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Abstract

The AnisoVeg product consists of monthly 1-km composites of anisotropy (ANI) and nadir-
normalized (NAD) surface reflectance layers obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor over the entire South America. The satellite data were pre-
processed using the Multi-Angle Implementation Atmospheric Correction (MAIAC). The
AnisoVeg product spans 22 years of observations (2000 to 2021) and includes the reflectance of
MODIS bands 1 to 8 and two vegetation indices (VIs): Normalized Difference Vegetation Index
(NDVI) and Enhanced Vegetation Index (EVI). While the NAD layers reduce the data variability
added by bidirectional effects on the reflectance and VI time series, the unique ANI layers allow
the use of this multi-angular data variability as a source of information for vegetation studies. The
AnisoVeg product has been generated using daily MODIS MAIAC data from both Terra and
Aqua satellites, normalized for a fixed solar zenith angle (SZA = 45°), modelled for three sensor
view directions (nadir, forward, and backward scattering), and aggregated to monthly composites.
The anisotropy was calculated by the subtraction of modelled backward and forward scattering
surface reflectance. The release of the ANI data for open usage is novel, as well as the NAD data
at an advance processing level. We demonstrate the use of such data for vegetation studies using
three types of forests in eastern Amazon with distinct gradients of vegetation structure and
aboveground biomass (AGB). The gradient of AGB was positively associated with ANI, while
NAD values were related to different canopy structural characteristics. This was further illustrated
by the strong and significant relationship between EVIani and forest height observations from the
Global Ecosystem Dynamics Investigation (GEDI) LIiDAR sensor considering a simple linear
model (R? = 0.55). Overall, the time series of the AnisoVeg product (NAD and ANI) provide
distinct information for various applications aiming at understanding vegetation structure,
dynamics, and disturbance patterns. All data, processing codes and results are made publicly
available to enable research and the extension of AnisoVeg products for other regions outside the
South America. The code can be found at https://doi.org/10.5281/zenodo.6561351 (Dalagnol and
Wagner, 2022), EVlan and EVinap can be found as assets in the Google Earth Engine (GEE)
(described in the data availability section), and the full dataset is available at the open repository
<https://doi.org/10.5281/zenodo.3878879> (Dalagnol et al., 2022).

Key-words: AnisoVeg, South America, vegetation structure, forest monitoring, MODIS.

1. Introduction

The anisotropy is defined as the departure from Lambertian scattering (isotropic), caused by the
physical structure of media through which photons pass. Because most land covers are not
Lambertian (isotropic), the surface reflectance measured by satellite sensors varies with the view
zenith angle (VZA), view direction (backward or forward scattering), and solar zenith angle
(SZA) (Galvao et al., 2011). This is especially valid for images acquired over vegetated surfaces
by large field-of-view (FOV) instruments such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Bhandari et al., 2011). MODIS has a wide swath scanning +55°
from nadir on board the Terra and Aqua satellites. For example, a reflected signal coming from
the backward scattering direction of MODIS under a large VZA and close-to-zero relative
azimuth angle (RAA) between the satellite and sun (sun behind the platform) is generally higher
than that coming from the nadir (VZA = 0°) or forward scattering direction (platform facing the
sun at RAA = 180°). Moreover, the SZA also varies seasonally and across geographical locations,
affecting the amounts of shadows in the surfaces observed by satellites (Galvéo et al., 2013). Such
view-illumination effects are dependent on the land cover types and their magnitude relates to
differences in biophysical properties of the vegetation (Galvéo et al., 2004; Sims et al., 2011).
Therefore, the vegetation anisotropy can be seen antagonistically as sources of noise and

1


https://doi.org/10.5281/zenodo.6561351
https://doi.org/10.5281/zenodo.3878879

75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124

biophysical information in the time-series analysis of vegetation indices (VIs) calculated from
MODIS. As a source of noise, one may consider that the reflected signal toward the large FOV
satellite sensors varies with distinct view-illumination geometries of data acquisition over the
same surface. As a source of information, one may highlight that the anisotropy is land-cover type
dependent, showing spectral variations that may be associated, for instance, with changes in
vegetation structure across different forests.

To reduce the bidirectional effects as a source of noise, a nadir-normalized dataset can be created.
We can normalize the surface reflectance of the MODIS bands to a specific set of VZA and SZA
using the bidirectional reflectance distribution function (BRDF), represented by a model such as
the Ross-Thick Li-Sparse (RTLS) (Wanner et al., 1995). To ensure confidence in the data
analysis, we can also use the Multi-Angle Implementation Atmospheric Correction (MAIAC) for
atmospheric correction. MAIAC is a new generation of cloud screening and atmospheric
correction algorithm that uses an adaptive time series analysis and processing of groups of pixels
to derive atmospheric aerosol concentration, cloud mask and surface reflectance without typical
empirical assumptions (Lyapustin et al., 2011, 2012). By mitigating atmospheric interference and
advancing the accuracy of surface reflectance over tropical vegetation by a factor of 3 to 10,
MAIAC offers substantial improvement over conventional products such as the MODO09 (Hilker
et al., 2012). Because of the better data quality retrieval, MAIAC is also an alternative to the
MCD43A4 16-day Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted
Reflectance (NBAR) product due to the less variable seasonal signal (3 to 10 times) over
evergreen forests resultant from reduced effects of sun-view geometry. While the MCD43A4
NBAR product offers view-illumination correction, using the MAIAC products one can also
correct for solar illumination effects at the same time. Due to the improvements in cloud detection,
aerosol retrieval and atmospheric correction, the MAIAC algorithm provides from 4 to 25% more
high-quality retrievals than the traditional MODOQ9 product, with the largest estimate being
observed for tropical regions (Lyapustin et al., 2021). Studies have used MODIS MAIAC
observations with nadir-normalized geometry to assess Amazonian forests’ structure, functioning,
and impacts of environmental and climate change (Hilker et al., 2014; Wagner et al., 2017;
Anderson et al., 2018; Dalagnol et al., 2018; Fonseca et al., 2019; Bontempo et al., 2020;
Gongalves et al., 2020; Zhang et al., 2021). For instance, such products provided reliable time
series of surface reflectance data that allowed to identify large-scale communities of bamboo
species and their dynamics in the southwest Amazon (Dalagnol et al., 2018). Lastly, by improving
the cloud screening and minimizing BRDF artifacts in comparison to uncorrected data, the
MAIAC greatly contributed to the understanding of the long-standing debate in the Amazon over
the possible existence of the green-up phenomenon observed during the dry season of each year
or with severe droughts (Morton et al., 2014; Bi et al., 2015; Saleska et al., 2016; Wu et al., 2017).
The existence of this phenomenon has implications on the comprehension of the resilience of
tropical forests to climate change.

To use the bidirectional effects as a source of information, we generate an anisotropy dataset that
is dependent on land-cover types and captures the variations of sunlit and shaded canopy
components viewed by the sensors (Chen et al., 2003; Gao, 2003). The use of multi-angular
information to obtain metrics of anisotropy and extract information on forest structure was
suggested two decades ago (Gobron et al., 2002; Diner et al., 2005). One of the early experiments
exploring the use of anisotropy to extract information about vegetation structure were conducted
by calculating the ratio between backward and forward scattering data and generating the
anisotropy index (ANIX) on studying short-stature grass-type vegetation (Sandmeier etal., 1998).
Other indices have been developed and validated afterwards (Schaaf et al., 2002; Lacaze et al.,
2002; Chen et al., 2005; Pocewicz et al., 2007; Moura et al., 2015; Sharma et al., 2021). However,
this remains an understudied topic with limited results reported in the literature, especially in
tropical regions. For instance, observations from the Multi-angle Imaging Spectroradiometer
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(MISR)/Terra in the backward and forward scattering directions facilitated the discrimination of
savanna physiognomies in Brazil (Liesenberg et al., 2007). MODIS MAIAC data from both
directions were also used to calculate an anisotropic VI that explained part of the large-scale
photosynthetic activity in the Amazon, where higher photosynthetic activity was associated to
higher anisotropy values (Sousa et al., 2017). Moura et al. (2015) employed a more sophisticated
approach based on scattering at backward and forward view directions using multi-temporal and
multi-angular observations of MAIAC MODIS and BRDF modelling. The resultant metrics of
anisotropy were further validated against field and airborne Light Detection And Ranging
(LiDAR) observations, showing strong linear relationship with leaf area index (LAI) (R? = 0.70-
0.88), canopy heterogeneity (R% = 0.54), and photosynthetic activity (R2 = 0.73-0.98) (Moura et
al., 2015; Moura et al., 2016; Hilker et al., 2017). Although showing great potential in vegetation
studies, the aforementioned anisotropy metrics were never computed over larger areas of the
world such as proposed in this study for South America.

The objective of this work is to present the AnisoVeg product, and how it can be used for
vegetation studies. We use MODIS Collection 6 (C6) MAIAC (Lyapustin et al., 2018) monthly
data (2000-2021) generated at 1-km spatial resolution for the entire South America with two
different types of layers: (1) nadir-normalized (NAD) data for the surface reflectance of MODIS
bands 1 to 8 and two VIs (NDVI and EVI); and (2) anisotropy data (ANI) calculated from the
difference between backward and forwarding scattering estimates of bands 1 to 8 and VIs (Moura
et al., 2015). The motivations for generating this product extend from developing applications of
multi-angle observations for vegetation studies to producing analysis-ready and openly available
datasets of anisotropy and nadir metrics for a larger community of users. The paper is organized
in several sections to present the processing steps for generating the AnisoVeg products, a brief
evaluation of data products over experimental areas, and finally an example of its potential
application in vegetation studies.

2. Methodology to compute the AnisoVeg product
2.1. Daily MODIS MAIAC surface reflectance data over South America

Daily surface reflectance data were obtained from the MODIS product MCD19A1 v006
(collection 6) for the tiles covering South America (Figure 1). According to the MODIS traditional
tiling system, these tiles ranged from 9-14 (horizontal) and 7-14 (vertical). The input data
consisted in cross-calibrated surface reflectance from Terra and Aqua satellites on eight spectral
bands (Table 1) with 1-km spatial resolution from 2000 to 2021 (Lyapustin & Wang, 2018;
http://dx.doi.org/10.5067/MODIS/MCD19A1.006). This product provides surface reflectance
data corrected for atmospheric effects by the MAIAC algorithm, and controlled for cloud-free
and clear-to-moderately turbid conditions with Aerosol Optical Depth (AOD) at 0.47 pum below
1.5 (Lyapustin et al., 2018). The MAIAC algorithm uses a time series approach for improved
cloud filtering amongst other filters such as surface reflectance change in order to provide the
most accurate surface reflectance estimates. The raw data were obtained from the NASA's Level-
1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive Center
(DAAC) available at https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/6/MCD19A1/.
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168  Figure 1 — AnisoVeg product concept and the area of coverage. (a) Schematic representation
169  showing the observational geometry and the processing steps for producing NAD and ANI data
170  from MODIS and to provide information on vegetation heterogeneity and structure, and (b) the
171  visualization of the anisotropy EVI (EVani) for South America from August 2021 at 1-km spatial
172  resolution, showing the coverage of the product in South America and the location of three sites
173 used to demonstrate potential applications. The sites are: (1) Tapajos National Forest, (2) Séo
174  Felix do Xingu, and (3) Xingu Park. Red lines indicate the countries boundaries.

175
176  Table 1 — MODIS spectral bands. NIR = near infrared; SWIR = shortwave infrared.

Band number Band name Wavelength (nm)
1 Red 620-670
2 NIR-1 841-876
3 Blue-1 459-479
4 Green 545-565
5 NIR-2 1230-1250
6 SWIR-1 1628-1652
7 SWIR-2 2105-2155
8 Blue-2 405-420

177
178  2.2. The AnisoVeg product

179  The AnisoVeg product consists of two main types of data spanning from 2000 to 2021 in monthly
180  composites at 1-km spatial resolution: (a) the nadir-normalized (NAD) data; and (b) the
181  anisotropy (ANI) data. Each data type has 10 layers corresponding to the MODIS bands 1 to 8,
182  and two VIs (NDVI and EVI). Additionally, the product provides auxiliary layers of backward
183  scattering and forward scattering, including part of the bands (description on section 5).

184



185

186
187
188
189
190
191
192
193
194
195
196

197

198
199
200
201
202
203
204

205

206

207
208
209
210
211
212
213
214

215
216

217

218

2.2.1. The nadir-normalized (NAD) data

In order to minimize the differences in sun-sensor geometry between the MODIS scenes and
generate the NAD dataset, the daily surface reflectance data were normalized to a fixed 45° SZA
and to nadir observation (VZA = 0°) using the BRDF and the Ross-Thick Li-Sparse (RTLS) model
(Wanner et al., 1995). Parameters of the RTLS BRDF model are part of the MAIAC product suite
(MCD19A3 product) reported every 8 days. The MAIAC algorithm detects significant land cover
changes (e.g. fire, deforestation) within the 8-day period and does not use those observations for
the BRDF inversion (Lyapustin et al., 2018). A minimum of three observations in the eight-day
window was required to accurately model the signal. The closest RTLS parameters in time were
used to normalize the daily data. The normalized Bidirectional Reflectance Factor (BRFn) for the
NAD surface reflectance (SZA =45° VZA = 0° RAA =0°) was calculated using Eq. 1 (Lyapustin
etal., 2018):

kL + Foy x KV + Fog x k€

BRFn = BRF x <=y = =

where k*, kY, and k® are the BRDF isotropic, volumetric, and geometric-optical kernel weights,
respectively; Fov and Foc are the BRDF kernel values for the given geometry listed in Table 2;
and Fv and F¢ are the kernel values of the RTLS model for the specific MODIS observation,
respectively (Lyapustin et al., 2018). Fv and Fc values are available at 5-km cells and were
resampled to 1-km using the nearest neighbors’ method to match the spatial resolution of the
spectral bands. This resampling step does not create spatial artifacts in the data because the
geometry changes slowly over time (Lyapustin et al., 2018).

Table 2 — View-angle normalizations and corresponding BRDF kernel values.

View-angle Solar View Relative Fov Foc
Zenith Zenith Azimuth
Angle Angle Angle
(SZA,°) (VZA, °) (RAA, °)
Nadir 45 0 0 -0.04578 -1.10003
Backward 45 35 180 0.22930469  0.017440045
scatterlng
Forward 45 35 0 -0.12029795  -1.6218740
scatterlng

We aggregated normalized daily data into monthly composites by keeping the median values for
each pixel. During the temporal aggregation, we also calculated the per-pixel number of samples
(or observations) for each monthly composite, which can be used as auxiliary data to filter pixels
with low number of observations (less reliable estimates of surface reflectance). The tiles were
mosaicked for the entire South America and then re-projected from the original sinusoidal
projection to the geographic coordinates system (datum WGS-84, EPSG 4326). The output spatial
resolution corresponded to 0.0091 degrees, which is approximately equivalent to 1 km in
projected coordinates.

We also calculated two traditional vegetation indices: NDVI (Rouse et al., 1973) (Eq. 2) and EVI
(Huete et al., 2002) (Eg. 3).

PpNIR — pRed
PNIR + pRed

NDVI = )
pNIR — pRed

EVI = 25 %
PNIR + (6 X pRed — 7.5 % pBlue) + 1

©)
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where p is the surface reflectance of a MODIS band, pNIR is the NIR reflectance (band 2), pRed
is the red reflectance (band 1), and pBlue is the blue reflectance (band 3). The constants in Eq. 3
(6, 7.5, 1, and 2.5) represent: the aerosol coefficient adjustment of the atmosphere for the red and
blue bands; the adjustment factor for the soil; and the gain factor, respectively (Huete et al., 2002).

2.2.2. The anisotropy (ANI) data

For the ANI data, the daily surface reflectance data was first normalized to two viewing-angles at
the backward (SZA = 45° VZA = 35° RAA = 180°) and forward (SZA = 45°, VZA = 35° RAA
= (0°) scattering using Eq. 1 and values from Table 2. The VZA was set to near hotspot (VZA =
359) instead of the actual hotspot (VZA = 45°) to keep VZA closer to the actual range of MODIS
observations across the South America and minimize errors coming from extrapolation of the
BRDF (Moura et al., 2015). The standard deviation for this modelling was thoroughly
investigated in a previous study and determined as 10% of the observed variation in anisotropy
(Moura et al., 2015). Further, we aggregated the backward and forward scattering data temporally
into monthly composites following the same procedures as before for the NAD data. We then
calculated the NDVI and EVI1 for each of the view-angle normalizations. Finally, we obtained the
difference between backward and forward scattering estimates for each of the eight MODIS
bands, as well as for the NDVI and EVI, effectively generating the ANI layers (Eq. 4; Moura et
al., 2015):

ANI; = Backward; — Forward; 4)

where i is the spectral band or VI selected in the calculation.

2.3. Algorithm and computation

All data processing was done in R v4.0.2 (R Core Team, 2016) and the code is available at GitHub
(https://github.com/ricds/maiac_processing) (Dalagnol & Wagner, 2022). Besides processing the
AnisoVeg product from the daily MAIAC MODIS data, the code can also generate 16-day or 8-
day temporal composites, mosaics, and VIs. Although we focused on South America when
developing AnisoVeg, the code can readily be adapted to process data for other parts of the world
and generate corresponding NAD and ANl layers. Below, we provide the computer specification
for anyone who wishes to process the data independently.

For the presented dataset, the computation was performed under a HP Z840 Workstation with
Intel Xeon CPU E5-2640 v3 (2.60Ghz, 32 cores), and 64 GB (gigabytes) RAM memory. The
daily MODIS data for the whole South America from 2000 to 2021 accounted for 6.69 TB
(terabytes). Processing monthly composites is computationally intensive due to loading all daily
data for each month at once for a given tile. Thus, the main bottlenecks are RAM memory and
hard drive writing speed. For the workstation with 64 GB memory, the usage of 10 cores running
in parallel processing was the optimal choice. The average processing time of each monthly
composite for one tile was 6 minutes. Therefore, it took 26.2 hours to process the 262 composites
(March 2000 to December 2021) for each tile. Since we had 31 tiles covering the South America,
the total amount of time to process one view-normalization was approximately a month (33.8
days). Consequently, the total time spent in computation was 101.5 days for processing the three
view-normalizations (nadir, backward, and forward scattering) and generating the NAD and ANI
layers. Processing can also be done with less potent computers with a minimum of 16 GB RAM
memory and 4 processing cores.
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2.4. Time series availability and uncertainty

The monthly compositing process returned a time series dataset over all of South America with
an average of 242 + 35 out of a maximum of 262 composites (period between March 2000 and
December 2021) for each pixel with some data missing due to lack of high-quality observations
(Figure 2). Only 34.3% of the available pixels have the full time series (262 composites). The
Amazon region shows a lower mean number of samples in the time series with an average of 231
+ 29 composites, which can be seen in Figure 2. This lower number of samples is due to the innate
high cloud cover (Durieux et al., 2003). It is important to note that the AnisoVeg product was
strictly created to analyze land surface and does not cover water bodies. Moreover, the period
between March 2000 and June 2002 has higher amounts of missing data because it preceded the
launch of the Aqua satellite. When data from both satellites (Terra and Aqua) were combined to
create the product after 2002, we had a much better pixel level data availability to produce dense
time series. Although we have a dense time series across the Amazon rainforests (Figure 2a), the
mean number of daily observations within a month for this region is relatively lower than that
observed in more dry and seasonal regions of South America (Figure 2b). Thus, we suggest using
the number of samples layer as a proxy for uncertainty on the retrieval of monthly composites to
filter out pixels with low number of samples (e.g., less than three observations per composite).
The lesser number of samples one pixel has, the higher the uncertainty in the data analysis.
Although we use the median values to aggregate observations within months and mitigate
potential land cover changes, stand-replacing changes may cause inaccurate anisotropy estimates
for the given monthly estimates. Hence, we advise filtering data for land use and land cover
changes before using them to obtain the most accurate anisotropy estimates.
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Figure 2 — AnisoVeg time series availability and uncertainty over South America. (a) The number
of composites in the time series representing pixel availability. The maximum number of
composites in the time series is 262 for the period between March 2000 and December 2021. (b)
Mean number of daily observations within a month used to create the monthly composites as a
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proxy for uncertainty. The maximum daily observations in a composite are 60 (twice a day every
day for a month).

3. Spatial and temporal distribution of NAD and ANI data across the Amazon forests

We selected three experimental areas at the Brazilian Amazon rainforests to show the spatial and
temporal distribution of NAD and ANI data (rectangles in Figure 1). These areas show old-growth
rainforests with distinct canopy structure and aboveground biomass (AGB) stocks. The AGB
increases from semideciduous forests at the Xingu Park (190 + 19 Mg ha') and open
ombrophilous forests with lianas at the Sio Felix do Xingu (241 + 31 Mg ha?) to dense
ombrophilous forests at the Tapajos National Forest (288 + 38 Mg ha™), as estimated by the
ESA/CCI AGB map from 2017 (Santoro & Cartus, 2021). These are large-scale AGB estimates
and may underestimate the true AGB at higher values such as in the Tapajos site. These three
sites are also expected to show different phenological dynamics because their selected pixels
cover distinct phenoregions in the study reported by Xu et al. (2015).

When compared to the nadir-normalized EVI (EVInap) images (Figures 3a, b, ¢), the anisotropy
EVI (EVlani) data showed different spatial patterns across sites (Figures 3d, e, f). While the
forests over the three sites showed approximately similar EVInap values (EVInap = 0.50) (Figures
3a,b,c), they showed more variability in EVlan between the Xingu Park (EVIani > 0.20), Séo
Felix do Xingu (EVlani > 0.24), and Tapajds (EV1ani > 0.27) sites (Figures 3d,e,f). This increase
in EVIlan between sites goes into the same direction of the AGB gradient observed from the
Xingu Park to the Tapajés National Forest. This result may indicate different forest canopy
structures that were not captured in the EVInap observations, but were captured by the EViani.
Overall, the EVlani is high over forests (0.20 to 0.30) and low over pastures and crops (less than
0.10). This means large anisotropy between the reflected energy in backward and forward
scattering MODIS directions due to the structural complexity of forest canopies. The association
between anisotropy and forest canopy structure has been previously shown for the same region in
a previous work (Moura et al., 2016).
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Figure 3 — The spatial distribution in August 2020 (dry season) of the nadir-normalized Enhanced
Vegetation Index (EVInap) is shown in (a), (b), and (c) for the Tapajds National Forest, Sdo Felix
do Xingu and Xingu Park, respectively. Corresponding results for the anisotropy EVI (EVIani)
are shown in (d), (e), and (f), respectively. The triangles plotted over (a, b, and c) indicate the
sites used to obtain the profiles of Figure 4.

From the comparison of different sites (triangles in Figure 3a), we observed that the mean EVInap
signal over the time period did not vary much between the selected forests, while the EVIani
varied greatly (Figure 4): Tapajos (mean EVInap = 0.49, mean EVlan =0.27), Séo Felix do Xingu
(mean EVInap = 0.51, mean EVlan = 0.24), and Xingu Park (mean EVInap = 0.51, mean EViani
= 0.22). Moreover, EVInap and EVlan values were moderately positively correlated at Tapajds
(r = +0.37), weakly correlated at S&o Felix do Xingu (r = +0.06), and moderately negatively
correlated at the Xingu Park (r = -0.28). The EVInap and EVlani seasonal variability and phase
correlation changes from site to site, suggesting that different canopy dynamics processes are
likely being captured by the two metrics at the three sites. Understanding exactly what those
effects mean for these forests is beyond the scope of this paper. However, it indicates open venues
for studying forest functioning using these products. For example, previous studies have shown
that EVInap metrics captured different compositions of leaf ages in the canopies of the central
Amazon (Gongcalves et al., 2020).
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Figure 4 — Time series of AnisoVeg’s MODIS Enhanced Vegetation Index (EVI) from 2000 to
2021 for old-growth forests of the (a) Tapajos National Forest; (b) Sdo Felix do Xingu; (c) Xingu
Park. The black line indicates the nadir-normalized signal (NAD layer), while the red line
represents the EVI anisotropy (ANI layer). The profiles are the mean value of 3 x 3 pixels whose
locations are indicated by triangles in Figure 3.
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To demonstrate the potential of AnisoVeg for large-scale forest structure inference, we compared
the NAD and ANI data against forest height measurements from the Global Ecosystem Dynamics
Investigation (GEDI) LiDAR sensor. We found that EVIani was able to explain up to 55% of
height variability of Amazon forests according to a simple linear relationship (R?=0.55, p < 0.01,
Figure 5). This is a very strong predicting power for a single variable, considering a simple linear
model, especially for satellite passive optical data which are often underrated for forest structure
estimates in comparison to Synthetic Aperture Radar (SAR) data. EVInap Was significantly but
weakly associated to height variability (R*> = 0.16, p < 0.01), reinforcing the increase in
explanation power owed to the anisotropy metrics built from multi-angle observations. The height
data was derived from the GEDI LiDAR sensor aboard the International Space Station. They were
obtained more specifically from the product GEDI L2A elevation and height metrics data version
2 (footprint size 25 m), acquired from April 2019 to October 2020 (available dates at the time of
download). GEDI data were downloaded from Earth Data cloud service system
(https://earthdata.nasa.gov). We selected the Relative Height metric at 98th percentile (RH98),
which represents the top canopy height. The selected RH98 metric was averaged over each 1-km
grid cell, and filtered using a threshold of greater than or equal to 50 shots per km? to have a high
confidence of reliable height estimation representing the 1-km mean. The AnisoVeg data used for
this comparison were based on the same time period as GEDI, and filtered for EVInap larger than
0.35 to exclude non-forested areas. While we only showed the plot for the strongest EVIani:GEDI
relationship in June 2019 (Figure 5), the other months also showed significant (p < 0.01) and
strong relationships with R? ranging from 0.36 to 0.55 (mean R? = 0.46). Future studies should
explore relationships using ANI from different months and other indices, alone or in combination
with each other, to further understand their significance for explaining forest structure. This is
important to determine how the anisotropy data can contribute for aboveground biomass and
carbon estimates in conjunction with other sources of data such as those from SAR sensors.
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50 RMSE = 8.85 (45.2%) 50 " RMSE = 6.44 (32.9%
o R?=0.161
E E 7
o [ce]
[} ()]
I I
4 X 30 H
c c
© (1]
(0] Q
£ £
a Q 20+
5} o
10
I I I [ | I I | I |
0.4 05 06 0.7 00 01 02 03 04 05
June 2019 EViyao June 2019 EViy

Figure 5 — Relationship between forest height (GEDI mean RH98) and two AnisoVeg layers
obtained in June 2019 over the Amazon: (a) EVInap and (b) EViani. The RH98 metric is the
relative height at the 98™ percentile, which represents the top of canopy height. 7,000 random
matching pixels were used in this analysis (1% of 700,000 total matching pixels available),
resulting from the filtering of both GEDI and AnisoVeg data. The red line indicates the fitted line
by a simple linear model.
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Terrain illumination is a factor of spectral variability, which can affect EVInap determination and
its relationship with biophysical attributes of vegetation, as shown by previous literature (Huang
et al., 2010; Chen and Cao, 2012). Even at 1-km spatial resolution, EVlan results of Figures 3, 4
and 5 can be affected to some extent by terrain illumination effects observed locally at some sites.
For instance, topographic effects on EVlani occurred probably at the Sdo Felix do Xingu site
where topographic roughness, observed in SRTM data (results not shown), was coincident with
increased EVlani values in Figure 3E. Furthermore, even in relatively flat terrains, variations in
topographic aspect (surface orientation to Sun) can affect the EVI variability in MODIS data
because of the different amounts of energy reflected in the NIR towards the sensor by inclined
surfaces in the forward and backscattering view directions. Such effects have been observed in
southern Brazil with MODIS at 250-m spatial resolution and increased in magnitude at higher
spatial resolution data obtained by other sensors (Galvéo et al., 2016). Therefore, it may prove
useful to include topographic variables in modelling exercises to offset these effects.

In a prospective analysis, we also explored the behavior of the two EVI AnisoVeg metrics over
the Amazonian phenoregions mapped by Xu et al. (2015). The EVInap and EVIani monthly means
over different phenoregions highlighted the strong heterogeneity of the Amazonian forests
(Figure 6). For instance, the profiles showed strong differences between both metrics from
January to September in a phenoregion with well-defined dry and wet seasons (phenoregion one
in Figure 6a at the Xingu Park). Large differences between EVInap and EV1an Were also observed
in some phenoregions without a very long dry season in the northwest Amazon (phenoregion five
in Figure 6e). On the other hand, EVInap and EV1an showed temporal decoupling in phenoregion
three located at central-east Amazon (Figure 6c). Overall, while the seasonality of EVInap has
been investigated by many studies in the past, the seasonality of EVIani is something to be further
explored with the support of auxiliary data (e.g., airborne LIiDAR and field campaigns). This is
important to better understand the differences in seasonal patterns between both AnisoVeg
metrics.
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Figure 6 — Monthly means of EVInap (black) and EVlan (red) for nine phenoregions mapped by
Xu et al. (2015) in the Amazon. The phenoregions are shown in increasing order from 1 to 9 in

11



404
405
406
407

408
409

410
411
412
413
414
415
416
417

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

442

443
444
445
446

corresponding panels (a) to (i). They represent forests with similar seasonality and landscape
structure. Solid line and shaded area represent the mean and 95% confidence interval around the
mean. The values were extracted from 20 years of data (from 2001 to 2021) for 100 random
coordinates within each region, and extracted from 3 x 3 windows of pixels.

4. Prospective use of the dataset

The NAD layers from the AnisoVeg product have been used in previous studies to explore: the
climate drivers of the Amazon forest greening (Wagner et al., 2017); the large-scale Amazon
forest sensitivity to drought (Anderson et al., 2018); the structure and dominance of bamboo
species in southwest Amazon (Dalagnol et al., 2018); the productivity in a flooded forest in
eastern Amazon (Fonseca et al., 2019); the productivity and relationship with Sun-Induced
Fluorescence over the Brazilian Caatinga biome (Bontempo et al., 2020); the relationships with
leaf-age demography in central Amazon (Goncalves et al., 2020); and the relationships with fire
disturbance and SAR-based Vegetation Optical Depth in southern Amazon (Zhang et al., 2021).

The ANI layers from the AnisoVeg product have been mainly used to characterize Amazon forest
structure properties (Moura et al., 2015; 2016). These layers now open new venues of
investigation on vegetation, including (but not limited to): the characterization of biophysical
attributes of forests, including their seasonality and trends; the assessment of changes in
vegetation structure due to natural disturbances or degradation (logging, fire, edge effects); and
the evaluation of forest health and productivity (greenness and browning). We expect that this
dataset contributes to upscaling studies over large areas of key forest properties such as the AGB
and canopy roughness (Foody & Curran, 1994; Saatchi et al., 2008). This information is required
for dynamic vegetation models to accurately represent the carbon cycle. This dataset is not limited
to study Amazonian forests and can be used to explore other biomes of South America such as
the Atlantic Forest, savannas (Cerrado), Caatinga, Chaco, Pantanal, and Pampas. Such studies
could improve our understanding of large-scale vegetation functioning, carbon storage, and
cycling. Ultimately, they can contribute to refine global ecosystem models, and to obtain accurate
estimates of carbon cycle in response to climate and environmental change. Furthermore,
auxiliary backward and forward scattering data are also available with the dataset. Beyond the
use of the provided ANI layers, this effectively allows the computation of several other multi-
angular anisotropy indices from the literature (Table 3). The advantage or disadvantage of one
specific anisotropy index rather than others is not established in the literature given the range of
vegetation applications and the lack of available datasets up to date. We calculated and provided
only ANI due to its demonstrated relationships with Amazonian forests structure and functioning
(Moura et al., 2015; Moura et al., 2016; Hilker et al., 2017). However, we expect other indices,
including ratios and normalized differences between the backward and forward scattering
components, offer additional possibilities for tropical vegetation studies which should be explored
in future studies.

Table 3 — Examples of other multi-angular anisotropy indices that can be further calculated using
layers of the AnisoVeg product. Lambda represents the selected spectral band or vegetation index.
N, B, and F represent nadir-view normalization, backward scattering, and forward scattering
estimates, respectively.

Anisotropy Indices Formula Reference
Anisotropy index (ANIX) ] Sandmeier et
Ar al. (1998)
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Nadir BRDF-adjusted NDVI (NDVlso) NIRy — REDN Schaaf et al.
NIRN+REDy (2002)
Hot-spot dark-spot index (HDSgep) REDp — REDp Lacaze et al.
REDF (2002)
Normalized difference between hot-spot NIRp — NIRF Chen et al.
and dark-spot index (NDHDwr) NIRp+ NIRp (2005)
Hot-spot dark-spot NDVI (NDVlwp) NIRp — REDR Pocewicz et
NIRp+ REDF al. (2007)
Hot-spot-incorporated NDVI (NDVlus) NDVIy x(1— REDg) Pocewicz et
al. (2007)
Anisotropy difference (ANI)* Ap — Ap Moura et al.
(2015)
Vegetation Structure Index (VSI) NDVIp — NDVIg Sharma et al.
1-NIRFr (2021)

*ANI is included in the AnisoVeg product. Source: Adapted from Sharma et al. (2021).

5. Code and data availability

All code is available at GitHub (https://github.com/ricds/maiac_processing) (Dalagnol &
Wagner, 2022). The full dataset can be found at the official AnisoVeg repository at Zenodo
(https://doi.org/10.5281/zenodo.3878879) (Dalagnol et al., 2022). The dataset was organized in
compressed files (“.zip” format) sub-divided by years (currently 2000-2021) and layers (bands 1-
8, NDVI, and EVI) for both nadir-normalization (code = NAD) and anisotropy (code = ANI). The
number of samples layers (code = NO_SAMPLES) are also provided. Inside each compressed
file there will be 12 image files (“.tif” format), one per month, except for the year 2000 which
starts in March. The storage size for the whole dataset is 162.6 GB. The data have a scale factor
of 10,000 to reduce file storage size. Thus, to obtain surface reflectance values of bands or correct
range of values for indices, you should divide the layers by 10,000. The exception is the number
of samples, which already shows the correct range of values from 0 to 60 observations. The dataset
is planned to be updated on a yearly-basis. Auxiliary data that allow the calculation of other
anisotropy metrics (listed in Table 3) are included in two separate Zenodo repositories for
backward (https://doi.org/10.5281/zenodo.6040300) (Dalagnol, 2022a) and forward scattering
(https://doi.org/10.5281/10.5281/zenodo.6048785) (Dalagnol, 2022b), including the selected
layers Red, NIR, NDVI and EVI. The EVlani and EVInap layers were also uploaded to the GEE
platform using the geeup tool v0.5.3 (Roy, 2022). They can be accessed through the GEE

ImageCollection assets “projects/anisoveg/assets/evi_anisotropy” and
“projects/anisoveg/assets/evi_nadir”, found at
<https://code.earthengine.google.com/?asset=projects/anisoveg/assets/evi_anisotropy> and

<https://code.earthengine.google.com/?asset=projects/anisoveg/assets/evi_nadir>.
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