OSH 37.6653  101.3311  610  -5.9  2003-2010 Hui et al. (2021) 

CF-

HBG_W01 

Chinaflux Haibei 

wetland 
WET 37.6086  101.3269  616  -3.9  2004-2006 

Zhang et al. 

(2020a) 

CF-NMG 

Chinaflux 

Neimengu 

grassland 

GRA 43.3233  116.4036  387  1.2  2004 Hao et al. (2020) 

CF-QYF 

Chinaflux 

Qianyanzhou 

forest 

ENF 26.7414  115.0581  1490  19.3  2004-2006 Wen et al. (2006) 

CF-YCA 
Chinaflux 

Yucheng 
CRO 36.8290  116.5702  602  14.8  2006-2007 Zhao et al. (2021) 

CN-Cng Changling GRA 44.5934  123.5092  364  6.5  2007-2010 
Dong et al. 

(2011) 

CN-Du2 
Duolun_grassland 

(D01) 
GRA 42.0467  116.2836  388  3.0  2006-2008 Chen et al. (2009) 

CN-HaM 
Haibei Alpine 

Tibet site 

GRA 37.6975  101.2733  534  -4.0  2002-2004 Kato et al. (2006) 

DMCJZ Daman CRO 38.8555  100.3722  163  9.2  2017 Liu et al. (2018) 

DSLZ Dashalong WET 38.8399  98.9406  346  -8.3  2015-2018 Liu et al. (2018) 

DXZ Daxing CRO 39.6213  116.4271  547  12.7  2010 Liu et al. (2013) 

DYKGTSLZ 
Dayekouguantan 

forest 
ENF 38.5337  100.2502  228  0.2  2010-2011 Li et al. (2009) 

GTZ Guantao CRO 36.5150  115.1274  433  14.0  2008 Liu et al. (2013) 

HLZ Huailai CRO 40.3491  115.7880  377  10.2  2014 Liu et al. (2013) 

http://sites.fluxdata.org/CN-HaM/
http://sites.fluxdata.org/CN-HaM/
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HZZHMZ 
Huazhaizi Desert 

Steppe 
BSV 38.7659  100.3201  167  8.7  2017 Liu et al. (2018) 

MYZ Miyun CRO 40.6308  117.3233  584  9.0  2008 Liu et al. (2013) 

QZ-BJ Tibetan Plateau BJ GRA 31.3688  91.8988  460  0.2  2011-2013 Ma et al. (2020) 

QZ-

NAMORS 

Tibetan Plateau 

NAMORS 
GRA 30.7730  90.9632  405  -0.3  2008-2009 Ma et al. (2020) 

QZ-QOMS 
Tibetan Plateau 

QOMS 
BSV 28.3607  86.9491  199  1.2  2015 Ma et al. (2020) 

YJGRHG 
Yuanjiang dry-hot 

valley 
SAV 101.2667  21.9000  876  20.2  2014 

Yang et al., 

(2021) 

YKGQLZZ Yingke CRO 38.8569  100.4103  85  8.3  2011 Liu et al. (2018) 

YKZ Yakou GRA 38.0142  100.2421  484  -1.2  2016-2018 Liu et al. (2018) 

ZYSDZ Zhangye wetland WET 38.9751  100.4464  146  8.8  2013-2018 Liu et al. (2018) 
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Figure 3: Scatter plots between the observed ET and GPP against PML-V2(China) simulations in calibration and cross-validation 1045 

modes: daily comparisons in the left panels and site mean comparison in the right panels. 
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Figure 4: Comparison of ET and GPP between PML-V2(China) model calibration and validation across ten PFTs. 
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Figure 5: The daily ET simulated by PML-V2(China) in calibration mode and the observed daily ET variation in time series from 

26 EC sites (see Figure 2) across China. ‘ALL’ represents the site mean value for each EC site. 
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 1055 

Figure 6: The daily GPP simulated by PML-V2(China) in calibration mode and the observed daily GPP variation in time series from 

26 EC (see Figure 2) sites over China. ‘ALL’ represents the site mean value for each EC site. 
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Table 3: Statistical indicators of PML-V2(China) and other models for simulating ET and GPP at 26 EC flux towers. NSE and R 

values are unitless. The unit of RMSE for ET is mm d-1 while it is g C m-2 d-1 for GPP. The unit of Bias is %. 

Scale Variable Models NSE R RMSE Bias 

daily ET PML-V2(China) 0.66 0.84 0.33 -7.97 

    GLEAM 0.44  0.69  1.04  -14.45  

    SEBAL -7.10  0.16  3.95  5.31  

8-day ET PML-V2(China) 0.74  0.87  0.66  -11.54  

    PML-V2(Global) 0.62  0.80  0.81  -5.05  

    MOD16A2 0.37  0.63  1.07  -10.90  

daily GPP PML-V2(China) 0.76  0.87  0.87  -0.82  

8-day GPP PML-V2(China) 0.75  0.87  1.93  -6.51  

    PML-V2(Global) 0.68  0.82  2.17  -1.74  

    MOD17A2H 0.49  0.78  2.74  -38.79  

    EC-LUE -0.04  0.35  3.91  -41.91  

    VPM 0.21  0.60  3.41  -8.21  

 1065 
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Figure 7: Statistical indicators of PML-V2(China) and other models for estimating ET at each PFTs. Open and solid dots represent 

PML-V2(China) estimated ET in cross-validation mode and other models. For the daily temporal resolution of GLEAM and SEBAL, 

PML-V2(China) is also daily scale; while for 8-day resolution of PML-V2(Global) and MOD16A2, the referred PML-V2(China) is 

upscaled to 8-day. Note that ‘(+)’ indicates the model’s simulation statistics dot is more than the upper bound while ‘(-)’ indicates 1070 

the model’s simulation statistics dot is less than the low bound. 
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Figure 8: Statistical indicators of PML-V2(China) and other models for estimating GPP at each PFTs. Open and solid dots represent 

PML-V2(China) estimated GPP in cross-validation mode and other models. PML-V2(China) is upscaled to 8-day to compare with 1075 

the 8-day resolution of PML-V2(Global), MOD17A2H, EC-LUE, and VPM. Note that ‘(+)’ indicates the model’s simulation statistics 

dot is more than the upper bound while ‘(-)’ indicates the model’s simulation statistics dot is less than the low bound. 
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Figure 9: Annual evapotranspiration (ET) of (a) PML-V2(China), (b) PML-V2(Global), (c) MOD16A2, (d) GLEAM, and (e) SEBAL 1080 

plotted against the water-balanced derived ET (ETwb) values for ten major river basins over China during 2003–2013. The boxplot 

in (f) shows a multi-year mean of the five ET products above per river basin. 
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Figure 10: Spatial pattern of mean annual ET, Ec, Ei, Es and their annual variation during 2001–2018. In all insets, the shaded areas 

represent the 95% confidence interval based on the linear regression modelling. The number in the parentheses of each inset is mean 1085 

± standard deviation of the annual simulated variables during the 18 years. 
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Figure 11: Spatial pattern of mean annual GPP, WUE and their annual variation during 2001–2018. In all insets, the shaded areas 1095 

represent the 95% confidence interval based on the linear regression modelling. The number in the parentheses of each inset is mean 

± standard deviation of the annual simulated variables during the 18 years. 
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Figure 12: The intra-annual variation of (a) ET at three crop-rotation stations between the observed and the simulated by PML-1105 

V2(China) in validation mode, PML-V2(Global), SEBAL, GLEAM, and MOD16A2, respectively; (b) GPP at three crop-rotation 

stations between the observed and the simulated by PML-V2(China) in validation mode, PML-V2(Global), EC-LUE, VPM, and 

MOD17A2H, respectively. The blue dotted lines above pass through the lowest values between the two peaks of the observed ET or 

GPP per year. Note that all variables are averages every 8 days although units are per day. 


