
Note: The modifications are shown in green. The responses to comments are blue colored. 

We are very grateful to the reviewer for reviewing the paper so carefully. These comments are very 

helpful to improve the quality of the manuscript. Please find our itemized responses below and our 

revisions will be in the revised manuscript. 

 

Comment#1: In this study, only the Random Forest method was applied to derive the upscaled soil 

moisture data. Is it possible to try more MLs, such as CatBoost, XgBoost, and NeuralNetwork, to 

test how consistent or different the resulted products are? 
Responds： 

According to previous studies introduced in the introduction, RF models have proved to be 

successful in producing SM data and its computation time is acceptable. So, we choose this model 

in our studies.  

According to this comment, we have also tested three more ML models (CatBoost, XgBoost, and 

Multilayer Perception) and found that the performance of these models is very close to RF. We 

applied the scikit-learn tools to evaluate them. We optimized the model parameters as follows. For 

the CatBoost model, we used the default parameters in catboost library. For the XgBoost model, we 

optimize the XgBoost by tuning the parameters through the selection.GridSearchCV function which 

is provided in the scikit-learn tools, we set learning_rate being 5.0e-3, max_depth being 6, 

randam_state being 42, and estimators being 100. For the Multilayer Perception, we set 

random_state being 1 and max_iter being 500.Take the year-to-year experiment at 10 cm soil depth 

as an example (see the figure below), RF achieved ubRMSE being 0.046, MAE being 0.035, R being 

0.889, R2 being 0.791. The ubRMSE, MAE, R, R2 of CatBoost were 0.045, 0.034, 0.890 and 0.799, 

respectively. XgBoost achieved ubRMSE being 0.045, MAE being 0.034, R being 0.890, R2 being 

0.799. The ubRMSE, MAE, R, R2 of ANN-based model were 0.045, 0.035, 0.891 and 0.796, 

respectively. According to these results, we don’t think it is necessary to use other models instead 

of RF to produce the high-resolution SM as they cann’t outperform it much.  

 
In the modified manuscript, we have added the explanation why only RF model was shown in the 

discussion. The new expression is as follows: 

It was necessary to note that we also compared the RF model with other ML models, including 



CatBoost (Dorogush et al. 2018), XgBoost (Chen et al. 2016), and Neural Network (Rosenblatt et 

al. 1958) based models. We found that the performance of these models is very similar to RF models 

with a R2 around 0.79.  In addition, RF has been widely applied and recognized in SM prediction 

and many other fields (Carranza et al. 2021, Lin et al. 2022, Ly et al. 2021) and it does not take too 

much computing time to make the predictions for the whole China. Hence, we only took RF model 

to produce the high-resolution SM data. 

 

Comment#2: Most of the source datasets cover the period before year 2010. Is there any special 

reason why the new soil moisture only covers the period 2010-2020? Is it possible to extend the 

present time period to year 2000-2020? 

Responds： 

Thanks for your kind comments and helpful suggestions, although most of the applied covariates 

cover the period before year 2010, we do not access to the in-situ measurements before 2010, 

currently. However, the in-situ measurements before 2010 may be available from China 

Meteorological Administration (not open to us) and the number of stations is less than 800. If we 

produce the SM data set without any in-situ data (or only a few hundred stations), the quality of the 

data may be poorer as it will be extrapolation in time. However, we agree that it is still possible to 

extend the present time period to year 2000-2020 or even before. So, we list it as a future work in 

the conclusion as follows: 

It is also possible to extent the time coverage of this data set before 2010, even though we do not 

have access to the in-situ data before 2010 now and the available in-situ stations may be less than 

800, which will lead to poorer quality if not enough in-situ data are used. 

 

Comment#3: The “Materials and Methods” read too long, and the authors may try to shorten the 

text and put some figures into the Supplementary Material. 

Responds： 

According to this comment, we have put the Figure 2 and related text into the Supplementary 

Material. We also shortened the text in this section as follows. 

 

In section 2.1, we combined the following text with the last paragraph of this section: 

“The other aspect is the bias and standard deviation correction of in-situ SM, which is vital for our 

study to allow the ML model to achieve the high-quality SM product. We applied the same 

correcting method with that of Sungmin et al. (2020), who adjusted the raw in-situ SM observations 

to match means and standard deviation of the ERA5-Land gridded SM data at the corresponding 

time periods, grid cells and layers.” (deleted) 

The last paragraph of this section: 

After the above data processing, we started to perform the correction of deviation and variance for 

in-situ SM, which is vital for our study to allow the ML model to achieve the high-quality SM 

product. In-situ SM data was obtained by various sensor types, which had different calibrations. 

Hence, to overcome the artifacts during the RF model training, we adjusted the observations to 

match means and standard deviation of the ERA5-Land SM at the corresponding time periods, grid 

cells and layers using the same method with that of Sungmin and Orth (2020). This method made 



the target in-situ SM resemble the mean and standard deviation of ERA5-Land SM, and kept daily 

temporal variations which follow the original in-situ SM time series. As the soil depth of each soil 

layer of ERA5-Land SM was inconsistent with that of in-situ SM, we mapped the soil layer of 

ERA5-Land SM to the corresponding soil layers of in-situ SM. Hence, the in-situ SM from 10 cm 

to 30 cm were adjusted based on the gridded SM at layer2 from ERA5-Land dataset (7-28 cm), and 

the in-situ SM from 30 cm to 100 cm were adjusted based on the gridded SM at layer3 from ERA5-

Land dataset (28-100 cm). 

 

We have alsoput the Table 2 into the Supplementary Material and shortened the related paragraph 

as follows: 

The number of random selected candidate variables from all the covariates (max_features) and the 

value for the minimum node size (min_samples_leaf) in RF model are the vital hyper-parameters 

which affect the performance. Other hyper-parameters, such as number of trees (n_estimators), were 

not tuned but simply determined based on RF’s own training. Meanwhile, we applied the 10-fold 

cross-validation method to tune the values of max_features and min_samples_leaf, and they were 

selected from range [1,25] with a single interval and [5,30] with 5 intervals via grid hyper-

parameters method for preventing RF model over-fitting. The accuracy of RF models with all hyper-

parameters based on grid hyper-parameters method at 10 cm soil depth were shown in Table 1S. We 

could see that the root means square error (RMSE) obtained based on all the hyper-parameters 

ranged from 0.601 to 0.637 and the best accuracy (RMSE=0.601) can be achieved when 

max_features and min_samples_leaf set to be 1 and 20, respectively, which were used for further 

research. 

 

We also revised shortened other contents. This will be shown in the revised manuscript. 

 

 

Comment#4: For the “Results” , they seem to be a combination of results analysis and short 

discussion. Please move relevant discussion content to the “Discussion” part. 

Responds： 

Thanks for your kind comments and helpful suggestions, we have moved Section 3.4 in the old 

manuscript to the discussion as Section 4.1, and put some short discussions in the results of the old 

manuscript into the “Discussion” part. The new section in the discussion is as follows: 

 

Figure 2 and 2s shows that the result at 70 cm and 90 cm were significant worse than those at other 

depths. The reason may be that RF model is difficult to estimate accurate SM for only a few in-situ 

SM stations. From Fig. S1 (b), we can see that the total numbers of data at 70 cm and 90 cm soil 

depths are quite small. In other words, more abundant of data were expected to help RF model ‘learn’ 

complete relationship between covariates and in-situ SM and further improve the quality of high-

resolution SM in China.  Meanwhile, compared with the previous study of Sungmin et al. (2020), 

our SMCI1.0 showed the superior quality (Figure 4-6), because the larger numbers of in-situ SM 

data in China were applied for RF modelling. 

From Figure 5, during the rainfall near 91th day across the Tropical Monsoon Climate zone (Am) 

and near 1st day across the Snow climate with dry winter zone (Dw), the in-situ SM did not increase 



with high precipitation, but the SMCI1.0 product could capture the increase in SM (denoted in the 

light blue rectangle). The reason may be that the applied covariates had bias with in-situ 

measurement and further affected estimation by RF model. Meanwhile, we also found the RF model 

could overcome much bias in dry conditions, except for that from 196th to 305th days in the snow 

climate, fully humid zone (shown in the light red rectangle). In the case of 30 cm soil depth (Fig. 

S5), we could see an agreement between several peak events, it could be attributed to the soil texture 

homogeneity at the 10 and 30 cm soil depths. Almost all climatic regions had lower dynamic ranges 

at 30 cm soil depth than that at 10 cm, this may be attributed to the persistent behaviour of SM at 

30 cm soil depth. In the case of 30 cm soil depth in Fig. S6, the SMCI1.0 product had higher 

accuracy than that at 10 cm soil depth (Figure 6), especially in terms of ubRMSE and MAE metrics. 

The reason may be the background aridity led to low variability of SM in the deeper layers 

(Karthikeyan and Mishra 2021) and the RF model can capture the variation in SM easier.  

Interestingly, it was inconsistent for the results of R, ubRMSE, and MAE in Fig. 2 and Fig. 4, which 

had the same phenomenon with the previous study (Sungmin and Orth 2020) (represented in their 

Fig. 4 and Fig. 5). For example, SMCI1.0 product had the ubRMSE, MAE and R being 0.046, 0.035 

and 0.889 at 10 cm soil depth in Fig. 2. However, in Fig. 4, the box-plot represented the lowest 

ubRMSE, MAE and highest R of SMCI1.0 product were nearly 0.03, 0.02, and 0.7, respectively. 

The reason may be that the same metrics were calculated in different ways, the one in Fig. 2 was to 

count the results of all stations and temporal period, and the one in Fig. 4 was to count the results 

of only temporal period at one station. 

It was necessary to note that we also compared the RF model with other ML models, including 

CatBoost (Dorogush et al. 2018), XgBoost (Chen et al. 2016), and Neural Network (Rosenblatt et 

al. 1958) based models. We found that the performance of these models is very similar to RF models 

with a R2 around 0.79.  In addition, RF has been widely applied and recognized in SM prediction 

and many other fields (Carranza et al. 2021, Lin et al. 2022, Ly et al. 2021) and it does not take too 

much computing time to make the predictions for the whole China. Hence, we only took RF model 

to produce the high-resolution SM data. 

 

Comment#5: The “Discussion” really needs to be reorganized and improved; the current one does 

not provide deep thoughts on the new soil moisture products, in terms of their 

differences/similarities/uniqueness compared to previous products/work and implications for the 

soil moisture modeling and detection and attribution. 

Responds： 

Thanks for your kind comments and helpful suggestions, we first removed the Section 4.1 in the old 

manuscript and put the related text into the “Conclusions” part. The new expression is as follows: 

In this study, the gridded soil moisture was estimated through RF method in China based on the 

ERA5-Land reanalysis, USGS land cover type and DEM, reprocessed LAI and soil properties from 

CSDL, which included soil depths from 10cm to 100cm and had 1km spatial and daily temporal 

resolution over the period from 1 January 2010 to 31 December 2020. 

 

We set “Sensitivity to precipitation, air temperature and radiation” as Section 4.2, as it is close to 

the new Section 4.1. We set Section 4.3 as “Factors affecting the quality of SMCI1.0”. We combined 

the original Section 4.3 and 4.4 as the new Section 4.4 “Requirement of further validations and 



improvements”. 

In addition, we have added the Section 4.5 providing some thoughts on our product about 

implications for the soil moisture modeling and attribution, meanwhile, in this section, we have also 

added the discussion about comparison between our product and previous products. The new 

expression is as follows: 

In this section, we mainly discussed the comparison between SMCI1.0 and previous products, and 

the implications for the soil moisture modeling and attribution. From the previous results in Section 

3, we can see that SMCI1.0 generally outperforms the existing SM products (ERA5-Land, SoMo.ml 

and SMAP-L4) at most cases. The most important uniqueness of SMCI1.0 is taking the in-situ SM 

data as the training target with abundant sample size. Even though we used the ERA5-land to correct 

their means and standard deviation at each site, the temporal variation still came from the 

observations.  We have also tested to train the RF model with the original SM observations and 

found that the performance of the model decreased dramatically with a R2 of 0.67 compared to the 

model with correction (a R2 of 0.79).  And more importantly, the resulting SM maps demonstrated 

unreasonable noisy spatial distribution. These indicates that the in-situ SM in China have essential 

data inconsistency and the correction according to ERA5-Land is necessary which has physical 

consistency. Furthermore, SMCI1.0 is provided with relatively high spatial and temporal resolution 

(1-km and daily) for ten soil depths, which makes it possible for wider applications at finer scales 

and deep soils for the whole China, while reanalysis and remote sensing SM data are often at coarser 

resolution and remote sensing SM data are only for the surface soil. 

However, SMCI1.0 estimated by machine learning model cannot always reflect the variation of SM 

well, especially for some extreme events or so called “tipping points” (Bury et al. 2021). From Fig,5, 

we can see that SMCI1.0 deviated from the in situ SM in some cases, though this also happed to the 

other three SM products. For example, from 35th day to 61th day across the Snow climate, fully 

humid (Df), SMCI1.0 and SoMo.ml overestimated, while SMAP_L4 underestimated. “Tipping 

points” denoted that slowly changing SM sparks a sudden shift to a new (Bury et al. 2021). This is 

a huge challenge for estimating in-situ SM by ML models, because “tipping points” make the 

dynamics of complex system simplify down to the limited number of possible “normal forms” (Bury 

et al. 2021). ML models cannot accurately capture such extreme events.  Hence, for these extreme 

events, we hope ML models trained on a sufficiently diverse database of possible SM variation, so 

that complex relationship between SM and predictors will be captured better and “tipping points” 

will be approached.  In the future work, a possible solution is to apply a Land surface model, such 

as Common Land Model (Dai et al. 2003), to simulate large numbers of SM data and select the local 

bifurcations in SM variation as supplementary samples. 

 

Comment#6: Grammar mistakes can be noticed in many places, for example, for the sentences 

between lines 82-87, 91-06, and 112-114 among others. The authors are suggested to get help from 

native English speakers and thoroughly check the whole manuscript before the next submission. 

 

Sorry for the grammar mistakes. We have carefully checked the whole manuscript and revised the 

inaccurate description. We will also ask a native English speaker to help us for English revision 

before the next submission. 

 

 


