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Abstract. High quality gridded soil moisture products are essential for many Earth system science applications, while the 15 

recent reanalysis and remote sensing soil moisture data are often available at coarse resolution and remote sensing data are 

only for the surface soil.and they are usually available from remote sensing or model simulations with coarse resolution. 

Here, we present a 1 km resolution long-term dataset of soil moisture derived through machine learning trained with by the 

in-situ measurements of 1,789 stations over China, named as SMCI1.0. Random Forest is used as a robust machine learning 

approach to predict soil moisture using ERA5-Lland time series, leaf area index, land cover type, topography and soil 20 

properties as covariatepredictors. SMCI1.0 provides 10-layer soil moisture with 10 cm intervals up to 100 cm deep at daily 

resolution over the period 20010-2020. Using in-situ soil moisture as the benchmark, two independent experiments wereare 

conducted to investigate evaluate the estimation accuracy of the SMCI1.0: year-to-year experiment (ubRMSE ranges from 

0.041-0.052 and R ranges from 0.883-0.919) and station-to-station experiments (ubRMSE ranges from 0.045-0.051 and R 

ranges from 0.866-0.893). SMCI1.0 generally has advantages over other gridded soil moisture products, including ERA5-25 

Land, SMAP-L4 and SoMo.ml. However, the high errors of soil moisture often located in North China Monsoon Region. 

Overall, the highly accurate estimations of both the year-to-year and station-to-station experiments ensure the applicability of 

SMCI1.0 to studies study on the spatial-temporal patterns. As SMCI1.0 is based on in-situ data, it can be useful 

complements of existing model-based and satellite-based soil moisture datasets for various hydrological, meteorological, and 

ecological analyses and modelingmodelling. The DOI link for the dataset is http://dx.doi.org/10.11888/Terre.tpdc.272415 30 

(Shangguan et al., 2022). 
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1 Introduction 

Soil moisture (SM) plays a key role in land-atmosphere interactions through its strong impacts on water and carbon cycle 

(Entekhabi et al. 1996; Seneviratne et al. 2010; Wagner et al. 2007). The status of SM is closely related to the variation in 

climate and weather conditions (Dirmeyer et al. 2006). The high-quality SM data with large fine spatial-temporal scale can 35 

be valued as indispensable factors tools for observing the extreme weather events, e.g., monitoring of droughts (e.g., Chawla 

et al. 2020; Mishra et al. 2017; Tijdeman and Menzel 2021) and, floods (e.g., Kim et al. 2019; Norbiato et al. 2008; 

Parinussa et al. 2016). Hence, high-quality SM can be acted as a vital variable in wide range of applications such as flood 

and drought prediction and carbon cycle modelling (Sungmin and Orth 2020). Further, SM is also identified as an important 

component of the Essential Climate Variables by the Global Observing System for Climate (GCOS 2016). However, high-40 

quality SM data acquisition is a challenging task due to the high variability of SM in space and time complicated 

spatiaotempral variations of the SM (Li and Lin 2018; Ojha et al. 2014; Vereecken et al. 2014). TheSuch spatiotempral 

variations inof SM are usually affected by the inherent heterogeneity of soils, land cover, and weather (Brocca et al. 2007; 

Crow et al. 2012; Vereecken et al. 2014). 

At present, the waymethods for of SM data acquisition estimation can be divided into five categories: in-situ SM 45 

stationsobservations, satellite observations, offline land surface model simulations, Earth system model simulations, and 

reanalysis products. For in-situ SM observations, SM data isare usually measured by the probe measurement method (Orth 

and Seneviratne 2014), they havein which as direct observations this method usually leads to lower errors than satellite 

observations, land surface model simulations, Earth system model simulations and reanalysis products (Pan et al. 2019). 

Although large number of stations have distributed all over the world, there are still many regions with no in-situ SM 50 

observations due to financial constraints (Karthikeyan and Kumar 2016) and they field stations are too sparse to capture 

adequate spatial coverage (Gruber et al. 2016). For satellite observations, SM data isare mainly retrieved by microwave 

radiometer (frequencies are less than 12 GHz) on satellite (Entekhabi et al. 2010; Fujii et al. 2009; Kerr and Coauthors 2010) 

which can provide the global SM data with uniformly distribution. But for the microwave radiometer measured SM data 

from the near-surface, only the top layer SM (typically ~5 cm) can be retrieved and the data gaps exist in regions with dense 55 

vegetation, and snow-covered or frozen soils. The SM data of the in offline land surface model and Earth system model 

simulations spans multiple soil layers and have seamless spatial distribution (Gu et al. 2019), but they both have the 

uncertain and different forcing factors due to the spatial sub-grid heterogeneity of soil properties and vegetation, and thus 

leading to large differences from in-situ SM observations. (Dirmeyer et al. 2006; Kumar et al. 2009). . For rReanalysis 

products, they can also provide SM data with wellgood temporal variations by assimilating observations into land surface 60 

models or Earth system models (Chen et al. 2021). Meanwhile, tThey can also provide SM data in deeper soil depth than 

satellite observations., However,but reanalysis products still have the differencesusually lead to higher disagreement with in-

situ SM observations when the assimilated meteorological variables (e.g., precipitation) are biased (Balsamo et al. 2015). 
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In brief, the characteristic strong-points and shortcomings are both coexisted in each type of SM product. Hence, we are 

eager to develop the high-quality SM product which comprehensively have high-resolution seamless spatial distribution, 65 

long time periods, and low errors from the above SM products. 

Recently, machine-learning (ML) models have been successfully applied in SM predictionfor predicting (Li et al. 2021; 

Mohamed et al. 2021; Xu et al. 2010) andor downscalinge modeling (Chakrabarti et al. 2014; Srivastava et al. 2013; Wei et 

al. 2019; Mao et al. 2022) the SM values. They capture the complex nonlinear relationship between SM and all available 

predictors related to SM variation (e.g., meteorological variables, land-cover and soil data) and further achievewith better 70 

accuracy accurate results. ML models provide an alternative opportunity for estimatingcapacity to estimate high-quality SM 

data based on in-situ SM stations measurements (Sungmin and Orth 2020) and further to improve the generated SM product, 

that give full play to the roles of the in-situ SM observations with low errors, and other SM products with and seamless 

spatial distribution andfor long time periods. Such as, Zeng et al. (Zeng et al. 2019) applied the rRandom forest (RF) as such 

a ML method was applied by Zeng et al. (2019) model to generate 0.5 km spatial and daily temporal resolution of SM 75 

observations over data for the period from 2010 to 2014 in over Oklahoma based on in-situ SM stations records and satellite 

observations. The low root means square error (ranging from 0.038 to 0.050 m3/m3 for year-to-year test and 0.044 to 0.057 

for station-to-station test) obtained from experiments, which demonstrated the usability of their  demonstrating the accuracy 

of the gridded SM data. Sungmin et al. (Sungmin and Orth 2020) used the Long Short-term Memory (LSTM) model as a 

deep learning approach to estimate daily SM data in theover whole world with aboutat 27.75 km spatial and daily temporal 80 

resolution over for the period from 2000 to 2019, stating the superiority of their SM data over ERA5 dataset. They 

represented that their SM data outperformed the SM datasets of ERA5. It was necessary to note that the above two studies 

both emphasized that the applied in-situ SM observations did could not cover the whole tested regions, leading to relatively 

high uncertainty outside the training conditions. In other words, the more in-situ SM stations existed in the tested region, the 

higher -quality gridded SM data can be generated by ML models. Additionally, Carranza et al. (Carranza et al. 2020) used 85 

RF model to estimate root zone SM within a small catchment from 2016 to 2018, and demonstrated that ML model had 

slightly higher accuracy than a process-based model combined with data assimilation for data-poor regions. Karthikeyan et 

al. (Karthikeyan and Mishra 2021) applied Extreme Gradient Boosting (XGBoost) to estimate daily SM data in over the 

United States with about 1 km spatial and daily temporal resolution over for the period from 31 March 2015 to 29 February 

2019 (only 1,431 days) and the results showed that they the esimations can well capture temporal variations of SM (ubRMSE 90 

less than 0.04 m3/m3). 

China is one of the largest countries in the world, which locatedexpanded from central and to eastern Asia. The climate types 

are complex and diverse, which spans wet, semi humid, semi dry and dry climate types from southeast to northwest, the 

northward extent and intensity of summer monsoon often cause significant changes in precipitation and arid-humid climate 

(Cong et al. 2013). As we know,Since SM and precipitation can interact with each other (Li et al. 2020), therefore in situ 95 

data based estimation of SM is a challenging task due to such heterogeneity and complex spatiotemporal variabilities.  which 
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also represents that the variability of China SM in space and time are complex and further takes serious challenges for 

estimating China SM data based on in-situ SM stations. 

Previous studies have already produced manyprovided several SM gridded SM products covering China or the world, but 

mainly based on remote sensing data and only for the surface layer (e.g., Chen et al., 2021, Meng et al., 2021, Song et al., 100 

2022, Wang et al., 2021 and Zhang et al., 2021). However, there is still a big gap in technical literature about daily SM data 

with high quality (high-resolution seamless spatial distribution, long time periods, and low errors) at multiple layers based on 

in-situ measurements do not exist for China yet. Although Sungmin et al. (Sungmin and Orth 2020) generated the global SM 

data by ML model which includes the China region, only less thandata from about 20 in-situ SM stations have been applied 

for SM modelling for the whole China in China were applied, which was hardly ensure the quality of China SM product. In 105 

addition, this product’s resolutionthe resolution of this product is 0.25 degree, which limits its use in regional applications 

requiring when high resolution SM are required. 

To fill this research gap, in this study, we aimed to generateat generating high quality gridded SM data in over China with 

using in-situ measurements based onand RF model (Fig.1). The covariatepredictors were consisted of static data and time 

series variables, including ERA5-Land (the land component of the fifth generation of European Reanalysis, Muñoz Sabater, 110 

2019; Muñoz Sabater, 2021Balsamo et al. 2015), USGS (United States Geological Survey) land cover type (Loveland et al. 

2000), USGS DEM (Digital Elevation Model, Balenović et al. 2016), reprocessed MODIS LAI (Moderate-resolution 

Imaging Spectroradiometer Leaf Area Index, Yuan et al. 2011) and CSDL (China Soil Dataset for Land surface 

modelingmodelling, Shangguan et al. 2013). The in-situ SM observations from 1,6481,789 stations after quality control 

procedures were acted employed as our the SM modelling target variables after quality control procedures., which were 115 

obtained from China Meteorological Administration (CMA). 

Our The new China gridded SM product (named SMCI1.0, Soil Moisture of China by in-situ data, version 1.0) provides SM 

data at ten layers, which include soil depth from 10cm to 100cm with an interval of 10 cm. Meanwhile, SMCI1.0 has ~1km 

(30 seconds) spatial resolution and daily temporal resolution over the period from 1 January 2010 to 31 December 2020. For 

the SMCI1.0 product, we mainly considered  to answer the four following research questions as follows: 120 

(1) How What is the sensitivity of the in-situ SM data to are in-situ SM and all the covariatepredictors related, including 

meteorological data (air temperature, precipitation, total evaporation, potential evaporation), soil data (SM and soil 

temperature at different soil layers, and static soil properties), leaf area index and land cover type. 

(2) Can the RF model successful generate high quality gridded SM (high-resolution seamless spatial distribution, long time 

periods, and low errors) at multiple layers in over China based on in-situ SM observations? 125 

(3) How does the RF model performs for spatiotemporal estimation of SM for the space and time extrapolation experiment, 

in other words, can the RF model generate the SM data with low errors which take in-situ SM observations as the reference 

under year-to-year and station-to-station estimatingscebarios? 

(4) What are the conditions can in which SMCI1.0 SM data have may lead to lower errors or and higher errors against 

adjusted in-situ SM observations?  130 
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For the above issues, we make four contributions for generating and validating multi-layer gridded SM data over China. First, 

we record and make detailed analysis of the correlations between in-situ SM and all covariatepredictors. Then, we apply the 

RF to model the complex relationship between covariatepredictors and in-situ SM observations, and further validate the 

using year-to-year and station-to-station estimatingexperiments. Finally, we intuitively display and analysis the quality of 

SMCI1.0 with at different conditions, which can help the researchers to and it is expected to help researchers improve the 135 

China gridded SM intentionally and strategically. The schema of this work is listed below. Section 2 describes the in-situ SM 

data, predicting data, data served as covariates, RF model and its application in SM estimating. Section 3 gives the validation 

results, experimental results, a sampled map on a day and relative importance of covariatepredictors. Sections 4 and 6 

present the discussion conclusions, respectively. 

2.Materials and Methods 140 

2.1 in-situ SM observations 

Target SM data for RF model was constructed from the CMA SM observations. The observations dataset contains hourly 

data from 1,789 stations over China (18-N, 73-W) and have hourly temporal resolution over for the period from 1 January 

2010 to 31 December 2020. The spatial distribution of observations is shown in Fig. S1(a). For our in-situ SM observations, 

two aspects deserve to be noted: one aspect isIt should be noted that data from such a  the large number of in situ stations 145 

(i.e., 1,789), which can help ML models to capture the complex nonlinear relationship between SM and covariatepredictors 

over various training conditions and thus to generate high quality China gridded SM data. The other aspect is the bias and 

standard deviation correction of in-situ SM, which is vital for our study to allow the ML model to achieve the high-quality 

SM product. We applied the same correcting method with that of Sungmin et al. (2020), who adjusted the raw in-situ SM 

observations to match means and standard deviation of the ERA5-Land gridded SM data at the corresponding time periods, 150 

grid cells and layers.  

The automated quality control of in-situ SM observations was performed before training the RF model. We first removed the 

null values over the long period (10 10-days time step) and outlier/unreasonable SM values. In checkingTo check the 

unreasonable SM values, four plausibility checks were performed, such as checking geophysical consistency using 

precipitation and soil temperature, spike detection, break detection and constant values detection. The details could be found 155 

in the Global Automated Quality Control method (Dorigo et al. 2013). Finally, the removed values were replaced by the 

linear interpolation method according to the remaining SM values at the same time period from five days ahead and to five 

days later. To facilitate generating 1km gridded SM data at multiple layers by the RF model, the CMA SM observations 

were processed to daily and the observations were averaged if there are more than one stations within a grid at 1km 

resolution. We simply averaged all the available observations in each day at each in-situ SM measurement station for daily 160 

resolution and all the in-situ SM measurement stations if there are more than one stations within each grid for with 1km 

resolution. In this way, we got 1,648~1,789 spatial points (or grids) of observations. The description of in-situ SM could be 
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found in Supplementary Material (Text S1 and Fig. S1). The details for the target in-situ SM are represented in Fig. 2. Fig. 

2(a) shows that stations are dense in the east part of China, but sparse in the west part. Fig. 2(b) represents that the sample 

size varies with soil depth, and large numbers of missing values exist at 70 and 90 cm soil depths. From Fig. 2 (c), we could 165 

see that the values of the in-situ SM at all soil depths were mainly concentrated in the range from 0.2 to 0.4 m3/ m3. Fig. 2(d) 

denotes that the data number in low standard deviation (0~0.05 m3/ m3) is smaller than that in high standard deviation 

(0.05~0.07 m3/ m3) from at 10 to 40 cm soil depths. But the opposite conclusion can be drawn from 50 to 100 cm soil depths 

(larger data number in low standard deviation is than that in high standard deviation). Meanwhile, Fig. 2(d) also hints that 

the standard deviation of SM at deeper soil depth (except that at 100 cm soil depth) is lower than that at upper soil depth. 170 

Decreasing standard deviation with increased soil depth denoted that in-situ SM is more stable in deep soil depth, which is 

consistent with the previous studies (Gao and Shao 2012; Wang et al. 2013). From Fig. 2 (e), we could see that the stations 

have 8 climate types, most observations belong to temperate climate with dry winter (Cw), temperate climate, fully humid 

(Cf) and snow climate with dry winter (Dw), and the data with tropical monsoon climate (Am) and snow climate, fully 

humid (Df) are sparse, which occupy only small parts of China. 175 

After the above data processinggenerating daily SM based on CMA SM observations for each 1km grid where there is one or 

more in-situ stations, we started to perform the correction of deviation and variance forof in-situ SM was performed, which 

can help the ML model to achieve the high-quality SM product. iIn-situ SM data was have been obtained by various sensor 

types, which had with different calibration processes. Hence, to overcome the artifacts artefacts during the RF model training, 

we adjusted the observations to match means and standard deviation of the ERA5-Land SM at the corresponding time 180 

periods and, grid cells and layers using the method proposed by  (Sungmin and Orth (2020). In this method, we first obtained 

a weight by dividing the standard deviations of the in-situ SM at each station by that of ERA5-Land SM at the corresponding 

grid, and then multiplied the original in-situ SM by this weight. After that, we computed the difference between the average 

value of the in-situ SM at each station and the ERA5-Land SM at the corresponding grid, and subtract the in-situ SM by the 

computed difference. This method made the target in-situ SM resemble the mean and standard deviation of ERA5-Land SM, 185 

and kept daily temporal variations which follow the original in-situ SM time series. As the soil depth of each soil layer of 

ERA5-Land SM was inconsistent with that of in-situ SM, we mapped the soil layer of ERA5-Land SM to the corresponding 

soil layers of in-situ SM. Hence, the in-situ SM data from 10 cm to 30 cm were adjusted based on the gridded SM at layer2 

from ERA5-Land dataset (7-28 cm), and the in-situ SM data from 30 cm to 100 cm were adjusted based on the gridded SM 

at layer3 from ERA5-Land dataset (28-100 cm). 190 

2.2 Datasets as covariatepredictors 

Table 1 shows the used datasets uses covariatepredictors used for RF modelingmodelling. Most covariatepredictors were 

collected from the ERA5-Land reanalysis dataset, which is an enhanced version of ERA5 land component, forced by 

meteorological fields from ERA5.which was produced by the land component of European Centre for Medium-Range 

Weather Forecasts (ECMWF). The reasons for selecting the ERA5-Land dataset as preference were as follows: (1) it is 195 
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generated under a single simulation of a land surface model using ERA5 reanalysis as the forcing data, but with a series of 

improvements making which make it more accurate for all types of land applications (Muñoz-Sabater et al., 2021)(Albergel 

et al. 2018); (2) ERA5-Land is currently updated with 2-3 months latencythere are only several months latency for obtaining 

ERA5-Land datasets, which allowed allows us to update SMCI1.0 in time; (3) ERA5-Landthe data is long-term (since 

19811950) data and with seamless spatial distribution and multilayers, which helps usmakes it possible to generate high 200 

quality SMCI1.0 easily. Compared with satellite observations, we can avoid the spatial-temporal gaps and limited time 

periods covered by using ERA5-Land reanalysis (Sungmin and Orth 2020). The static data of covariatepredictors were 

collected from USGS land cover type (Loveland et al. 2000) and DEM (Balenović et al. 2016), reprocessed MODIS LAI 

Version 6 for land surface and climate modelling (Yuan et al., 2011) and the China Soil Dataset for Land Surface Modeling 

(CSDL, Shangguan et al., 2013), including sand, silt and clay content, rock fragment, and bulk density. The reprocessed 205 

MODIS LAI Version 6 was improved by a two-step integrated method that had the advantage ofwith continuity and 

consistency in space and time series domains (Yuan et al., 2011). It was worth noting that the temporal resolution of the 

reprocessed MODIS LAI Version 6 was 8 days, and the daily LAI between the 8 days was computed by linear interpolation 

of the nearest two LAI values at 8-day time step. CSDL was developed for use in the land surface modeling. The spatial 

distribution of soil type, rock fragment, and bulk density was derived by the polygon linkage method, which were well 210 

represented andwhose results are consistent with common knowledge of Chinese soil scientists (Shangguan et al., 2013). All 

predictors were processed to the same 1km by 1km grid system. ERA5-Land data with 9 km resolution were resampled into 

1 km by the nearest neighbor method and MODIS LAI with 500 m resolution were aggregated into 1 km by averaging.  

2.3 Random Forest regression 

Random Forest (RF) is an ensemble machine learning approach, which apply the decision trees and bagging methods for the 215 

classification and regression problem (Breiman 2001). The simple decision trees model partitioned partitions the variable 

space and further grouped groups dataset recursively based on similar instances. For the candidate variables from a set of 

covariatepredictors, a split was is determined by the values of interesting desired variable that is evolved into a tree structure 

with multiple parent and child nodes. Meanwhile, the response variance for decision regression trees was is applied as the 

criterion tofor maximizes the purity of each node (the response variance was is applied to measure node purity) and further 220 

to find the optimal split. RF generatesd diverse decision trees to avoid overfitting through bagging method, which 

constructsed multiple training sub-dataset by resampling with replacement of the original dataset. For each training sub-

dataset, a decision tree was is growing until the selected pre-assumed criterion was is reached (e.g., the value for the 

minimum node size). After When all the decision trees were are generated, the average was taken fromof all the estimations 

from each decision tree is computed.  225 

The importance of the covariatepredictors obtained by the RF model was is also worth noting, which computed can be 

explored by a permutation schememethod. In the permutation method,  the different SM was are estimated by permuting all 

the covariatepredictors. Hence, the importance of covariatepredictors could can be obtained detected by comparing their 
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accuracy of SM estimation. Such as, if one covariatepredictor was vitalis dominant to estimate target SM, the estimated SM 

values accuracy was is expected to be decreased forusing estimation by the remaining other non-permuted 230 

covariatepredictors without the covariate. 

2.4 The application for of Random Forest model 

In our this study, we first selected determined the optimal values of hyper-parameters in RF model based on the 10-fold 

cross-validation method. After selecting the optimalcalibration of the hyper-parameters, two independent experiments are 

were conducted to investigate the estimation accuracy of the developed SMCI1.0 at spatial-temporal scale data (year-to-year 235 

and station station-to to-station experiments). In the year-to-year estimatingexperiments, the data from 2010 to 2017 years in 

each station was were reserved for training set, and to evaluate the estimation accuracy of SMCI1.0 at temporal scale, we 

compared the generated SM by RF model at each soil depth with the corresponding in-situ SM data from 2018 to 2020 years. 

In the station-to-station estimatingexperiments, the randomly selected data from 2/3 of the stations with randomly selection 

from 2010 to 2020 werewas applied for training the RF model, and the remained 1/3data of the rest stations were used to 240 

evaluate the estimation accuracy of SMCI1.0 at spatial scale. Finally, the SMCI1.0 product was generated by RF model at 

1km resolution, which was built based on the in-situ SM and the combined covariatepredictors (shown in Table 1) from all 

stations and all years. In addition to the 1 1-km resolution, we also produced a version of 9 9-km resolution by aggregating 

the higher resolution covariatepredictors for the convenience of applications which need onlywhen coarser SM data are 

needed in broad scale studies. In addition to the period of 2010-2020 when in situ SM data are available, we also produced 245 

the gridded SM for the period of 2000-2009 when in situ SM data are unavailable, assuming that the relationship between 

SM and predictors remains the same in the last two decades. It is proper to deem that the data quality during 2000-2009 is 

poorer than that of 2010-2020.  SMCI1.0 can be accessed at 错误!超链接引用无效。. 

The number of randomly selected candidate variables from all the covariatepredictors (max_features) and the value for for 

the minimum node size (min_samples_leaf) in RF model were are the vital hyper-parameters for RF model which can affect 250 

the modelling performance. The values of max_features and min_samples_leaf directly determined how the RF model grown. 

Other hyper-parameters, such as number of trees (n_estimators), were not tuned but simply determined based on RF’s own 

training. The hyper-parameters max_features affected the split SM values and min_samples_leaf was acted as the criterion 

for stopping the decision tree growing. Meanwhile, to prevent over-fitting problem, we applied the 10-fold cross-validation 

method to tune the values of max_features and min_samples_leaf, and they were selected from in the range [1,25] with a 255 

single interval and [5,30] with 5 intervals via the gridded direct search method. hyper-parameters method for preventing RF 

model over-fitting, which randomly divided the whole dataset into k-fold and a 10th of the sub-datasets was used as 

validation sample while the other sub-datasets were applied for training RF model. The root means square error (RMSE) was 

assessed for evaluating model accuracy by the 10-fold cross-validation method. The accuracy of RF models with all hyper-

parameters calibrated by the direct search methodbased on grid hyper-parameters method at 10 cm soil depth were shown in 260 

Table 21S1. We could seeIt can be seen that the root means square error (RMSE)RMSE obtained based on all the hyper-
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parameters ranged from 0.601 to 0.637 and the best accuracy (RMSE=0.601) can could be achieved when max_features and 

min_samples_leaf set to be 1 and 20, respectively, and they are used to the rest modelling of this study.. The optimal hyper-

parameters (max_features=1 and min_samples_leaf=20) in RF model were used for further research. 

The modelling performance and quality of SMCI1.0 product was were evaluated in terms of ubRMSE, MAE (Mean Absolut 265 

Error), R (correlation coefficient), R2 (explained variation) and Bias, respectively. ubRMSE and MAE were applied to test the 

ability to estimate volatility and fluctuation amplitude, respectively. R denotes fluctuation pattern and R2 represents the 

percentage of variance explained by the RF model. Bias was used to observe if the estimations were overestimated or 

underestimated. The fiveThese metrics were computed as follows: 

𝑢𝑏𝑅𝑀𝑆𝐸 = ට
∑ [(௫ିത)ି(௬ିത)]

మಿ
సభ

ே
,                (1) 270 

𝑀𝐴𝐸 =
∑ |௫ି௬|
ಿ
సభ

ே
,                                                             (2) 

𝐵𝑖𝑎𝑠 = 𝑥 − 𝑦,                                                                 (3) 

𝑅 =
∑ (௫ିത)(௬ିത)
ಿ
సభ

ට∑ (௫ିത)
మ

సభ ට∑ (௬ିത)
మ

సభ

,                                     (4) 

𝑅ଶ = 1 −
∑ (௬ି௫)

మಿ
సభ

ே∑ (௬ିത)
మಿ

సభ

,                                                        (5) 

where 𝑦  and  𝑥  denoted the i-th in-situ SM and gridded SM for all the stations and periods, respectively. 𝑌ത and 𝑋ത 275 

represented the mean values of the in-situ SM and gridded SM, respectively. 

3.Results 

3.1 Validation of Random Forest based SM modelling validation 

To evaluate and validate the performance of RF model for generating SMCI1.0, we mainly discussed the modelingmodelling 

ability by year-to-year and station-to-station experiments, which could ensure that SMCI1.0 product has low errors in both 280 

temporal and spatial scales against in-situ SM records. Meanwhile, we also compared the results with the state-of-the-art 

global gridded datasets such as ERA5-Land, SMAP-L4 and SoMo.ml datasets. 

The scatter plot between of the mean values of SMCI1.0 and that of in-situ SM data for at each station, the frequency 

distributions of all SM values in SMCI1.0 and that in in-situ measurements, and the violin-plot for the distribution of daily 

SM from stations for each climate type were are represented for the year-to-year experiment in Fig. 2 (from 10 to 30 cm soil 285 

depths) and Fig. S2 (from 40 to 100 cm soil depths). As shown in Fig. 2 (a), we can conclude that there was is generally a 

good agreement between the mean of SMCI1.0 and that of in-situ SM at each station (the correlation ranges from 0.867 to 

0.908), which demonstrated that the RF model can well capture spatial variations in in-situ SM. The RF model showed 
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somewhat better results in deeper soil depths, such as the RF model at 30 cm soil depth had better performance than that at 

10 and 20 cm soil depths in as shown by Fig. 2 (a), which was consistent with the previous studies (e.g., Sungmin and Orth 290 

2020). And theThe different  worst results was were achieved by the RF model at 70 cm and 90 cm soil depths in as shown 

by Fig. S2 (a), where the performance was the worst in all the soil depths (ubRMSE=0.053, MAE=0.038, R=0.867, R2=0.731 

at 70 cm soil depth; ubRMSE=0.052, MAE=0.036, R=0.883, R2=0.759 at 90 cm soil depth). Meanwhile the best result was 

achieved by the RF model at 30 cm soil depth (ubRMSE=0.043, MAE=0.033, R=0.908, R2=0.824 at 30 cm soil depth). The 

reason may be that RF model is difficult to estimate accurate SM for only a few in-situ SM stations. From Fig. S1 (b), we 295 

can see that the total numbers of data at 70 cm and 90 cm soil depths is relatively small. In other words, more diversity of 

data was expected to help RF model ‘learn’ complete relationship between covariatepredictors and in-situ SM and further 

generated SMCI1.0 with low errors in China. Meanwhile, it also showed the superior quality for our SMCI1.0 product, 

because the larger numbers of in-situ SM data in China were applied for estimating seamless SM than that by the previous 

studies (Sungmin et al. 2020). In As shown by Fig. 2 (b), although the SMCI1.0 had yielded smaller less variability in the 300 

values range from 0 to 0.18, 0.38 to 0.43, and 0.46 to 0.6 and larger higher variability in other value ranges, as a whole, SM 

in SMCI1.0 data generally agreed well with in-situ SM values. The same conclusion can be drawn from 40 to 100 cm soil 

depths in Fig. S2 (b). The SMCI1.0 data were further evaluated for each climate type in Fig. 2 (c) and Fig. S2 (c). With 

regard to the violin-plot, RF model can could estimate consistent results with in-situ SM. However, the inconsistent SM was 

estimated in Tropical Monsoon Climate (Am) and Desert Climate (Bw). The reason could also be attributed to only few in-305 

situ SM data in these climatic regions, which as represented in Fig S1 (e). Finally, we concluded that RF model can 

reproduce the temporal variation in in-situ SM data accurately at unseen period accurately. Meanwhile, we also advocated 

that more diverse training data over various regions was needed for capturing the complex relationship between covariates 

and SM, and further improving the quality of high resolutions SM product. 

It is clear fFrom Fig. 3 and Fig. S3, we could see that although the results of the station-to-station experiment were inferior 310 

to that those of the year-to-year estimating, RF model can could also perform well in estimating seamless SM in over China 

at unseen locations. Additionally, similar to the year-to-year experiment, RF model performed the bestbetter at 30 cm soil 

depth than that those at other soil depths in the station-to-station experiment.  

Finally, we also compared SMCI1.0 product with other gridded datasets (ERA5-Land, SoMo.ml and SMAP-L4) according 

to the median ubRMSE, R, Bias and MAE. From According to Fig. 4 and Fig. S4, SMCI1.0 product had provides the lowest 315 

median ubRMSE and MAE values  fromfor 10 cm to 100cm soil depths. Regarding considering the median Bias between 

gridded SM and in-situ SM observations, SMCI1.0 product had shows almost similar quality accuracy with ERA5-Land 

datasets for all the soil depths, but had higher quality accuracy than SoMo.ml and SMAP-L4 datasets. It was worth noting 

that the SMAP-L4 dataset had has the widest spread of errors and tended to underestimate in-situ measurements, which 

leaded to higher median ubRMSE and MAE values. Regarding the median R between gridded SM and in-situ SM 320 

observations, SMCI1.0 product had has slightly higher quality than SoMo.ml dataset for 10cm, 20cm, 80cm and 100cm soil 

depths and obvious advantages than over ERA5-Land and SMAP-L4 datasets for all the soil depths, while it had lower 
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quality than SoMo.ml dataset for other soil depths. Considering all the above metrics, SMCI1.0 product were provides more 

robust data than the some other commonly used gridded datasets. Interestingly, it was inconsistent for the results of R, 

ubRMSE, and MAE in Fig. 2 and Fig. 4, which had the same phenomenon with the previous studies (Sungmin and Orth 2020) 325 

(represented in their Fig. 4 and Fig. 5). For example, SMCI1.0 product had the ubRMSE, MAE and R being 0.046, 0.035 and 

0.889 at 10 cm soil depth in Fig. 2. However, in Fig. 4, the box-plot represented the lowest ubRMSE, MAE and highest R of 

SMCI1.0 product were nearly 0.03, 0.02, and 0.7, respectively. The reason may be that the same metrics were calculated in 

different ways, the one in Fig. 2 was to count the results of all stations and temporal period, and the one in Fig. 4 was to 

count the results of only temporal period at one station.  330 

Overall, the RF model can could be able to successfully generate the SM data with low errors taking in-situ SM observations 

as the reference at unseen periods and locations. According to the comparison analysis, the SMCI1.0 product outperforms 

the existing some other SM products (including ERA5-Land, SoMo.ml and SMAP-L4) in the sense of statistic metrics. 

3.2 The spatial and temporal evaluation of the SMCI1.0 

Overall performance of the proposed modelling and accuracy of SMCI1.0 dataset were evaluated in section 3.1, but nothing 335 

presented there about variability and trend of this dataset at different temporal and spatial scales.As the section 3.1 evaluated 

the overall performance of estimated SM at the macro level, the variability and trends of the SMCI1.0 in temporal and spatial 

scale cannot be reflected.  Hence, to take the evaluation ofevaluate the temporal variation of the SMCI1.0 data in temporal 

scale, we randomly selected stations from different climate regional regions for evaluating the SM temporal dynamics of the 

SM data in SMCI1.0, ERA5-Land, SMAP-L4, SoMo.ml and in-situ SM from 10 cm to 20 cm soil depths. And On the other 340 

hand, for the spatial scale, we represented the estimation performance for each in-situ SM station in terms of ubRMSE, R, 

and bias, respectively. Noticeably, in order to evaluate each station as much as possible, we apply year-to-year experiment 

was conducted to evaluate each station as much as possible in this testing.  

Fig. 5 compareds the SM temporal dynamics of the SM data from SMCI1.0, ERA5-Land, SMAP-L4, SoMo.ml, and in-situ 

SM datasets at 10 cm soil depth along with local precipitation. We could see that although the SMCI1.0 product had shows 345 

large deviation compared with to the in-situ SM in snow climate, fully humid zone (Df-51431: E, N), it was almost 

consistent with in-situ SM in other regions. It was is necessary to note that the SM values in Desert Climate region (Bw-

W1063: E, N) had show higher variability but with low precipitation from 231th to 325th days, the SMCI1.0 product could 

still adequately capture their relationship (represented in the light blue rectangle). Overall, and similar to in-suit data, 

SMCI1.0 data reasonably follow the consistency with climate condition as SM is increased and decreased in wet and dry 350 

conditions, respectively.the SMCI1.0 could follow the reasonable patterns which in-situ SM increased with wet condition 

and decreased with dry conditions. During the rainfall near 91th day across the Tropical Monsoon Climate zone (Am) and 

near 1st day across the Snow climate with dry winter zone (Dw), the in-situ SM did not increase with high precipitation, but 

the SMCI1.0 product could capture the increase in SM (denoted in the light blue rectangle). The reason may be that the 

applied covariates had bias with in-situ measurement and further affected estimation by RF model. Meanwhile, we also 355 
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found the RF model could overcome much bias in dry conditions, except for that from 196th to 305th days in the snow 

climate, fully humid zone (shown in the light red rectangle). In the case of 30 cm soil depth (represented in Fig. S4), we 

could see an agreement between several peak events, it could be attributed to the soil texture homogeneity in the 10 and 30 

cm soil depths. Almost all climatic regions had lower dynamic ranges at 30 cm soil depth than that at 10 cm, this may be 

attributed to the persistent behavior of SM at 30 cm soil depth. For the evaluations of SM temporal dynamics from 10 to 30 360 

cm, we can see that SMCI1.0 can broadly capture the temporal characteristic of in-situ SM and further demonstrated the high 

quality of SMCI1.0 product. 

Fig. 6 representsed the in-situ testing performance according to the fit statistics (ubRMSE, R, Bias, and MAE) values. We 

could see that the SMCI1.0 product had led to relatively low ubRMSE, Bias, and MAE over most regions. In 

combinationAdditionally,  with Fig. 7, we also found shows that the low errors of SMCI1.0 product were often appeared in 365 

the arid regions, which was consistent with the previous study (Zhang et al. 2019). However, the higher ubRMSE, MAE and 

lower R values could be seen in North China Monsoon Region. The North China Monsoon Region has typical temperate 

monsoon climate characteristics, where the annual temperature is high and the rainy season is concentrated. The SM 

variations in the North China Monsoon Region were complex, which may present great challenges for estimating SM by RF 

model. Except North China Monsoon Region, SMCI1.0 data mostly led to the R values larger than 0.5.Despite SMCI1.0 370 

product had lower R in North China Monsoon Region than that in other climatic regions, the R values were mostly larger 

than 0.5 (within the acceptable limit). This highlighted the robustness of SMCI1.0 product. According to the Bias in Fig. 67, 

we could see that SMCI1.0 product tends to be underestimated in the northeast and southwest China, and be overestimated in 

the east China, which had the similar trend with ERA5-Land dataset and, we could also draw the similar conclusions for 

thewhich can also be confirmed by the box-plot of Bias in Fig. 5. SMCI1.0 product led to lower errors than SoMo.ml in 375 

estimating in-situ SM. Meanwhile, it had the opposite estimations with SoMo.ml dataset in north China and Sichuan 

province (SMCI1.0 product are often underestimated in north China and but overestimated in Sichuan province (97°21'E-

108°12'E, 26°03’N-34°19’N), but contrarily to the  SoMo.ml dataset was the opposite), . but SMCI1.0 product had lower 

errors in estimating in-situ SM. According to the R values in Fig. 67, SMCI1.0 product had led to the similar results with 

SoMo.ml dataset, and performed better than ERA5-Land and SMAP-L4 datasets, which could also be represented by the 380 

box-plot of R in Fig. 5. In the case of 30 cm soil depth in Fig. S5, the SMCI1.0 product had higher accuracy than that at 10 

cm soil depth, especially in terms of ubRMSE and MAE metrics. The reason may be the background aridity leaded to low 

variability of SM in the deeper layers (Karthikeyan and Mishra 2021). The RF model can capture the variation in SM easier. 

3.3 Spatial patterns of SMCI1.0 

To describe the general spatial patterns of SMCI1.0 over the China, as an example,we presented the 1km SM maps are 385 

presented at 1km spatial resolution for 1st January 2016 by Fig. 7., From Fig. 7, we could see which shows that the spatial 

contiguity of SM patterns for SMCI1.0 was could be captured well, and most high-resolution details of SM patterns in all the 

climatic region for SMCI1.0 had more detailed “expression” than that for other SM products. Meanwhile, the spatial pattern 



13 
 

of SMCI1.0 is was more consistent with those of high-resolution covariatepredictors such as DEM and LAI in some regions, 

which also denotedindicated that the SMCI1.0 could better reflect the detailed spatial distribution of SM. Southeast China is 390 

the tropical monsoon climate zone, where the rainy season was  concentrated (represented in Fig. 5). Hence, these regions 

are predominantly wet in the SM maps. Northwest China is the Desert Climate region, which had with fewnot any rainfall 

and further lead to the dry conditions (also represented in Fig. 5). Qinghai province (89°35'E-103°04'E, 31°09’N-39°19’N) 

belongs to the tundra climate zone, where some soils are wet and others soils are dry. This is probably due to the complicated 

topography of Qinghai Province that some regions with woody plants can intercept rainfall, which may decrease the overall 395 

water input into the soil (Zwieback et al. 2019), and other regions with vegetation can decreases soil temperature and 

evaporation from the soil surface by shading, which avoidpreventing the loss of soil moisture (Kemppinen et al. 2021). 

3.4 Relative importance of covariates 

The relative importance of covariates at the ten soil depths was shown in Fig. 9 and Fig. S6. Bars represented the variability 

of relative importance across the covariates. As represented in Fig. 9, the ERA5-Land SM was the most important to 400 

estimate in-situ SM from 10 to 100 cm soil depths. In addition to ERA5-Land SM covariates, evapotranspiration, DEM, clay, 

reprocessed MODIS LAI (Version 6), porosity, LAI low vegetation, air temperature, LAI high vegetation and silt were 

followed. The importance of other covariates was less than 0.01, which were not detailed discussed in this study. As we 

know, had strong correlation with SM dynamic under water-limited conditions (Albertsona and Kiely 2001). So, 

evapotranspiration had greatly associated with SM in the regression model. Clay, porosity, rock fragment, silt and sand were 405 

properties in the soil. Bissonnais et al. (Bissonnais et al. 1995) tested SM for 31 soil types with different soil properties over 

Illinois region and denoted that the available SM varied by each soil group. They could help RF model identify variation in 

SM through different soil properties. LAI was a vital parameter in the land surface and controlled many complex processes 

in relation to vegetation, which determined evapotranspiration and further had impact on water balance (Chen et al. 2015). It 

is worth note that reprocessed MODIS LAI (Version 6) (Yuan et al. 2015) had larger impact on SM estimation than the LAI 410 

of reanalysis products. The reason may be that it had better quality than the LAI of reanalysis products. Air temperature and 

SM were closely related, such as the climate shifts from the hot to the cold, SM decreased for all land covers (Feng and Liu 

2015). However, air temperature had significant effect in the RF model for upper soil layers (at 10 cm and 20 cm soil depths) 

while it began to weaken in the deeper soil (represented in Fig. S6), which was consistent with the previous studies (Hu and 

Zheng 2003). Interestingly, as widely known, the land cover type is highly related to the variation in SM. However, it had 415 

relative low importance (less than 0.01) for the RF model than the above covariates. Noticeably, its importance was 

computed at the 1 km spatial resolution, the different importance of land cover type may be found at higher spatial resolution. 

Such as land cover type had less important to SM at coarse spatial resolution (Gaur and Mohanty 2016; Joshi et al. 2010), 

but had strong correlation with in-situ SM (Baroni et al. 2013). Meanwhile, intuitively, precipitation was also closely related, 

SM-precipitation coupling had received increasing interest in recent years (Seneviratne et al. 2010). Although the importance 420 

of precipitation (less than 0.01) was not reflected in the RF model, this did not imply that precipitation had not impact on the 
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variation in SM. This could be attributed to the relatively small frequency for daily rainfall during several years periods, 

which led to a low ranking compared with other covariates based on the selection metric of RF importance ranking. It should 

be noted that the static variables and the reprocessed LAI provide information at 1km or 500m resolution, while ERA5-Land 

is at 9km resolution. So, the spatial details under 1km resolution came from the static variables and the reprocessed LAI 425 

rather than ERA5-Land. This aspect cannot reflect by the importance of RF as RF models were established to mainly reflect 

the temporal variation. This is because that we have much more samples of SM in the time dimension than those in the 

spatial dimension (1,789, the total number of stations). As a result, the importance of higher resolution variables (especially 

static variables) in estimating the spatial variation of SM was essentially underestimated by the importance of RF. 

4. 4.Discussion 430 

4.1 Relative importance of covariatepredictors 

The relative importance of predictors at the ten soil depths is shown in Fig. 8 and Fig. S7. Bars present the variability of 

relative importance across the predictors. As presented in Fig. 8, the ERA5-Land SM is the most important to estimate in-

situ SM from 10 to 100 cm soil depths. In addition to ERA5-Land SM, evapotranspiration, DEM, clay, reprocessed MODIS 

LAI (Version 6), porosity, LAI low vegetation, air temperature, LAI high vegetation and silt were followed. The importance 435 

of other predictors was less than 0.01, which were not discussed in this study. It was well known that evapotranspiration has 

strong correlation with SM dynamic under water-limited conditions (Albertsona and Kiely, 2001). So, evapotranspiration is 

greatly associated with SM in the regression model. Clay, porosity, rock fragment, silt and sand are soil properties that can 

affect SM values. Bissonnais et al. (1995) investigated SM for 31 soil types with different soil properties over Illinois and 

denoted that the available SM varied with regards soil groups. Soil properties could help RF model identify variation of SM 440 

more accurately. LAI is a vital parameter in the land surface and controls many complex processes in relation to vegetation, 

which determined evapotranspiration and further can impact on water balance (Chen et al., 2015).  Air temperature and SM 

were closely related, so that from the hot to the cold, SM decreases for all kinds of land covers (Feng and Liu, 2015). 

However, air temperature shows significant effect on the RF based modelling performance for upper soil layers (at 10 cm 

and 20 cm soil depths) while it is less for the deeper soil (as presented in Fig. S7), as also stressed by Hu and Zheng  (2003). 445 

It is commonly known that the land cover type is highly related to the variation of SM, but it got lower importance (less than 

0.01) in the current RF modelling than the other predictors. Noticeably, this rate of importance was computed at the 1 km 

spatial resolution but other rates of importance for land cover type may be obtained at higher spatial resolution. Although 

land cover type shows less important to SM at coarse spatial resolution (Gaur and Mohanty, 2016; Joshi et al., 2010), it has 

strong correlation with in-situ SM data (Baroni et al., 2013). Meanwhile, intuitively, precipitation and SM were also closely 450 

related (Seneviratne et al., 2010). Although the importance of precipitation (less than 0.01) was not reflected in the RF 

modelling, this did not necessarily imply that precipitation could not impact on the variation of SM. This could be attributed 

to the relatively small frequency for daily rainfall during several years, which led to a low ranking compared with other 
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predictors based on the RF importance ranking metrics. It should be noted that the static variables and the reprocessed LAI 

provide information is at 1km or 500m resolution, while ERA5-Land is at 9km resolution. So, the spatial details under 1km 455 

resolution came from the static variables and the reprocessed LAI rather than ERA5-Land. This aspect cannot be reflected 

well by the importance of RF as RF models were established to mainly reflect the temporal variation. This is because that we 

have much more samples of SM in the time dimension than those in the spatial dimension (1,648). As a result, the 

importance of higher resolution variables (especially static variables) in estimating the spatial variation of SM was 

essentially underestimated by the importance metric. 460 

4.2 Sensitivity to precipitation, air temperature and radiation 

We applied partial correlation to analysis the sensitivity between the meteorological variables (precipitation, air temperature 

and radiation) and SM data. As Fig. 9 shows, precipitation had stronger correlation with SM in SMCI1.0 and ERA5-Land 

data than that in SoMo.ml product across most regions in China, presenting significant positive partial correlations. 

Additionally, air temperature had significant positive partial correlation with SM in the north-western China, and negative 465 

partial correlations in north China and Liaoning province (118°53'E-125°46'E, 38°43’N-43°26’N) for SMCI1.0. The 

negative partial correlation between air temperature and SM is consistent with the physics of the process that higher 

evaporation is caused by higher air temperatures, leading to lower SM. In some of the plateau areas (73°19'E-104°47'E, 

26°00’N-39°47’N), the shortwave radiation is the dominant factors for SM variability for SMCI1.0 product, physically 

sounds logic that the strong radiation in the plateau area has a great impact on the land surface process. Meanwhile, we also 470 

found that the shortwave radiation has the great influence on the SM variability in Tropical Monsoon Climate regions, which 

is also consistent with the previous study (Yao et al. 2011). The negative correlation between radiation and SM for SoMo.ml 

product in Temperature Climate region was stronger than that for SMCI1.0 product, which could explain more negative 

trends in SM in Temperature Climate region for SoMo.ml product. Compared with other SM products, the SMCI1.0 dataset 

shows similar spatial patterns for all the partial correlations. Overall, the SMCI1.0 product provides reasonable results in 475 

reflecting the relationship between SM and its related meteorological variables. 

4.123 Factors affecting the quality of SMCI1.0 datasetThe quality of SMCI1.0 at spatial-temporal scale 

In this study, the gridded soil moisture was estimated through RF method in China based on the ERA5-Land reanalysis, 

USGS land cover type and DEM, reprocessed LAI and soil properties from CSDL, which included soil depths from 10cm to 

100cm and had 1km spatial and daily temporal resolution over the period from 1 January 2010 to 31 December 2020. The 480 

training efficiency was high (RMSE=0.601) due to the selection of important factors and vital hyper-parameters 

(max_features=1 and min_samples_leaf=20). In the year-to-year experiment, the RMSE, MAE, R and R2 between gridded 

soil moisture and in-situ soil moisture ranged from 0.041-0.052, 0.03-0.036, 0.883-0.919 and 0.767-0.842, respectively. In 

the station-to-station experiment, the RMSE, MAE, R and R2 between gridded soil moisture and in-situ soil moisture ranged 

from 0.045-0.051, 0.035-0.038, 0.866-0.893 and 0.749-0.798, respectively.  485 
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Fig. 2 and S2 show that SM results at 70 cm and 90 cm were significant worse than those at other depths. The reason may be 

that linked to the incapability of the RF model to estimate accurate SM when data from only a few in-situ SM stations are 

available. From Fig. S1 (b), we can see that the total numbers of data at 70 cm and 90 cm soil depths are quite small. In other 

words, more abundant of data could help RF model to ‘learn’ relationship between predictors and in-situ SM data reliably 

and further improve the quality of high-resolution SM estimation over China.  Meanwhile, compared to the previous study of 490 

Sungmin et al. (2020), our SMCI1.0 showed the superior quality (Fig. 4-6), because the larger numbers of in-situ SM data of 

China wereapplied for the RF based modelling. 

From Fig. 5, during the rainfall near 91th day across the Tropical Monsoon Climate zone (Am) and near 1st day across the 

Snow climate with dry winter zone (Dw), the in-situ SM values did not increase due to high precipitation, but the SMCI1.0 

product could capture the increase in SM (denoted in the light blue rectangle). The reason may be that the applied predictors 495 

had bias with in-situ measurements and further affected the SM estimation by RF model. Meanwhile, we also found the RF 

model could overcome much bias in dry conditions, except for those from 196th to 305th days in the snow climate, fully 

humid zone (shown in the light red rectangle). In the case of 30 cm soil depth (Fig. S5), we could see an agreement between 

several peak events, it could be attributed to the soil texture homogeneity at the 10 and 30 cm soil depths. Almost all climatic 

regions had lower dynamic ranges at 30 cm soil depth than that at 10 cm, this may be attributed to the persistent behaviour of 500 

SM at 30 cm soil depth. In the case of 30 cm soil depth in Fig. S6, the SMCI1.0 product had higher accuracy than that at 10 

cm soil depth (Fig. 6), especially in terms of ubRMSE and MAE metrics. The reason may be due to the background aridity 

which could lead to low variability of SM in the deeper layers (Karthikeyan and Mishra 2021) so that the RF model could 

capture the SM variation in SM straightforwardly.  

Oppositely, it  is inconsistent for the results of R, ubRMSE, and MAE in Fig. 2 and Fig. 4, which is similar to the previous 505 

study (Sungmin and Orth 2020) (represented in their Fig. 4 and Fig. 5). For example, SMCI1.0 product led to the ubRMSE, 

MAE and R values being 0.046, 0.035 and 0.889 at 10 cm soil depth in Fig. 2. However, in Fig. 4, the box-plot shows the 

lowest ubRMSE, MAE and highest R values of SMCI1.0 product as 0.03, 0.02, and 0.7, respectively. The reason may be due 

to the circumstances of computing the same metrics in different ways, so that the results of Fig. 2 are for all stations and 

temporal period, whereas Fig. 4 shows the results of temporal period at only one station. 510 

The obtained results by RF method were also compared with those of some other ML models, including CatBoost (Dorogush 

et al. 2018), XgBoost (Chen et al. 2016), and Neural Network (Rosenblatt et al. 1958) models. We found that their 

performance is similar to RF models with a R2 value around 0.79.  Therefore, due to the comparable performance and wide 

application of RF to SM modelling (e.g., Carranza et al. 2021, Lin et al. 2022, Ly et al. 2021), and more importantly due to 

its cost effective run time, only the results of RF were considered to produce high-resolution SM data in this study. 515 
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4.34 Requirement of further validations and improvements 

SMCI1.0 product generally agrees well with in-situ SM data over in China than with regard to other considered datasets in 

general, under the validations with the year-to-year and station-to-station validation scenarios. However, we cannot ensure 

the same quality of SMCI1.0 product in the wholeover different parts of China. The reason is that in-situ SM stations are 520 

unevenly distributed over Chinaion, and the in-situ SM  with higher sparsity in the western China is sparse. We hope more 

in-situ SM stations are evenly deployed in China, which such data can ensure improve the quality of SM in most regions as 

far as possible. Triple collocation analysis (Karthikeyan and Mishra 2021) is also an alternative method for evaluating 

SMCI1.0 product. Meanwhile, there are many possible reasons for the failure of RF model, such as lack of insufficient data 

and the week ‘learning ability’ of model-self. Hence, not only additional records from China are needed to be available, but 525 

also more robust estimated models are may be proposed and used for SM modelling hoped to explored. Such asFor instance, 

the single deep learning models are can be built and optimized in eachfor different homogeneous region (Karthikeyan and 

Mishra 2021), or the optical remote sensing should can be used for the human-induced regions (Chen et al. 2021), which can 

may lead to better estimation of e SM. 

4.4 Higher-resolution SM estimating 530 

As we know,It is well known that higher-resolution (<1km) SM estimation is typically considered as a complex and 

challenging task (Peng et al. 2020). The relative important covariatepredictors identified in Section 4.1 can help estimating 

model enhance modelling performance and generated datathe quality of higher-resolution SM product. The SMCI1.0 product 

may also be actedbe used as a vital covariatepredictor for improving the higher-resolution (<1km) SM products.  

NextMoreover, downscaling to the higher-resolution SM product generated based on the lower-resolution 535 

covariatepredictors can also be understandconsidered as super-resolution task in the computer science, and the advanced 

deep learning models with high performance can also be explored (Lei et al. 2020; Zhang et al. 2020; Zhu et al. 2021). Of 

course, the target in-situ SM with dense distribution is also needed, thus can ensure the quality of high-resolution SM and 

further provide the reliable validation. 

4.45 Sensitivity to precipitation and air temperature 540 

We applied partial correlation to analysis the sensitivity between the meteorological variables (precipitation, air temperature 

and radiation) and SM. As Fig. 9 shown, precipitation had stronger correlation with SM in SMCI1.0 and ERA5-Land than 

that in SoMo.ml product across most regions in China, and it represented significant positive partial correlations. 

Additionally, air temperature had significant positive partial correlations with SM in the northwestern China, and negative 

partial correlations in north China and Liaoning province for SMCI1.0. The results with negative partial correlations between 545 

air temperature and SM were consistent with the physical knowledge that higher evaporation may be caused by higher air 

temperatures, and they also leaded to lower SM. In some of the plateau areas, the shortwave radiation was the dominant 
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factors of SM variability for SMCI1.0 product, it had the consistent physical knowledge which the strong radiation in the 

plateau area had a great impact on the land surface process. Meanwhile, we also found that the shortwave radiation had the 

great influence on the SM variability in Tropical Monsoon Climate regions, which was also consistent with the previous 550 

studies (Yao et al. 2011). The negative correlation between radiation and SM for SoMo.ml product in Temperature Climate 

region was stronger than that for SMCI1.0 product, which could explain more negative trends in SM in Temperature Climate 

region for SoMo.ml product. Compared with other SM products, the SMCI1.0 had similar spatial patterns for all the partial 

correlations. Overall, the SMCI1.0 product had reasonable quality in reflecting the relationship between SM and its related 

meteorological variables. 555 

4.65 Comparison with previous products and implications for the soil moisture modelling 

This section mainly described and discussed the comparison between SMCI1.0 and some other SM products, and the 

implications for the soil moisture modelling and attribution. From the results presented in Section 3, we can see that 

SMCI1.0 generally outperforms some other SM products (e.g., ERA5-Land, SoMo.ml and SMAP-L4) at most cases. The 

most important uniqueness of SMCI1.0 is taking the in-situ SM data as the training target with abundant sample size. Even 560 

though we used the ERA5-lLand to correct their means and standard deviation at each site, the temporal variation still came 

from the point observations.  We have also examined the RF model training with the original SM observations and found 

that the performance of the model is much worse with a R2 of 0.67 compared to the model with correction with a R2 of 0.79.  

More importantly, the resulting SM maps demonstrated unreasonable noisy spatial distribution. These indicates that the in-

situ SM in China have essential data inconsistency and the correction according to ERA5-Land is necessary which has 565 

physical consistency. Furthermore, SMCI1.0 has been provided with relatively high spatial and temporal resolutions (1-km, 

daily) for ten soil depths, which makes it possible for wider applications at finer scales and deep soils for the whole China, 

while reanalysis and remote sensing SM data are often at coarser resolution and remote sensing SM data are only for the 

surface soil. 

As the limitation for the SMCI1.0, machine learning based model cannot always reflect the variation of SM well, especially 570 

for some extreme events or so called “tipping points” (Bury et al. 2021). From Fig,5, we can see that SMCI1.0 deviated from 

the in- situ SM data in some cases, though this also happened to the other three SM products. For example, from 35th day to 

61th day across the Snow climate, fully humid (Df), SMCI1.0 and SoMo.ml overestimated, while SMAP_L4 underestimated. 

“Tipping points” denoted that slowly changing SM sparks a sudden shift to a new (Bury et al. 2021). This discontinuity 

creates a big challenge for estimating in-situ SM by ML models, because “tipping points” simplify the dynamics of complex 575 

system down to the limited number of possible “normal forms” (Bury et al. 2021). ML models cannot accurately capture 

such extreme events.  Hence, for these extreme events, we hope ML models trained on a sufficiently diverse datasets of 

possible SM variation can well capture complex relationship between SM and predictors.  As a suggestion for the future 

work, a possible solution for this limitation is to apply a Land surface model, such as Common Land Model (Dai et al. 2003), 
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to simulate large numbers of SM data and select the local bifurcations in SM variation as supplementary samples to enhance 580 

the learning generality of the RF model.  

5.Data and code availability 

All resources of RF model, including training and testing code is publicly available at 

https://github.com/ljz1228/SMCI1.0_RF data with the resolution of 1 km and 9km can be accessed at 

http://dx.doi.org/10.11888/Terre.tpdc.272415 (Shangguan et al. 2022). 585 

6.Conclusions 

High resolution SM has several potential applications in flood and drought prediction and carbon cycle modelling. Currently 

available SM gridded products covering China or the world are currently often based on remote sensing data or based on 

numerical modelingmodelling. However, there is still a lack of SM data with high resolution at multiple layers based on in-

situ measurements for China. In this study, the gridded SM data was estimated through RF method in over China based on 590 

the ERA5-Land reanalysis, USGS land cover type and DEM, reprocessed LAI and soil properties from CSDL, which 

included soil depths from 10cm to 100cm and had 1km spatial and daily temporal resolution over the period from 1 January 

2010 to 31 December 2020. Through this work, we generated a 1 km resolution long-term gridded SM data in China with in-

situ measurements based on RF model, which has 10 layers up to 100 cm deep at daily resolution over the period 2010-2020.  

Two independent experiments with in-situ soil moisture as the benchmark are were conducted to investigate the quality of 595 

SMCI1.0: year-to-year experiment (ubRMSE ranges from 0.041-0.052, MAE ranges from 0.03-0.036, R ranges from 0.883-

0.919, and R2 ranges from 0.767-0.842) and station-to-station experiment (ubRMSE ranges from 0.045-0.051, MAE ranges 

from 0.035-0.038, R ranges from 0.866-0.893, and R2 ranges from 0.749-0.798). SMCI1.0 generally has showed advantages 

over other gridded soil moistureSM products, including ERA5-Land, SMAP-L4 and SoMo.ml. Meanwhile, with regard to 

the fit agreement statistics (ubRMSE, R, Bias, and MAE), we could see that the SMCI1.0 product has relatively low ubRMSE, 600 

Bias, and MAE values over most regions. However, the high errors of soil moistureSM obtained often located in North China 

Monsoon Region. Moreover, SMCI1.0 has reasonable spatial pattern and demonstrate more spatial details compared with 

existing the compared SM products. As a result, theour SMCI1.0 product based on in-situ data can be useful complements of 

existing model-based and satellite-based datasets for various hydrological, meteorological, and ecological analyses and 

modelingmodelling, especially for those applications requiring high resolution SM maps. Furter works may focus on 605 

improving the SM map by using advanced deep learning methods and adding more observations, especially for the west part 

of China. It is also possible to update and extent the time coverage of this data set before 2010 as long as in situ SM data 

becomes available. 
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Figure 1: Generation process for the SMCI1.0 product with 1km spatial resolution and daily temporal resolution over the period 
from 1 January 2010 2000 to 31 December 2020 over China. 850 
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Figure 2: (a) The locations of all stations in China; (b) Total data number per soil depth; (c) Frequency of data length per layer for 
SM values; (d) Frequency of data length per layer for standard deviation; (e) Total data number per climate zone. 
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 855 

Figure 2: Comparisons between SMCI1.0 and in-situ SM from 10 to 30 cm soil depth in year-to-year experiment: comparison of (a) 
the scatter plot between the mean of SMCI1.0 and that of in-situ SM at each station, (b) the frequency distributions of all SM 
values in SMCI1.0 and that in in-situ measurements, (c) the violin-plot for the distribution of daily SM from stations for each 
climate type.  
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Figure 3: Same as Fig. 32 but for station-to-station estimating. 
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Figure 4: Comparison between gridded datasets (SMCI1.0, ERA5-Land, SoMo.ml and SMAP_L4) at soil depths of (a) 10 cm, (b) 865 
20 cm, (c) 30 cm, and (d) 40 cm. The red lines indicate the zero value for Bias and the best performance among datasets for 
ubRMSE, R and MAE. 
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Figure 5: Time series of in-situ and estimated SM by RF model at 10 cm soil depth along with daily precipitation in different 870 
climatic zones.  

 

 

 

 875 

Figure 6: Goodness of fit statistics (ubRMSE, R, Bias, and MAE) at 10 cm soil depth for the RF model during the tested period. 
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Figure 7: Soil moisture maps from different products on 1st January 2016. The resolution is 1km for SMC1.0, 9km for ERA5-
Lland and SMAP-L4 and 0.25 degree for SoMo.ml. 880 
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Figure 8: Relative importance of covariatepredictors for the random forest (RF) model at soil depths of (a) 10 cm, (b) 20 cm, (c) 30 
cm. 

 

 890 

Figure 9: Partial correlation coefficients between annual mean SM and precipitation (the first column), air temperature (the 
second column), and radiation (the third column) for the different gridded SM products. The fourth column represents best 
explanatory power (highest absolute partial correlation) for the interannual variability in SM for the different gridded SM 
products. 
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Table 1. Details of the covariatepredictors for training the Random Forest model. 

Source Type Variable (code) Description Time span Spatial  

Resolution 

Temporal  

Resolution 

ERA5-Land 

(Land 

component of 

the fifth 

generation of 

European 

Reanalysis) 

Time 

series 

precipitation (tp) 

meteorological forcings 

and land surface 

variables 

2010~2020 ~9 km hourly 

accumulated 

precipitation in one 

week (tp_sum7) 

accumulated 

precipitation in one 

month (tp_sum28) 

air temperature (t2m) 

potential evaporation 

(pev) 

total evaporation (e) 

leaf area index high 

vegetation (lai_hv) 

leaf area index low 

vegetation (lai_lv) 

soil moisture from 28 

7 to 100 cm soil depth 

(swvl2 to swvl3) 

CSDL 

(China Soil 

Dataset for 

Land surface 

modeling) 

Static 

rock fragment 

(GRAV) 

Soil covariatepredictors  --- ~1 km --- Porosity (POR) 

Sand, Silt, Clay (SA, 

SI, CL) 

USGS 

(Unite States 

Geology 

Survey) 

Static 

Land cover type 

(Landtypes) Predominant land cover 

type and elevation  
--- ~1 km --- 

Elevation (DEM) 

Reprocessed 

MODIS LAI 

Time 

series 
Leaf area index (LAI) 

Reprocessed LAI using 

a two-step integrated 
2010~2020 ~500 m 8-day 
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Version 6 method 

 


