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Abstract  15 

Wetlands, often called the “kidneys of the earth”, play an important role in maintaining ecological balance, 

conserving water resources, replenishing groundwater, and controlling soil erosion. Wetland mapping is very 

challenging because of its complicated temporal dynamics and large spatial and spectral heterogeneity. An 

accurate global 30-m wetland dataset that can simultaneously cover inland and coastal zones is lacking. This 

study proposes a novel method for wetland mapping by combining an automatic sample extraction method, 20 

multisource existing products, time-series satellite images, and a stratified classification strategy. This approach 

allowed for the generation of the first global 30-m wetland map with a fine classification system (GWL_FCS30), 

including four inland wetland sub-categories (swamp, marsh, flooded flat, and saline) and three coastal wetland 

sub-categories (mangrove, salt marsh, and tidal flats), which was developed using Google Earth Engine platform. 

We first combined existing multi-sourced global wetland products, expert knowledge, training sample 25 

refinement rules, and visual interpretation to generate a large and geographically distributed wetland training 

samples. Second, we integrated the time-series Landsat reflectance products and Sentinel-1 SAR imagery to 

generate water-level and phenological information to capture the complicated temporal dynamics and spectral 

heterogeneity of wetlands. Third, we applied a stratified classification strategy and the local adaptive random 

forest classification models to produce the wetland dataset with a fine classification system at each 5°×5° 30 

geographical tile in 2020. Lastly, the GWL_FCS30, mosaicked by 961 5°×5° regional wetland maps, was 

validated using 18,701 validation samples, which achieved an overall accuracy of 87.7% and a kappa coefficient 

of 0.810. The cross-comparisons with other global wetland products demonstrated that the GWL_FCS30 dataset 

performed better in capturing the spatial patterns of wetlands and had significant advantages over the diversity 

of wetland subcategories. The statistical analysis showed that the global wetland area reached 3.57 million km2, 35 

including 3.10 million km2 of inland wetlands and 0.47 million km2 of coastal wetlands, approximately 62.3% 

of which were distributed poleward of 40°N. Therefore, we can conclude that the proposed method is suitable 

for large-area wetland mapping and that the GWL_FCS30 dataset is an accurate wetland mapping product that 

has the potential to provide vital support for wetland management. The GWL_FCS30 dataset in 2020 is freely 

available at https://doi.org/10.5281/zenodo.6575731 (Liu et al. 2022). 40 
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1. Introduction 

The RAMSAR Convention defines a wetland as an “areas of marsh, fen, peatland or water, whether natural 

or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas 

of marine water the depth of which at low tide does not exceed six meters” (Gardner and Davidson, 2011). 

Wetlands not only provide humans with a large amount of food, raw materials and water resources (Ludwig et 45 

al., 2019; Zhang et al., 2022b) but also play an important role in maintaining ecological balance, conserving 

water resources, replenishing groundwater, and controlling soil erosion (Hu et al., 2017a; Mao et al., 2021; 

Wang et al., 2020; Zhu and Gong, 2014). Therefore, they are also called the “kidneys of the earth” (Guo et al., 

2017). However, due to increasing human activities, including agriculturalization, industrialization and 

urbanization (McCarthy et al., 2018; Xi et al., 2020), and climatic changes such as sea-level rise and coastal 50 

erosion (Cao et al., 2020; Wang et al., 2021), wetlands have been seriously degraded and threatened over the 

past few decades (Mao et al., 2020). Thus, having access to timely and accurate wetland mapping information 

is pivotal for protecting biodiversity and supporting the sustainable development goals. 

Along with the rapid development of remote sensing techniques and computing abilities, a variety of 

regional or global wetland datasets have been produced with spatial resolutions ranging from 30 m to 1° (~112 55 

km) (Chen et al., 2022; Gumbricht et al., 2017; Lehner and Döll, 2004; Mao et al., 2020; Matthews and Fung, 

1987; Tootchi et al., 2019). Tootchi et al. (2019) and Hu et al. (2017a) have systematically reviewed the 

generation process of global wetland datasets with various spatial and temporal resolutions and wetland 

categories and found significant uncertainties and inconsistencies among these datasets. For example, the global 

total wetland area reviewed by Hu et al. (2017a) ranged from 2.12 to 7.17 million km2 based on remote sensing 60 

products. Therefore, great uncertainties among global wetland datasets directly hindered wetland applications 

and analysis. Furthermore, from the perspective of spatial resolution, although many wetland products have 

been produced, at regional or global scales, using various remote sensing imagery and different methods (Guo 

et al., 2017; Tootchi et al., 2019), most of them were coarse spatial resolution datasets, ranging from 100 m to 

25 km. Recently, with the improvement of computing power and storage abilities, three global 30-m land-cover 65 

products (including GlobeLand30 (Chen et al., 2015), FROM_GLC (Gong et al., 2013) and GLC_FCS30 

(Zhang et al., 2021b)), containing an independent wetland layer, were produced, but their classification 

algorithms were not specifically designed for the wetland environment, so the wetland usually suffered from 

low accuracy in these products. In addition, several global coastal wetland products have been developed, 

including the global mangrove extent (Bunting et al., 2018; Hamilton and Casey, 2016) and global 30 m tidal 70 

flat datasets from 1984 to 2016 (Murray et al., 2019), but these only covered the intertidal zones. Thus, an 

accurate global 30 m wetland dataset, with fine wetland categories and covering both inland and coastal zones, 

is still lacking. 

One of the largest challenges of current state-of-the-art methods for large-area wetland mapping is to collect 

massive amount of training samples (Liu et al., 2021; Ludwig et al., 2019). Zhang et al. (2021b) mentioned two 75 

options for collecting training samples, including the visual interpretation method and deriving training samples 

from pre-existing products. First, since the visual interpretation method had significant advantage over the 

confidence of training samples, it was widely used for local or regional wetland mapping (Amani et al., 2019; 

Wang et al., 2020). However, collecting accurate and sufficient training samples is usually a time-consuming 

process and involves a large amount of manual work, so it was impractical and nearly impossible to use the 80 

visual interpretation for collecting global wetland samples. Comparatively, deriving training samples from 
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existing products and applying some rules or refinement methods to identify these high confidence samples 

from existing products shows promise (Zhang et al., 2021b). So this approach is practical in that it could quickly 

large and geographically diverse distribution of training samples without much manual effort. Thus, the second 

option attached increasing attention and has been successfully used for large-area land-cover mapping (Zhang 85 

and Roy, 2017; Zhang et al., 2021b; Zhang et al., 2020). For example, Zhang et al. (2021b) used derived global 

training samples from the combination of the CCI_LC and MCD43A4 NBAR datasets to produce a global 30-

m land-cover product with a fine classification system in 2015 and 2020 (GLC_FCS30) with an overall accuracy 

of 82.5%. Therefore, if we take effective measures to fuse these existing products and then derive high 

confidence training samples using some refinement rules, the deriving approach would exude great potential for 90 

global wetland mapping. 

Another major challenge inherent to wetland mapping is the complicated temporal dynamics and spatial 

and spectral heterogeneity. The spectral characteristics of the wetlands would quickly change with the seasonal 

or daily water levels of the underlying surface (Ludwig et al., 2019; Mahdianpari et al., 2020). Therefore, many 

studies proposed to combine multi-sourced, time-series remote sensing imagery for capturing the spatial extent 95 

and temporal dynamics of wetlands (LaRocque et al., 2020; Ludwig et al., 2019; Murray et al., 2019; Wang et 

al., 2021; Zhang et al., 2022b). For example, Zhang et al. (2022b) and Murray et al. (2019) used the time-series 

Landsat imagery to generate tidal-level and phenological features for identifying coastal wetlands and 

successfully produced the coastal wetlands in China with an overall accuracy of 97.2% (Zhang et al., 2022b) 

and global trajectory tidal flats with the overall map accuracy of 82.3% (Murray et al., 2019). Except for optical 100 

imagery, synthetic aperture radar (SAR) data, which was sensitive to soil moisture, vegetation structure, and 

inundation, enabled data acquisition regardless of solar illumination, clouds, or haze and was also widely used 

for wetland mapping, especially after the open-access of Sentinel-1 data became available (Li et al., 2020; 

Slagter et al., 2020; Zhang et al., 2018). For example, Li et al. (2020) used the time-series Sentinel-1 imagery 

to discriminate wetlands with and without trees and achieved an overall accuracy of 86.0±0.2%. Therefore, the 105 

fusion of multi-sourced and time-series remote sensing imagery is vital for accurate wetland mapping. 

Due to the complicated temporal dynamics and spatial and spectral heterogeneity of wetlands, global 30 m 

wetland mapping remains a challenging task. Consequently, there is no global 30-m dataset covering both inland 

and coastal wetlands until now. In this study, we combined several existing wetland products and multi-sourced 

time-series remote sensing imagery to (1) derive a large and geographically distributed wetland training samples 110 

from multi-sourced pre-existing global wetland products to minimize the manual participation; (2) develop a 

robust method to capture the temporal dynamics of wetlands and then produce the first global 30-m wetland 

dataset with a fine classification system (GWL_FCS30); (3) quantitatively analyze the spatial distribution of 

different wetland categories and assess the accuracy of the GWL_FCS30 in 2020.  

2. Datasets  115 

2.1 Multi-sourced remote sensing imagery 

Three types of remote sensing imagery were collected to capture the temporal dynamics and spatial and 

spectral heterogeneity of wetlands. These include Landsat optical data, Sentinel-1 SAR, and ASTER GDEM 

topographical data. First, all available Landsat imagery during 2019–2021 was obtained via the Google Earth 

Engine platform. To minimize the effect of atmosphere, each Landsat image was atmospherically corrected to 120 

the surface reflectance by the United States Geological Survey using Land Surface Reflectance Code (LaSRC) 
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method (Vermote et al., 2016) and then archived on the GEE platform. And these ‘bad quality’ observations 

(shadow, cloud, snow, and saturated pixels) in Landsat imagery were masked using CFmask cloud detection 

method (Zhu et al., 2015; Zhu and Woodcock, 2012). In this study, 764,239 Landsat scenes were collected to 

extract the water-level and phenological features presented in Section 4. Figure 1a illustrates the spatial 125 

distribution of all clear-sky Landsat imagery. It can be seen that there were more than 10 Landsat observations 

at each scene, including the tropics. Then, the Sentinel-1 SAR data, which was demonstrated to be sensitive to 

the soil moisture, vegetation structure, and inundation information (Li et al., 2020), used dual-polarization C-

band backscatter coefficients to measure the incident microwave radiation scattered by the land surface (Torres 

et al., 2012). This study obtained the time-series Sentinel-1 imagery archived on the GEE platform in 2020 in 130 

Interferometric Wide Swath mode with a dual-polarization of VV and VH. Notably, all Sentinel-1 SAR imagery 

on the GEE platform has been pre-processed by the Sentinel-1 Toolbox with thermal noise removal, radiometric 

calibration, and terrain correction using 30-m elevation data (Veci et al., 2014). Figure 1b also illustrates the 

spatial distribution of all available Sentinel-1 SAR imagery. We found that there were enough Sentinel-1 SAR 

observations in each area to capture the temporal dynamics of wetlands. Lastly, as many studies have 135 

demonstrated that the topography would directly affect the spatial distribution of wetlands, which are mainly 

distributed in low-lying areas (Hu et al., 2017b; Ludwig et al., 2019; Tootchi et al., 2019), the ASTER GDEM 

elevation and derived slope and aspect were used as auxiliary information for wetland mapping. It had a spatial 

resolution of 30 m and covered the entire global land area (Tachikawa et al., 2011a). Quantitative assessment 

indicated that the GDEM achieved an absolute vertical accuracy of 0.7 m over bare areas and 7.4 m over forested 140 

areas (Tachikawa et al., 2011b). 

 

Figure1. The availability of clear-sky Landsat observations (a) and Sentinel-1 SAR imagery (b). 

2.2 Global prior wetland datasets 

To achieve the goal of deriving a large and geographically diverse distribution of training samples with 145 

minimum manual labor, we propose combining various prior global wetland datasets for generating high-

confidence training samples. Table 1 lists the characteristics of several global wetland datasets. Specifically, we 

collected five global mangrove forest products with different spatial resolutions and time spans, and all of them 

achieved desirable accuracy. For example, the Global Mangrove Watch (GMW) was validated to reach an 

overall accuracy of 95.25%, and the user and producer accuracies of mangrove forest were 97.5% and 94.0%, 150 

respectively (Thomas et al., 2017). Furthermore, to derive the samples of salt marsh and tidal flats, we collected 

the time-series global 30-m tidal flats products from 1984 to 2016 with an interval of three years, achieving an 

overall map accuracy of 82.3% (Murray et al., 2019). The global salt marsh dataset, containing 350,985 

individual occurrence polygon shapefiles, helped generate the global salt marsh estimation (McOwen et al., 

2017).  155 
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Except for the coastal wetland products, two thematic wetland products (TROP-SUBTROP Wetland and 

GLWD contained various wetland sub-categories), three global land-cover products (GlobeLand30, 

GLC_FCS30, and CCI_LC contained an independent layer), and the time-series 30-m water dynamic dataset 

(JRC_GSW) were combined to determine the inland maximum wetland extents and generate the wetland 

training samples after using a series of refinement rules given in Section 3. Specifically, the TROP-SUBTROP 160 

was produced by combining the hydrological model and annual time series of soil moisture, mainly covering 

the tropics and sub-tropics (40°N ~ 60°S) with a resolution of 231 m (Gumbricht, 2015). The GLWD, combining 

the GIS functionality and a variety of existing maps and information, was developed with 12 wetland sub-

categories at a resolution of 1 km (Lehner and Döll, 2004). The JRC_GSW dynamic water dataset achieved a 

producer accuracy of 98.5% for these seasonal waters (Pekel et al., 2016) and was used to capture those wetlands 165 

around rivers, ponds, etc. Furthermore, three global land-cover products, simultaneously containing wetland 

layer and non-wetland land-cover types, were used to determine the non-wetland samples and then served as 

the auxiliary datasets to improve the confidence of inland wetland samples. 

Table 1. The characteristics of 13 global wetland products with various spatiotemporal resolutions. 

Dataset name Wetland categories Year Resolution Reference 

World atlas of mangroves (WAM) 

Mangrove 

2010 1:1,000,000 Spalding (2010) 

Global mangrove watch (GWM) 1996-2016 0.8 seconds Thomas et al. (2017) 

A global biophysical typology of 

mangroves (GBTM) 
1996-2016 0.8 seconds 

Worthington et al. 

(2020) 

Continuous global mangrove forest 

cover (CGMFC) 
2000-2010 30 m 

Hamilton and Casey 

(2016) 

Global distribution of mangroves 

USGS (GDM_USGS) 
2011 30 m Giri et al. (2011) 

Global distribution of tidal flat 

ecosystems 
Tidal flat 1984-2016 30 m Murray et al. (2019) 

Global distribution of saltmarsh Salt marsh 1973-2015 1:10,000 McOwen et al. (2017) 

Tropical and subtropical wetland 

distribution  

(TROP-SUBTROP Wetland) 

Open water, 

mangrove, swamps, 

fens, riverine, 

floodplains, and 

marshes 

2011 ~231 m Gumbricht (2015) 

Global lakes and wetlands database 

(GLWD) 

Lake, reservoir, river, 

freshwater marsh, 

swamps, coastal 

wetland, saline 

wetland, and Peatland 

2004 
30 second 

(~1 km) 

Lehner and Döll 

(2004) 

JRC-GSW Water  1984-2021 30 m Pekel et al. (2016) 

CCI_LC  

Swamps, mangrove, 

and Shrub or 

herbaceous cover 

wetlands 

1992-2020 300 m Defourny et al. (2018) 
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GlobeLand30 Wetland 2000-2020 30 m Chen et al. (2015) 

GLC_FCS30 Wetland 2015, 2020 30 m Zhang et al. (2021b) 

2.3 Global 30 m tree cover product 170 

The global 30-m forest cover change in tree cover (GFCC30TC) data in 2015 was produced by downscaling 

the 250-m MODIS VCF (Vegetation Continuous Fields) tree cover product using Landsat imagery and then 

incorporating the MODIS cropland layer to guarantee the tree cover accuracy in agricultural areas (Sexton et 

al., 2016; Sexton et al., 2013). This product was used to accurately distinguish between inland swamp and marsh 

wetlands because both of them reflected obvious vegetation spectra characteristics. It was validated to achieve 175 

an overall accuracy of 91%; the average producer and user accuracy for stable forests were 92.5% and 95.4%, 

respectively (Sexton et al., 2016; Townshend et al., 2012).  

2.4 Global wetland validation dataset 

To quantitatively analyze the performance of our GWL_FCS30 wetland map, a total of 18,701 validation 

samples, including 10,346 non-wetland points and 8,355 wetland points, were collected by combining high-180 

resolution imagery, time-series Landsat and Sentinel observations and visual interpretation method. Firstly, as 

the wetland was sparse land-cover type compared to the non-wetlands (forest, cropland, grassland and bare 

land), the stratified random strategy was applied to randomly derive validation points at each strata. Then, as 

the wetlands had significant correlation with the water levels (Zhang et al., 2022b), the time-series optical 

observations archived on the GEE cloud platform were used as the auxiliary dataset to interpret these water-185 

level sensitive wetlands such as: tidal flat and flooded flat. It should be noted that the visual interpretation was 

implemented on the GEE cloud platform because it archives a large amount of satellites imagery with various 

time spans and spatiotemporal resolution (Zhang et al., 2022a). Meanwhile, each validation point is 

independently interpreted by five experts for minimizing the effect of expert’s subjective knowledge, and only 

these complete agreement points were retained otherwise they were discarded. Figure 2 intuitively illustrated 190 

the spatial distribution of global wetland validation points, it can be found that the distribution of wetland points 

accurately revealed the spatial patterns of global wetlands. 

 

Figure 2. The spatial distribution of 18,701 global wetland validation samples using stratified sampling strategy. 
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3. Collecting training samples and determining maximum wetland extents 195 

In this study, after considering the applicability of moderate resolution (10–30 m) imagery, their practical 

use for ecosystem management, and the available pre-existing global wetland dataset, the fine wetland 

classification system, containing seven sub-categories (three coastal sub-categories and four inland sub-

categories), was proposed to comprehensively depict the spatial patterns of global wetlands (Table 2). 

Specifically, the sub-categories of coastal wetlands consist of mangroves, salt marshes, and tidal flats. By 200 

importing the vegetation and water cover information associated with this land cover, these categories were 

widely recognized in many previous studies (Wang et al., 2021; Zhang et al., 2022b). The inland wetland types 

shared similar characteristics and were grouped into swamp, marsh, and flooded flat. Except for the freshwater-

related wetlands, the inland saline wetland, inherited from the Global Lakes and Wetlands Dataset (GLWD) 

(Lehner and Döll, 2004), was also imported to capture saline soils and halophytic plant species along saline 205 

lakes.  

Table 2. The description of wetland classification system in this study 

Category I Category II Description 

Coastal wetland 

Mangrove  The forest or shrubs which grow in the coastal blackish or saline 

water 

Salt marsh Herbaceous vegetation (grasses, herbs and low shrubs) in the 

upper coastal intertidal zone 

Tidal flat The tidal flooded zones between the coastal high and low tide 

levels including mudflats and sandflats. 

Inland wetland 

Swamp  The forest or shrubs which grow in the inland freshwater  

Marsh Herbaceous vegetation (grasses, herbs and low shrubs) grows in 

the freshwater 

Flooded flat  The non-vegetated flooded areas along the rivers and lakes  

Saline Characterized by saline soils and halophytic (salt tolerant) plant 

species along saline lakes 

Many studies have explained that the quality and confidence of training samples directly affected the 

classification performance (Zhang et al., 2021b; Zhu et al., 2016). The previously mentioned process of 

collecting sufficient training samples via visual interpretation was time-consuming and involved a lot of manual 210 

labor. Fortunately, a variety of regional and global wetland products have been developed and released over the 

past few decades (Table 1), and many studies have demonstrated that deriving training samples from existing 

products could be used for large-area classification and mapping (Huang et al., 2021; Zhang et al., 2021b). 

Therefore, we propose to combine existing global wetland datasets to independently derive coastal/inland 

wetland training samples and their maximum distribution extents (Figure 3). 215 
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Figure 3. The flowchart of deriving coastal and inland wetland samples from multiple pre-existing datasets 

3.1 Deriving coastal wetland training samples and maximum extents 

This study divided the coastal wetlands into three sub-categories: mangrove forest, salt marsh, and tidal 

flat. The previously existing products have been collected in Table 1. For the mangrove training samples, we 220 

collected five global mangrove products with different spatiotemporal resolutions, all of which achieved 

fulfilling performances. For example, Hamilton and Casey (2016) stated that their continuous mangrove forest 

cover (CGMFC) dataset could cover 99% of all mangrove forests from 2000 to 2012, and Thomas et al. (2017) 

validated their Global Mangrove Watch (GMW) products from 1996 to 2016 and reached an overall accuracy 

of 95.25%. Therefore, we first measure the temporal consistency of the three time-series mangrove forest 225 

products (CGMFC, GMW, and GBTM mangroves), and only these temporally stable mangrove forest pixels 

were selected as the primary candidate points ( 𝑃𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒
𝑇𝑠𝑡𝑎𝑏𝑙𝑒 ). Meanwhile, to minimize the influence of 

classification error in each mangrove forest product, the cross-consistency of five mangrove products was 

analyzed, and only the pixel, simultaneously identified as mangrove forest in all five products, was labeled as 

stable and consistent candidate points (𝑃𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒
𝑇𝑠𝑡𝑎𝑏𝑙𝑒,𝑆𝑐𝑜𝑛𝑠

). Furthermore, considering that there was a temporal 230 

interval between prior mangrove products and our study, and that mangrove deforestation usually followed the 

pattern of edge-to-center contraction, a morphological erosion filter with a local window of 3×3 was applied to 

the 𝑃𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒
𝑇𝑠𝑡𝑎𝑏𝑙𝑒,𝑆𝑐𝑜𝑛𝑠

 points to further ensure the confidence of mangrove training samples. Lastly, as for the 

maximum mangrove forest extents (𝑀𝑎𝑥𝐸𝑥𝑡𝑒𝑛𝑡𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒), the union operation was applied to five global 

mangrove products as shown in Eq. (1).  235 

𝑀𝑎𝑥𝐸𝑥𝑡𝑒𝑛𝑡𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒 = 𝑀𝑊𝐴𝑀 ⋃ 𝑀𝐺𝑀𝑊 ⋃ 𝑀𝐺𝐵𝑇𝑀 ⋃ 𝑀𝐶𝐺𝑀𝐹𝐶 ⋃ 𝑀𝐺𝐷𝑀_𝑈𝑆𝐺𝑆  (1) 

where [𝑀𝑊𝐴𝑀, 𝑀𝐺𝑀𝑊, 𝑀𝐺𝐵𝑇𝑀 , 𝑀𝐶𝐺𝑀𝐹𝐶 , 𝑀𝐺𝐷𝑀_𝑈𝑆𝐺𝑆]  are the spatial distributions of five global mangrove 

forest products listed in Table 1. It should be noted that these prior mangrove products were demonstrated to 

cover almost all mangroves over the world, so the 𝑀𝑎𝑥𝐸𝑥𝑡𝑒𝑛𝑡𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒  can be used as the boundary for 

mangrove mapping; namely, only the pixel within the maximum mangrove extent was labeled as mangrove 

forest. 240 

Regarding the collection of tidal flat samples, the prior time-series global 30 m tidal flat products 

(𝐺𝑡𝑖𝑑𝑎𝑙𝑓𝑙𝑎𝑡) from 1984 to 2016 were validated to achieve an overall map accuracy of 82.3%, and user 

accuracies for the non-tidal and tidal flat of 83.3% and 81.1%, respectively (Murray et al., 2019). To ensure the 

accuracy of tidal flat samples, we first applied temporal consistency analysis to the time series of tidal flat 

datasets from 2000 to 2016 and identified the temporally stable tidal flat pixels (𝑃𝑡𝑖𝑑𝑎𝑙
𝑇𝑠𝑡𝑎𝑏𝑙𝑒) during 16 consecutive 245 

years. The reason why we discarded the tidal flat datasets before 2000 was that the available Landsat imagery 

was sparse and could not accurately capture the high-tidal and low-tidal information, and suffered lower 

monitoring accuracy. Next, Radoux et al. (2014) found that transition zones between two different land-cover 

types are likely to be misclassified; therefore, the candidate tidal flat samples 𝑃𝑡𝑖𝑑𝑎𝑙
𝑇𝑠𝑡𝑎𝑏𝑙𝑒 were further refined by 

the morphological erosion filter with a local window of 3×3. Furthermore, as a tidal flat is a non-vegetated 250 

coastal wetland, we combined the empirical rule (EVI ≥ 0.1, NDVI ≥ 0.2, and LSWI > 0) proposed by Wang et 

al. (2020) and time-series Landsat imagery in 2020 to exclude all vegetated pixels from tidal flat training 

samples. Lastly, to derive the maximum tidal flat extents (𝑀𝑎𝑥𝐸𝑥𝑡𝑒𝑛𝑡𝑡𝑖𝑑𝑎𝑙𝑓𝑙𝑎𝑡), the union operation was applied 

to the time-series tidal flat products from 1984 to 2016. It should be noted that the Murray’s global 30 m tidal 

flat datasets only covered the regions of 60°N~60°S (Murray et al., 2019), therefore, we used the coastal 255 
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shorelines (𝐿𝑖𝑛𝑒𝑐𝑜𝑎𝑠𝑡𝑎𝑙 ) to create a 50 km buffer (applied by the Wang et al. (2020) and (Murray et al., 2019)) 

as the potential tidal flat zones in the high latitude regions (>60°N) as in Eq. (2). 

𝑀𝑎𝑥𝐸𝑥𝑡𝑒𝑛𝑡𝑡𝑖𝑑𝑎𝑙𝑓𝑙𝑎𝑡 = {
⋃ 𝐺𝑡𝑖𝑑𝑎𝑙𝑓𝑙𝑎𝑡𝑡,𝑠

2016
𝑡=1984 ,   𝑠 ∈ [60°𝑆, 60°𝑁]

𝐿𝑖𝑛𝑒𝑐𝑜𝑎𝑠𝑡𝑎𝑙 ± 50𝑘𝑚,       𝑠 ∈ [60°𝑁, 90°𝑁]
  (2) 

Compared with the mangrove forest and tidal flat, the pre-existing global or regional salt marsh products 

were relatively sparse. The global distribution of the salt marsh dataset contained 350,985 individual vector 

polygons and was the most complete dataset on salt marsh occurrence and extent at the global scale (McOwen 260 

et al., 2017). However, after careful review, we found some mislabeled salt marsh polygons, so this dataset 

cannot be used directly to derive training samples. This study first used the random sampling method to generate 

35,099 salt marsh points (approximately 10% of the total polygons) based on prior datasets. We combined the 

visual interpretation method and high-resolution imagery to check each salt marsh point. After discarding the 

incorrect and uncertain samples, a total of 32,712 salt marsh points were retained. However, the prior dataset 265 

only captured the extent of salt marshes in 99 countries worldwide (McOwen et al., 2017), further noting that 

the distribution of salt marshes was spatially correlated with tidal flat and mangrove forest (Wang et al., 2021). 

Consequently, the maximum extents of tidal flat and mangrove forest, in addition to the prior salt marsh extent 

were used for salt marsh mapping. Meanwhile, as the wetland layer in the global land-cover products 

(GLC_FCS30, GlobeLand30, and CCI_LC) also covered some coastal wetlands, the wetland layers in these 270 

land-cover products over coastal regions were also imported. 

3.2 Deriving inland wetland training samples and maximum extents 

The pre-existing inland wetland datasets usually suffered from lower accuracy compared to coastal wetland 

products; for example, the wetland layer in the GlobeLand30-2010 and GLC_FCS30-2015 was validated to 

achieve a user accuracy of 74.9% (Chen et al., 2015) and 43.4% (Zhang et al., 2021b), respectively. Therefore, 275 

we first generated high-confidence inland wetland samples and then determined their sub-categories (swamp, 

marsh, inland flat, and saline wetland). Specifically, the consistency analysis of five global wetland datasets 

(TROP-SUBTROP Wetland, GLWD, CCI_LC, GlobeLand30, and GLC_FCS30) and the temporal stability 

checking for CCI_LC (1992–2020), GlobeLand30 (2000-2020) and GLC_FCS30 (2015-2020) were applied to 

identify these temporally stable and high cross-consistency wetland points (𝑃𝑖𝑛𝑙𝑎𝑛𝑑𝑊𝑒𝑡
𝑇𝑠𝑡𝑎𝑏𝑙𝑒,𝑆𝑐𝑜𝑛𝑠

). Namely, only the 280 

pixel identified as inland wetland (excluding permanent water bodies) in all five products was retained. Then, 

the morphological erosion filter with a local window of 3 × 3 was also used to decrease the sampling uncertainty 

over these land-cover transition areas because the transition zones between two different land-cover types are 

likely to be misclassified (Lu and Wang, 2021; Radoux et al., 2014).  

Afterward, to determine the wetland sub-category for each inland wetland sample, we first used the 285 

empirical vegetation rule (EVI ≥ 0.1, NDVI ≥ 0.2, and LSWI > 0) proposed by Wang et al. (2020) and time-

series Landsat imagery to split candidate samples into two parts: vegetated wetland samples (swamp and marsh) 

and non-vegetated wetland samples (flooded flat and saline). Then, as the swamp was defined as the forest or 

shrubs which grow in the inland freshwater, the global 30-m tree cover dataset (GFCC30TC) was adopted to 

distinguish the swamp and marsh from vegetated wetland samples. Specifically, if the tree cover of the sample 290 

was greater than 30% (Hansen et al., 2013), it was labeled as swamp, and the remaining vegetated wetland 

samples were labeled as marsh. Furthermore, to distinguish between the inland flat and saline samples from 

these non-vegetated wetland samples, the saline blocks in the prior GLWD products were first checked by visual 
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interpretation and then imported as the reference dataset to identify all saline wetland samples. The remaining 

non-wetland samples were labeled as flooded flat. Lastly, as for determining the maximum inland wetland 295 

extents (𝑀𝑒𝑥𝑡𝑒𝑛𝑡𝑖𝑛𝑊𝑒𝑡), the union operation was conducted to six pre-existing global datasets as in Eq. (3).  

𝑀𝑒𝑥𝑡𝑒𝑛𝑡𝑖𝑛𝑊𝑒𝑡 = 𝑊TROP−SUBTROP ⋃ 𝑊𝐺𝐿𝑊𝐷 ⋃ 𝑊𝐶𝐶𝐼_𝐿𝐶 ⋃ 𝑊𝐺𝐿𝐶_𝐹𝐶𝑆30 ⋃ 𝑊𝐺𝑙𝑜𝑏𝑒𝑙𝑎𝑛𝑑30 ⋃ 𝑊𝐽𝑅𝐶_𝐺𝑆𝑊  (3) 

Here, [𝑊TROP−SUBTROP, 𝑊𝐺𝐿𝑊𝐷 , 𝑊𝐶𝐶𝐼_𝐿𝐶 , 𝑊𝐺𝐿𝐶_𝐹𝐶𝑆30, 𝑊𝐺𝑙𝑜𝑏𝑒𝑙𝑎𝑛𝑑30] were wetland distributions of five pre-

existing global wetland products. To comprehensively capture these fragmented and small river and lake 

wetlands, the seasonal water extents derived from the JRC-GSW time-series water dynamic datasets (𝑊𝐽𝑅𝐶_𝐺𝑆𝑊) 

were also added to 𝑀𝑒𝑥𝑡𝑒𝑛𝑡𝑖𝑛𝑊𝑒𝑡. Specifically, as the time series of the JRC-GSW datasets provided the water 300 

probability at a monthly history for 1984–2021 (Pekel et al., 2016), the seasonal water body could be separated 

by the water probability using the threshold of 0.95 suggested by Wang et al. (2020). 

3.3 Deriving non-wetland training samples from prior land-cover products 

Except for coastal and inland wetland samples, the non-wetland samples were also necessary because some 

non-wetland land-cover types were shown to have a similar spectrum to wetlands. For example, swamp and 305 

forest or shrubs exhibited the same vegetation reflectance characteristics in optical imagery, and marsh and 

grassland shared similar spectra curves during the growing season (Zhang et al., 2022b). This study divided the 

non-wetlands into forest/shrubland, grassland, cropland, permanent water, and others (bare land, impervious 

surfaces, and snow). To automatically derive these non-wetland samples, the multi-epochs GlobeLand30, 

GLC_FCS30, CCI_LC global land-cover products, and the JRC-GSW water dynamic dataset were integrated. 310 

Specifically, the temporal stability and cross-consistency analysis were applied to three land-cover products to 

identify temporally stable forest/shrubland, grassland, cropland, and other candidate samples. Furthermore, the 

morphological erosion filter with the local window of 3 × 3 was also adopted to decrease the sampling 

uncertainty over land-cover transition areas. Regarding the permanent water samples, the JRC_GSW water 

dynamic dataset was validated and achieved producer’s and user’s accuracies of 99.7% and 99.1% for 315 

permanent water (Pekel et al., 2016). The permanent water training samples were directly derived from the 

JRC_GSW dataset without any refinement rules. 

Except for the confidence of training samples, many studies also found that the size and distribution of 

training samples also affected classification performances (Jin et al., 2014; Zhu et al., 2016). As this study aimed 

to identify wetlands instead of all land-cover types, the equal allocation sample distribution would perform 320 

better than the proportional distribution (the sample size determined by the area) (Jin et al., 2014; Zhang et al., 

2020). Namely, the approximate proportion of inland wetland, coastal wetland, and non-wetland samples was 

4:3:5 in the coexisting areas because the classification system was composed of four inland and three coastal 

wetland sub-categories and five non-wetland land-cover types. Regarding the sample size, Zhu et al. (2016) had 

analyzed the quantitative relationships of sample size and the mapping accuracy and found that the mapping 325 

accuracies slowly increased and then remained stable with any further increase in the number of samples and 

suggested using a total of 20,000 samples in the Landsat scene. In this study, we used the stratified random 

sampling strategy to collect the training samples (excluding salt marsh because it was collected globally using 

visual interpretation in Section 3.1) at each 2° × 2° geographical grid using an approximate sample size of 2000 

for each category. According to our statistics, this study derived exceeding 20 million training samples for 330 

mapping global fine wetlands. 
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4. Mapping wetland using the water-level and phenological features and the stratified 

classification strategy 

Considering that the spectral characteristics of the wetlands would quickly change with the seasonal or daily 

water levels of the underlying surface, the time-series Landsat-8 and Sentinel-1 SAR observations, and ASTER 335 

DEM topographical image were combined to capture the complicated temporal dynamics and spectral 

heterogeneity. Figure 4 illustrates the flowchart of the proposed method for generating the water-level and 

phenological features and developing a global 30-m fine wetland map using a stratified random forest modeling 

strategy. 

 340 

Figure 4. The flowchart of wetland mapping using water-level and phenological features and a stratified 

classification strategy. 

4.1 Generating the water-level and phenological features  

The spectral characteristics of the wetlands would quickly change along with the seasonal or daily water 

levels of the underlying surface. For example, the tidal flat was the status of seawater at the high tidal stage and 345 

mud or sand flats at low tidal stages (Wang et al., 2021); therefore, it was necessary to extract the high- and 

low-water-level features to completely capture these water-level sensitive wetlands. Over the past several years, 

the time-series compositing strategy has been widely used to capture phenological and cloud-free composites 

(Jia et al., 2020; Ludwig et al., 2019; Murray et al., 2019; Zhang et al., 2021a). For example, Murray et al. (2019) 

used the quantile compositing method to extract different tidal stage information, and successfully produced the 350 

global distribution of tidal flats. However, Zhang et al. (2022b) explained that the percentile composting method 

fails to capture the highest- and lowest-water stages and further proposed to use the maximum normalized index 

for compositing the highest- and lowest-water features. Meanwhile, a multi-temporal phenology was also 

essential for classifying the vegetated wetlands and excluding these non-wetland land-cover types (Li et al., 

2020; Ludwig et al., 2019). Before generating various water-level and phenological features, four spectral 355 

indexes including normalized difference water index (NDWI), land surface water index (LSWI), normalized 

difference vegetation index (NDVI) and enhanced vegetation index (EVI) were imported because many studies 

have demonstrated that they were of great help in wetland mapping (Mao et al., 2020; Wang et al., 2020), 
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𝐿𝑆𝑊𝐼 =
𝜌𝑛𝑖𝑟−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑛𝑖𝑟+𝜌𝑠𝑤𝑖𝑟1
, 𝑁𝐷𝑊𝐼 =

𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑠𝑤𝑖𝑟1
, 𝑁𝐷𝑉𝐼 =

𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑
, 𝐸𝑉𝐼 = 2.5 ×

𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+6×𝜌𝑟𝑒𝑑−7.5×𝜌𝑏𝑙𝑢𝑒+1
  (4) 

where 𝜌𝑏𝑙𝑢𝑒, 𝜌𝑔𝑟𝑒𝑒𝑛, 𝜌𝑟𝑒𝑑, 𝜌𝑛𝑖𝑟, 𝜌𝑠𝑤𝑖𝑟1 were the blue, green, red, near-infrared and shortwave infrared bands 

of Landsat imagery, respectively. 360 

Regarding the highest and lowest water-level features, considering that NDWI was sensitive to open surface 

water and that Zhang et al. (2022b) found a positive relationship between tidal height and NDWI using field 

survey data, the maximum NDWI compositing was applied to the time-series clear-sky Landsat imagery to 

capture the optical highest water-level composites illustrated in Figure 5b. As for the lowest water-level features, 

considering that the tidal/flooded flat or marsh usually reflected higher NDVI and EVI values than water bodies 365 

and that Zhang et al. (2022b) also used the field data to demonstrate that there was a negative relationship 

between tidal-level height and NDVI, the maximum NDVI composite was applied to capture the optical lowest 

water-level information illustrated in Figure 5a. Considering that optical observations were usually 

contaminated by clouds, especially during the rainy seasons, and that the SAR back coefficients had a great 

advantage in the presence of cloud coverage and were found to be sensitive to the soil moisture, vegetation 370 

structure, and inundation information, the time-series Sentinel-1 SAR imagery could be used as a 

complementary dataset for capturing the highest and lowest water-level features (DeVries et al., 2020; Li et al., 

2020; Mahdianpari et al., 2018). Specifically, as the SAR active transmitting signals were heavily absorbed 

when they reached the water body, the corresponding SAR back coefficients in the water body had lower values 

compared to other land-cover types. To capture the high water-level features from the time-series Sentinel-1 375 

imagery, the percentile compositing method using the 5th percentile was applied, as illustrated in Figure 5d. 

Conversely, the 95th percentile of Sentinel-1 VV and VH were generated to capture the lowest water-level 

information (Figure 5c). It should be noted that the minimum and maximum percentiles were not used because 

the time-series Sentinel-1 imagery still contained the residual errors caused by the quantitative processing. 

 380 

Figure 5. The lowest and highest water-level features derived from (a-b) time-series Landsat optical reflectance 

data and (c-d) the Sentinel-1 SAR imagery using the time-series compositing method in Poyang Lake, China.  

There were usually two options for capturing phenological features from time-series Landsat imagery. 

These included seasonal-based compositing (Zhang et al., 2021a; Zhang et al., 2022a) and percentile-based 

compositing (Hansen et al., 2014; Zhang and Roy, 2017; Zhang et al., 2021b). The former used the phenological 385 

calendar for selecting time-matched imagery. It then adopted the compositing rule to capture the seasonal 

features, while the latter directly used the statistical distributions to select various percentiles. Azzari and Lobell 

(2017) quantitatively analyzed the performance of two compositing methods and found that both of them had 

similar mapping accuracy for land-cover mapping. Meanwhile, the seasonal-based compositing method needed 

the prior phenological calendar, while the percentile compositing method did not require any prior knowledge 390 

or explicit assumptions regarding the timing of the season; therefore, the percentile compositing method was 
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more suitable to generate phenological features. This study composited time-series Landsat reflectance bands 

and four spectral indexes into five percentiles (15th, 30th, 50th, 70th and 85th). It should be noted that the 

minimum and maximum percentiles were excluded because they were usually affected by residual clouds, 

shadows, and saturated observations.  395 

Lastly, the topographical variables were also important factors for determining the spatial distribution of 

wetlands (Ludwig et al., 2019; Tootchi et al., 2019). For example, the widely used topographical wetness index 

(TWI) uses the local slope to reveal soil wetness, which improves wetland classification performance and 

reduces commission errors within upland areas (Ludwig et al., 2019). Therefore, the elevation, aspect, and slope, 

calculated from the ASTER GDEM dataset, were included in the multi-sourced features.  400 

4.2 The stratified classification strategy for wetland mapping 

Since we have simultaneously extracted the maximum coastal and inland wetland extents when deriving 

training samples from prior wetland datasets, the stratified classification strategy was adopted to fully use the 

maximum extent constraint. Namely, if a pixel was classified as a coastal wetland outside the maximum coastal 

wetland extents, it would be identified as a misclassification. Furthermore, there were two approaches, the large-405 

area land-cover mapping, which included global classification modeling (using one universal model for the 

whole areas) and local adaptive modeling (using various models for different zones) (Zhang et al., 2020). For 

example, Zhang and Roy (2017) demonstrated that local adaptive modeling outperformed the global 

classification modeling strategy. Therefore, the global land surface was first divided into 961 5° × 5° 

geographical tiles, which were inherited from the global 30 m land-cover mapping by (Zhang et al., 2021b), and 410 

then independently trained the local adaption models using training samples from adjacent 3×3 tiles for ensuring 

the classification consistency across neighboring geographical tiles. 

Afterward, as the random forest (RF) classifier was demonstrated to have obvious advantages in dealing 

with high-dimensional data, robustness for training noise and feature selection, as well as achieving higher 

classification when compared to other widely used machine learning classifiers (e.g., support vector machines, 415 

neural networks, decision trees, etc.) (Belgiu and Drăguţ, 2016; Gislason et al., 2006) , the RF classifier was 

selected for mapping inland and coastal wetlands using multi-sourced features. It should be noted that the RF 

classifier had two key parameters: the number of selected prediction variables (Mtry) and the number of decision 

trees (Ntree). Belgiu and Drăguţ (2016) and Zhang et al. (2022b) have demonstrated the quantitative relationship 

of Ntree against classification accuracy and found that the classification accuracy stabilized when Ntree was 420 

greater than 100. Meanwhile, Belgiu and Drăguţ (2016) suggested that the Mtry should take its default value of 

the square root of the number of all input features. Therefore, the Ntree and Mtry took 100 and the square root 

of the number of all input features, respectively. 

The inland and coastal wetland maps were produced by combining water-label and phenological features, 

the stratified classification strategy, local adaptive modeling, and the derived wetland and non-wetland training 425 

samples. As the inland and coastal wetlands were independently produced, some pixels in the overlapping area 

of maximum inland and coastal wetland extents were simultaneously labeled as inland wetlands and coastal 

wetlands. However, as the final global wetland map was a hard classification, these pixels should be post-

processed into one label. As the random forest classifier could provide the posterior probability for each pixel, 

we determined the labels of the confused pixels by comparing the posterior probabilities.  430 
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4.3 Accuracy assessment 

To quantitatively analyze the accuracy of the proposed method and corresponding GWL_FCS30 wetland 

maps, we employed four metrics typically used to evaluate accuracy, which include the kappa coefficient, 

overall accuracy, user’s accuracy (measuring the commission error), and producer’s accuracy (measuring the 

omission error) (Gómez et al., 2016; Olofsson et al., 2014), were calculated using 18,701 global wetland 435 

validation samples in Section 2.4. Further, to intuitively understand the performance of the produced map, four 

existing global wetland products (GlobeLand30 wetland layer (Chen et al., 2015), GLC_FCS30-2020 wetland 

layer (Zhang et al., 2021b), CCI LC wetland layer (Defourny et al., 2018) and GLWD dataset) were collected 

to analyze the over-estimation and under-estimation problems in the inland regions, and three widely used 

mangrove forest datasets (Atlas mangrove, Global Mangrove Watch, and USGS Mangrove, 1isted in Table 1) 440 

were imported to assess the performance of the developed GWL_FCS30 wetland map in coastal areas. 

5. Results 

5.1 The spatial pattern of global wetlands in 2020 

Figure 6 illustrates the spatial distributions of our GWL_FCS30 wetland map and their area statistics in 

latitudinal and longitudinal directions in 2020. Overall, the GWL_FCS30 map accurately captured the spatial 445 

patterns of wetlands. It mainly concentrated on the high latitude areas in North Hemisphere and the rainforest 

areas (Congo Basin and Amazon rainforest in South America). Quantitatively, according to the latitudinal 

statistics, approximately 62.3% of wetlands were distributed poleward of 40°N (a large number of wetlands are 

located in Canada and Russia), and 19.9% of wetlands were located in equatorial areas, between 10°S~10°N, 

within which the Congo and Amazon rainforest wetlands are located. As for the longitudinal direction, there 450 

were mainly four statistical peak intervals: 100°W~80°W (Canada wetlands), 75°W~50°W (Amazon wetlands), 

15°E~25°E (Congo wetlands), and 60°E~90°E (Russia wetlands). Afterward, to more intuitively understand the 

performance of our GWL_FCS30 wetland map, four local enlargements in Florida, the Congo Basin, 

Sundarbans, and Poyang Lake were also illustrated. All of them comprehensively captured the wetland patterns 

in these local areas. For example, there was significant consistency between our results and Hansen’s regional 455 

wetland maps in the Congo Basin (Bwangoy et al., 2010) ; both results indicated that the wetlands occurred 

closer to major rivers and floodplains. Next, according to the lowest and highest water-level features derived 

from Sentinel-1 SAR and Landsat optical imagery in Figure 5, the inland wetlands having various water levels 

were also comprehensively identified in the Poyang wetland map (Figure 6d). Figure 6c illustrates the spatial 

distributions of the world’s largest mangrove forest in the Sundarbans (Figure 6c), and the cross-comparison in 460 

Figure 11 also demonstrates the great performance of the GWL_FCS30 dataset. Lastly, the Florida wetlands 

simultaneously contained five sub-categories (mangrove, tidal flat, salt marsh, marsh, and swamp). These were 

distributed along the coastlines and rivers and are accurately captured in Figure 6a. 
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Figure 6. The overview of global 30-m fine wetland maps and their area statistics in latitudinal and longitudinal 465 

directions in 2020. Four local enlargements in (a) Florida, (b) Congo Basin, (c) Sundarbans, and (d) Poyang 

Lake were also illustrated. 

Figure 7 illustrates the spatial distribution of seven sub-category wetlands after aggregating to the 0.5° × 

0.5° grid cell. Intuitively, swamp and marsh accounted for most inland wetlands. In contrast, flooded tidal 

wetlands had obviously lower proportions, and the inland saline type was only distributed along the 470 

surroundings of several saline lakes. In terms of the spatial distribution, it can be found that: 1) the swamp 

wetlands mainly were concentrated in the Congo and Amazon rainforests, Southern United States, and Northern 

Canada; 2) most marsh wetlands were located in high latitude areas in the Northern Hemisphere including 

Northern Canada, Russia, and Sweden; 3) there were significant coexistent relationships between flooded flat, 

swamp, and marsh wetlands, and flooded flat wetlands were sparse land-cover types compared to the other two 475 

wetlands. Similar to coastal wetlands, the mangrove forests were only found in coastal areas below 30°N and 

were mainly concentrated in regions between 30°N ~ 30°S, including Southeast Asia, West Africa, and the east 

coast of South America. The salt marshes and tidal flats shared similar spatial distributions. They were widely 

distributed globally and can be observed along most coastlines. In addition, the tidal flat distributions were 

closely related to the slope of coastlines, tidal ranges, and sediment inflows. For example, the tidal flats in Asia 480 

and Europe usually were located in the tide-dominated estuaries and deltas. Similarly, Murray et al. (2019) also 

demonstrated that there were often more tidal flats where the river flowed into the sea. 
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Figure 7. The spatial distributions of the seven wetland sub-categories after aggregating them to a resolution of 

0.5° × 0.5°. 485 

To quantitatively summarize the distribution of the seven sub-category wetlands, the total area and area 

percentages of seven fine wetlands over each continent were calculated in Figure 8 and Table 3. The total 

wetland area was 3.57 million km2, including 3.10 million km2 of inland wetlands and 0.47 million km2 of 

coastal wetlands, and the distribution of wetlands varied across different continents. Intuitively, approximately 

60% of coastal wetlands (tidal flat, salt marsh, and mangrove) and 70% of flooded flat and marsh wetlands were 490 

distributed in the Northern Hemisphere, especially in the Asian and North American continents. More than 85% 

of saline wetlands were located in the Southern Hemisphere, especially the Oceania continent. Then, in terms 

of specific wetland sub-categories, the swamp was mainly distributed on the North American, African, and 

South American continents, which contained many rainforest wetlands, with corresponding swamp areas of 

0.35, 0.18, and 0.32 million km2, respectively. Swamp areas in the Oceania continent were the smallest, covering 495 
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only 6599 km2, mainly because the forest cover in Oceania was smaller than in other continents. The marsh and 

flooded flats shared similar areal proportions in all six continents and were mainly concentrated in the North 

Hemisphere (exceeding 70%), where many lakes and rivers were distributed. Next, the mangrove forests only 

covered regions south of 30°N and were mostly concentrated in tropical regions near the equator, such as 

Southeast Asia, East Africa, and Central America, so this sub-category was absent in the Europe continent.  500 

 

Figure 8. The area proportions of seven wetland sub-categories over each continent. 

Table 3. The total wetland area (unit: km2) of seven wetland sub-categories at six continents and globe. 

 Swamp Marsh Flooded flat Saline Mangrove Salt marsh Tidal flat 

Asia 132229.8  570929.4  72801.2  12252.1  68220.6  25356.3  88928.7  

North America 352780.8  438726.7  119137.9  82.4  26242.9  36262.2  48948.9  

Europe 70084.2  208957.2  36138.9  48.2  0.0  21035.5  18347.1  

Africa 183727.1  149138.1  13188.7  12492.8  31130.7  5952.4  22278.9  

South America 323164.9  216470.4  52643.9  18881.4  21809.5  4218.4  19622.1  

Oceania 6599.3  62513.7  2403.9  43904.2  12463.9  10759.4  12826.6  

Total 1068586.1  1646735.4  296314.5  87661.1  159867.6  103584.1  210952.4  

5.2 Accuracy assessment of global 30 m fine wetland map 

Using 18,701 global validation samples, the confusion matrix of the novel GMW_FCS30 wetland map was 505 

calculated in Table 4. Overall, our wetland map achieved an overall accuracy of 87.7% and a kappa coefficient 

of 0.810 across the fine wetland classification system. In terms of the producer and user accuracies, the non-

wetlands achieved the highest performance with a producer’s accuracy of 93.1% and a user’s accuracy of 96.1%, 

mainly because we combined multi-sourced pre-existing wetland datasets to determine the maximum wetland 

boundary and further used multi-sourced and time-series imagery to distinguish between wetlands and non-510 

wetlands. As for the coastal wetlands, mangrove forest and tidal flat achieved higher accuracies than other sub-

categories, with producer’s accuracies of 84.3% and 83.1% and user’s accuracies of 94.0% and 88.8%, 

respectively. The misclassification of mangrove mainly focused on the confusion between mangrove, swamp, 

and salt marsh because they all shared similar vegetation spectral characteristics. The tidal flat also suffered 

from confusion with the salt marsh, flooded flat, and the non-wetlands, especially for the water bodies, because 515 

this land-surface type reflected complicated temporal dynamics at various water levels. The salt marsh had a 

lower producer accuracy of 75.4% than mangrove and tidal flat because its reflectance spectra were affected by 

both water levels and vegetation cover with considerable spatiotemporal heterogeneity. Furthermore, in terms 
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of the four inland sub-categories, the swamp and marsh obviously performed better than the flooded flat and 

saline wetland, with producer accuracies of 82.6% and 85.9%, respectively. It can be seen that the confusion 520 

between swamp and marsh was the main source of the misclassification error of swamp and that the marsh was 

simultaneously confused with non-wetland, swamp, and flooded flat because the spectra of marsh changed along 

with the water levels. For example, the marsh in Poyang Lake, shown in Figure 5b, was flooded at its highest 

water levels. Then, the flooded flat achieved a low producer accuracy of 51.1% because it usually coexisted 

with the marsh and shared similar spectral characteristics, so approximately 24.3% of flooded flat points were 525 

labeled as the marsh in our wetland map. The saline wetland was mainly concentrated along the edge of salt 

lakes and demonstrated great performance in our mapping, with producer’s and user’s accuracies of 74.7% and 

92.5%, respectively. 

Table 4. The confusion matrix of the global 30 m fine wetland map using 18701 validation points. 

 NWT SWP MSH FFT SAL SMH MGV TFT Total P.A. 

NWT 9627 246 313 65 0 44 11 40 10346 93.1 

SWP 24 1950 306 73 3 1 5 0 2362 82.6 

MSH 122 172 2856 172 1 0 1 0 3324 85.9 

FFT 89 50 149 312 1 6 1 3 611 51.1 

SAL 30 13 37 2 271 3 0 7 363 74.7 

SMH 61 4 3 23 0 356 13 12 472 75.4 

MGV 39 32 1 1 0 16 498 4 591 84.3 

TFT 28 22 11 11 17 17 1 525 632 83.1 

Total 10020 2489 3676 659 293 443 530 591 
18701 

U.A. 96.1 78.3 77.7 47.3 92.5 80.4 94.0 88.8 

O.A. 87.7  

Kappa 0.810  

Note: NWT: non-wetlands, SWP: swamp, MSH: marsh, FFT: flooded flat, SAL: saline, SMH: salt marsh, MGV: 530 

mangrove forest, TFT: tidal flat, O.A.: overall accuracy, P.A.: producer’s accuracy, U.A.: user’s accuracy. 

5.3 Cross-comparisons with other global wetland maps 

To comprehensively understand the performance of the GWL_FCS30 wetland maps, four existing global 

wetland datasets (GLC_FCS30, GlobeLand30, CCI_LC, and GLWD), listed in Table 1, were selected. Figure 

9 quantitatively illustrates the total wetland area of five products over each continent. Notably, the total wetland 535 

area of four existing wetland datasets estimated from our study differed from previous studies (Hu et al., 2017a; 

Tootchi et al., 2019) because we excluded the water bodies when calculating the total wetland area. Specifically, 

the estimated total wetland area in this study was more reasonable because permanent water bodies with depths 

of more than six meters were not considered wetlands, according to the RAMSAR Convention (Gardner and 

Davidson, 2011). 540 

Specifically, the total wetland area of different wetland products varied. The GLWD obviously 

overestimated the wetland area on each continent mainly because it was derived from the compilation model 

instead of actual remote sensing observations (Lehner and Döll, 2004). Namely, the GLWD classified a large 

amount of non-wetlands as potential wetlands. The remaining four wetland products, derived from the Landsat 

and PROBE-V remote sensing imagery, shared a similar total wetland area of approximately 3.0 million km2, 545 

https://doi.org/10.5194/essd-2022-180
Preprint. Discussion started: 19 August 2022
c© Author(s) 2022. CC BY 4.0 License.



19 

and our GWL_FCS30 wetland dataset had the largest total area of 3.574 million km2 among these datasets. The 

CCI LC wetland layer contained the smallest wetland area of 2.955 million km2, and the estimated area in North 

America was profoundly lower than the other datasets, mainly because the CCI LC heavily underestimated the 

wetland distribution in Canada after a comparison with the Canadian Wetland Inventory (Amani et al., 2019). 

Next, the total wetland area in GlobeLand30 and GLC_FCS30 wetland layer was lower than the GWL_FCS30 550 

wetland dataset because some water-level sensitive wetlands cannot be comprehensively captured in these two 

datasets (Figure 10).  

 

Figure 9. The total wetland area (unit: million km2) of five global wetland products on six continents. 

Figure 10 illustrates the performances of five wetland products for two typical wetland regions (Poyang 555 

Lake in China and Pantanal wetland in Brazil). The reasons for choosing these two regions were that the 

wetlands in Poyang Lake quickly changed with water levels, and the Pantanal wetland was the largest wetland 

in the world. Intuitively, the GWL_FCS30 wetland maps had the greatest performance in capturing the spatial 

patterns of various wetland sub-categories. Comparatively, the GLC_FCS30 wetland layer seriously 

underestimated the wetland area in both regions, which obviously overestimated many water-sensitive wetlands 560 

as water bodies in Poyang Lake and also missed a large number of wetlands in the Pantanal wetland. Zhang et 

al. (2021b) also stated that the wetland in the GLC_FCS30 suffered from low accuracy because of a lack of 

enough wetland samples and multi-sourced wetland sensitive features. Then, the GlobeLand30 wetland layer 

performed better in the Pantanal wetland than in Poyang Lake, which obviously misclassified many water-

sensitive wetlands as water bodies in the Poyang Lake mainly because the low water-level features were not 565 

captured during the development of the GlobeLand30 (Chen et al., 2015). In addition, the wetland layer of 

GlobeLand30 in Pantanal still suffered from the over-estimation problem, and some non-wetlands in Pantanal 

Wetland Park were mislabeled as wetland, so the wetland layer in the GlobeLand30 only achieved a user’s 

accuracy of 74.87% (Chen et al., 2015). The CCI LC was highly consistent with the GWL_FCS30 wetland maps 

in spatial distribution. Details show that the wetlands in the CCI LC were still underestimated in the Poyang 570 

Lake wetland and overestimated in the Pantanal wetland based on the highest and lowest water-level composites. 

Lastly, the GLWD dataset significantly overestimated the wetlands in two regions, namely, the mapped marsh 
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area was obviously greater than its actual area and it also misclassified these water-sensitive wetlands as water 

bodies near Poyang Lake. 

 575 

Figure 10. The cross-comparisons between our GWL_FCS30 wetland maps with four existing wetland products: 

GLC_FCS30 generated by Zhang et al. (2021b), GlobeLand30 generated by Chen et al. (2015), CCI LC 

generated by Defourny et al. (2018) and GLWD generated by Lehner and Döll (2004) at Pantanal and Poyang 

Lake wetland. The false-color composited Landsat imagery (SWIR1, NIR, and Red bands) at the highest and 

lowest water levels were also illustrated. 580 

Figure 11 illustrates the comparisons between our fine wetland maps with three widely used global 

mangrove forest products (Atlas mangrove, GMW (Global Mangrove Watch), and USGS Mangrove) listed in 

Table 1 in two typical mangrove regions (coastal Indonesia and Sundarbans). Intuitively, there was great 

consistency over four mangrove datasets because the mangrove forest reflected obvious and strong vegetation 

reflectance characteristics and was easier to identify than other wetland sub-categories. Specifically, the Atlas 585 

mangrove dataset suffers from the underestimation problem; namely, the mangrove area in the Atlas mangrove 

dataset was obviously lower than the other three products, especially in coastal Indonesia (black rectangles). 

The USGS mangrove product can comprehensively capture the spatial distribution of mangroves over two 

regions. Still, it missed isolated fragments of mangrove forests in the Sundarbans (black rectangle) based on 
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high-resolution imagery. The GMW dataset was validated to achieve an overall accuracy of 95.25%, with user 590 

and producer accuracies of mangrove forests of 97.5% and 94.0%, respectively (Bunting et al., 2018; Thomas 

et al., 2017), which shows great agreement with our fine wetland maps and confirms that this dataset accurately 

identified the spatial patterns of mangrove forest in both regions. 

 

Figure 11. The cross-comparisons between our GWL_FCS30 wetland maps with three mangrove products 595 

Figure 12 illustrates the scatterplot between the tidal flat of the GWL_FCS30 map in 2020 against Murray’s 600 

tidal flat in 2016 (Murray et al., 2019) after aggregating to a spatial resolution of 0.01°. Overall, two the tidal 

flat maps shows significant agreement and achieves a determination coefficient of 0.717 and RMSE of 0.151. 

However, in terms of the spatial distribution of the scatterplot, the tidal flat in Murray’s dataset was significantly 

lower than that of the GWL_FCS30 mainly because the highest and lowest tidal levels cannot be 

comprehensively captured in Murray’s tidal flat dataset (Murray et al., 2019), as these tidal flats over deeper 605 

water were easier to miss in Murray’s products. Similarly, Zhang et al. (2022b) also demonstrated that Murray’s 

tidal flat dataset suffered from an underestimation problem. To intuitively understand the performance of the 

two tidal flat datasets, two local regions and their corresponding highest and lowest tidal-level composites are 

illustrated in Figure 13. It is evident that the actual tidal flat in Murray’s dataset was clearly underestimated 

(black rectangles), especially in the first region. 610 

(Atlas mangrove developed by Spalding (2010), GMW (Global mangrove watch) developed by Thomas et al. 

(2017) and Mangrove USGS developed by Giri et al. (2011)) in Sundarbans and coastal Indonesia. The high-

resolution imagery came from the © Google Earth Engine platform (https://earthengine.google.com; last 

access: 16 May 2022).  
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Figure 12. The scatterplot between the tidal-flat fraction in GWL_FCS30 in 2020 (x-axis) against that of 

Murray’s tidal-flat fraction in 2016 (y-axis) (Murray et al., 2019) after aggregating to a spatial resolution of 

0.01°. 

 615 

Figure 13. The comparisons between the tidal flat of GWL_FCS30 in 2020 and Murray’s tidal flat in 2016 for 

two local regions. In each case, the highest and lowest tidal-level composites, composited by SWIR1, NIR, and 

red bands, are illustrated. 

6. Discussion 

6.1 The feasibility of derived training samples for wetland mapping 620 

Previous studies found that the confidence of training samples directly affected the final classification 

accuracy (Mellor et al., 2015; Radoux et al., 2014). However, collecting global training samples via visual 

interpretation was highly time-consuming and involved a large amount of manual work, so it was impossible to 

use the visual interpretation for collecting global wetland samples. This study proposed combining multi-

sourced pre-existing wetland products, refinement rules, and expert knowledge to automatically derive these 625 

massive inland and coastal wetland training samples globally. To demonstrate the reliability of the derived 

training samples for wetland mapping, we randomly selected approximately 10,000 points from the sample pool 

and checked their confidence using visual interpretation. It should be noted that we cannot check all the training 
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samples because the number of derived samples was massive (exceeding 20 million training samples in Section 

3). After a point-to-point inspection, these selected training samples achieved an overall accuracy of 91.53% in 630 

2020. Meanwhile, we also used 10,000 selected wetland training samples and many non-wetland samples to 

analyze overall and producer’s accuracies of coastal and inland wetlands versus number of erroneous training 

samples. Specifically, we gradually increased the “contaminated” samples by randomly altering the label of a 

certain percentage of training samples in steps of 0.01, and then used these “contaminated” samples to build the 

RF classification model. After repeating the process 100 times, the quantitative relationship between mapping 635 

accuracies and erroneous samples is illustrated in Fig. 14. Obviously, the overall accuracy and producer’s 

accuracy of wetlands (merging seven sub-categories into one wetland) was insensitive to the erroneous training 

samples when the percentage of erroneous samples was controlled within 20%. Beyond this, the accuracies 

slowly decreased along with the increase of erroneous training samples. Similarly, previous studies by Zhang 

et al. (2021b) and Zhang et al. (2022a) quantitatively analyzed the relationship between overall accuracy and 640 

the erroneous training samples size. They found that the overall accuracy stabilized when the percentage of 

erroneous training samples was controlled within the threshold and then rapidly decreased after exceeding the 

threshold. Gong et al. (2019) also demonstrated the random forest classification model was resistant to the 

erroneous training samples when the percentage of erroneous training samples remained below 20%. Therefore, 

the derived training samples in Section 3 were accurate enough to support large-area fine wetland mapping. 645 

 

Figure 14. The relationship between mapping accuracies with the percentage of erroneous training samples 

with a step of 1%. 

6.2 The importance of multi-sourced phenological features for wetland mapping 

The complicated temporal dynamics and spectral heterogeneity caused great uncertainties in wetland 650 

mapping because their spectral characteristics quickly changed with the seasonal or daily water levels of the 

underlying surface (Ludwig et al., 2019). Single-date optical or SAR observations often failed to capture the 

spatiotemporal variability of wetlands, which led to the commission and omission errors in wetland mapping, 

so many studies have demonstrated that using multi-temporal data was an effective way to achieve high-

precision wetland mapping, especially for the water-sensitive sub-categories (tidal flat and marsh) (Jia et al., 655 

2020; Zhang et al., 2022b). This study combined the time-series Landsat reflectance and Sentinel-1 SAR 

products to capture the various water levels and phenological features for comprehensively depicting their 

temporal dynamics and spectral characteristics, as discussed in Section 4.1. To quantitatively analyze the 

importance of these multi-sourced and multi-temporal features, we used the random forest classification model, 
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which calculated the increased mean squared error by permuting the out-of-bag data of a variable while keeping 660 

remaining variables constant (Breiman, 2001; Zhang et al., 2020), in an effort to compute their importance. 

Figure 15 illustrates the importance of all multi-sourced and phenological features, and it can be found that the 

phenological features which made the most significant contribution mainly did so because they used the multi-

temporal percentiles to comprehensively capture vegetation phenology (EVI and NDVI) and water-level 

dynamics (NDWI and LSWI) for the various land-cover types. Then, the combination of optical and Sentinel-1 665 

SAR water-level features ranked as the second-most important role in distinguishing the fine wetlands and non-

wetlands. Based on the low and high water-level features in Fig. 5, the highest and lowest water-level features 

greatly contributed to determining these water-sensitive wetlands (marsh, tidal flat, and flooded flat). For 

example, Zhang et al. (2022b) quantitatively analyzed the contribution of multi-sourced features to mapping 

accuracy. They found that importing water-level features significantly improved the ability to separate tidal flats 670 

from non-wetlands. Lastly, three topographical variables also contributed to wetland mapping because the 

spatial distribution of wetlands had a significant relationship with topography and was mainly distributed in 

low-lying areas (Zhu and Gong, 2014). 

 

Figure 15. The importance of multi-sourced and multi-temporal features derived from the random forest 675 

classification model. 

6.3 The limitations and prospects of our global fine wetland map 

Using pre-existing global wetland products, multi-sourced and time-series remote sensing imagery, 

stratified classification strategy, and local adaptive classification methods, the first global 30-m fine wetland 

maps were produced with an overall accuracy of 85.5% and a kappa coefficient of 0.776. Meanwhile, the 680 

training sample reliability analysis and multi-sourced feature importance evaluation also demonstrated that the 

proposed method was suitable for large-area fine wetland mapping. However, it should be noted there were still 

many uncertainties and limitations to the proposed method and global wetland maps. First, the proposed method 

used continuous Landsat reflectance and Sentinel-1 SAR imagery to capture various water-level information. 

Still, it might fail when the available Landsat observations were sparse and lacked the aid of Sentinel-1 SAR 685 

data, especially before 2000. Thus, our future work would focus on combining a richer multi-sourced data source, 

including MODIS, Sentinel-2, SPOT, and PALSAR imagery, to develop a more robust wetland mapping 

method. For example, Chen et al. (2018) integrated Landsat and MODIS observations to successfully monitor 

the wetland dynamics from 2000 to 2014 using a spatiotemporal adaptive fusion model.  
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We then combined the pre-existing global wetland products to derive the training samples; however, the 690 

salt marsh and saline samples still used the visual interpretation method to ensure their reliability because of 

lacking sufficient pre-existing global products. Additionally, it was found that the producer accuracy of salt 

marsh and saline in Table 4 was relatively poor compared with other sub-categories mainly because visual 

interpretation cannot provide massive and geographically distributed salt marsh and saline training samples. 

Namely, this study cannot comprehensively capture the regional adaptive reflectance characteristics of salt 695 

marsh and saline. Fortunately, many studies have built expert knowledge of these sub-categories over recent 

years. For example Mao et al. (2020) combined multi-scale segmentation, multiple normalized indices, and rule-

based classification methods to develop a wetland map of China with an overall classification accuracy of 95.1%. 

Similarly, Wang et al. (2020) used the four widely used spectral indices to successfully identify three sub-

categories within coastal wetlands. Thence, our further work would attach more effort on the spectral 700 

characteristics of salt marsh and saline wetlands and build expert knowledge of them for automatically deriving 

their training samples.   

7. Data availability 

The GWL_FCS30 wetland dataset in 2020 was freely available at https://doi.org/10.5281/zenodo.6575731 

(Liu et al. 2022). It was composed of 961 5°×5° geographical grid tiled files, and each tiled file was stored using 705 

the geographical projection system with a spatial resolution of 30-meter in the GeoTIFF format. The fine 

wetland subcategory information was labeled as 0, 181, 182, 183, 184, 185 186 and 187, representing the non-

wetland, swamp, marsh, flooded flat, saline, mangrove forest, salt marsh and tidal flat, respectively. The 

validation samples are available upon request. 

8. Conclusions 710 

Over the past few decades, many global and regional wetland products have been developed; however, an 

accurate global 30-m wetland dataset, with fine wetland categories and coverage of both inland and coastal 

zones, is still lacking. In this study, the time-series Landsat reflectance and Sentinel-1 SAR imagery, together 

with the stratified classification strategy and local adaptive random forest classification algorithm, were 

successfully integrated to produce the first global 30-m wetland product with a fine classification system in 715 

2020. The wetlands were classified into four inland wetlands (swamp, marsh, flooded flat, and saline) and three 

coastal wetlands (mangrove, salt marsh, and tidal flat). The produced wetland dataset, GWL_FCS30, accurately 

captured the spatial patterns of seven wetland sub-categories with an overall accuracy of 87.7% and a kappa 

coefficient of 0.810 for the fine wetland classification system with lower omission and commission errors 

compared to other global products. The quantitative statistical analysis showed that the global wetland area 720 

reached 3.57 million km2, including 3.10 million km2 of inland wetlands and 0.47 million km2 of coastal 

wetlands. Approximately 62.3% of wetlands were distributed poleward of 40°N. Therefore, the proposed 

method is suitable for large-area fine wetland mapping, and the GWL_FCS30 dataset can serve as an accurate 

wetland map that could potentially provide vital support for wetland management. 
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