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Reviewer #3 

The authors developed a global wetland mapping product based on multiple approaches in the GEE environment, 

called the GWL_FCS30. They reported some 3.6 million km2 of global wetlands, making the data freely 

available. The authors’ efforts are laudable, yet I have many concerns about the presentation and the analyses 

themselves that preclude my acceptance of this paper for publication. For the presentation, I would argue that 

the paper itself is overly long and dense. The approaches could be more clearly articulated and sign-posted for 

the readers. Parts that are results are introduced in the Discussion section (e.g., some validation data, as I note 

below) and the length of the paper makes it a long slog. However, my main issues are with the analytical 

approaches and base assumption.  

Great thanks for the comment. The manuscript has been greatly improved based on your and two other reviewers’ 

comments. 

 

First, the authors introduce wetlands in the very first sentence using the Ramsar Convention definition to include 

waters up to 6 m in depth. Then, they go on to conduct their analysis but exclude any and all inland open waters 

as they are assumed to be greater than 6 m in depth. They backstop their findings on global wetland abundance 

by stating at L535 “the estimated total wetland area in this study was more reasonable [than four previous 

analyses] because permanent water bodies with depths of more than six meters were not considered wetlands, 

according to the RAMSAR (sic) Convention…”. The assumption that any and all open water on the global 

landmass is >6m in depth – and hence not possibly a wetland – does not resonate. Yes, larger and deeper lakes 

could be greater than 6m. But open waters, especially smaller ones are frequently considered wetlands and are 

typically <6m in water depth (see, e.g., China’s State Forestry Administration [www.forestry.gov.cn] or a recent 

paper by Ye et al. (2022, https://doi.org/10.3390/w14071152); see also the Canadian Wetland Inventory 

[https://open.canada.ca/data/en/dataset/09f46d71-6feb-4f8f-8eb5-a58a58b06af5] or the United States National 

Wetlands Inventory [https://www.fws.gov/program/national-wetlands-inventory] identifying open waters as a 

wetland type). The point is that the Ramsar definition of wetlands is used, but then a major type of wetlands are 

excluded. The authors must acknowledge this in their study. For instance, it could be noted in the title and 

should definitely be noted in the abstract. I do wish that the authors would redo their analysis and incorporate 

open waters as a wetland type to include a major wetland type in their global analysis, alas. 

Great thanks for pointing out this issue and giving useful suggestion. The permanent water body has been 

added into our fine wetland classification system in method Section as: 

In this study, after considering the applicability of moderate resolution (10–30 m) imagery, their practical use 

for ecosystem management, and the available pre-existing global wetland dataset, the fine wetland classification 

system, containing eight sub-categories (three coastal tidal sub-categories and five inland sub-categories), was 

proposed to comprehensively depict the spatial patterns of global wetlands (Table 2). Specifically, the sub-



categories of coastal tidal wetlands consist of mangroves, salt marshes, and tidal flats. By importing the 

vegetation and water cover information associated with this land cover, these categories were widely recognized 

in many previous studies (Wang et al., 2021; Zhang et al., 2022b). The inland wetland types shared similar 

characteristics and were grouped into swamp, marsh, and flooded flat. Meanwhile, in order to capture saline 

soils and halophytic plant species along saline lakes, the inland saline wetland, inherited from the Global Lakes 

and Wetlands Dataset (GLWD) (Lehner and Döll, 2004), was also imported. Lastly, the permanent water, 

including lakes, rivers and streams that are always flooded, was widely identified as a wetland layer in 

previous studies (Davidson, 2014; Dixon et al., 2016; Hu et al., 2017b). 

Table 2. The description of wetland classification system in this study 

Category I Category II Description 

Tidal wetland 

Mangrove  The forest or shrubs which grow in the coastal blackish or 

saline water 

Salt marsh Herbaceous vegetation (grasses, herbs and low shrubs) in the 

upper coastal intertidal zone 

Tidal flat The tidal flooded zones between the coastal high and low tide 

levels including mudflats and sandflats. 

Inland wetland 

Swamp  The forest or shrubs which grow in the inland freshwater  

Marsh Herbaceous vegetation (grasses, herbs and low shrubs) grows 

in the freshwater 

Flooded flat  The non-vegetated flooded areas along the rivers and lakes  

Saline Characterized by saline soils and halophytic (salt tolerant) 

plant species along saline lakes 

Permanent water Lakes, rivers and streams that are always flooded 

Meanwhile, after adding the permanent water into our wetland system, the Result Section has been revised as: 

Figure 9 illustrates the spatial distributions of our GWL_FCS30 wetland map and their area statistics in 

latitudinal and longitudinal directions in 2020. Overall, the GWL_FCS30 map accurately captured the spatial 

patterns of wetlands. It mainly concentrated on the high latitude areas in North Hemisphere and the rainforest 

areas (Congo Basin and Amazon rainforest in South America). Quantitatively, according to the latitudinal 

statistics, approximately 72.96% of wetlands were distributed poleward of 40°N (a large number of wetlands 

are located in Canada and Russia), and 10.6% of wetlands were located in equatorial areas, between 10°S~10°N, 

within which the Congo and Amazon rainforest wetlands are located. As for the longitudinal direction, there 

were mainly four statistical peak intervals: 120°W~50°W (Canada wetlands and Amazon wetlands), 15°E~25°E 

(Congo wetlands), 40°E~55°E (the Caspian Sea), and 60°E~90°E (Russia wetlands). Afterward, to more 

intuitively understand the performance of our GWL_FCS30 wetland map, four local enlargements in Florida, 

the Congo Basin, Sundarbans, and Poyang Lake were also illustrated. All of them comprehensively captured 

the wetland patterns in these local areas. For example, there was significant consistency between our results and 

Hansen’s regional wetland maps in the Congo Basin (Bwangoy et al., 2010); both results indicated that the 

wetlands occurred closer to major rivers and floodplains. Next, according to the lowest and highest water-level 

features derived from Sentinel-1 SAR and Landsat optical imagery in Figure 4, the inland wetlands, varied with 

the water-levels, were also comprehensively identified in the Poyang wetland map (Figure 9d). Figure 9c 

illustrates the spatial distributions of the world’s largest mangrove forest in the Sundarbans (Figure 9c), and the 



cross-comparison in Figure 14 also demonstrates the great performance of the GWL_FCS30 dataset. Lastly, the 

Florida wetlands simultaneously contained six sub-categories (mangrove, tidal flat, salt marsh, marsh, 

permanent water and swamp). These were distributed along the coastlines and rivers and are accurately captured 

in Figure 9a. 

 

Figure 9. The overview of global 30-m fine wetland maps and their area statistics in latitudinal and longitudinal 

directions in 2020. Four local enlargements in (a) Florida, (b) Congo Basin, (c) Sundarbans, and (d) Poyang 

Lake were also illustrated. 

Figure 10 illustrates the spatial distribution of eight sub-category wetlands after aggregating to the 0.5° × 0.5° 

grid cell. Intuitively, permanent water body, swamp and marsh accounted for most inland wetlands, and all of 

them showed significant spatial coexistence, in which they mainly concentrated on the . In contrast, flooded 

tidal wetlands had obviously lower proportions, and the inland saline type was only distributed along the 

surroundings of several saline lakes. In terms of the spatial distribution, it can be found that: 1) the swamp 

wetlands mainly were concentrated in the Congo and Amazon rainforests, Southern United States, and Northern 

Canada; 2) most marsh wetlands were located in high latitude areas in the Northern Hemisphere including 

Northern Canada, Russia, and Sweden; 3) there were significant coexistent relationships between flooded flat, 

swamp, and marsh wetlands. Similar to coastal wetlands, the mangrove forests were only found in coastal areas 

below 30°N and were mainly concentrated in regions between 30°N ~ 30°S, including Southeast Asia, West 

Africa, and the east coast of South America. The salt marshes and tidal flats shared similar spatial distributions. 



They were widely distributed globally and can be observed along most coastlines. In addition, the tidal flat 

distributions were closely related to the slope of coastlines, tidal ranges, and sediment inflows. For example, 

the tidal flats in Asia and Europe usually were located in the tide-dominated estuaries and deltas. Similarly, 

Murray et al. (2019) also demonstrated that there were often more tidal flats where the river flowed into the sea. 

 

Figure 10. The spatial distributions of the eight wetland sub-categories after aggregating them to a resolution of 

0.5° × 0.5°. 

 

A further issue I have with this paper is that the data are considered mis-classified if they occur as wetlands in 

an area outside the [wetland type] maximum extent. However, this max extent assumes that all the previous 

analyses had zero omission error.  

Great thanks for the comment. In this study, as the maximum extents of inland/coastal wetlands derived by 

combining several global prior products, the omission error in each prior product might be complemented by 

other products. For example, the inland maximum extent is derived from five products (TROP-SUBTROP 

Wetland, GLWD, CCI_LC, GlobeLand30, and GLC_FCS30). The CCI_LC, GlobeLand30 and GLC_FCS30 

had serious omission errors, but the GLWD and TROP-SUBTROP products, produced by the compilation and 

model simulation method (Gumbricht, 2015; Lehner and Döll, 2004), can capture almost all wetland areas at 

the expense of a higher commission error. On the other hand, the union of five global wetland datasets in Eq. 

(3) also minimized the omission error of each dataset for inland wetland sub-categories. Therefore, the derived 

inland maximum extents actually fulfilled the assumption of zero omission error. The rationality of the 

maximum extents has been added and discussed in the Discussion Section as: 

In addition, we used the derived maximum extents as the boundary for identifying inland and coastal tidal 

wetlands, in other words, we assumed that the derived maximum extents contained all inland and coastal tidal 

wetlands with zero omission error. Actually, the inland maximum extents in Eq. (3) fulfilled the assumption of 

zero omission error, because the GLWD and TROP-SUBTROP products, produced by the compilation and 

model simulation method (Gumbricht, 2015; Lehner and Döll, 2004), can capture almost all wetland areas at 

the expense of a higher commission error. For example, the Figure 13 illustrated the cross-comparisons between 



our GWL_FCS30 wetland maps with four existing wetland products, and the GLWD obviously overestimated 

the inland wetlands. On the other hand, the union of five global wetland datasets in Eq. (3) also minimized the 

omission error of each dataset for inland wetland sub-categories. Next, as for the maximum mangrove forest 

extents (Eq. (1)), as the high producer’s and user’s accuracies were achieved by five prior mangrove products 

(explained in Section 2.2) and the time-series mangrove products were integrated that these missed mangroves 

may be complemented by other products or time-series products, the derived maximum extents also can be 

considered as zero omission error and covered almost all mangrove forests. Recently, Bunting et al. (2022) 

developed the newest mangrove products covering 1996-2020, it can be used as another important prior dataset 

in our further works for deriving the maximum mangrove extents. Lastly, the maximum tidal flat extents, 

derived from time-series Murray’s products from 1985~2016 by using the union operation (Eq. (2)), can also 

contain almost all tidal flats because previous studies demonstrated that they suffered higher commission error 

than the omission error (Jia et al., 2021; Zhang et al., 2022b).The missed tidal flats would concentrate on these 

newly increased tidal flats during 2016-2020, fortunately, the new time-series global tidal flat products during 

1999-2019 was developed (Murray et al., 2022) and can be used as an important supplement in our further work 

for deriving the maximum tidal flat extent with zero omission error. 

 

Another concern of mine is that their error assessment was done using a relatively paltry number of wetlands 

for the global extent of their analysis. For instance, they have ~8,000 wetland validation points to cover seven 

different wetland types. From Figure 2, it appears that ~7,000 of these points are inland “wetlands” versus 

coastal systems. Even with 7000 points for validation, that seems small considering the global extent of inland 

systems (swamps, marshes, flooded flats). And ~1000 points are used to validate the global population of saline, 

salt marsh, mangrove, and tidal flats. Their validation points were visually validated – though the authors explain 

five experts had to agree on the typology, the disagreements or data supporting those validations are also not 

presented. 

Great thanks for the comment. First, we agree that a large amount of validation points play great role in 

comprehensively assess the performance of the developed products, however, it should be noted that the 

collection of validation points, especially for water-level sensitive wetlands with fine classification system, is 

time-consuming and labor-intensive. In addition, Foody et al. (2009) and Olofsson et al. (2014) have detailedly 

described how to determine the size of total validation points by using stratified random sampling theory as: 

𝑛 =
(∑ 𝑊ℎ√𝑝ℎ(1 − 𝑝ℎ))

2

𝑉 + ∑ 𝑊ℎ𝑃ℎ(1 − 𝑃ℎ)/𝑁
 

where 𝑁 is the number of pixel units in the study region; 𝑉 is the standard error of the estimated overall 

accuracy that we would like to achieve, V = (𝑑/𝑡)2 (𝑡 = 1.96 for a 95% confidence interval, 𝑡 = 2.33 for a 

97.5% confidence interval, and 𝑑  is the desired half-width of the confidence interval); Wh is the weight 

distribution of class ℎ; ph is the producer’s accuracy. These sample size calculations should be repeated for a 

variety of choices of 𝑉 and ph before reaching a final decision. We try to achieve producer's accuracies of 0.9 

of non-wetland class and 0.8 of the seven wetland classes. Meanwhile, using the parameters of d = 0.0125, t = 

2.33, the sample size can be determined as approximately 18700. 

Pontus Olofsson, G. M. F. (2014). Good practices for estimating area and assessing accuracy of land change. 

Remote Sensing of Environment, 148(25), 42-57, https://doi.org/10.1016/j.rse.2014.02.015. 



Foody, Giles M. "Sample size determination for image classification accuracy assessment and comparison." 

International Journal of Remote Sensing 30.20 (2009): 5273-5291. 

In order to make the validation assessment more comprehensive, we also replenish 7008 wetland validation 

points, including 212 non-wetland points and 6796 wetland points (4538 inland wetland points and 2258 tidal 

wetland points), and the description of these updated global validation points (25709 points) has been revised 

as: 

To quantitatively analyze the performance of our GWL_FCS30 wetland map, a total of 25,709 validation 

samples (illustrated in Figure 6), including 10,558 non-wetland points and 15,151 wetland points, were collected. 

Firstly, as the wetland was sparse land-cover type compared to the non-wetlands (forest, cropland, grassland 

and bare land), the stratified random strategy was applied to randomly derive validation points at each strata. 

Then, as the wetlands had significant correlation with the water levels (Zhang et al., 2022b), the time-series 

optical observations archived on the GEE cloud platform were used as the auxiliary dataset to interpret these 

water-level sensitive wetlands such as: tidal flat and flooded flat. It should be noted that the visual interpretation 

was implemented on the GEE cloud platform because it archives a large amount of satellites imagery with 

various time spans and spatiotemporal resolution (Zhang et al., 2022a). Meanwhile, each validation point is 

independently interpreted by five experts for minimizing the effect of expert’s subjective knowledge, and only 

these complete agreement points were retained otherwise they were discarded. Then, we employed four metrics 

typically used to evaluate accuracy, which include the kappa coefficient, overall accuracy, user’s accuracy 

(measuring the commission error), and producer’s accuracy (measuring the omission error) (Gómez et al., 2016; 

Olofsson et al., 2014), were calculated using 25709 global wetland validation samples. 

 

Figure 6. The spatial distribution of 25,709 global wetland validation samples using stratified sampling strategy. 

Afterwards, the updated confusion matrix has been revised after replenishing 8007 validation points as: 

Table 5. The confusion matrix of the global 30 m fine wetland map using 25,709 validation points. 

 NWT PW SWP MSH FFT SAL MGV SMH TFT Total P.A. 



NWT 9950 17 254 224 39 3 12 33 26 10588 94.24 

PW 69 2251 4 15 63 0 0 8 9 2419 93.06 

SWP 272 5 2127 452 74 11 3 9 0 2953 72.03 

MSH 546 18 135 3218 149 18 2 34 1 4121 78.09 

FFT 145 21 26 95 574 3 1 5 2 872 65.83 

SAL 26 1 0 43 5 846 0 0 0 921 91.86 

MGV 65 4 11 2 2 1 1109 15 3 1213 91.43 

SMH 157 15 6 85 9 30 26 998 22 1347 74.09 

TFT 78 13 0 11 7 11 6 29 1150 1305 88.12 

Total 11308 2345 2563 4145 922 923 1159 1131 1213 
25709 

U.A. 87.99 95.99 82.99 79.56 62.26 91.66 95.69 88.24 94.81 

O.A. 86.44  

Kappa 0.822  

Note: NWT: non-wetlands, PW: permanent water, SWP: swamp, MSH: marsh, FFT: flooded flat, SAL: saline, 

SMH: salt marsh, MGV: mangrove forest, TFT: tidal flat, O.A.: overall accuracy, P.A.: producer’s accuracy, U.A.: 

user’s accuracy. 

 

I would argue that there exist multiple independent data layers that could be used to provide a much greater 

assessment of their relative accuracy (perhaps in addition their visual validation). For instance, the Chinese SFA, 

Canadian CWI, US NWI are all available datasets for validation. Within the US, there’s also the National Land 

Cover Data (e.g., Wickham et al. 2018 that has the contiguous US land cover at 30 m pixel resolution, including 

both wetlands AND permanent water; https://doi.org/10.1080/01431161.2017.1410298). 

Great thanks for the comment. Based on your suggestion, the comparisons at national scale between 

GWL_FCS30, NWI and NLCD, and CLC databases have been added in the Section 6.2. As for the Canadian 

CWI and Chinese SFA, we are temporarily unable to obtain sufficient data for comparative analysis and then 

use the ESA CORINE Land Cover database for another comparative data. 

2.4 National wetland products 

Three national wetland products including: NLCD (National Land Cover Database) (Homer et al., 2020), 

NWI (National Wetlands Inventory) (Wilen and Bates, 1995) and CLC (CORINE Land Cover) (Büttner, 2014), 

were used as the comparative datasets to analyze the performance of developed global wetland maps in Section 

6.2. Specifically, the NLCD contained open water, woody wetlands and emergent herbaceous wetlands, the 

NWI contained eight sub-categories (estuarine and marine deep-water, estuarine and marine wetland, freshwater 

emergent wetland, freshwater forest/shrub wetland, freshwater pond, lake, other, and Riverine), and the CLC 

identified the wetlands into nine sub-categories as: inland marshes, peat bogs, salt marshes, saline, intertidal 

flats, water courses, water bodies, coastal lagoons, estuaries, as well as sea and oceans. 

6.2 Comparisons with the national wetland products 

Using 1835 validation points (from the global validation points in Section 4.3) over the continuous United 

States, we quantitatively assessed the accuracy metrics of NLCD (National Land Cover Database) with 

GWL_FCS30 after merging the wetland subcategories into 4 classes in Table 6. Overall, the GWL_FCS30 

achieved a higher performance than that of the NLCD mainly because a lot of herbaceous wetlands were 

https://doi.org/10.1080/01431161.2017.1410298


misclassified into the open water in the NLCD, so the user’s accuracy of herbaceous wetland and producer’s 

accuracy of open water in NLCD was lower than that of GWL_FCS30. Then, as the NWI (National Wetlands 

Inventory) had different wetland system with the NLCD and GWL_FCS30, we also analyzed the metrics of 

NWI with GWL_FCS30 after merging into 5 classes. It can be found that the NWI shared similar performances 

with GWL_FCS30 on the non-wetlands and marine wetlands, but the user’s accuracies of forest wetland and 

herbaceous wetland of NWI were lower than that of GWL_FCS30 mainly because some non-wetlands and open 

water were overestimated as the wetland in NWI. Similarly, Gage et al. (2020) also demonstrated that the NWI 

was easier to overestimate the wetland areas. 

Table 6. The accuracy metrics of NLCD, NWI and GWL_FCS30 using 1835 validation points over the 

continuous United States 

(a) NLCD vs GWLFCS30 

NLCD 

 NWT Open water Woody wetland Emergent herbaceous wetland O.A. Kappa 

U.A. 96.46 93.98 77.92 61.97 
83.58 0.756 

P.A. 88.80 53.65 85.96 87.61 

GWL_FCS30 

 NWT PW FFT TFT SWP MGV MSH SMH O.A. Kappa 

U.A. 90.55 94.81 69.87 87.61 
85.76 0.786 

P.A. 85.99 95.52 77.97 88.36 

(b) NWI vs GWLFCS30 

NWI 

 NWT FPD EMD RVR LKE FSSW FEW EMW O.A. Kappa 

U.A. 94.45 94.74 67.58 60.25 85.71 
83.49 0.762 

P.A. 84.93 63.32 86.62 82.76 91.53 

GWL_FCS30 

 NWT PW SWP MSH TFT MGV SMH TFT O.A. Kappa 

U.A. 90.55 94.74 68.96 80.75 90.08 
85.23 0.789 

P.A. 85.99 95.45 76.76 78.78 94.98 

Note: NWT: non-wetlands, PW: permanent water, SWP: swamp, MSH: marsh, FFT: flooded flat, SMH: salt marsh, MGV: mangrove 

forest, TFT: tidal flat, FPD: Freshwater Pond, EMD: Estuarine and Marine Deepwater, RVR: Riverine, LKE: Lake, FSSW: Freshwater 

Forested/Shrub Wetland, FEW: Freshwater Emergent Wetland, EMW: Estuarine and Marine Wetland, O.A.: overall accuracy, P.A.: 

producer’s accuracy, U.A.: user’s accuracy. 

Figure 16 illustrated the comparisons between our GWL_FCS30-2020, National Land Cover Database 

(NLCD) wetland layer and National Wetlands Inventory (NWI) in San Francisco and Florida. It should be noted 

that the ocean was excluded in the GWL_FCS30-2020 while NLCD and NWI still contained these coastal 

oceans. Overall, three wetland products performed great spatial consistency and accurately captured the spatial 

patterns of wetlands over two regions. From the perspective of diversity of wetland sub-category, the 

GWL_FCS30 and NWI had obvious advantages over the NLCD which simply divided the wetlands into open 

water, woody wetlands and emergent herbaceous wetlands. Specifically, the NWI had the largest wetland areas 

in the San Francisco because it included the irrigated cropland (red color) while the other two datasets excluded 

irrigated cropland. Then, the local enlargement showed that the GWL_FCS30 and NWI also had better 

performance than NLCD, because they comprehensively captured the coastal tidal wetlands, and our 

GWL_FCS30 further distinguished the tidal flats and salt marshes which also demonstrated that GWL_FCS30 

performed better than NWI over the coastal wetlands. In the Florida, the NWI and GWL_FCS30 accurately 

divided the inland and coastal wetlands and the GWL_FCS30 further identified the coastal wetlands into the 

mangrove forest. Meanwhile, the local enlargement also demonstrated the great consistency of three wetland 

products. However, it can be found that there was obvious difference between GWL_FCS30 and NWI over the 



wetland categories, in which GWL_FCS30 classified most inland wetlands into marshes while NWI classified 

them as emergent wetlands and forest/shrub wetlands, mainly because of the differences in the definition of the 

classification system (GWL_FCS30 defined those low shrubs that grown in the freshwater as marsh, in Table 

1). 

 

Figure 16. The comparisons between GWL_FCS30 in 2020, National Land Cover Database (NLCD) wetland 

Layer (Homer et al., 2020) and National Wetlands Inventory (NWI, https://www.fws.gov/program/national-

wetlands-inventory, last access: Nov 12, 2022) in San Francisco and Florida. The high-resolution imagery came 

from the Google Earth Engine platform (https://earthengine.google.com; last access: 12 Nov 2022). 

Table 7 illustrated the accuracy metrics of CLC (CORINE Land Cover) and GWL_FCS30 after merging 

the wetland categories over the European Union area using 1996 validation points from the global validation 

points in Section 4.3. Overall, the GWL_FCS30 performed better than the CLC and the former mainly had 

lower commission errors than that of the CLC for salt marsh and tidal flat. To intuitively understand the 

overestimation of tidal flat, Figure 17 illustrated the comparison between our GWL_FCS30-2020 and CLC 

wetland layer in 2018 over the Nordic, in which mainly distributed in tidal flats and open water, and these tidal 

flats gathered around the coastline. In term of specific wetland subcategory, it can be found that the CLC 

database had larger tidal flat area than that of the GWL_FCS30, however, the lowest tidal-level composite from 

time-series Landsat imagery indicated that the CLC overestimated the tidal flats in the region. For example, the 

local enlargement showed that a lot of permanent ocean pixels were wrongly labelled as the tidal flats in CLC 

and accurately identified as ocean in the GWL_FCS30. The comparison also demonstrated why the CLC had 

low user’s accuracy of 62.90% for tidal flat and producer’s accuracy of 57.76% for water bodies. Then, the local 

enlargement also indicated that the total area of salt marsh in CLC was lower than that of GWL_FCS30 (green 



rectangles), namely, some salt marshes were wrongly labelled as tidal flat and water body, so the accuracy 

metrics in Table 7 showed the user’s accuracy of salt marsh in CLC was 35.86%. 

Table 7. The accuracy metrics between CLC and GWL_FCS30 after merging the wetland categories 

CLC 

 
NWT WC WB CL ET SO Peat bogs & Inland marshes SMH TFT O.A. Kappa 

U.A. 92.94 94.81 68.63 35.86 62.90 
80.75 0.706 

P.A. 82.80 57.76 83.93 91.23 75.00 

GWL_FCS30 

 
NWT PW SWP MSH FFT SMH TFT O.A. Kappa 

U.A. 91.22 88.02 80.98 86.21 94.35 
88.10 0.816 

P.A. 88.54 97.69 80.82 91.91 97.50 

Note: NWT: non-wetlands, WC: water courses, WB: water bodies, CL: coastal lagoons, ET: estuaries, SO: sea and ocean, PW: 

permanent water, SWP: swamp, MSH: marsh, FFT: flooded flat, SAL: saline, SMH: salt marsh, MGV: mangrove forest, TFT: tidal flat, 

O.A.: overall accuracy, P.A.: producer’s accuracy, U.A.: user’s accuracy. 

 

Figure 17. The comparisons between GWL_FCS30 and CORINE Land Cover (CLC) wetland layer in 2018 

(https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=metadata, last access: Nov 12, 2022). 

The lowest tidal-level Landsat composite, composited by NIR, red, and green bands, was illustrated. 

 

Lastly, the Discussion section should focus on their position in the data libraries of the world and not have more 

results within (e.g., why do they have relatively few wetlands versus other global data?).  

Great thanks for the comment. Based on this comment and later suggestions, the two results sections about 

training samples and feature importance have been moved to the Results Section. The update Discussion section 

focus on analyzing the performance of GWL_FCS30 with other wetland products (including: inland wetland 

products, coastal wetland products and national wetland databases).  

 

Ultimately, there’s excitement and possibility with these data – the inclusion of multiple data layers and stacks 

in a random forest analysis within the GEE is exciting, especially considering the abundance of spatial data 

available for analyses. Yet while the authors have presented a welcome analysis, I find they leave enough to be 

desired to suggest a major revision to a) shorten, b) clarify approaches so that they can be repeated, c) 

https://land.copernicus.eu/pan-european/corine-land-cover


appropriately and abundantly defend their approach to not include any open waters as a wetland type (which I 

do not agree with), d) place their findings against other datasets through accuracy analyses (e.g., CWI, NLCD, 

NWI, etc.) such that readers can determine that this data layer is better to use than those that have come before. 

We’re lacking that confidence at this juncture, at least from my point of view. 

Great thanks for the comments and suggestions.  

(a) Since we need to fully consider that the method can be repeated at details and some cross-comparisons also 

are strengthen by other reviewers’ comments, we try our best to shorten some redundant statements in the 

Method (in Section 4.3 Accuracy Assessment), Results (Section 5.2 Importance of multisourced features) and 

Discussion (Section 6.1 Cross-comparisons with other global products).  

(b) Based on your later comments and suggestions, the method has been greatly strengthen, the details have also 

been added. The specific revisions have been explained in the following comments.  

(c) Based on your comment and later suggestions, the permanent water has been added into our fine wetland 

system, and the detailed replay has been answered in the Comment 1.  

(d) As for the comparisons with other dataset (including: CWI, NLCD and NWI), comparisons at national scale 

between GWL_FCS30, NWI and NLCD, and CLC databases have been added in the Section 6.2 and the 

accuracy analyses are also added, and the detailed replay has also been answered in the Comment 3. 

Specific comments 

L43 Ramsar is a city in Iran and not an abbreviation to be capitalized. 

Thanks for the comment. It has been corrected. 

 

L108: Is there indeed “…no 30-m dataset covering both inland and coastal wetlands” until now? One could 

argue that the authors introduce ~8 different data layers doing that. For instance, the ESA products, the CCI, 

etc. Tootchi et al. (2019), referenced in this paper, have Table 1, “Summary of water body, wetland, and related 

proxy maps and datasets from the literature” that summarize the state of the literature in 2019, too. ESA recently 

released a worldcover database at 10-m – how does this contrast to the authors’ analyses (and ESA includes 

herbaceous wetlands and mangroves as specific land covers; https://esa-worldcover.org/en ). 

Great thanks for pointing out the inaccurate statement. Yes, the statement in the Line 108 is inaccurate, the 

sentence has been revised as: 

“Due to the complicated temporal dynamics and spatial and spectral heterogeneity of wetlands, there is very 

few global thematic wetland dataset covering both inland and coastal regions with fine classification system 

and high spatial resolution, which cause that global 30 m wetland mapping with a fine classification system 

remains a challenging task.” 

In addition, as your mentioned, although the ESA WorldCover dataset contains herbaceous wetlands and 

mangroves, we find that the herbaceous wetlands suffered serious omission errors and the mangrove layer also 

had lower performance than the global mangrove thematic datasets. Therefore, we give up to use the ESA 

WorldCover10 dataset to derive our training samples in this study. And the reasons why the WorldCover10 had 

poor performance in wetland mapping because their classification algorithms were not specifically designed 

for the wetland environment.  

Recently, with the improvement of computing power and storage abilities, three global 30-m land-cover 

products (including GlobeLand30 (Chen et al., 2015), FROM_GLC (Gong et al., 2013) and GLC_FCS30 

(Zhang et al., 2021b)) and several 10-m land-cover products (WorldCover (Zanaga et al., 2021), Dynamic 



World (Brown et al., 2022) and FROM_GLC10 (Gong et al., 2019)), containing an independent wetland 

layers, were produced, but their classification algorithms were not specifically designed for the wetland 

environment, so the wetland usually suffered from low accuracy in these products. 

 

L119 Why 2019-2021? I recognize that the authors ended up with nearly 800,000 LS images, yet since the GEE 

can handle so much, why stop there? It’s not a fault, but the authors should explain why this time period was 

selected versus any other available time period.  

Thanks for the comment. We used the time-series Landsat imagery during 2019-2021 for the nominal year of 

2020 for minimizing the influence of frequent cloud contamination in the tropics and snow and ice in the 

high latitudes. The reason why we only used the Landsat imagery during 2019~2021 because they can 

guarantee the sufficient observation even in the tropics illustrated in Figure 1. The reasons have been added as: 

“First, all available Landsat imagery during 2019–2021 was obtained for the nominal year of 2020 via the 

Google Earth Engine platform for minimizing the influence of frequent cloud contamination in the tropics and 

snow and ice in the high latitudes.” 

 

L123 what are saturated pixels? How does CFMask assist that (vs cloud, cloud shadow, and snow)? 

Thanks for the comment. The ‘saturated pixels’ represents these pixels whose surface reflectance exceeds the 

theoretical value of 1 especially for ETM+ imagery. And the CFmask algorithm has been explained as: 

“And these ‘bad quality’ observations (shadow, cloud, snow, and saturated pixels) in Landsat imagery were 

masked using CFmask cloud detection method, which built a series of decision rules, using temperature, 

spectral variability, brightness and geometric relationship between cloud and shadow, to identify these 

‘poor quality’ pixels and achieved the overall accuracy of 96.4% (Zhu et al., 2015; Zhu and Woodcock, 

2012)” 

 

L124 Which Landsat platforms were used? Which LS satellite data were used? What sort of processing was 

done on the LS images? Which bands were used? Etc. etc.  

Thanks for the comment. The Landsat 7 ETM+ and Landsat 8 OLI imagery are used, and the pro-processing 

order in the Landsat imagery has been introduced in the manuscript as: 1) atmospheric correction using LaSRC 

method; 2) masking ‘poor quality’ observations using Fmask method.  

all available Landsat imagery, including Landsat 7 ETM+ and Landsat 8 OLI missions, during 2019–2021 was 

obtained for the nominal year of 2020 via the Google Earth Engine platform for minimizing the influence of 

frequent cloud contamination in the tropics and snow and ice in the high latitudes. To minimize the effect of 

atmosphere, each Landsat image was atmospherically corrected to the surface reflectance by the United States 

Geological Survey using Land Surface Reflectance Code (LaSRC) method (Vermote et al., 2016) and then 

archived on the GEE platform. And these ‘bad quality’ observations (shadow, cloud, snow, and saturated 

pixels) in Landsat imagery were masked using CFmask cloud detection method, which built a series of decision 

rules, using temperature, spectral variability, brightness and geometric relationship between cloud and shadow, 

to identify these ‘poor quality’ pixels and achieved the overall accuracy of 96.4% (Zhu et al., 2015; Zhu and 

Woodcock, 2012). 

Then, in this study, six optical bands, including: blue, green, red, NIR (near infrared), SWIR1 (Shortwave 

Infrared 1) and SWIR2 (Shortwave Infrared 2), are used. The supplement information has been added as: 



In this study, six optical bands, including: blue, green, red, NIR (near infrared), SWIR1 (shortwave infrared 1) 

and SWIR2 (shortwave infrared 2) bands, were used for wetland mapping. Totally, 764,239 Landsat scenes, 

including Landsat 7 ETM+ and Landsat 8 OLI missions, were collected to capture various water-level and 

phenological features presented in Section 4. 

 

L125 LS images were used to select the “water level” or the presence of inundation as inferred from reflectance 

values? 

Great thanks for the comment. Yes, we used multitemporal compositing method from time-series Landsat 

imagery to capture the highest water-level and lowest water-level composites according to the spectral 

characteristics of water body and other land-cover types. It has been detailedly descripted in the Section 4.1, for 

example, the figure 4 illustrated the presence of inundation status in the Poyang Lake using time-series Landsat 

imagery. 

 

Figure 4. The lowest and highest water-level features derived from (a-b) time-series Landsat optical reflectance 

data and (c-d) the Sentinel-1 SAR imagery using the time-series compositing method in Poyang Lake, China.  

 

L126 These are not necessarily clear sky, but they are images that passed through the CFMask filter. Please 

clarify in text. 

Great thanks for pointing out the mistake. Yes, all Landsat imagery during 2019-2021 were used and then 

these ‘poor quality’ pixels would be masked using CFmask method.  

The Figure 1 illustrated the availability of clear-sky observations after masking ‘poor quality’ pixels, namely, 

we actually count the frequency of these clear observations at each pixel instead of the frequency of Landsat 

scenes. So, the statement has been revised as: 

Figure 1a illustrates the spatial distribution of all clear-sky observations for all Landsat scenes, and it can be 

seen that there were more than 10 clear observations after masking these ‘poor quality’ observations at each 

region even if in the tropics. 

 

L135 How did the authors discern what were sufficient Sentinel-1 images to “capture the temporal dynamics of 

wetlands”? What are those temporal dynamics? Seasonal? Intermittent inundation from rainstorms? Please 

clarify in text. 

Great thanks for the comment. As Sentinel-1 SAR platform is immune to the cloud and shadow and has a 

revisit cycle of 6 days, the time-series Sentinel-1 imagery in 2020 are sufficient to capture water-level dynamics. 

The “temporal dynamics” refers to the water-level dynamics. The statement has been revised as: 



Figure 1b also illustrates the spatial distribution of all available Sentinel-1 SAR imagery, there were enough 

Sentinel-1 SAR observations in each area to capture the water-level dynamics of wetlands because it was 

immune to the cloud and shadow and had a revisit time of 6 days after launching the Sentinel-1B mission. 

 

L138 How were the ASTER data used as ancillary information? Please specify how these data on slope, aspect, 

etc. were used here for the purposes of the paper.  

Great thanks for the comment. The elevation, slope and aspect, derived from the ASTER dataset, are the input 

features to train the random forest models, because many studies have demonstrated that the topography would 

directly affect the spatial distribution of wetlands, which are mainly distributed in low-lying areas. It has been 

explained as: 

Figure 3 illustrates the flowchart of the proposed method for generating the global 30-m fine wetland maps. 

First, we combined the time-series Landsat-8, Sentinel-1 SAR observations and ASTER DEM topographical 

image to derive multisource and multitemporal features including: various water-level, phenological and three 

topographical features. Then, the training samples (coastal tidal, inland wetlands and no-wetlands) and 

derived multisource and multitemporal features were combined to train the stratified random forest 

classifiers (a classic and widely used machine learning classification model (Breiman, 2001)) at each local 

region. Next, using the trained random forest models and derived multisource and multitemporal features, we 

could develop corresponding coastal tidal wetland and inland wetland maps. 

As I see later that it was used in the random forest, the authors need to introduce to the readers that a random 

forest approach is used and conduct a literature review noting the utility of random forest and limitations. 

Thanks for the comment. The random forest approach is a classic and widely used machine learning method, it 

has been reviewed in many studies (Gislason et al., 2006; Belgiu et al., 2016; Boulesteix et al., 2012), so it was 

not the focus of this article. The disadvantages and disadvantages of random forest are listed below: 

The advantages of the random forest has been introduced in the manuscript as: 1) dealing with high-dimensional 

data, 2) robustness for training noise and feature selection, 3) achieving higher classification when compared to 

other widely used machine learning classifiers.  

Afterward, the random forest (RF) classifier was demonstrated to have obvious advantages including: dealing 

with high-dimensional data, robustness for training noise and feature selection, as well as achieving 

higher classification when compared to other widely used machine learning classifiers (e.g., support 

vector machines, neural networks, decision trees, etc.) (Belgiu and Drăguţ, 2016; Gislason et al., 2006). 

As for the disadvantages of the RF are: 1) it surely does a good job at classification but not as for regression 

problem as it does not gives precise continuous nature prediction; 2) it can feel like a black box approach for a 

statistical modelers we have very little control on what the model does. However, these two drawbacks can 

be ignored for land-cover classifications, so it is currently the most popular machine learning algorithm 

and is widely used in land cover classifications at various scale (region, nation, continent and globe). 

Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R.: Random Forests for land cover classification, Pattern 

Recognition Letters, 27, 294-300, https://doi.org/10.1016/j.patrec.2005.08.011, 2006. 

Belgiu, M. and Drăguţ, L.: Random forest in remote sensing: A review of applications and future directions, 

ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31, 2016. 

Boulesteix, Anne‐Laure, et al. "Overview of random forest methodology and practical guidance with emphasis 

on computational biology and bioinformatics." Wiley Interdisciplinary Reviews: Data Mining and Knowledge 

Discovery 2.6 (2012): 493-507. 



 

L142 Figure 1 would be much clearer if it were a vertical panel of a) over b) versus a) next to b). Please modify. 

Also please change the caption to clarify that that images were not necessarily ‘clear sky’ but did otherwise pass 

the CFMask filter. See, e.g., L395. 

Great thanks for the suggestion. The layout of the figure has been revised as: 

 

Figure1. The spatial distribution of clear observations after masking these ‘poor quality’ observations during 

2019-2021 (a), and availability of time-series Sentinel-1 SAR observations in 2020 (b). 

 

L165 The JRC_GSW data layer does not identify wetlands per se but identifies inundated pixels. Therefore it 

is inaccurate to say that the JRC captured “wetlands around rivers, ponds, etc.” because the data layer would 

include rivers and ponds – or any pixel that was deemed to be inundated by the Pekel et al. (2016) algorithm. 

Please revise to acknowledge these data from Pekel identify inundated pixels.  

Great thanks for the comment and suggestion. Yes, the statement in manuscript is inaccurate, and JRC_GSW 

dataset is used to identify these inundated pixels, so it has been revised as: 

The JRC_GSW dynamic water dataset achieved a producer accuracy of 98.5% for these seasonal waters (Pekel 

et al., 2016) and was used to identify inundated pixels. 

 

Note this also comes up with L281 wherein the authors state they are “excluding permanent water bodies”. Why? 

Permanent water bodies are a massive abundance of the global wetland data layers (e.g., in addition to the 

Ramsar Convention definition used earlier, see also 

Davidson, N. C. 2014. How much wetland has the world lost? Long-term and recent trends in global wetland 

area. Marine and Freshwater Research65: 934-941 

Dixon, M. J. R. et al.2016. Tracking global change in ecosystem area: the Wetland Extent Trends index. 

Biological Conservation 193: 27-35 



Hu, S. et al.2017. Global wetlands: Potential distribution, wetland loss, and status. Science of the Total 

Environment586: 319-327 

Thanks for the comment. Based on your useful suggestion, the permanent water has been added in our wetland 

classification system as: 

The inland wetland types shared similar characteristics and were grouped into swamp, marsh, and flooded flat. 

Meanwhile, in order to capture saline soils and halophytic plant species along saline lakes, the inland saline 

wetland, inherited from the Global Lakes and Wetlands Dataset (GLWD) (Lehner and Döll, 2004), was also 

imported. Lastly, the permanent water, including lakes, rivers and streams that are always flooded, was widely 

identified as a wetland layer in previous studies (Davidson, 2014; Dixon et al., 2016; Hu et al., 2017b). 

Table 2. The description of wetland classification system in this study 

Category I Category II Description 

Tidal wetland 

Mangrove  The forest or shrubs which grow in the coastal blackish or saline 

water 

Salt marsh Herbaceous vegetation (grasses, herbs and low shrubs) in the 

upper coastal intertidal zone 

Tidal flat The tidal flooded zones between the coastal high and low tide 

levels including mudflats and sandflats. 

Inland wetland 

Swamp  The forest or shrubs which grow in the inland freshwater  

Marsh Herbaceous vegetation (grasses, herbs and low shrubs) grows in 

the freshwater 

Flooded flat  The non-vegetated flooded areas along the rivers and lakes  

Saline Characterized by saline soils and halophytic (salt tolerant) plant 

species along saline lakes 

Permanent water Lakes, rivers and streams that are always flooded 

 

L169 Table 1 – considering this product is a global data layer, it would be useful to the readers to see the relative 

abundance of wetlands that each of these named datasets have identified. Furthermore, it’s important to note if 

indeed these are global products (versus near-global products, such as those within the latitudinal bands of 60N 

and 60S, for instance). Also convert the arc-seconds to meters (at the equator) for consistency between the data 

products. 

Great thanks for the comment. The total area and spatial coverage of these prior wetland datasets has been added 

and the arc-second unit has been converted to length unit as:  

Table 1. The characteristics of 13 global wetland products with various spatiotemporal resolutions (unit of area: 

million km2) 

Dataset name and reference Wetland categories Year Resolution Total area Coverage 

World atlas of mangroves (WAM) 

Spalding (2010) 

Mangrove 

2010 1:1000000 0.152 Global 

Global mangrove watch (GWM) 

Thomas et al. (2017) 
1996-2016 ~25m ~0.136 Global  

A global biophysical typology of 

mangroves (GBTM)  

Worthington et al. (2020) 

1996-2016 ~25m ~0.136 Global 

Continuous global mangrove 

forest cover (CGMFC) 
2000-2010 30 m 0.083 Global 
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Hamilton and Casey (2016) 

Global distribution of mangroves 

USGS (GDM_USGS) 

Giri et al. (2011) 

2011 30 m ~0.138 Global 

Global distribution of tidal flat 

ecosystems 

Murray et al. (2019) 

Tidal flat 1984-2016 30 m 0.124~0.132 60°S~60°N 

Global distribution of saltmarsh 

McOwen et al. (2017) 
Salt marsh 1973-2015 1:10,000 ~0.05 Global 

Tropical and subtropical wetland 

distribution  

Gumbricht (2015) 

Open water, mangrove, 

swamps, fens, riverine, 

floodplains, marshes 

2011 ~231 m 4.7 60°S~40°N 

Global lakes and wetlands 

database (GLWD) 

Lehner and Döll (2004) 

Lake, reservoir, river, 

marsh, swamps, coastal 

wetland, saline wetland, 

and peatland 

2004 ~1 km 10.7–12.7 Global 

JRC-GSW 

Pekel et al. (2016) 
Water  1984-2021 30 m ~4.46 Global 

ESA CCI_LC  

Defourny et al. (2018) 

Swamps, mangrove, and 

Shrub or herbaceous 

cover wetlands 

1992-2020 300 m 6.1 Global  

GlobeLand30 

Chen et al. (2015) 
Wetland 2000-2020 30 m 7.01~7.17 Global 

GLC_FCS30 

Zhang et al. (2021b) 
Wetland 2015, 2020 30 m 6.36 Global 

 

L189 How many of the 18,701 data validation points did NOT have complete agreement between the five 

validation experts? Noting here that 8,355 points were used to discern amongst the seven classes of wetlands. 

Relative to the other possible ways to assess their study – and convince people to use it – this number of 

validation points is very small. Too small, by my assessment. 

Great thanks for the comment. Approximately 1/10 validation points (1291points) have been discarded because 

of the disagreement between five interpreters. Yes, we agree that a large amount of validation points play great 

role in comprehensively assess the performance of the developed products, however, it should be noted that the 

collection of validation points, especially for water-level sensitive wetlands with fine classification system, is 

time-consuming and labor-intensive. In addition, Foody et al. (2009) and Olofsson et al. (2014) had detailedly 

described how to determine the size of total validation points by using stratified random sampling theory as: 

𝑛 =
(∑ 𝑊ℎ√𝑝ℎ(1 − 𝑝ℎ))

2

𝑉 + ∑ 𝑊ℎ𝑃ℎ(1 − 𝑃ℎ)/𝑁
 

where 𝑁 is the number of pixel units in the study region; 𝑉 is the standard error of the estimated overall 

accuracy that we would like to achieve, V = (𝑑/𝑡)2 (𝑡 = 1.96 for a 95% confidence interval, 𝑡 = 2.33 for a 

97.5% confidence interval, and 𝑑  is the desired half-width of the confidence interval); Wh is the weight 

distribution of class ℎ; ph is the producer’s accuracy. These sample size calculations should be repeated for a 

variety of choices of 𝑉 and ph before reaching a final decision. We try to achieve producer's accuracies of 0.9 

of non-wetland class and 0.8 of the seven wetland classes. Meanwhile, using the parameters of d = 0.0125, t = 

2.33, the sample size can be determined as approximately 18500. In addition, there is a little uncertainty for 

interpreting the validation points, so we randomly generate 20000 validation points over the globe and then 
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discard 1299 uncertain points (these disagreement points over five experts), so a total of 18701 validation points 

are used to assess the GWL_FCS30-2020 performance. 

In order to make the validation assessment more comprehensive, we also replenish 7008 wetland validation 

points, including 212 non-wetland points and 6796 wetland points, and the description of these updated global 

validation points (25709 points) has been revised as: 

To quantitatively analyze the performance of our GWL_FCS30 wetland map, a total of 25,709 validation 

samples, including 10,558 non-wetland points and 15,151 wetland points, were collected by combining high-

resolution imagery, time-series Landsat and Sentinel observations and visual interpretation method. Firstly, as 

the wetland was sparse land-cover type compared to the non-wetlands (forest, cropland, grassland and bare 

land), the stratified random strategy was applied to randomly derive validation points at each strata. Then, as 

the wetlands had significant correlation with the water levels (Zhang et al., 2022b), the time-series optical 

observations archived on the GEE cloud platform were used as the auxiliary dataset to interpret these water-

level sensitive wetlands such as: tidal flat and flooded flat. It should be noted that the visual interpretation was 

implemented on the GEE cloud platform because it archives a large amount of satellites imagery with various 

time spans and spatiotemporal resolution (Zhang et al., 2022a). Meanwhile, each validation point is 

independently interpreted by five experts for minimizing the effect of expert’s subjective knowledge, and only 

these complete agreement points were retained otherwise they were discarded. Figure 6 intuitively illustrated 

the spatial distribution of global wetland validation points, it can be found that the distribution of wetland points 

accurately revealed the spatial patterns of global wetlands. 

 

Figure 6. The spatial distribution of 25,709 global wetland validation samples using stratified sampling strategy. 

 

L207 There are many wetland definitions. That the Ramsar definition is quoted, noting that it includes waters 

to the depth of 6 m, suggests that open waters should be a wetland type in this analysis. I recognize that flooded 

flats – located along rivers and lakes – are included. But what of lakes themselves? Ponds? Smaller waters that 



are important to the global wetland data layer? Are these considered lakes? This is an important factor to 

consider when assessing global wetland coverage.  

Great thanks for the comment. Based on your suggestion, the open waters have been included in our updated 

wetland classification system as the “permanent water”, which mainly includes lakes, rivers and streams that 

are always flooded. The revised wetland classification system as: 

The inland wetland types shared similar characteristics and were grouped into swamp, marsh, and flooded flat. 

Meanwhile, in order to capture saline soils and halophytic plant species along saline lakes, the inland saline 

wetland, inherited from the Global Lakes and Wetlands Dataset (GLWD) (Lehner and Döll, 2004), was also 

imported. Lastly, the permanent water, including lakes, rivers and streams that are always flooded, was 

widely identified as a wetland layer in previous studies (Davidson, 2014; Dixon et al., 2016; Hu et al., 

2017b). 

Table 2. The description of wetland classification system in this study 

Category I Category II Description 

Tidal wetland 

Mangrove  The forest or shrubs which grow in the coastal blackish or saline 

water 

Salt marsh Herbaceous vegetation (grasses, herbs and low shrubs) in the 

upper coastal intertidal zone 

Tidal flat The tidal flooded zones between the coastal high and low tide 

levels including mudflats and sandflats. 

Inland wetland 

Swamp  The forest or shrubs which grow in the inland freshwater  

Marsh Herbaceous vegetation (grasses, herbs and low shrubs) grows in 

the freshwater 

Flooded flat  The non-vegetated flooded areas along the rivers and lakes  

Saline Characterized by saline soils and halophytic (salt tolerant) plant 

species along saline lakes 

Permanent water Lakes, rivers and streams that are always flooded 

 

Another consideration would be submergent vegetation. The marsh class is noted as including grasses, herbs, 

and low shrubs. What about, say, ponds covered with Nymphaea spp (lily pads)? What about Potamogeton spp. 

growing submersed in the water? Are these not wetland species? Wetland scientists would say they are. Here’s 

a good reference in re: this discussion: 

Richardson, D. C., et al. 2022. A functional definition to distinguish ponds from lakes and wetlands. Scientific 

Reports 12(1): 10472. 

Great thanks for the comment. Yes, we agree the submergent vegetation can be considered as a special wetland 

sub-category, however, the remote sensing observations have poor ability to penetrate water body and then 

capture these underground vegetation characteristics. Namely, we cannot identify these submergent vegetation 

at global scale using remote sensing observations, therefore, our future work would pay attention on these 

special wetland categories, it has been added in the Discussion as: 

Then, in this study, we combined the multisourced wetland products and their practical use for ecosystem 

management to define a fine wetland classification system containing eight sub-categories, however, there are 

still many wetland sub-categories, such as: submergent vegetation (nymphaea), groundwater-dependent 

wetlands (karst and cave systems) and seagrass beds (Richardson et al., 2022), cannot be captured because 



remote sensing observations usually had poor performance on penetrating water body and then capturing 

underwater characteristics, and there was currently no prior dataset for global underwater wetlands. So, our 

further work would pay attention to combine multisourced auxiliary datasets, such as hydrological data, 

bathymetry depth and climate data, for targeted monitoring these special wetland sub-categories. 

 

L252 Provide a number of LS images used for this analysis. 

Thanks for the comment. The total number of Landsat imagery for distinguish salt marsh and tidal flat is 140902, 

it also added in the manuscript as: 

as a tidal flat is a non-vegetated coastal wetland, we combined the empirical rule (EVI ≥ 0.1, NDVI ≥ 0.2, 

and LSWI > 0) proposed by Wang et al. (2020) and time-series Landsat imagery in 2020 (approximately 142 

thousand Landsat scenes) to exclude all vegetated pixels from tidal flat training samples. 

 

L257 Clarify – 50 km buffer along the coastal zone between 60N – 90N are salt marsh? That seems to be quite 

excessive, a 50 km buffer. Please clarify. 

Great thanks for the comment. The 50 km buffer is only the maximum boundary for tidal flat and salt marsh 

between 60N – 90N, namely, the both of them are impossible to be outside this buffer area. Actually, we then 

used the classification method to identify these salt marsh and tidal flat pixels within the region. 

In addition, as for the buffer radius of 50 km, it is used in the works of Wang et al. (2020) and (Murray et al., 

2019)) for tidal flat mapping. 

Wang, X., Xiao, X., Zou, Z., Hou, L., Qin, Y., Dong, J., Doughty, R. B., Chen, B., Zhang, X., Chen, Y., Ma, J., 

Zhao, B., and Li, B.: Mapping coastal wetlands of China using time series Landsat images in 2018 and Google 

Earth Engine, ISPRS J Photogramm Remote Sens, 163, 312-326, 

https://doi.org/10.1016/j.isprsjprs.2020.03.014, 2020. 

Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M. B., Clinton, N., Thau, D., and 

Fuller, R. A.: The global distribution and trajectory of tidal flats, Nature, 565, 222-225, 

https://doi.org/10.1038/s41586-018-0805-8, 2019. 

The description about the 50 km buffer has been strengthened in the manuscript as: 

therefore, we used the coastal shorelines (𝐿𝑖𝑛𝑒𝑐𝑜𝑎𝑠𝑡𝑎𝑙 ) to create a 50 km buffer (applied by the Wang et al. 

(2020) and (Murray et al., 2019)) as the potential tidal flat zones in the high latitude regions (>60°N) as in Eq. 

(2). It should be noted that we only identified and retained these tidal flat pixels within the maximum extents 

by using the classification models in the Section 4.2. 

 

L258 What’s the proportion of overlap between the different data layers? A spatial correlation table/matrix 

should be presented to the readers (see, e.g., Tootchi et al. 2019, supplemental information Table S1). 

Thanks for the comment. The overlap proportions of 6 coastal wetland products have been calculated in the 

Table S1 as: 

Table S1. The overlap proportions of six coastal wetland products  

 GDM_USGS GWM GBTM WAM 
McOwen’s 

saltmarsh 

Murry’s 

tidalflat 

GDM_USGS 1.000 0.775 0.776 0.700 0.027 0.147 

GWM 0.828 1.000 0.997 0.788 0.031 0.155 

GBTM 0.825 0.992 1.000 0.787 0.032 0.154 



WAM 0.661 0.697 0.699 1.000 0.024 0.134 

McOwen’s saltmarsh 0.073 0.081 0.082 0.071 1.000 0.151 

Murry’s tidalflat 0.153 0.152 0.152 0.148 0.057 1.000 

 

L270 These data were imported…and what was done with them? 

Thanks for the comment. How to import the CCI_LC, GLC_FCS30 and GlobeLand30 has been added as: 

as the wetland layer in the global land-cover products (GLC_FCS30, GlobeLand30, and CCI_LC) also covered 

some coastal wetlands, the saline-water wetland layer in the CCI_LC and the wetland data closed to the coastal 

shorelines in other two products were also imported as supplement when determining the maximum coastal 

wetland extents. 

 

L296 The GLWD data are at 1 km pixel. How did the authors include 1 km data plus all the 30-m data products? 

What’s the final resolution of these data? Also, what’s the proportion of the overlap between them (a spatial 

correlation table/matrix would be interesting here). 

Thanks for the comment. The GLWD, TROP-SUBTROP Wetland, CCI_LC, with spatial resolutions of 231m~1 

km, are resampled to 30 m using the nearest neighbor sampling method on the GEE platform, thus, the derived 

maximum inland wetland extends is the spatial resolution of 30 m.  

Specifically, the consistency analysis of five global wetland datasets (TROP-SUBTROP Wetland, GLWD, 

CCI_LC, GlobeLand30, and GLC_FCS30) and the temporal stability checking for CCI_LC (1992–2020), 

GlobeLand30 (2000-2020) and GLC_FCS30 (2015-2020) were applied to identify these temporally stable and 

high cross-consistency wetland points (𝑃𝑖𝑛𝑙𝑎𝑛𝑑𝑊𝑒𝑡
𝑇𝑠𝑡𝑎𝑏𝑙𝑒,𝑆𝑐𝑜𝑛𝑠

). It should be noted that the coarse wetland products 

(GLWD, TROP-SUBTROP and CCI_LC) were resampled to 30 m using the nearest neighbor method on 

the GEE platform. 

Then, overlap proportions of 6 inland wetland products have been calculated in the Table S2 as: 

Table S2. The overlap proportions of six inland wetland products  

 CIFOR GLWD JRC-GSW CCI_LC GlobeLand30 GLC_FCS30 

CIFOR 1.000 0.406 0.172 0.341 0.213 0.194 

GLWD 0.105 1.000 0.186 0.343 0.234 0.215 

JRC-GSW 0.093 0.386 1.000 0.434 0.135 0.108 

CCI_LC 0.132 0.513 0.308 1.000 0.187 0.160 

GlobeLand30 0.223 0.957 0.223 0.487 1.000 0.817 

GLC_FCS30 0.231 0.992 0.235 0.496 0.897 1.000 

 

L338 This is the first time that the use of random forest was noted. 

Thanks for the comment. The random forest classification model is a classic and widely used machine learning 

classifier for land-cover mapping. To make readers to understand the random forest, it has been explained as: 

Figure 3 illustrates the flowchart of the proposed method for generating the water-level, phenological and three 

topographical features and producing the global 30-m fine wetland maps using the stratified random forest (a 

classic and widely used machine learning classification model (Breiman, 2001)) modeling strategy. 

Breiman, L.: Random Forests, Machine Learning, 45, 5-32, https://doi.org/10.1023/a:1010933404324, 2001. 

 



In L138, I questioned how the ASTER data were used – I suggest revising the methods to introduce the reader 

early on to the overall approach (i.e., letting them know that the RF algorithm was used).  

Great thanks for the comment. The ASTER GDEM elevation and derived slope and aspect were used as 

auxiliary information for training the random forest classification models, and further used as the auxiliary 

features for wetland mapping. Based on your suggestion, we briefly introduced the overall approach in Section 

4 as: 

Figure 3 illustrates the flowchart of the proposed method for generating the global 30-m fine wetland maps. 

First, we combined the time-series Landsat-8, Sentinel-1 SAR observations and ASTER DEM 

topographical image to derive multisource and multitemporal features including: various water-level, 

phenological and three topographical features. Then, the training samples (coastal tidal, inland wetlands 

and no-wetlands) and derived multisource and multitemporal features were combined to train the 

stratified random forest (a classic and widely used machine learning classification model (Breiman, 2001)) 

models at each local region. Next, using the trained random forest models and derived multisource and 

multitemporal features, we could develop corresponding coastal tidal wetland and inland wetland maps. 

Finally, the post-processing step was used to generate the global 30 m fine wetland map in 2020. 

 

L341 Figure 4 the use of the ASTER DEM includes slope and aspect? Or was slope and DEM used? If the DEM 

was used, what information within the DEM was used? See, e.g., L400.  

Great thanks for pointing out the mistake in the Figure 4. We used three topographical variables (elevation, 

slope and aspect) derived from the ASTER DEM dataset. The revised figure 4 as: 

 
Figure 3. The flowchart of wetland mapping using water-level, phenological and topographical features and a 

stratified classification strategy. 

 

Furthermore, the Landsat and Sentinel data were used for identifying inundated pixels. NOT for identifying 

water levels. I recommend changing the heading title in 4.1 as well. 

Great thanks for the comment. We used the time-series Landsat imagery to simultaneously capture the water-

level composites (the highest and lowest water-level composites) and multitemporal phenological 

information (five temporal percentiles), and used the time-series Sentinel-1 SAR imagery to capture the water-

level composites (the highest and lowest water-level composites). Then, the inundated pixels could be identified 



by combining the highest and lowest water-level composites in the optical and SAR composites. So, we still 

think use the “Generating various water-levels and phenological composites” might be more suitable.  

 

L393 Ultimately, why were five LS clusters chosen versus three or just the one? Was parsimony considered in 

the analyses? 

Great thanks for the comment. The reasons why we used five percentiles are: 1) the five percentiles had greater 

performance on capture phenological variability than three and one percentiles, which also suggested by our 

previous study in Xie et al. (2021); 2) if we used the seasonal compositing method can generate four seasonal 

composites, we used five percentiles to better capture the phenological variability; 3) these five LS percentiles 

are used in many phenological-based studies (Hansen et al., 2014; Zhang and Roy, 2017). 

This study composited time-series Landsat reflectance bands and four spectral indexes into five percentiles 

(15th, 30th, 50th, 70th and 85th) because we wanted to capture as much of the phenological changes in 

wetlands as possible when comparing to the four seasonal composites (Zhang and Roy, 2017). 

Yes, we consider the parsimony using percentile-based compositing method for capturing phenological 

variability when comparing with seasonal-based method. It has been explained in the manuscript as: 

Azzari and Lobell (2017) quantitatively analyzed the performance of two compositing methods and found that 

both of them had similar mapping accuracy for land-cover mapping. Meanwhile, the seasonal-based 

compositing method needed the prior phenological calendar, while the percentile compositing method did not 

require any prior knowledge or explicit assumptions regarding the timing of the season. 

Xie, S.; Liu, L.; Yang, J. Time-Series Model-Adjusted Percentile Features: Improved Percentile Features for 

Land-Cover Classification Based on Landsat Data. Remote Sens. 2020, 12, 3091. 

https://doi.org/10.3390/rs12183091 

Hansen, M. C., Egorov, A.,  Potapov, P. V., Stehman, S. V., Tyukavina, A., Turubanova, S. A., Roy, D. P.,  

Goetz, S. J., Loveland, T. R., Ju, J., Kommareddy, A., Kovalskyy, V., Forsyth, C., and Bents, T.: Monitoring  

conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD), Remote  

Sensing of Environment, 140, 466-484, https://doi.org/10.1016/j.rse.2013.08.014, 2014. 

Zhang, H. K. and Roy, D. P.: Using the 500 m MODIS land cover product  to derive a consistent continental 

scale 30 m Landsat land cover classification, Remote Sensing of Environment, 197, 15-34, 

https://doi.org/10.1016/j.rse.2017.05.024, 2017. 

 

L404 This assumes that the maximum extent of the coastal wetlands (equation 1 for mangroves) has zero 

omission error. I understand why this was done, yet it requires explanation and accounting for the reader here 

and possibly in the Discussion section as well. 

Thanks for the suggestion. The assumption has been added as: 

Since we have simultaneously extracted the maximum coastal and inland wetland extents when deriving training 

samples from prior wetland datasets, the stratified classification strategy was adopted to fully use the maximum 

extent constraint. Namely, if a pixel was classified as a coastal wetland outside the maximum coastal wetland 

extents, it would be identified as a misclassification. In other words, we assumed there was zero omission 

error for these derived maximum wetland extents in Eq. (1-3) by merging several prior wetland products. 

In the Discussion Section, the maximum extents of the inland and coastal wetlands have also been added and 

discussed as: 



In addition, we used the derived maximum extents as the boundary for identifying inland and coastal tidal 

wetlands, in other words, we assumed that the derived maximum extents contained all inland and coastal 

wetlands with zero omission error. Actually, the inland maximum extents in Eq. (3) fulfilled the assumption 

(zero omission error), because the GLWD and TROP-SUBTROP products, produced by the compilation and 

model simulation method (Gumbricht, 2015; Lehner and Döll, 2004), can capture almost all wetland areas at 

the expense of a higher commission error. For example, the Figure 13 illustrated the cross-comparisons between 

our GWL_FCS30 wetland maps with four existing wetland products, and the GLWD obviously overestimated 

the inland wetlands. On the other hand, the union of five global wetland datasets in Eq. (3) also minimized the 

omission error of each dataset for inland wetland sub-categories. As for the mangrove forest, due to the high 

producer and user accuracies of five prior mangrove products (explained in Section 2.2), the derived maximum 

mangrove extents (Eq. (1)) can covered almost all mangrove forests because the missed mangroves maybe 

complemented by other products. Recently, Bunting et al. (2022) developed the newest mangrove products 

covering 1996-2020, it can be used as the important prior dataset in our further works for deriving the maximum 

mangrove extents. However, the zero omission error assumption maybe run into problem when targeting tidal 

flat and saltmarsh. Specifically, the global tidal flat dataset only covered the period of 1984~2016 and the 

producer’s accuracy of tidal flat was 83.0%. Although we used the union operations for time-series Murray’s 

tidal flats during 1984~2016 (Eq. (2)) to include these potential tidal flats, the newly increased tidal flats during 

2016-2020 and missed tidal flats in time-series products would be missed in our maximum tidal flat extents in 

Eq. (2). Fortunately, the new time-series global tidal flat products during 1999-2019 (Murray et al., 2022), which 

greatly improved the mapping accuracy based on previous time-series tidal flat products, can be used as prior 

datasets. Lastly, as the global saltmarsh products were sparse, the maximum extents of tidal flat salt marsh were 

combined for saltmarsh mapping in Section 3.1. However, there was still missed a lot of saltmarshes, so our 

further work would pay more attention on accurately saltmarsh mapping. 

 

L410 The local adaptive modeling section is too quickly glossed over. Explain more on how this was done. 

How were the data trained? What were the specifications of the training here? It would be hard for others to 

replicate the process based on the data provided thus far. 

Great thanks for pointing out the problem. The description of the local adaptive modeling has been greatly 

strengthen as: 

Since we have simultaneously extracted the maximum coastal and inland wetland extents when deriving training 

samples from prior wetland datasets, the stratified classification strategy was adopted to fully use the maximum 

extent constraint. Namely, if a pixel was classified as a coastal wetland outside the maximum coastal wetland 

extents, it would be identified as a misclassification. In other words, we assumed there was zero omission error 

for these derived maximum wetland extents in Eq. (1-3) by merging several prior wetland products. Furthermore, 

there were two ideas for the large-area land-cover mapping including global classification modeling (using one 

universal model for the whole areas) and local adaptive modeling (using various models for different local zones) 

(Zhang et al., 2020). For example, Zhang and Roy (2017) demonstrated that local adaptive modeling 

outperformed the global classification modeling strategy. Therefore, the global land surface was first divided 

into 961 5° × 5° geographical tiles illustrated in Figure 5, which were inherited from the global 30 m land-cover 

mapping by (Zhang et al., 2021b). Then, we trained the local adaptive classification models using derived 

training samples in Section 3 and multisource and multitemporal features (the highest, lowest water-level and 

phenological composites and topographical variables) at each 5° × 5° geographical tile. It should be noted that 



we used the training samples from neighboring 3 × 3 geographical tiles to train the classification model and 

classify the central tile for guaranteeing the spatially continuous transition over adjacent regional wetland maps. 

Namely, we trained 961 local adaptive classification models and then produced 961 5° × 5° wetland maps. 

Finally, we spatially mosaiced these 961 regional wetland maps into the global 30 m fine wetland map in 2020. 

 

Figure 5. The spatial distribution of 961 5° × 5° geographical tiles used for local adaptive modeling, which was 

inherited from the global 30 m land-cover mapping by (Zhang et al., 2021b). The background imagery came 

from the National Aeronautics and Space Administration (https://visibleearth.nasa.gov, last access: 10 Nov 

2022). 

How many of the 961 5x5 tiles had zero coverage of wetlands (e.g., mid-ocean tiles)? 

Thanks for the comment and interesting question. According to our statistics, there was 41 5x5 tiles had zero 

coverage of wetlands.  

 

L413 What statistical program was used to conduct the RF analyses? Furthermore, while RF may have 

advantageous, it also has detractions. Please introduce the “obvious advantageous” for those who are not aware 

as well as mention some of the drawbacks. 

Thanks for the comment. The RF analysis has been conducted on the GEE platform.  

Therefore, the RF classifier was selected for mapping inland and coastal tidal wetlands using multi-sourced 

features on the GEE platform. 

The advantages of the RF have been listed in the manuscript as: 1) dealing with high-dimensional data, 2) 

robustness for training noise and feature selection, 3) achieving higher classification when compared to other 

widely used machine learning classifiers.  

Afterward, the random forest (RF) classifier was demonstrated to have obvious advantages including: dealing 

with high-dimensional data, robustness for training noise and feature selection, as well as achieving 

higher classification when compared to other widely used machine learning classifiers (e.g., support vector 

machines, neural networks, decision trees, etc.) (Belgiu and Drăguţ, 2016; Gislason et al., 2006). 



As for the disadvantages of the RF are: 1) it surely does a good job at classification but not as for regression 

problem as it does not gives precise continuous nature prediction; 2) it can feel like a black box approach for a 

statistical modelers we have very little control on what the model does. However, these two drawbacks can 

be ignored for land-cover classifications, so it is currently the most popular machine learning algorithm 

and is widely used in land cover classifications at various scale (region, nation, continent and globe). 

 

L435 Note that 18k samples were analyzed across the globe. Consider the relative dearth noted in Figure 2 (see 

summary above). 

Great thanks for the comment. Yes, a large amount of validation points can more comprehensively evaluate the 

performance of developed GWL_FCS30 dataset. However, as mentioned before, the size of validation points 

in this study is determined by using the stratified random sampling theory proposed by the Foody et al. (2009) 

and Olofsson et al. (2014) as: 

𝑛 =
(∑ 𝑊ℎ√𝑝ℎ(1 − 𝑝ℎ))

2

𝑉 + ∑ 𝑊ℎ𝑃ℎ(1 − 𝑃ℎ)/𝑁
 

where 𝑁 is the number of pixel units in the study region; 𝑉 is the standard error of the estimated overall 

accuracy that we would like to achieve, V = (𝑑/𝑡)2 (𝑡 = 1.96 for a 95% confidence interval, 𝑡 = 2.33 for a 

97.5% confidence interval, and 𝑑  is the desired half-width of the confidence interval); Wh is the weight 

distribution of class ℎ; ph is the producer’s accuracy. These sample size calculations should be repeated for a 

variety of choices of 𝑉 and ph before reaching a final decision. We try to achieve producer's accuracies of 0.9 

of non-wetland class and 0.8 of the seven wetland classes. Meanwhile, using the parameters of d = 0.0125, t = 

2.33, the sample size can be determined as approximately 18500. 

Based on your suggestion, we also replenish 7008 wetland validation points, including 212 non-wetland points 

and 6796 wetland points, so the updated global validation dataset contains 25709 validation points. 

 

L461 The authors need to introduce Figures 7-10 before introducing Figure 11. 

Thanks for the comment. Yes, we first introduce Figure 7-10 and then introduce Figure 11. 

 

L538 The point behind the Ramsar Convention’s of 6 m was to address depths that diving birds were 

expected/known to use aquatic systems. It is disingenuous to state that all permanent water bodies have 

depths >=6 m. This is a possibly fatal flaw in this analysis. 

Great thanks for pointing out the issue. The statement has been removed in the revised manuscript, and there 

was no water depth database derived from remote sensing imagery until now, so the permanent water bodies 

are also included in the updated GWL_FCS30 products. The statement has been revised as: 

To comprehensively understand the performance of the GWL_FCS30 wetland maps, four existing global 

wetland datasets (GLC_FCS30, GlobeLand30, CCI_LC, and GLWD), listed in Table 1, were selected. Figure 

12 quantitatively illustrates the total wetland area of five products over each continent. Specifically, the total 

wetland area of different wetland products varied. The GLWD obviously overestimated the wetland area on 

each continent mainly because it was derived from the compilation model instead of actual remote sensing 

observations (Lehner and Döll, 2004). Namely, the GLWD classified a large amount of non-wetlands as 

potential wetlands. The remaining four wetland products, derived from the Landsat and PROBE-V remote 

sensing imagery, shared a total wetland area of 4.128~7.364 million km2, and our GWL_FCS30 wetland dataset 



had the total area of 6.347 million km2 among these datasets. The CCI LC wetland layer contained the smallest 

wetland area of 4.128 million km2, and the estimated area in North America was profoundly lower than the 

other datasets, mainly because the CCI LC heavily underestimated the wetland distribution in Canada after a 

comparison with the Canadian Wetland Inventory (Amani et al., 2019). Next, the total wetland area in 

GlobeLand30 and GLC_FCS30 wetland layer was higher than the developed GWL_FCS30 wetland dataset 

because some water-level sensitive non-wetlands (such as: irrigated cropland) were also captured in these two 

datasets. 

 

L555 It would be good to see the analyses done in Table 4 for these two areas shown in Figure 10. For instance, 

the authors have chosen to not include permanent water as a wetland type but yet show ‘water body’ in their 

panel map, which implies it was correctly mapped yet it is not a land use type they map. 

Great thanks for the comment. Based on your suggestion in previous comments, the ‘permanent water body’ 

has been added into our fine classification system.  

 

L576 Figure 10 the panel caption for GWL_FCS30 doesn’t match the panel (GWM_FCS30). 

Great thanks for pointing out the mistake. The mistake has been corrected. 

 

L630 These selected training sample results should be in the Results section, not here. 

Great thanks for the suggestion. This section has moved to the Results Section 5.1. 

 

L634 Was this inclusion of steps noted in the methods? I don’t recall it. 

Great thanks for the comment. The reliability analysis of the training samples was not included in the method, 

because the specific processing flow has been explained in this section as: 

To demonstrate the reliability of the derived training samples for wetland mapping, we randomly selected 

approximately 10,000 points from the sample pool and checked their confidence using visual interpretation. It 

should be noted that we cannot check all the training samples because the number of derived samples was 

massive (exceeding 20 million training samples in Section 3). After a point-to-point inspection, these selected 

training samples achieved an overall accuracy of 91.53% in 2020. Meanwhile, we also used 10,000 selected 

wetland training samples and many non-wetland samples to analyze overall and producer’s accuracies of coastal 

and inland wetlands versus number of erroneous training samples. Specifically, we gradually increased the 

“contaminated” samples by randomly altering the label of a certain percentage of training samples in steps of 

0.01, and then used these “contaminated” samples to build the RF classification model.  

 

L675 These are results and need to be in that section explaining the outcomes of the RF analysis. 

Great thanks for the suggestion. This section has moved to the Results Section 5.2. 

 


