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Reviewer #2 

The submitted manuscript provides a global wetland map including inland and tidal sub-classes based on remote 

sensing data. Currently, we are still lacking a multi-class global wetland data including inland and tidal wetlands 

simultaneously, and the map produced by this work provides valuable information for related wetland studies. 

The manuscript is well-written and easy to follow. Above all, I recommend their publication provided that a 

moderate revision is carried out. 

Great thanks for the positive comments. The manuscript has been further improved based on your and other two 

reviewers’ comments and suggestions. 

 

1. Wetlands are classified as inland or coastal wetlands in this study, and the latter includes mangroves, salt 

marshes, and tidal flats. For these three wetland types, the term “tidal wetlands” is more appropriate than 

“coastal wetlands”, for example, in Murray et al., 2022. Coastal wetlands include other terrestrial and shoreline 

constituents like riparian wetlands and tidal freshwater marshes, but not just mangroves, salt marshes and tidal 

flats. As such, I suggest using “tidal wetlands” to make the classification system more accurate. 

Great thanks for your useful suggestion. The ‘coastal wetland’ has been changed as the ‘tidal wetland’ in our 

fine wetland classification system as: 

Table 2. The description of wetland classification system in this study 

Category I Category II Description 

Tidal wetland 

Mangrove  The forest or shrubs which grow in the coastal blackish or saline 

water 

Salt marsh Herbaceous vegetation (grasses, herbs and low shrubs) in the 

upper coastal intertidal zone 

Tidal flat The tidal flooded zones between the coastal high and low tide 

levels including mudflats and sandflats. 

Inland wetland 

Swamp  The forest or shrubs which grow in the inland freshwater  

Marsh Herbaceous vegetation (grasses, herbs and low shrubs) grows in 

the freshwater 

Flooded flat  The non-vegetated flooded areas along the rivers and lakes  

Saline Characterized by saline soils and halophytic (salt tolerant) plant 

species along saline lakes 

Permanent water Lakes, rivers and streams that are always flooded 

 

2. Section 2.4: This section is about generating validation samples, thus should be moved to the “Accuracy 

assessment” section as a validation step. Another thing is how did the authors determine the size of total 

validation samples (i.e., 18,701)?  



Great thanks for the comment. First, Based on the suggestion, the section 2.4 of how to generate the global 

validation samples has been moved to the Section 4.3 Accuracy Assessment. 

Then, as for how to determine the size of total validation samples, we combined the stratified random sampling 

method and the proportions of various land-cover types to determine the sample size of each land-cover type 

based on the work of Foody et al. (2009) and Olofsson et al. (2014) as: 

𝑛 =
(∑ 𝑊ℎ√𝑝ℎ(1 − 𝑝ℎ))

2

𝑉 + ∑ 𝑊ℎ𝑃ℎ(1 − 𝑃ℎ)/𝑁
 

where 𝑁 is the number of pixel units in the study region; 𝑉 is the standard error of the estimated overall 

accuracy that we would like to achieve, V = (𝑑/𝑡)2 (𝑡 = 1.96 for a 95% confidence interval, 𝑡 = 2.33 for a 

97.5% confidence interval, and 𝑑  is the desired half-width of the confidence interval); Wh is the weight 

distribution of class ℎ; ph is the producer’s accuracy. These sample size calculations should be repeated for a 

variety of choices of 𝑉 and ph before reaching a final decision. We try to achieve producer's accuracies of 0.9 

of non-wetland class and 0.8 of the seven wetland classes. Meanwhile, using the parameters of d = 0.0125, t = 

2.33, the sample size can be determined as approximately 18500. In addition, there is a little uncertainty for 

interpreting the validation points, so we randomly generate 20000 validation points over the globe and then 

discard 1299 uncertain points (these disagreement points over five experts), so a total of 18701 validation points 

are used to assess the GWL_FCS30-2020 performance. 

Pontus Olofsson, G. M. F. (2014). Good practices for estimating area and assessing accuracy of land change. 

Remote Sensing of Environment, 148(25), 42-57, https://doi.org/10.1016/j.rse.2014.02.015. 

Foody, Giles M. "Sample size determination for image classification accuracy assessment and comparison." 

International Journal of Remote Sensing 30.20 (2009): 5273-5291. 

This amount seems disproportionately less than the number of training samples (more than 20 million). 

As for the unbalance of the training samples and validation samples, it is mainly because our training and 

validation samples are completely independent. Specifically, we combined many pre-existing global wetland 

datasets to automatically derive the training samples over the globe while the validation points must be 

interpreted by visual interpretation. As we all known, collecting validation points through visual 

interpretation is time-consuming and labor-intensive, therefore, we cannot to interpret a large amount of 

validation points. 

 

(3) Lines 250-255: The tidal flat samples were collected from the global tidal flat map (Murray et al., 2019), 

and thus would suffer from the inherent error of the data. Several studies found that Murray’s tidal flat map 

failed to distinguish between nearshore ponds and tidal flats, mainly because these ponds also have water-level 

variations (Jia et al., 2021; Zhang et al., 2022). The error of commission (i.e., classifying ponds into tidal flats) 

is also indicated in the tidal flat map generated by this study, as shown in the upper panels of Fig. 13. I suggest 

the authors mask out ponds and lakes from their tidal flat map because it would substantially improve the 

accuracy. There is a new dataset that provides global lakes and reservoirs may be helpful: Khandelwal et al. 

2022. 

Great thanks for the comment and useful suggestion. Yes, we agree that the Murray’s tidal flat suffered the 

commission error especially over the nearshore ponds. Based on your suggestion, the new global lakes and 

reservoirs dataset is used to further optimize tidal flat layer in our GWL_FCS30.  



In addition, as the tidal flats were demonstrated to overestimate some coastal pones as the tidal flats, the global 

lake and reservoir dataset, developed by Khandelwal et al. (2022), was applied to optimize the tidal flat. 

The local comparisons in the Figure 16 shows that the updated GWL_FCS30 dataset has better performance 

than Murray’s tidal flat products in excluding these ponds and lakes. 

 

Figure 16. The comparisons between the tidal flat of GWL_FCS30 in 2020, Murray’s tidal flat V1.1 in 2016 

(Murray et al., 2019), and Murray’s tidal flat V1.2 in 2019 (Murray et al., 2022) for two local regions. In each 

case, the highest and lowest tidal-level composites, composited by SWIR1, NIR, and red bands, are illustrated. 

 

(4) Line 286: These thresholds proposed by Wang et al. 2020 were designed for tidal wetlands, but their 

application in this study was to inland wetlands. Therefore, the authors need to prove that these thresholds have 

robust performance in mapping inland wetlands. 

Great thanks for the comment. Yes, the rule of ‘EVI≥0.1, NDVI≥0.2, and LSWI>0’ is referenced from the 

work of Wang et al. (2020) in tidal wetland mapping, actually, whether the rule is also suitable for inland 

wetlands has been demonstrated on the work of Xiao et al. (2009) and Hao et al. (2022) who used these 

thresholds to identify the vegetated land-cover types over the inland regions. 

Wang, X., Xiao, X., Zou, Z., Hou, L., Qin, Y., Dong, J., Doughty, R. B., Chen, B., Zhang, X., Chen, Y., Ma, J., 

Zhao, B., and Li, B.: Mapping coastal wetlands of China using time series Landsat images in 2018 and Google 

Earth Engine, ISPRS J Photogramm Remote Sens, 163, 312-326, 

https://doi.org/10.1016/j.isprsjprs.2020.03.014, 2020. 

Xiao, Xiangming, et al. "A simple algorithm for large-scale mapping of evergreen forests in tropical America, 

Africa and Asia." Remote Sensing 1.3 (2009): 355-374. 

Hao, Ying-Ying, et al. "A cascading reaction by hydrological spatial dynamics alternation may be neglected." 

Environmental Research Letters 17.8 (2022): 084034. 

Meanwhile, we also use these thresholds to split the vegetated and non-vegetated areas over several inland 

regions (including: Poyang Lake, Caspian Sea, Congo Rainforests and so on), Figure S1 illustrates that these 

thresholds are also robust in splitting vegetated and non-vegetated land-cover types in inland areas. For example, 

in the First panel over Poyang Lake, the non-vegetated areas (water body, impervious surfaces) are both clearly 

excluded and these cropland, forest and grassland are completely included. In the second panel over semi-arid 

region, the bare area and water body are masked while the sparse vegetation (upper left) and inland marsh are 

included. The third panel in the Congo rainforests, these small rivers and reservoirs are accurately captured. 



 

Figure S1. The vegetated and non-vegetated masks (white and black) over three typical inland areas using the 

rule of ‘EVI≥0.1, NDVI≥0.2, and LSWI>0’. 

 

(5) Line 297, Equation 3: This maximum extent of inland wetlands also contains tidal wetlands (since the 

wetland layer in the global land cover data failed to distinguish them), so how did the authors ensure that the 

generated samples from inland wetland have corrected labels? 

Great thanks for the comment. Yes, the maximum extent of inland wetlands also contains a small amount of 

tidal wetlands. However, we derive inland training samples from five inland wetland products using a series of 

refinement measures instead of directly generating from the inland maximum wetland extents. Specifically, 

the consistency analysis of five global wetland datasets (TROP-SUBTROP Wetland, GLWD, CCI_LC, 

GlobeLand30, and GLC_FCS30) and the temporal stability checking for CCI_LC (1992–2020), GlobeLand30 

(2000-2020) and GLC_FCS30 (2015-2020) were applied to identify these temporally stable and high cross-

consistency wetland points. It should be noted that the coarse wetland products (GLWD, TROP-SUBTROP and 

CCI_LC) were resampled to 30 m using the nearest neighbor method on the GEE platform and the coastal 

wetland layers in these products were excluded. Namely, only the pixel identified as inland wetland in all five 

products was retained. Then, the morphological erosion filter with a local window of 3 × 3 was also used to 

decrease the sampling uncertainty over these land-cover transition areas because the transition zones between 

two different land-cover types are likely to be misclassified. The details of how to derive inland training samples 

has been strengthen as: 



The pre-existing inland wetland datasets usually suffered from lower accuracy compared to coastal wetland 

products; for example, the wetland layer in the GlobeLand30-2010 and GLC_FCS30-2015 was validated to 

achieve a user accuracy of 74.9% (Chen et al., 2015) and 43.4% (Zhang et al., 2021b), respectively. Therefore, 

we first generated high-confidence inland wetland samples and then determined their sub-categories 

(swamp, marsh, inland flat, saline wetland and permanent water). Specifically, the consistency analysis 

of five global wetland datasets (TROP-SUBTROP Wetland, GLWD, CCI_LC, GlobeLand30, and 

GLC_FCS30) and the temporal stability checking for CCI_LC (1992–2020), GlobeLand30 (2000-2020) 

and GLC_FCS30 (2015-2020) were applied to identify these temporally stable and high cross-consistency 

wetland points (𝑷𝒊𝒏𝒍𝒂𝒏𝒅𝑾𝒆𝒕
𝑻𝒔𝒕𝒂𝒃𝒍𝒆,𝑺𝒄𝒐𝒏𝒔

). It should be noted that the coarse wetland products (GLWD, TROP-SUBTROP 

and CCI_LC) were resampled to 30 m using the nearest neighbor method on the GEE platform and the coastal 

wetland layers in these products were excluded. Only the pixel identified as inland wetland in all five 

products was retained. Then, the morphological erosion filter with a local window of 3 × 3 was also used 

to decrease the sampling uncertainty over these land-cover transition areas because the transition zones 

between two different land-cover types are likely to be misclassified (Lu and Wang, 2021; Radoux et al., 

2014).  

Afterward, to determine the wetland sub-category for each inland wetland sample, we first used the 

empirical vegetation rule (EVI ≥ 0.1, NDVI ≥ 0.2, and LSWI > 0) proposed by Wang et al. (2020) and time-

series Landsat imagery to split candidate samples into two parts: vegetated wetland samples (swamp and marsh) 

and non-vegetated wetland samples (flooded flat, saline and permanent water). Then, as the swamp was defined 

as the forest or shrubs which grow in the inland freshwater, the global 30-m tree cover dataset (GFCC30TC) 

was adopted to distinguish the swamp and marsh from vegetated wetland samples. Specifically, if the tree cover 

of the sample was greater than 30% (Hansen et al., 2013), it was labeled as swamp, and the remaining vegetated 

wetland samples were labeled as marsh. Furthermore, to distinguish between the inland flat, saline samples and 

permanent water, the saline blocks in the prior GLWD products were first checked by visual interpretation and 

then imported as the reference dataset to identify all saline wetland samples. The remaining non-vegetated 

wetland samples were further refined using the time series of the JRC-GSW datasets, only water probability of 

these remaining samples less than the threshold of 0.95 (suggested by Wang et al. (2020)) were labeled as 

flooded flat. Lastly, regarding the permanent water samples, the JRC_GSW water dynamic dataset was 

validated and achieved producer’s and user’s accuracies of 99.7% and 99.1% for permanent water (Pekel et al., 

2016). The permanent water training samples were directly derived from the JRC_GSW dataset without any 

refinement rules. 

Lastly, although the maximum extent of inland wetlands (Eq. (3)) contains tidal wetlands, our post-processing 

method also minimize this issue in Section 4.2 as: 

As the inland and coastal tidal wetlands were independently produced, some pixels in the overlapping area of 

maximum inland and coastal wetland extents were simultaneously labeled as inland wetlands and coastal 

wetlands. However, as the final global wetland map was a hard classification, these pixels should be post-

processed into one label. As the random forest classifier could provide the posterior probability for each 

pixel, we determined the labels of the confused pixels by comparing the posterior probabilities. 

 

(6) Section 4.2: The description for obtaining training samples is unclear. What are the strata here, wetland 

classes or 5°×5° tiles?  
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Great thanks for the comment. The description of how to obtain the training samples has been strengthen by 

your and other reviewer’s suggestions. Specifically, we further adjust the Section 3 (Deriving training samples 

and determining maximum wetland extents) into four parts. In the first three parts, we separately introduce how 

to derive coastal tidal wetland samples in Section 3.1, inland wetland samples in Section 3.2, and non-wetland 

samples in Section 3.3, and determine the sample size and distributions. We think the updated manuscript in 

Section 3 is easier to follow.  

 

As for ‘What are the strata here’ in Section 4.2, we actually simultaneously consider the wetland classes and 

5°×5° tiles. To make the local adaptive and stratified modeling more intuitive, the Section 4.2 has been 

strengthen as: 

Since we have simultaneously extracted the maximum coastal and inland wetland extents when deriving training 

samples from prior wetland datasets, the stratified classification strategy was adopted to fully use the maximum 

extent constraint. If a pixel was classified as a coastal tidal wetland outside the maximum coastal tidal wetland 

extents, it would be identified as a misclassification. Furthermore, there were two ideas for the large-area land-

cover mapping including global classification modeling (using one universal model for the whole areas) and 

local adaptive modeling (using various models for different local zones) (Zhang et al., 2020). For example, 

Zhang and Roy (2017) demonstrated that local adaptive modeling outperformed the global classification 

modeling strategy. Therefore, the global land surface was first divided into 961 5° × 5° geographical tiles 

illustrated in Figure 5, which were inherited from the global 30 m land-cover mapping by (Zhang et al., 2021b). 

Then, we trained the local adaptive classification models using derived training samples in Section 3 and 

multisource and multitemporal features (the highest, lowest water-level and phenological composites and 

topographical variables) at each 5° × 5° geographical tile. It should be noted that we used the training samples 

from neighboring 3 × 3 geographical tiles to train the classification model and classify the central tile for 

guaranteeing the spatially continuous transition over adjacent regional wetland maps. Namely, we trained 961 

local adaptive classification models and then produced 961 5° × 5° wetland maps. Finally, we spatially mosaiced 

these 961 regional wetland maps into the global 30 m wetland map in 2020. 

 



Figure 5. The spatial distribution of 961 5° × 5° geographical tiles used for local adaptive modeling, which was 

inherited from the global 30 m land-cover mapping by (Zhang et al., 2021b). The background imagery came 

from the National Aeronautics and Space Administration (https://visibleearth.nasa.gov, last access: 10 Nov 

2022). 

In addition, the training samples selected from the maximum wetland extent may be of low quality. The authors 

do explain that the map accuracy is insensitive to low-quality samples within a 20% threshold, but it’s still 

missing a map representing the percentage of real erroneous samples. I think the training samples need to be 

filtered according to some criterion before classification to improve their accuracy. I recommend clarifying the 

process of sample generating and the quality-control procedures. 

Great thanks for the comment. Yes, we agree that the quality of training samples is important for accurate 

wetland mapping. In this study, we have used a lot of rules to guarantee the confidence of training samples 

instead of directly deriving from maximum wetland extents.  

Firstly, as for the mangrove training samples: 

…we first measured the temporal consistency of the three time-series mangrove forest products (CGMFC, 

GMW, and GBTM mangroves), and only these temporally stable mangrove forest pixels were selected as the 

primary candidate points (𝑃𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒
𝑇𝑠𝑡𝑎𝑏𝑙𝑒 ). Meanwhile, to minimize the influence of classification error in each 

mangrove forest product, the cross-consistency of five mangrove products was analyzed, and only the pixel, 

simultaneously identified as mangrove forest in all five products, was labeled as stable and consistent candidate 

points (𝑃𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒
𝑇𝑠𝑡𝑎𝑏𝑙𝑒,𝑆𝑐𝑜𝑛𝑠

). Furthermore, considering that there was a temporal interval between prior mangrove 

products and our study, and that mangrove deforestation usually followed the pattern of edge-to-center 

contraction, a morphological erosion filter with a local window of 3×3 was applied to the 𝑃𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒
𝑇𝑠𝑡𝑎𝑏𝑙𝑒,𝑆𝑐𝑜𝑛𝑠

 points 

to further ensure the confidence of mangrove training samples. 

Secondly, as for the tidal flat samples: 

To ensure the accuracy of tidal flat samples, we first applied temporal consistency analysis to the time series of 

tidal flat datasets from 2000 to 2016 and identified the temporally stable tidal flat pixels (𝑃𝑡𝑖𝑑𝑎𝑙
𝑇𝑠𝑡𝑎𝑏𝑙𝑒) during 16 

consecutive years. The reason why we discarded the tidal flat datasets before 2000 was that the available Landsat 

imagery were sparse and could not accurately capture the high-tidal and low-tidal information, and suffered 

lower monitoring accuracy. Next, Radoux et al. (2014) found that transition zones between two different land-

cover types are likely to be misclassified; therefore, the candidate tidal flat samples 𝑃𝑡𝑖𝑑𝑎𝑙
𝑇𝑠𝑡𝑎𝑏𝑙𝑒  were further 

refined by the morphological erosion filter with a local window of 3×3. Furthermore, as a tidal flat is a non-

vegetated coastal wetland, we combined the empirical rule (EVI ≥ 0.1, NDVI ≥ 0.2, and LSWI > 0) proposed 

by Wang et al. (2020) and time-series Landsat imagery in 2020 (approximately 142 thousand Landsat scenes) 

to exclude all vegetated pixels from tidal flat training samples. 

Thirdly, as for the salt marsh samples: 

The global distribution of the salt marsh dataset contained 350,985 individual vector polygons and was the most 

complete dataset on salt marsh occurrence and extent at the global scale (McOwen et al., 2017). However, after 

careful review, we found some mislabeled salt marsh polygons, so this dataset cannot be used directly to derive 

training samples. This study first used the random sampling method to generate 35,099 salt marsh points 

(approximately 10% of the total polygons) based on prior datasets. We combined the visual interpretation 

method and high-resolution imagery to check each salt marsh point. After discarding the incorrect and uncertain 

samples, a total of 32,712 salt marsh points were retained. 

Fourthly, as for the inland wetland samples: 
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…we first generated high-confidence inland wetland samples and then determined their sub-categories 

(swamp, marsh, inland flat, saline wetland and permanent water). Specifically, the consistency analysis of five 

global wetland datasets (TROP-SUBTROP Wetland, GLWD, CCI_LC, GlobeLand30, and GLC_FCS30) and 

the temporal stability checking for CCI_LC (1992–2020), GlobeLand30 (2000-2020) and GLC_FCS30 (2015-

2020) were applied to identify these temporally stable and high cross-consistency wetland points 

(𝑃𝑖𝑛𝑙𝑎𝑛𝑑𝑊𝑒𝑡
𝑇𝑠𝑡𝑎𝑏𝑙𝑒,𝑆𝑐𝑜𝑛𝑠

). It should be noted that the coarse wetland products (GLWD, TROP-SUBTROP and CCI_LC) 

were resampled to 30 m using the nearest neighbor method on the GEE platform. Namely, only the pixel 

identified as inland wetland in all five products was retained. Then, the morphological erosion filter with a local 

window of 3 × 3 was also used to decrease the sampling uncertainty over these land-cover transition areas 

because the transition zones between two different land-cover types are likely to be misclassified (Lu and Wang, 

2021; Radoux et al., 2014). 

Afterward, to determine the wetland sub-category for each inland wetland sample, we first used the 

empirical vegetation rule (EVI ≥ 0.1, NDVI ≥ 0.2, and LSWI > 0) proposed by Wang et al. (2020) and time-

series Landsat imagery to split candidate samples into two parts: vegetated wetland samples (swamp and marsh) 

and non-vegetated wetland samples (flooded flat, saline and permanent water). Then, as the swamp was defined 

as the forest or shrubs which grow in the inland freshwater, the global 30-m tree cover dataset (GFCC30TC) 

was adopted to distinguish the swamp and marsh from vegetated wetland samples. Specifically, if the tree cover 

of the sample was greater than 30% (Hansen et al., 2013), it was labeled as swamp, and the remaining vegetated 

wetland samples were labeled as marsh. Furthermore, to distinguish between the inland flat, saline samples and 

permanent water, the saline blocks in the prior GLWD products were first checked by visual interpretation and 

then imported as the reference dataset to identify all saline wetland samples. The remaining non-vegetated 

wetland samples were further refined using the time series of the JRC-GSW datasets, only water probability of 

these remaining samples less than the threshold of 0.95 (suggested by Wang et al. (2020)) were labeled as 

flooded flat. Lastly, regarding the permanent water samples, the JRC_GSW water dynamic dataset was 

validated and achieved producer’s and user’s accuracies of 99.7% and 99.1% for permanent water (Pekel et al., 

2016). The permanent water training samples were directly derived from the JRC_GSW dataset without any 

refinement rules. 

Lastly, as for the non-wetland samples: 

To automatically derive these non-wetland samples, the multi-epochs GlobeLand30, GLC_FCS30 and CCI_LC 

global land-cover products were integrated. Specifically, the temporal stability and cross-consistency analysis 

were applied to three land-cover products to identify temporally stable forest/shrubland, grassland, cropland, 

and other candidate samples. Furthermore, the morphological erosion filter with the local window of 3 × 3 was 

also adopted to decrease the sampling uncertainty over land-cover transition areas. 

 

(7) Section 5.3: The comparison here uses the old-version GMW mangrove map. However, the GMW mangrove 

map was updated to version 3.0 recently (Bunting et al., 2022), which substantially improved the accuracy by 

filling gaps caused by the strips in the Landsat-7 images. A detailed comparison with this new version is 

encouraged.  

Great thanks for the suggestion. The new GWM_V3 mangrove map has been used in the revised manuscript as: 

Figure 14 illustrates the comparisons between our fine wetland maps with three widely used global mangrove 

forest products (Atlas mangrove, GMW_V3 (Global Mangrove Watch Version3), and USGS Mangrove) listed 

in Table 1 in two typical mangrove regions (coastal Indonesia and Sundarbans). Intuitively, there was great 
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consistency over four mangrove datasets because the mangrove forest reflected obvious and strong vegetation 

reflectance characteristics and was easier to identify than other wetland sub-categories. However, the Atlas 

mangrove dataset suffers from the underestimation problem; namely, the mangrove area in the Atlas mangrove 

dataset was obviously lower than the other three products, especially in coastal Indonesia (local enlargements). 

The USGS mangrove product can comprehensively and accurately capture the spatial distribution of mangroves 

over two regions. Still, it missed small and isolated fragments of mangrove forests in two regions (green 

rectangle) based on high-resolution imagery. The GMW_V3 dataset was validated to achieve an overall 

accuracy of 95.25%, with user and producer accuracies of mangrove forests of 97.5% and 94.0%, respectively 

(Bunting et al., 2018; Thomas et al., 2017), which shows great agreement with our fine wetland maps and 

confirms that this dataset accurately identified the spatial patterns of mangrove forest in both regions. 

 

Figure 14. The cross-comparisons between our GWL_FCS30 wetland maps with three mangrove products 

(Atlas mangrove developed by Spalding (2010), GMW_V3 developed by Bunting et al. (2022) and Mangrove 



USGS developed by Giri et al. (2011)) in Sundarbans and coastal Indonesia. The high-resolution imagery came 

from the Google Earth Engine platform (https://earthengine.google.com; last access: 16 May 2022). 

 

Also, a product of global tidal wetland dynamics provided by Murray et al. (2022) could be an important 

reference for comparison. 

Great thanks for the comments. Based on your suggestion, the new global tidal flats in Murray et al. (2022) has 

been added into the comparisons. 

Figure 16 illustrated the comparisons between GWL_FCS30 tidal flat layer with the Murray’s tidal flat V 1.1 

in 2016 and the updated Murray’s tidal flat V1.2 in 2019 (Murray et al., 2022) in two local regions, and the 

corresponding highest and lowest tidal-level composites are also listed. Overall, three products can 

comprehensively capture the spatial patterns of tidal flats in these two regions, and the GWL_FCS30-2020 and 

Murray’s tidal flat V1.2 performed higher spatial consistency while the Murray’s tidal flat V1.1 suffered the 

obvious omission error in three typical areas (red rectangles). Detailedly, we can find that the Murray’s tidal 

flat products misclassified some coastal ponds and lakes into the tidal flats especially in the first region while 

the GWL_FCS30-2020 accurately excluded these ponds and lakes. 

 

Figure 16. The comparisons between the tidal flat of GWL_FCS30 in 2020, Murray’s tidal flat V1.1 in 2016 

(Murray et al., 2019), and Murray’s tidal flat V1.2 in 2019 (Murray et al., 2022) for two local regions. In each 

case, the highest and lowest tidal-level composites, composited by SWIR1, NIR, and red bands, are illustrated. 

 

(8) Figure 8 lacks a legend. 

Great thanks for pointing out the problem. The legend has been added in the Figure 8 as: 

 



Figure 11. The area proportions of eight wetland sub-categories over each continent. 


