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Abstract 27 

The AnisoVeg product consists of monthly 1-km composites of anisotropy (ANI) and nadir-28 

normalized (NAD) surface reflectance layers obtained from the Moderate Resolution Imaging 29 

Spectroradiometer (MODIS) sensor over the entire South America. The satellite data were pre-30 

processed using the Multi-Angle Implementation Atmospheric Correction (MAIAC). The 31 

AnisoVeg product spans 22 years of observations (2000 to 2021) and includes the reflectance of 32 

MODIS bands 1 to 8 and two vegetation indices (VIs): Normalized Difference Vegetation Index 33 

(NDVI) and Enhanced Vegetation Index (EVI). While the NAD layers reduce the data variability 34 

added by bidirectional effects on the reflectance and VI time series, the unique ANI layers allow 35 

the use of this multi-angular data variability as a source of information for vegetation studies. The 36 

AnisoVeg product has been generated using daily MODIS MAIAC data from both Terra and 37 

Aqua satellites, normalized for a fixed solar zenith angle (SZA = 45o), modelled for three sensor 38 

view directions (nadir, forward, and backward scattering), and aggregated to monthly composites. 39 

The anisotropy was calculated by the subtraction of modelled backward and forward scattering 40 

surface reflectance. The release of the ANI data for open usage is novel, as well as the NAD data 41 

at an advance processing level. We demonstrate the use of such data for vegetation studies using 42 

three types of forests in eastern Amazon with distinct gradients of vegetation structure and 43 

aboveground biomass (AGB). The gradient of AGB was positively associated with ANI, while 44 

NAD values were related to different canopy structural characteristics. This was further illustrated 45 

by the strong and significant relationship between EVIANI and forest height observations from the 46 

Global Ecosystem Dynamics Investigation (GEDI) LiDAR sensor considering a simple linear 47 

model (R2 = 0.55). Overall, the time series of the AnisoVeg product (NAD and ANI) provide 48 

distinct information for various applications aiming at understanding vegetation structure, 49 

dynamics, and disturbance patterns. All data, processing codes and results are made publicly 50 

available to enable research and the extension of AnisoVeg products for other regions outside the 51 

South America. The code can be found at https://doi.org/10.5281/zenodo.6561351 (Dalagnol and 52 

Wagner, 2022), EVIANI and EVINAD can be found as assets in the Google Earth Engine (GEE) 53 

(described in the data availability section), and the full dataset is available at the open repository 54 

<https://doi.org/10.5281/zenodo.3878879> (Dalagnol et al., 2022). 55 

Key-words: AnisoVeg, South America, vegetation structure, forest monitoring, MODIS. 56 

 57 

1. Introduction 58 

The anisotropy is defined by the directional dependence of observations on mechanical or 59 

physical properties of surfaces. Because most land covers are not Lambertian (isotropic), the 60 

surface reflectance measured by satellite sensors varies with the view zenith angle (VZA), view 61 

direction (backward or forward scattering), and solar zenith angle (SZA) (Galvão et al., 2011). 62 

This is especially valid for images acquired over vegetated surfaces by large field-of-view (FOV) 63 

instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) (Bhandari et 64 

al., 2011). MODIS has a wide swath scanning ±55o from nadir on board the Terra and Aqua 65 

satellites. For example, a reflected signal coming from the backward scattering direction of 66 

MODIS under a large VZA and close-to-zero relative azimuth angle (RAA) between the satellite 67 

and sun (sun behind the platform) is generally higher than that coming from the nadir (VZA = 0º) 68 

or forward scattering direction (platform facing the sun at RAA = 180º). Moreover, the SZA also 69 

varies seasonally and across geographical locations, affecting the amounts of shadows in the 70 

surfaces observed by satellites (Galvão et al., 2013). Such view-illumination effects are dependent 71 

on the land cover types and their magnitude relates to differences in biophysical properties of the 72 

vegetation (Foody & Curran, 1994). Therefore, the vegetation anisotropy can be seen 73 

antagonistically as sources of noise and biophysical information in the time-series analysis of 74 
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vegetation indices (VIs) calculated from MODIS. As a source of noise, one may consider that the 75 

reflected signal toward the large FOV satellite sensors varies with distinct view-illumination 76 

geometries of data acquisition over the same surface. As a source of information, one may 77 

highlight that the anisotropy is land-cover type dependent, showing spectral variations that may 78 

be associated, for instance, with changes in vegetation structure across different forests.  79 

To reduce the bidirectional effects as a source of noise, a nadir-normalized dataset can be created. 80 

We can normalize the surface reflectance of the MODIS bands to a specific set of VZA and SZA 81 

using the bidirectional reflectance distribution function (BRDF), represented by a model such as 82 

the Ross-Thick Li-Sparse (RTLS) (Wanner et al., 1995). To ensure confidence in the data 83 

analysis, we can also use the Multi-Angle Implementation Atmospheric Correction (MAIAC) for 84 

atmospheric correction. MAIAC is a new generation of cloud screening and atmospheric 85 

correction algorithm that uses an adaptive time series analysis and processing of groups of pixels 86 

to derive atmospheric aerosol concentration, cloud mask and surface reflectance without typical 87 

empirical assumptions (Lyapustin et al., 2011, 2012). It offers substantial improvement over 88 

conventional algorithms by mitigating atmospheric interference and advancing the accuracy of 89 

surface reflectance over tropical vegetation by a factor of 3 to 10 (Hilker et al., 2012). Due to the 90 

improvements in cloud detection, aerosol retrieval and atmospheric correction, the MAIAC 91 

algorithm provides from 4 to 25% more high-quality retrievals than the traditional MOD09 92 

product, with the largest estimate being observed for tropical regions (Lyapustin et al., 2021). 93 

Studies have used MODIS MAIAC observations with nadir-normalized geometry to assess 94 

Amazonian forests’ structure, functioning, and impacts of environmental and climate change 95 

(Hilker et al., 2014; Wagner et al., 2017; Anderson et al., 2018; Dalagnol et al., 2018; Fonseca et 96 

al., 2019; Bontempo et al., 2020; Gonçalves et al., 2020; Zhang et al., 2021). For instance, such 97 

product provided reliable time series of surface reflectance data that allowed to identify large-98 

scale communities of bamboo species and their dynamics in the southwest Amazon (Dalagnol et 99 

al., 2018). Lastly, by improving the cloud screening and minimizing BRDF artifacts in 100 

comparison to uncorrected data, the MAIAC greatly contributed to the understanding of the long-101 

standing debate in the Amazon over the possible existence of the green-up phenomenon observed 102 

during the dry season of each year or with severe droughts (Morton et al., 2014; Bi et al., 2015; 103 

Saleska et al., 2016; Wu et al., 2017). The existence of this phenomenon has implications on the 104 

comprehension of the resilience of tropical forests to climate change. 105 

To use the bidirectional effects as a source of information, we generate an anisotropy dataset that 106 

is dependent on land-cover types and captures the variations of sunlit and shaded canopy 107 

components viewed by the sensors (Chen et al., 2003; Gao, 2003). The use of multi-angular 108 

information to obtain metrics of anisotropy and extract information on forest structure was 109 

suggested two decades ago (Foody & Curran, 1994).  The first experiments with such concept 110 

were conducted by calculating the ratio between backward and forward scattering data and 111 

generating the anisotropy index (ANIX) on studying short-stature grass-type vegetation 112 

(Sandmeier et al., 1998). Other indices have been developed and validated afterwards (Schaaf et 113 

al., 2002; Lacaze et al., 2002; Chen et al., 2005; Pocewicz et al., 2007; Moura et al., 2015; Sharma 114 

et al., 2021). However, this remains an understudied topic with limited results reported in the 115 

literature, especially in tropical regions. For instance, observations from the Multi-angle Imaging 116 

Spectroradiometer (MISR)/Terra in the backward and forward scattering directions facilitated the 117 

discrimination of savanna physiognomies in Brazil (Liesenberg et al., 2007). MODIS MAIAC 118 

data from both directions were also used to calculate an anisotropic VI that explained part of the 119 

large-scale photosynthetic activity in the Amazon, where higher photosynthetic activity was 120 

associated to higher anisotropy values (Sousa et al., 2017). Moura et al. (2015) employed a more 121 

sophisticated approach based on scattering at backward and forward view directions using multi-122 

temporal and multi-angular observations of MAIAC MODIS and BRDF modelling. The resultant 123 

metrics of anisotropy were further validated against field and airborne Light Detection And 124 
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Ranging (LiDAR) observations, showing strong linear relationship with leaf area index (LAI) (R² 125 

= 0.70-0.88), canopy heterogeneity (R² = 0.54), and photosynthetic activity (R² = 0.73-0.98) 126 

(Moura et al., 2015; Moura et al., 2016; Hilker et al., 2017). Although showing great potential in 127 

vegetation studies, the aforementioned anisotropy metrics were never computed over larger areas 128 

of the world such as proposed in this study for South America. 129 

The objective of this work is to present the AnisoVeg product, and how it can be used for 130 

vegetation studies. We use MODIS Collection 6 (C6) MAIAC (Lyapustin et al., 2018) monthly 131 

data (2000-2021) generated at 1-km spatial resolution for the entire South America with two 132 

different types of layers: (1) nadir-normalized (NAD) data for the surface reflectance of MODIS 133 

bands 1 to 8 and two VIs (NDVI and EVI); and (2) anisotropy data (ANI) calculated from the 134 

difference between backward and forwarding scattering estimates of bands 1 to 8 and VIs (Moura 135 

et al., 2015). The motivations for generating this product extend from developing applications of 136 

multi-angle observations for vegetation studies to producing analysis-ready and openly available 137 

datasets of anisotropy and nadir metrics for a larger community of users. The paper is organized 138 

in several sections to present the processing steps for generating the AnisoVeg products, a brief 139 

evaluation of data products over experimental areas, and finally an example of its potential 140 

application in vegetation studies. 141 

 142 

2. Methodology to compute the AnisoVeg product 143 

2.1. Daily MODIS MAIAC surface reflectance data over South America 144 

Daily surface reflectance data were obtained from the MODIS product MCD19A1 v006 145 

(collection 6) for the tiles covering South America (Figure 1). According to the MODIS traditional 146 

tiling system, these tiles ranged from 9-14 (horizontal) and 7-14 (vertical). The input data 147 

consisted in cross-calibrated surface reflectance from Terra and Aqua satellites on eight spectral 148 

bands (Table 1) with 1-km spatial resolution from 2000 to 2021 (Lyapustin & Wang, 2018; 149 

http://dx.doi.org/10.5067/MODIS/MCD19A1.006). This product provides surface reflectance 150 

data corrected for atmospheric effects by the MAIAC algorithm, and controlled for cloud-free 151 

and clear-to-moderately turbid conditions with Aerosol Optical Depth (AOD) at 0.47 µm below 152 

1.5 (Lyapustin et al., 2018). The raw data were obtained from the NASA's Level-1 and 153 

Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive Center 154 

(DAAC) available at https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/6/MCD19A1/.  155 

 156 
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 157 

Figure 1 – AnisoVeg product concept and the area of coverage. (a) Schematic representation 158 

showing the observational geometry and the processing steps for producing NAD and ANI data 159 

from MODIS and to provide information on vegetation heterogeneity and structure, and (b) the 160 

visualization of the anisotropy EVI (EVIANI) for South America from August 2021 at 1-km spatial 161 

resolution, showing the coverage of the product in South America and the location of three sites 162 

used to demonstrate potential applications. The sites are: (1) Tapajós National Forest, (2) São 163 

Felix do Xingu, and (3) Xingu Park. Red lines indicate the countries boundaries. 164 

 165 

Table 1 – MODIS spectral bands. NIR = near infrared; SWIR = shortwave infrared. 166 

Band number Band name Wavelength (nm) 

1 Red 620–670 

2 NIR-1 841–876 
3 Blue-1 459–479 

4 Green 545–565 

5 NIR-2 1230–1250 
6 SWIR-1 1628–1652 

7 SWIR-2 2105–2155 

8 Blue-2 405–420 

 167 

2.2. The AnisoVeg product 168 

The AnisoVeg product consists of two types of data spanning from 2000 to 2021 in monthly 169 

composites at 1-km spatial resolution: (a) the nadir-normalized (NAD) data; and (b) the 170 

anisotropy (ANI) data. Each data type has 10 layers corresponding to the MODIS bands 1 to 8, 171 

and two VIs (NDVI and EVI).  172 

 173 

 174 
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2.2.1. The nadir-normalized (NAD) data 175 

In order to minimize the differences in sun-sensor geometry between the MODIS scenes and 176 

generate the NAD dataset, the daily surface reflectance data were normalized to a fixed 45º SZA 177 

and to nadir observation (VZA = 0o) using the BRDF and the Ross-Thick Li-Sparse (RTLS) model 178 

(Lucht and Lewis, 2000). Parameters of the RTLS BRDF model are part of the MAIAC product 179 

suite (MCD19A3 product) reported every 8 days. The closest RTLS parameters in time were used 180 

to normalize the daily data. The normalized Bidirectional Reflectance Factor (BRFn) for the NAD 181 

surface reflectance (SZA = 45º, VZA = 0º, RAA = 0º) was calculated using Eq. 1 (Lyapustin et 182 

al., 2018):   183 

���� =  ��� ×  
�	 
 �� × � 
 ��� × ��

�	 
 � × � 
 �� ×  ��
   (1) 184 

where kL, kV, and kG are the BRDF isotropic, volumetric, and geometric-optical kernel weights, 185 

respectively; F0V and F0G are the BRDF kernel values for the given geometry listed in Table 2; 186 

and FV and FG are the kernel values of the RTLS model for the specific MODIS observation, 187 

respectively (Lyapustin et al., 2018). FV and FG values are available at 5-km cells and were 188 

resampled to 1-km using the nearest neighbors’ method to match the spatial resolution of the 189 

spectral bands. This resampling step does not create spatial artifacts in the data because the 190 

geometry changes slowly over time (Lyapustin et al., 2018). 191 

Table 2 – View-angle normalizations and corresponding BRDF kernel values. 192 

View-angle F0V F0G 

Nadir  -0.04578 - 1.10003 
Backward scattering 0.22930469 0.017440045 

Forward scattering -0.12029795 -1.6218740 

 193 

We aggregated normalized daily data into monthly composites by keeping the median values for 194 

each pixel. During the temporal aggregation, we also calculated the per-pixel number of samples 195 

(or observations) for each monthly composite, which can be used as auxiliary data to filter pixels 196 

with low number of observations (less reliable estimates of surface reflectance). The tiles were 197 

mosaicked for the entire South America and then re-projected from the original sinusoidal 198 

projection to the geographic coordinates system (datum WGS-84, EPSG 4326). The output spatial 199 

resolution corresponded to 0.009107388 degrees, which is approximately equivalent to 1 km in 200 

projected coordinates.  201 

We also calculated two traditional vegetation indices: NDVI (Rouse et al., 1973) (Eq. 2) and EVI 202 

(Huete et al., 2002) (Eq. 3). 203 

���� =  
���� � ����

���� 
 ����
  (2) 204 

��� =  2.5 ∗  
���� � ����

���� 
 �  ∗ ���� � !." ∗ �#$%�& 
 '
  (3) 205 

where ρ is the surface reflectance of a MODIS band, ρNIR is the NIR reflectance (band 2), ρRed 206 

is the red reflectance (band 1), and ρBlue is the blue reflectance (band 3). The constants in Eq. 3 207 

(6, 7.5, 1, and 2.5) represent: the aerosol coefficient adjustment of the atmosphere for the red and 208 

blue bands; the adjustment factor for the soil; and the gain factor, respectively (Huete et al., 2002). 209 

 210 

 211 

 212 
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2.2.2. The anisotropy (ANI) data 213 

For the ANI data, the daily surface reflectance data was first normalized to two viewing-angles at 214 

the backward (SZA = 45º, VZA = 35º, RAA = 180º) and forward (SZA = 45º, VZA = 35º, RAA 215 

= 0º) scattering using Eq. 1 and values from Table 2. To minimize potential errors of BRDF 216 

extrapolation, the VZA was set to 35º instead of the hotspot (45º), because 35º is a very common 217 

VZA in the empirical data distribution of the South America, and thus providing better estimates 218 

of the anisotropy (Moura et al., 2015). The standard deviation for this modelling was thoroughly 219 

investigated in a previous study and determined as 10% of the observed variation in anisotropy 220 

(Moura et al., 2015). Further, we aggregated the backward and forward scattering data temporally 221 

into monthly composites following the same procedures as before for the NAD data. We then 222 

calculated the NDVI and EVI for each of the view-angle normalizations. Finally, we obtained the 223 

difference between backward and forward scattering estimates for each of the eight MODIS 224 

bands, as well as for the NDVI and EVI, effectively generating the ANI layers (Eq. 4; Moura et 225 

al., 2015): 226 

(��) = �*+,-*./) − �1.-*./)  (4) 227 

where i is the spectral band or VI selected in the calculation. 228 

 229 

2.3. Algorithm and computation 230 

All data processing was done in R v4.0.2 (R Core Team, 2016) and the code is available at GitHub 231 

(https://github.com/ricds/maiac_processing) (Dalagnol & Wagner, 2022). Besides processing the 232 

AnisoVeg product from the daily MAIAC MODIS data, the code can also generate 16-day or 8-233 

day temporal composites, mosaics, and VIs. Although we focused on South America when 234 

developing AnisoVeg, the code can readily be adapted to process data for other parts of the world 235 

and generate corresponding NAD and ANI layers. Below, we provide the computer specification 236 

for anyone who wishes to process the data independently. 237 

For the presented dataset, the computation was performed under a HP Z840 Workstation with 238 

Intel Xeon CPU E5-2640 v3 (2.60Ghz, 32 cores), and 64 Gb RAM memory. The daily MODIS 239 

data for the whole South America from 2000 to 2021 accounted for 6.69 Tb. Processing monthly 240 

composites is computationally intensive due to loading all daily data for each month at once for 241 

a given tile. Thus, the main bottlenecks are RAM memory and hard drive writing speed. For the 242 

workstation with 64 Gb memory, the usage of 10 cores running in parallel processing was the 243 

optimal choice. The average processing time of each monthly composite for one tile was 6 244 

minutes. Therefore, it took 26.2 hours to process the 262 composites (March 2000 to December 245 

2021) for each tile. Since we had 31 tiles covering the South America, the total amount of time to 246 

process one view-normalization was approximately a month (33.8 days). Consequently, the total 247 

time spent in computation was 101.5 days for processing the three view-normalizations (nadir, 248 

backward, and forward scattering) and generating the NAD and ANI layers. Processing can also 249 

be done with less potent computers with a minimum of 16 Gb RAM memory and 4 processing 250 

cores. 251 

 252 

2.4. Time series availability and uncertainty 253 

The monthly compositing process returned a time series dataset over all of South America with 254 

an average of 242 ± 35 out of a maximum of 262 composites (period between March 2000 and 255 

December 2021) for each pixel with some data missing due to lack of high-quality observations 256 

(Figure 2). Only 34.3% of the available pixels have the full time series (262 composites). The 257 
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Amazon region shows a lower mean number of samples in the time series with an average of 231 258 

± 29 composites, which can be seen in Figure 2. This lower number of samples is due to the innate 259 

high cloud cover (Durieux et al., 2003). It is important to note that the AnisoVeg product was 260 

strictly created to analyze land surface and does not cover water bodies. Moreover, the period 261 

between March 2000 and June 2002 has higher amounts of missing data because it preceded the 262 

launch of the Aqua satellite. When data from both satellites (Terra and Aqua) were combined to 263 

create the product after 2002, we had a much better pixel level data availability to produce dense 264 

time series. Although we have a dense time series across the Amazon rainforests (Figure 2a), the 265 

mean number of daily observations within a month for this region is relatively lower than that 266 

observed in more dry and seasonal regions of South America (Figure 2b). Thus, we suggest using 267 

the number of samples layer as a proxy for uncertainty on the retrieval of monthly composites to 268 

filter out pixels with low number of samples (e.g., less than three observations per composite). 269 

The lesser number of samples one pixel has, the higher the uncertainty in the data analysis. 270 

 271 

Figure 2 – AnisoVeg time series availability and uncertainty over South America. (a) The number 272 

of composites in the time series representing pixel availability. The maximum number of 273 

composites in the time series is 262 for the period between March 2000 and December 2021. (b) 274 

Mean number of daily observations within a month used to create the monthly composites as a 275 

proxy for uncertainty. The maximum daily observations in a composite are 60 (twice a day every 276 

day for a month). 277 

 278 

3. Spatial and temporal distribution of NAD and ANI data across the Amazon forests 279 

To demonstrate the spatial and temporal distribution of NAD and ANI data over the Brazilian 280 

Amazon rainforests, we selected three experimental areas (rectangles in Figure 1). These areas 281 

show old-growth rainforests with distinct canopy structure and aboveground biomass (AGB) 282 

stocks. The AGB increases from semideciduous forests at the Xingu Park (190 ± 19 Mg ha-1) and 283 
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open ombrophilous forests with lianas at the São Felix do Xingu (241 ± 31 Mg ha-1) to dense 284 

ombrophilous forests at the Tapajós National Forest (288 ± 38 Mg ha-1), as estimated by the 285 

ESA/CCI AGB map from 2017 (Santoro & Cartus, 2021). These are large-scale AGB estimates 286 

and may underestimate the true AGB at higher values such as in the Tapajós site. These three 287 

sites are also expected to show different phenological dynamics because their selected pixels 288 

cover distinct phenoregions in the study reported by Xu et al. (2015).  289 

When compared to the nadir-normalized EVI (EVINAD) images (Figures 3a, b, c), the anisotropy 290 

EVI (EVIANI) data showed different spatial patterns across sites (Figures 3d, e, f). While the 291 

forests over the three sites showed approximately similar EVINAD values (EVINAD ≈ 0.50) (Figures 292 

3a,b,c), they showed more variability in EVIANI between the Xingu Park (EVIANI > 0.20), São 293 

Felix do Xingu (EVIANI > 0.24), and Tapajós (EVIANI > 0.27) sites (Figures 3d,e,f). This increase 294 

in EVIANI between sites goes into the same direction of the AGB gradient observed from the 295 

Xingu Park to the Tapajós National Forest. This result may indicate different forest canopy 296 

structures that were not captured in the EVINAD observations, but were captured by the EVIANI. 297 

Overall, the EVIANI is high over forests (0.20 to 0.30) and low over pastures and crops (less than 298 

0.10). This means large anisotropy between the reflected energy in backward and forward 299 

scattering MODIS directions due to the structural complexity of forest canopies. The association 300 

between anisotropy and forest canopy structure has been previously shown for the same region in 301 

a previous work (Moura et al., 2016). 302 

 303 

Figure 3 – The spatial distribution in August 2020 (dry season) of the nadir-normalized Enhanced 304 

Vegetation Index (EVINAD) is shown in (a), (b), and (c) for the Tapajós National Forest, São Felix 305 

do Xingu and Xingu Park, respectively. Corresponding results for the anisotropy EVI (EVIANI) 306 

are shown in (d), (e), and (f), respectively. The triangles plotted over (a, b, and c) indicate the 307 

sites used to obtain the profiles of Figure 4. 308 

From the comparison of different sites (triangles in Figure 3a), we observed that the mean EVINAD 309 

signal over the time period did not vary much between the selected forests, while the EVIANI 310 

varied greatly (Figure 4): Tapajós (mean EVINAD = 0.49, mean EVIANI = 0.27), São Felix do Xingu 311 

(mean EVINAD = 0.51, mean EVIANI = 0.24), and Xingu Park (mean EVINAD = 0.51, mean EVIANI 312 
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= 0.22). Moreover, EVINAD and EVIANI values were moderately positively correlated at Tapajós 313 

(r = +0.37), weakly correlated at São Felix do Xingu (r = +0.06), and moderately negatively 314 

correlated at the Xingu Park (r = -0.28). The EVINAD and EVIANI are seasonal variability and phase 315 

correlation changes from site to site, suggesting that different canopy dynamics processes are 316 

likely being captured by the two metrics at the three sites. Understanding exactly what those 317 

effects mean for these forests is beyond the scope of this paper. However, it indicates open venues 318 

for studying forest functioning using these products. For example, previous studies have shown 319 

that EVINAD metrics captured different compositions of leaf ages in the canopies of central 320 

Amazon (Gonçalves et al., 2020).  321 

 322 

Figure 4 – Time series of AnisoVeg’s MODIS Enhanced Vegetation Index (EVI) from 2000 to 323 

2021 for old-growth forests of the (a) Tapajós National Forest; (b) São Felix do Xingu; (c) Xingu 324 

Park. The black line indicates the nadir-normalized signal (NAD layer), while the red line 325 

represents the EVI anisotropy (ANI layer). The profiles are the mean value of 3 x 3 pixels whose 326 

locations are indicated by triangles in Figure 3. 327 

To demonstrate the potential of AnisoVeg for large-scale forest structure inference, we compared 328 

the NAD and ANI data against forest height measurements from the Global Ecosystem Dynamics 329 

Investigation (GEDI) LiDAR sensor. We found that EVIANI was able to explain up to 55% of 330 

height variability of Amazon forests according to a simple linear relationship (R2 = 0.55, p < 0.01, 331 

Figure 5). This is a very strong predicting power for a single variable, considering a simple linear 332 

model, especially for satellite passive optical data which are often underrated for forest structure 333 

estimates in comparison to Synthetic Aperture Radar (SAR) data. EVINAD was significantly but 334 

weakly associated to height variability (R2 = 0.16, p < 0.01), reinforcing the increase in 335 

explanation power owed to the anisotropy metrics built from multi-angle observations. The height 336 

data was derived from the GEDI LiDAR sensor aboard the International Space Station. They were 337 
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obtained more specifically from the product GEDI L2A elevation and height metrics data version 338 

2 (footprint size 25 m), acquired from April 2019 to October 2020 (available dates at the time of 339 

download). GEDI data were downloaded from Earth Data cloud service system 340 

(https://earthdata.nasa.gov). We selected the Relative Height metric at 98th percentile (RH98), 341 

which represents the top canopy height. The selected RH98 metric was averaged over each 1-km 342 

grid cell, and filtered using a threshold of greater than or equal to 50 shots per km2 to have a high 343 

confidence of reliable height estimation representing the 1-km mean. The AnisoVeg data used for 344 

this comparison were based on the same time period as GEDI, and filtered for EVINAD larger than 345 

0.35 to exclude non-forested areas. While we only showed the plot for the strongest EVIANI:GEDI 346 

relationship in June 2019 (Figure 5), the other months also showed significant (p < 0.01) and 347 

strong relationships with R2 ranging from 0.36 to 0.55 (mean R2 = 0.46). Future studies should 348 

explore relationships using ANI from different months and other indices, alone or in combination 349 

with each other, to further understand their significance on explaining forest structure. This is 350 

important to determine how the anisotropy data can contribute for aboveground biomass and 351 

carbon estimates in conjunction with other sources of data such as those from SAR sensors. 352 

 353 

Figure 5 – Relationship between forest height (GEDI mean RH98) and two AnisoVeg layers 354 

obtained in June 2019 over the Amazon: (a) EVINAD and (b) EVIANI. The RH98 metric consists in 355 

the relative height at the 98th percentile, which represents the top of canopy height. 7,000 random 356 

matching pixels were used in this analysis (1% of 700,000 total matching pixels available), 357 

resulting from the filtering of both GEDI and AnisoVeg data. The red line indicates the fitted line 358 

by a simple linear model. 359 

In a prospective analysis, we also explored the behavior of the two EVI AnisoVeg metrics over 360 

the Amazonian phenoregions mapped by Xu et al. (2015). The EVINAD and EVIANI monthly means 361 

over different phenoregions highlighted the strong heterogeneity of the Amazonian forests 362 

(Figure 6). For instance, the profiles showed strong differences between both metrics from 363 

January to September in a phenoregion with well-defined dry and wet seasons (phenoregion one 364 

in Figure 6a at the Xingu Park). Large differences between EVINAD and EVIANI were also observed 365 

in some phenoregions without a very long dry season in northwest Amazon (phenoregion five in 366 

Figure 6e). On the other hand, EVINAD and EVIANI showed temporal decoupling in phenoregion 367 

three located at central-east Amazon (Figure 6c). Overall, while the seasonality of EVINAD has 368 

been investigated by many studies in the past, the seasonality of EVIANI is something to be further 369 

explored with the support of auxiliary data (e.g., airborne LiDAR and field campaigns). This is 370 
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important to better understand the differences in seasonal patterns between both AnisoVeg 371 

metrics. 372 

 373 

Figure 6 – Monthly means of EVINAD (black) and EVIANI (red) for nine phenoregions mapped by 374 

Xu et al. (2015) in the Amazon. The phenoregions are shown in increasing order from 1 to 9 in 375 

corresponding panels (a) to (i). They represent forests with similar seasonality and landscape 376 

structure. Solid line and shaded area represent the mean and 95% confidence interval around the 377 

mean. The values were extracted from 20 years of data (from 2001 to 2021) for 100 random 378 

coordinates within each region, and extracted from 3 x 3 windows of pixels. 379 

 380 

4. Prospective use of the dataset 381 

The NAD layers from the AnisoVeg product have been used in previous studies to explore: the 382 

climate drivers of the Amazon forest greening (Wagner et al., 2017); the large-scale Amazon 383 

forest sensitivity to drought (Anderson et al., 2018); the structure and dominance of bamboo 384 

species in southwest Amazon (Dalagnol et al., 2018); the productivity in a flooded forest in 385 

eastern Amazon (Fonseca et al., 2019); the productivity and relationship with Sun-Induced 386 

Fluorescence over the Brazilian Caatinga biome (Bontempo et al., 2020); the relationships with 387 

leaf-age demography in central Amazon (Gonçalves et al., 2020); and the relationships with fire 388 

disturbance and SAR-based Vegetation Optical Depth in southern Amazon (Zhang et al., 2021).  389 

The ANI layers from the AnisoVeg product have been mainly used to characterize Amazon forest 390 

structure properties (Moura et al., 2015; 2016). These layers now open new venues of 391 

investigation on vegetation, including (but not limited to): the characterization of biophysical 392 

attributes of forests, including their seasonality and trends; the assessment of changes in 393 

vegetation structure due to natural disturbances or degradation (logging, fire, edge effects); and 394 

the evaluation of forest health and productivity (greenness and browning). We expect that this 395 

dataset contributes to upscaling studies over large areas of key forest properties such as the AGB 396 

and canopy roughness (Foody & Curran, 1994; Saatchi et al., 2008). This information is required 397 

for dynamic vegetation models to accurately represent the carbon cycle. This dataset is not limited 398 
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to study Amazonian forests and can be used to explore other biomes of South America such as 399 

the Atlantic Forest, savannas (Cerrado), Caatinga, Chaco, Pantanal, and Pampas. Such studies 400 

could improve our understanding of large-scale vegetation functioning, carbon storage, and 401 

cycling. Ultimately, they can contribute to refine global ecosystem models, and to obtain accurate 402 

estimates of carbon cycle in response to climate and environmental change. Furthermore, 403 

auxiliary backward and forward scattering data are also available with the dataset. Beyond the 404 

use of the provided ANI layers, this effectively allows the computation of several other multi-405 

angular anisotropy indices from the literature (Table 3), offering the possibility to investigate their 406 

use for tropical vegetation studies. 407 

 408 

Table 3 – Examples of other multi-angular anisotropy indices that can be further calculated using 409 

layers of the AnisoVeg product. Lambda represents the selected spectral band or vegetation index. 410 

N, H, and D represent nadir-view normalization, hot-spot (backward scattering), and dark-spot 411 

(forward scattering) estimates, respectively.  412 

Anisotropy Indices Formula Reference 

Anisotropy index (ANIX) 23

24
  Sandmeier et 

al. (1998) 

Nadir BRDF-adjusted NDVI (NDVIISO)  
���5 � �675

���5
�675
  Schaaf et al. 

(2002) 
Hot-spot dark-spot index (HDSRED) �673 � �674

�674
  Lacaze et al. 

(2002) 

Normalized difference between hot-spot 

and dark-spot index (NDHDNIR) 

���3 � ���4

���3
 ���4
  Chen et al. 

(2005) 

Hot-spot dark-spot NDVI (NDVIHD) ���3 � �674

���3
 �674
  Pocewicz et 

al. (2007) 

Hot-spot-incorporated NDVI (NDVIHS) �����  × �1 − ���9&  Pocewicz et 

al. (2007) 

Anisotropy difference (ANI)* :9 − :7  Moura et al. 
(2015) 

Vegetation Structure Index (VSI) �7;�4 � �7;�3

'����4
  Sharma et al. 

(2021) 

*ANI is included in the AnisoVeg product. Source: Adapted from Sharma et al. (2021). 413 

 414 

5. Code and data availability 415 

All code is available at GitHub (https://github.com/ricds/maiac_processing) (Dalagnol & 416 

Wagner, 2022). The full dataset can be found at the official AnisoVeg repository at Zenodo 417 

(https://doi.org/10.5281/zenodo.3878879) (Dalagnol et al., 2022). The dataset was organized in 418 

compressed files (“.zip” format) sub-divided by years (currently 2000-2021) and layers (bands 1-419 

8, NDVI, and EVI) for both nadir-normalization (code = NAD) and anisotropy (code = ANI). The 420 

number of samples layers (code = NO_SAMPLES) are also provided. Inside each compressed 421 

file there will be 12 image files (“.tif” format), one per month, except for the year 2000 which 422 

starts in March. The storage size for the whole dataset is 162.6 Gb. The data have a scale factor 423 

of 10,000 to reduce file storage size. Thus, to obtain surface reflectance values of bands or correct 424 

range of values for indices, you should divide the layers by 10,000. The exception is the number 425 

of samples, which already shows the correct range of values from 0 to 60 observations. The dataset 426 

is planned to be updated on a yearly-basis. Auxiliary data that allow the calculation of other 427 

anisotropy metrics (listed in Table 3) are included in two separate Zenodo repositories for 428 

backward (https://doi.org/10.5281/zenodo.6040300) (Dalagnol, 2022a) and forward scattering 429 
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(https://doi.org/10.5281/10.5281/zenodo.6048785) (Dalagnol, 2022b), including the selected 430 

layers Red, NIR, NDVI and EVI. The EVIANI and EVINAD layers were also uploaded to the GEE 431 

platform using the geeup tool v0.5.3 (Roy, 2022). They can be accessed through the GEE 432 

ImageCollection assets “projects/anisoveg/assets/evi_anisotropy” and 433 

“projects/anisoveg/assets/evi_nadir”, found at 434 

<https://code.earthengine.google.com/?asset=projects/anisoveg/assets/evi_anisotropy> and 435 

<https://code.earthengine.google.com/?asset=projects/anisoveg/assets/evi_nadir>.  436 
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