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Abstract 27 

The AnisoVeg product consists of monthly 1-km composites of anisotropy (ANI) and nadir-28 
normalized (NAD) surface reflectance layers obtained from the Moderate Resolution Imaging 29 
Spectroradiometer (MODIS) sensor over the entire South America. The satellite data were pre-30 
processed using the Multi-Angle Implementation Atmospheric Correction (MAIAC). The 31 
AnisoVeg product spans 22 years of observations (2000 to 2021) and includes the reflectance of 32 
MODIS bands 1 to 8 and two vegetation indices (VIs): Normalized Difference Vegetation Index 33 
(NDVI) and Enhanced Vegetation Index (EVI). While the NAD layers reduce the data variability 34 
added by bidirectional effects on the reflectance and VI time series, the unique ANI layers allow 35 
the use of this multi-angular data variability as a source of information for vegetation studies. The 36 
AnisoVeg product has been generated using daily MODIS MAIAC data from both Terra and 37 
Aqua satellites, normalized for a fixed solar zenith angle (SZA = 45o), modelled for three sensor 38 
view directions (nadir, forward, and backward scattering), and aggregated to monthly composites. 39 
The anisotropy was calculated by the subtraction of modelled backward and forward scattering 40 
surface reflectance. The release of the ANI data for open usage is novel, as well as the NAD data 41 
at an advance processing level. We demonstrate the use of such data for vegetation studies using 42 
three types of forests in eastern Amazon with distinct gradients of vegetation structure and 43 
aboveground biomass (AGB). The gradient of AGB was positively associated with ANI, while 44 
NAD values were related to different canopy structural characteristics. This was further illustrated 45 
by the strong and significant relationship between EVIANI and forest height observations from the 46 
Global Ecosystem Dynamics Investigation (GEDI) LiDAR sensor considering a simple linear 47 
model (R2 = 0.55). Overall, the time series of the AnisoVeg product (NAD and ANI) provide 48 
distinct information for various applications aiming at understanding vegetation structure, 49 
dynamics, and disturbance patterns. All data, processing codes and results are made publicly 50 
available to enable research and the extension of AnisoVeg products for other regions outside the 51 
South America. The code can be found at https://doi.org/10.5281/zenodo.6561351 (Dalagnol and 52 
Wagner, 2022), EVIANI and EVINAD can be found as assets in the Google Earth Engine (GEE) 53 
(described in the data availability section), and the full dataset is available at the open repository 54 
<https://doi.org/10.5281/zenodo.3878879> (Dalagnol et al., 2022). 55 

Key-words: AnisoVeg, South America, vegetation structure, forest monitoring, MODIS. 56 

 57 

1. Introduction 58 

The anisotropy is defined as the departure from Lambertian scattering (isotropic), caused by the 59 
physical structure of media through which photons pass. Because most land covers are not 60 
Lambertian (isotropic), the surface reflectance measured by satellite sensors varies with the view 61 
zenith angle (VZA), view direction (backward or forward scattering), and solar zenith angle 62 
(SZA) (Galvão et al., 2011). This is especially valid for images acquired over vegetated surfaces 63 
by large field-of-view (FOV) instruments such as the Moderate Resolution Imaging 64 
Spectroradiometer (MODIS) (Bhandari et al., 2011). MODIS has a wide swath scanning ±55o 65 
from nadir on board the Terra and Aqua satellites. For example, a reflected signal coming from 66 
the backward scattering direction of MODIS under a large VZA and close-to-zero relative 67 
azimuth angle (RAA) between the satellite and sun (sun behind the platform) is generally higher 68 
than that coming from the nadir (VZA = 0º) or forward scattering direction (platform facing the 69 
sun at RAA = 180º). Moreover, the SZA also varies seasonally and across geographical locations, 70 
affecting the amounts of shadows in the surfaces observed by satellites (Galvão et al., 2013). Such 71 
view-illumination effects are dependent on the land cover types and their magnitude relates to 72 
differences in biophysical properties of the vegetation (Galvão et al., 2004; Sims et al., 2011). 73 
Therefore, the vegetation anisotropy can be seen antagonistically as sources of noise and 74 

https://doi.org/10.5281/zenodo.6561351
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biophysical information in the time-series analysis of vegetation indices (VIs) calculated from 75 
MODIS. As a source of noise, one may consider that the reflected signal toward the large FOV 76 
satellite sensors varies with distinct view-illumination geometries of data acquisition over the 77 
same surface. As a source of information, one may highlight that the anisotropy is land-cover type 78 
dependent, showing spectral variations that may be associated, for instance, with changes in 79 
vegetation structure across different forests.  80 

To reduce the bidirectional effects as a source of noise, a nadir-normalized dataset can be created. 81 
We can normalize the surface reflectance of the MODIS bands to a specific set of VZA and SZA 82 
using the bidirectional reflectance distribution function (BRDF), represented by a model such as 83 
the Ross-Thick Li-Sparse (RTLS) (Wanner et al., 1995). To ensure confidence in the data 84 
analysis, we can also use the Multi-Angle Implementation Atmospheric Correction (MAIAC) for 85 
atmospheric correction. MAIAC is a new generation of cloud screening and atmospheric 86 
correction algorithm that uses an adaptive time series analysis and processing of groups of pixels 87 
to derive atmospheric aerosol concentration, cloud mask and surface reflectance without typical 88 
empirical assumptions (Lyapustin et al., 2011, 2012). By mitigating atmospheric interference and 89 
advancing the accuracy of surface reflectance over tropical vegetation by a factor of 3 to 10, 90 
MAIAC offers substantial improvement over conventional products such as the MOD09 (Hilker 91 
et al., 2012). Because of the better data quality retrieval, MAIAC is also an alternative to the 92 
MCD43A4 16-day Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted 93 
Reflectance (NBAR) product due to the less variable seasonal signal (3 to 10 times) over 94 
evergreen forests resultant from reduced effects of sun-view geometry. While the MCD43A4 95 
NBAR product offers view-illumination correction, using the MAIAC products one can also 96 
correct for solar illumination effects at the same time. Due to the improvements in cloud detection, 97 
aerosol retrieval and atmospheric correction, the MAIAC algorithm provides from 4 to 25% more 98 
high-quality retrievals than the traditional MOD09 product, with the largest estimate being 99 
observed for tropical regions (Lyapustin et al., 2021). Studies have used MODIS MAIAC 100 
observations with nadir-normalized geometry to assess Amazonian forests’ structure, functioning, 101 
and impacts of environmental and climate change (Hilker et al., 2014; Wagner et al., 2017; 102 
Anderson et al., 2018; Dalagnol et al., 2018; Fonseca et al., 2019; Bontempo et al., 2020; 103 
Gonçalves et al., 2020; Zhang et al., 2021). For instance, such products provided reliable time 104 
series of surface reflectance data that allowed to identify large-scale communities of bamboo 105 
species and their dynamics in the southwest Amazon (Dalagnol et al., 2018). Lastly, by improving 106 
the cloud screening and minimizing BRDF artifacts in comparison to uncorrected data, the 107 
MAIAC greatly contributed to the understanding of the long-standing debate in the Amazon over 108 
the possible existence of the green-up phenomenon observed during the dry season of each year 109 
or with severe droughts (Morton et al., 2014; Bi et al., 2015; Saleska et al., 2016; Wu et al., 2017). 110 
The existence of this phenomenon has implications on the comprehension of the resilience of 111 
tropical forests to climate change. 112 

To use the bidirectional effects as a source of information, we generate an anisotropy dataset that 113 
is dependent on land-cover types and captures the variations of sunlit and shaded canopy 114 
components viewed by the sensors (Chen et al., 2003; Gao, 2003). The use of multi-angular 115 
information to obtain metrics of anisotropy and extract information on forest structure was 116 
suggested two decades ago (Gobron et al., 2002; Diner et al., 2005).  One of the early experiments 117 
exploring the use of anisotropy to extract information about vegetation structure were conducted 118 
by calculating the ratio between backward and forward scattering data and generating the 119 
anisotropy index (ANIX) on studying short-stature grass-type vegetation (Sandmeier et al., 1998).  120 
Other indices have been developed and validated afterwards (Schaaf et al., 2002; Lacaze et al., 121 
2002; Chen et al., 2005; Pocewicz et al., 2007; Moura et al., 2015; Sharma et al., 2021). However, 122 
this remains an understudied topic with limited results reported in the literature, especially in 123 
tropical regions. For instance, observations from the Multi-angle Imaging Spectroradiometer 124 
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(MISR)/Terra in the backward and forward scattering directions facilitated the discrimination of 125 
savanna physiognomies in Brazil (Liesenberg et al., 2007). MODIS MAIAC data from both 126 
directions were also used to calculate an anisotropic VI that explained part of the large-scale 127 
photosynthetic activity in the Amazon, where higher photosynthetic activity was associated to 128 
higher anisotropy values (Sousa et al., 2017). Moura et al. (2015) employed a more sophisticated 129 
approach based on scattering at backward and forward view directions using multi-temporal and 130 
multi-angular observations of MAIAC MODIS and BRDF modelling. The resultant metrics of 131 
anisotropy were further validated against field and airborne Light Detection And Ranging 132 
(LiDAR) observations, showing strong linear relationship with leaf area index (LAI) (R² = 0.70-133 
0.88), canopy heterogeneity (R² = 0.54), and photosynthetic activity (R² = 0.73-0.98) (Moura et 134 
al., 2015; Moura et al., 2016; Hilker et al., 2017). Although showing great potential in vegetation 135 
studies, the aforementioned anisotropy metrics were never computed over larger areas of the 136 
world such as proposed in this study for South America. 137 

The objective of this work is to present the AnisoVeg product, and how it can be used for 138 
vegetation studies. We use MODIS Collection 6 (C6) MAIAC (Lyapustin et al., 2018) monthly 139 
data (2000-2021) generated at 1-km spatial resolution for the entire South America with two 140 
different types of layers: (1) nadir-normalized (NAD) data for the surface reflectance of MODIS 141 
bands 1 to 8 and two VIs (NDVI and EVI); and (2) anisotropy data (ANI) calculated from the 142 
difference between backward and forwarding scattering estimates of bands 1 to 8 and VIs (Moura 143 
et al., 2015). The motivations for generating this product extend from developing applications of 144 
multi-angle observations for vegetation studies to producing analysis-ready and openly available 145 
datasets of anisotropy and nadir metrics for a larger community of users. The paper is organized 146 
in several sections to present the processing steps for generating the AnisoVeg products, a brief 147 
evaluation of data products over experimental areas, and finally an example of its potential 148 
application in vegetation studies. 149 

 150 

2. Methodology to compute the AnisoVeg product 151 

2.1. Daily MODIS MAIAC surface reflectance data over South America 152 

Daily surface reflectance data were obtained from the MODIS product MCD19A1 v006 153 
(collection 6) for the tiles covering South America (Figure 1). According to the MODIS traditional 154 
tiling system, these tiles ranged from 9-14 (horizontal) and 7-14 (vertical). The input data 155 
consisted in cross-calibrated surface reflectance from Terra and Aqua satellites on eight spectral 156 
bands (Table 1) with 1-km spatial resolution from 2000 to 2021 (Lyapustin & Wang, 2018; 157 
http://dx.doi.org/10.5067/MODIS/MCD19A1.006). This product provides surface reflectance 158 
data corrected for atmospheric effects by the MAIAC algorithm, and controlled for cloud-free 159 
and clear-to-moderately turbid conditions with Aerosol Optical Depth (AOD) at 0.47 µm below 160 
1.5 (Lyapustin et al., 2018). The MAIAC algorithm uses a time series approach for improved 161 
cloud filtering amongst other filters such as surface reflectance change in order to provide the 162 
most accurate surface reflectance estimates. The raw data were obtained from the NASA's Level-163 
1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive Center 164 
(DAAC) available at https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/6/MCD19A1/.  165 

 166 

http://dx.doi.org/10.5067/MODIS/MCD19A1.006).
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/6/MCD19A1/.
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 167 

Figure 1 – AnisoVeg product concept and the area of coverage. (a) Schematic representation 168 
showing the observational geometry and the processing steps for producing NAD and ANI data 169 
from MODIS and to provide information on vegetation heterogeneity and structure, and (b) the 170 
visualization of the anisotropy EVI (EVIANI) for South America from August 2021 at 1-km spatial 171 
resolution, showing the coverage of the product in South America and the location of three sites 172 
used to demonstrate potential applications. The sites are: (1) Tapajós National Forest, (2) São 173 
Felix do Xingu, and (3) Xingu Park. Red lines indicate the countries boundaries. 174 

 175 

Table 1 – MODIS spectral bands. NIR = near infrared; SWIR = shortwave infrared. 176 

Band number Band name Wavelength (nm) 
1 Red 620–670 
2 NIR-1 841–876 
3 Blue-1 459–479 
4 Green 545–565 
5 NIR-2 1230–1250 
6 SWIR-1 1628–1652 
7 SWIR-2 2105–2155 
8 Blue-2 405–420 

 177 

2.2. The AnisoVeg product 178 

The AnisoVeg product consists of two main types of data spanning from 2000 to 2021 in monthly 179 
composites at 1-km spatial resolution: (a) the nadir-normalized (NAD) data; and (b) the 180 
anisotropy (ANI) data. Each data type has 10 layers corresponding to the MODIS bands 1 to 8, 181 
and two VIs (NDVI and EVI). Additionally, the product provides auxiliary layers of backward 182 
scattering and forward scattering, including part of the bands (description on section 5).  183 

 184 
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2.2.1. The nadir-normalized (NAD) data 185 

In order to minimize the differences in sun-sensor geometry between the MODIS scenes and 186 
generate the NAD dataset, the daily surface reflectance data were normalized to a fixed 45º SZA 187 
and to nadir observation (VZA = 0o) using the BRDF and the Ross-Thick Li-Sparse (RTLS) model 188 
(Wanner et al., 1995). Parameters of the RTLS BRDF model are part of the MAIAC product suite 189 
(MCD19A3 product) reported every 8 days. The MAIAC algorithm detects significant land cover 190 
changes (e.g. fire, deforestation) within the 8-day period and does not use those observations for 191 
the BRDF inversion (Lyapustin et al., 2018). A minimum of three observations in the eight-day 192 
window was required to accurately model the signal. The closest RTLS parameters in time were 193 
used to normalize the daily data. The normalized Bidirectional Reflectance Factor (BRFn) for the 194 
NAD surface reflectance (SZA = 45º, VZA = 0º, RAA = 0º) was calculated using Eq. 1 (Lyapustin 195 
et al., 2018):   196 

= ݊ܨܴܤ ௞ × ܨܴܤ 
ಽ ା ிబೇ × ௞ೇ ା ிబಸ  × ௞ಸ

௞ಽ ା ிೇ  × ௞ೇ ା ிಸ  ×  ௞ಸ
   (1) 197 

where kL, kV, and kG are the BRDF isotropic, volumetric, and geometric-optical kernel weights, 198 
respectively; F0V and F0G are the BRDF kernel values for the given geometry listed in Table 2; 199 
and FV and FG are the kernel values of the RTLS model for the specific MODIS observation, 200 
respectively (Lyapustin et al., 2018). FV and FG values are available at 5-km cells and were 201 
resampled to 1-km using the nearest neighbors’ method to match the spatial resolution of the 202 
spectral bands. This resampling step does not create spatial artifacts in the data because the 203 
geometry changes slowly over time (Lyapustin et al., 2018). 204 

Table 2 – View-angle normalizations and corresponding BRDF kernel values. 205 

View-angle Solar 
Zenith 
Angle 

(SZA, º) 

View 
Zenith 
Angle 

(VZA, º) 

Relative 
Azimuth 

Angle 
(RAA, º) 

F0V F0G 

Nadir  45 0 0 -0.04578 - 1.10003 
Backward 
scattering 45 35 180 0.22930469 0.017440045 

Forward 
scattering 45 35 0 -0.12029795 -1.6218740 

 206 

We aggregated normalized daily data into monthly composites by keeping the median values for 207 
each pixel. During the temporal aggregation, we also calculated the per-pixel number of samples 208 
(or observations) for each monthly composite, which can be used as auxiliary data to filter pixels 209 
with low number of observations (less reliable estimates of surface reflectance). The tiles were 210 
mosaicked for the entire South America and then re-projected from the original sinusoidal 211 
projection to the geographic coordinates system (datum WGS-84, EPSG 4326). The output spatial 212 
resolution corresponded to 0.0091 degrees, which is approximately equivalent to 1 km in 213 
projected coordinates.  214 

We also calculated two traditional vegetation indices: NDVI (Rouse et al., 1973) (Eq. 2) and EVI 215 
(Huete et al., 2002) (Eq. 3). 216 

= ܫܸܦܰ  ఘேூோ ି ఘோ௘ௗ
ఘேூோ ା ఘோ௘ௗ

  (2) 217 

= ܫܸܧ  2.5 × ఘேூோ  ି ఘோ௘ௗ
ఘேூோ ା (଺ × ఘோ௘ௗ ି ଻.ହ × ఘ஻௟௨௘) ା ଵ

  (3) 218 
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where ρ is the surface reflectance of a MODIS band, ρNIR is the NIR reflectance (band 2), ρRed 219 
is the red reflectance (band 1), and ρBlue is the blue reflectance (band 3). The constants in Eq. 3 220 
(6, 7.5, 1, and 2.5) represent: the aerosol coefficient adjustment of the atmosphere for the red and 221 
blue bands; the adjustment factor for the soil; and the gain factor, respectively (Huete et al., 2002). 222 

 223 

2.2.2. The anisotropy (ANI) data 224 

For the ANI data, the daily surface reflectance data was first normalized to two viewing-angles at 225 
the backward (SZA = 45º, VZA = 35º, RAA = 180º) and forward (SZA = 45º, VZA = 35º, RAA 226 
= 0º) scattering using Eq. 1 and values from Table 2. The VZA was set to near hotspot (VZA = 227 
35º) instead of the actual hotspot (VZA = 45º) to keep VZA closer to the actual range of MODIS 228 
observations across the South America and minimize errors coming from extrapolation of the 229 
BRDF (Moura et al., 2015). The standard deviation for this modelling was thoroughly 230 
investigated in a previous study and determined as 10% of the observed variation in anisotropy 231 
(Moura et al., 2015). Further, we aggregated the backward and forward scattering data temporally 232 
into monthly composites following the same procedures as before for the NAD data. We then 233 
calculated the NDVI and EVI for each of the view-angle normalizations. Finally, we obtained the 234 
difference between backward and forward scattering estimates for each of the eight MODIS 235 
bands, as well as for the NDVI and EVI, effectively generating the ANI layers (Eq. 4; Moura et 236 
al., 2015): 237 

௜ܫܰܣ = ௜݀ݎܽݓ݇ܿܽܤ −  ௜  (4) 238݀ݎܽݓݎ݋ܨ

where i is the spectral band or VI selected in the calculation. 239 

 240 

2.3. Algorithm and computation 241 

All data processing was done in R v4.0.2 (R Core Team, 2016) and the code is available at GitHub 242 
(https://github.com/ricds/maiac_processing) (Dalagnol & Wagner, 2022). Besides processing the 243 
AnisoVeg product from the daily MAIAC MODIS data, the code can also generate 16-day or 8-244 
day temporal composites, mosaics, and VIs. Although we focused on South America when 245 
developing AnisoVeg, the code can readily be adapted to process data for other parts of the world 246 
and generate corresponding NAD and ANI layers. Below, we provide the computer specification 247 
for anyone who wishes to process the data independently. 248 

For the presented dataset, the computation was performed under a HP Z840 Workstation with 249 
Intel Xeon CPU E5-2640 v3 (2.60Ghz, 32 cores), and 64 GB (gigabytes) RAM memory. The 250 
daily MODIS data for the whole South America from 2000 to 2021 accounted for 6.69 TB 251 
(terabytes). Processing monthly composites is computationally intensive due to loading all daily 252 
data for each month at once for a given tile. Thus, the main bottlenecks are RAM memory and 253 
hard drive writing speed. For the workstation with 64 GB memory, the usage of 10 cores running 254 
in parallel processing was the optimal choice. The average processing time of each monthly 255 
composite for one tile was 6 minutes. Therefore, it took 26.2 hours to process the 262 composites 256 
(March 2000 to December 2021) for each tile. Since we had 31 tiles covering the South America, 257 
the total amount of time to process one view-normalization was approximately a month (33.8 258 
days). Consequently, the total time spent in computation was 101.5 days for processing the three 259 
view-normalizations (nadir, backward, and forward scattering) and generating the NAD and ANI 260 
layers. Processing can also be done with less potent computers with a minimum of 16 GB RAM 261 
memory and 4 processing cores. 262 

 263 

https://github.com/ricds/maiac_processing)
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2.4. Time series availability and uncertainty 264 

The monthly compositing process returned a time series dataset over all of South America with 265 
an average of 242 ± 35 out of a maximum of 262 composites (period between March 2000 and 266 
December 2021) for each pixel with some data missing due to lack of high-quality observations 267 
(Figure 2). Only 34.3% of the available pixels have the full time series (262 composites). The 268 
Amazon region shows a lower mean number of samples in the time series with an average of 231 269 
± 29 composites, which can be seen in Figure 2. This lower number of samples is due to the innate 270 
high cloud cover (Durieux et al., 2003). It is important to note that the AnisoVeg product was 271 
strictly created to analyze land surface and does not cover water bodies. Moreover, the period 272 
between March 2000 and June 2002 has higher amounts of missing data because it preceded the 273 
launch of the Aqua satellite. When data from both satellites (Terra and Aqua) were combined to 274 
create the product after 2002, we had a much better pixel level data availability to produce dense 275 
time series. Although we have a dense time series across the Amazon rainforests (Figure 2a), the 276 
mean number of daily observations within a month for this region is relatively lower than that 277 
observed in more dry and seasonal regions of South America (Figure 2b). Thus, we suggest using 278 
the number of samples layer as a proxy for uncertainty on the retrieval of monthly composites to 279 
filter out pixels with low number of samples (e.g., less than three observations per composite). 280 
The lesser number of samples one pixel has, the higher the uncertainty in the data analysis. 281 
Although we use the median values to aggregate observations within months and mitigate 282 
potential land cover changes, stand-replacing changes may cause inaccurate anisotropy estimates 283 
for the given monthly estimates. Hence, we advise filtering data for land use and land cover 284 
changes before using them to obtain the most accurate anisotropy estimates. 285 

 286 

Figure 2 – AnisoVeg time series availability and uncertainty over South America. (a) The number 287 
of composites in the time series representing pixel availability. The maximum number of 288 
composites in the time series is 262 for the period between March 2000 and December 2021. (b) 289 
Mean number of daily observations within a month used to create the monthly composites as a 290 
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proxy for uncertainty. The maximum daily observations in a composite are 60 (twice a day every 291 
day for a month). 292 

 293 

3. Spatial and temporal distribution of NAD and ANI data across the Amazon forests 294 

We selected three experimental areas at the Brazilian Amazon rainforests to show the spatial and 295 
temporal distribution of NAD and ANI data (rectangles in Figure 1). These areas show old-growth 296 
rainforests with distinct canopy structure and aboveground biomass (AGB) stocks. The AGB 297 
increases from semideciduous forests at the Xingu Park (190 ± 19 Mg ha-1) and open 298 
ombrophilous forests with lianas at the São Felix do Xingu (241 ± 31 Mg ha-1) to dense 299 
ombrophilous forests at the Tapajós National Forest (288 ± 38 Mg ha-1), as estimated by the 300 
ESA/CCI AGB map from 2017 (Santoro & Cartus, 2021). These are large-scale AGB estimates 301 
and may underestimate the true AGB at higher values such as in the Tapajós site. These three 302 
sites are also expected to show different phenological dynamics because their selected pixels 303 
cover distinct phenoregions in the study reported by Xu et al. (2015).  304 

When compared to the nadir-normalized EVI (EVINAD) images (Figures 3a, b, c), the anisotropy 305 
EVI (EVIANI) data showed different spatial patterns across sites (Figures 3d, e, f). While the 306 
forests over the three sites showed approximately similar EVINAD values (EVINAD ≈ 0.50) (Figures 307 
3a,b,c), they showed more variability in EVIANI between the Xingu Park (EVIANI > 0.20), São 308 
Felix do Xingu (EVIANI > 0.24), and Tapajós (EVIANI > 0.27) sites (Figures 3d,e,f). This increase 309 
in EVIANI between sites goes into the same direction of the AGB gradient observed from the 310 
Xingu Park to the Tapajós National Forest. This result may indicate different forest canopy 311 
structures that were not captured in the EVINAD observations, but were captured by the EVIANI. 312 
Overall, the EVIANI is high over forests (0.20 to 0.30) and low over pastures and crops (less than 313 
0.10). This means large anisotropy between the reflected energy in backward and forward 314 
scattering MODIS directions due to the structural complexity of forest canopies. The association 315 
between anisotropy and forest canopy structure has been previously shown for the same region in 316 
a previous work (Moura et al., 2016). 317 

 318 
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Figure 3 – The spatial distribution in August 2020 (dry season) of the nadir-normalized Enhanced 319 
Vegetation Index (EVINAD) is shown in (a), (b), and (c) for the Tapajós National Forest, São Felix 320 
do Xingu and Xingu Park, respectively. Corresponding results for the anisotropy EVI (EVIANI) 321 
are shown in (d), (e), and (f), respectively. The triangles plotted over (a, b, and c) indicate the 322 
sites used to obtain the profiles of Figure 4. 323 

From the comparison of different sites (triangles in Figure 3a), we observed that the mean EVINAD 324 
signal over the time period did not vary much between the selected forests, while the EVIANI 325 
varied greatly (Figure 4): Tapajós (mean EVINAD = 0.49, mean EVIANI = 0.27), São Felix do Xingu 326 
(mean EVINAD = 0.51, mean EVIANI = 0.24), and Xingu Park (mean EVINAD = 0.51, mean EVIANI 327 
= 0.22). Moreover, EVINAD and EVIANI values were moderately positively correlated at Tapajós 328 
(r = +0.37), weakly correlated at São Felix do Xingu (r = +0.06), and moderately negatively 329 
correlated at the Xingu Park (r = -0.28). The EVINAD and EVIANI seasonal variability and phase 330 
correlation changes from site to site, suggesting that different canopy dynamics processes are 331 
likely being captured by the two metrics at the three sites. Understanding exactly what those 332 
effects mean for these forests is beyond the scope of this paper. However, it indicates open venues 333 
for studying forest functioning using these products. For example, previous studies have shown 334 
that EVINAD metrics captured different compositions of leaf ages in the canopies of the central 335 
Amazon (Gonçalves et al., 2020).  336 

 337 

Figure 4 – Time series of AnisoVeg’s MODIS Enhanced Vegetation Index (EVI) from 2000 to 338 
2021 for old-growth forests of the (a) Tapajós National Forest; (b) São Felix do Xingu; (c) Xingu 339 
Park. The black line indicates the nadir-normalized signal (NAD layer), while the red line 340 
represents the EVI anisotropy (ANI layer). The profiles are the mean value of 3 x 3 pixels whose 341 
locations are indicated by triangles in Figure 3. 342 
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To demonstrate the potential of AnisoVeg for large-scale forest structure inference, we compared 343 
the NAD and ANI data against forest height measurements from the Global Ecosystem Dynamics 344 
Investigation (GEDI) LiDAR sensor. We found that EVIANI was able to explain up to 55% of 345 
height variability of Amazon forests according to a simple linear relationship (R2 = 0.55, p < 0.01, 346 
Figure 5). This is a very strong predicting power for a single variable, considering a simple linear 347 
model, especially for satellite passive optical data which are often underrated for forest structure 348 
estimates in comparison to Synthetic Aperture Radar (SAR) data. EVINAD was significantly but 349 
weakly associated to height variability (R2 = 0.16, p < 0.01), reinforcing the increase in 350 
explanation power owed to the anisotropy metrics built from multi-angle observations. The height 351 
data was derived from the GEDI LiDAR sensor aboard the International Space Station. They were 352 
obtained more specifically from the product GEDI L2A elevation and height metrics data version 353 
2 (footprint size 25 m), acquired from April 2019 to October 2020 (available dates at the time of 354 
download). GEDI data were downloaded from Earth Data cloud service system 355 
(https://earthdata.nasa.gov). We selected the Relative Height metric at 98th percentile (RH98), 356 
which represents the top canopy height. The selected RH98 metric was averaged over each 1-km 357 
grid cell, and filtered using a threshold of greater than or equal to 50 shots per km2 to have a high 358 
confidence of reliable height estimation representing the 1-km mean. The AnisoVeg data used for 359 
this comparison were based on the same time period as GEDI, and filtered for EVINAD larger than 360 
0.35 to exclude non-forested areas. While we only showed the plot for the strongest EVIANI:GEDI 361 
relationship in June 2019 (Figure 5), the other months also showed significant (p < 0.01) and 362 
strong relationships with R2 ranging from 0.36 to 0.55 (mean R2 = 0.46). Future studies should 363 
explore relationships using ANI from different months and other indices, alone or in combination 364 
with each other, to further understand their significance for explaining forest structure. This is 365 
important to determine how the anisotropy data can contribute for aboveground biomass and 366 
carbon estimates in conjunction with other sources of data such as those from SAR sensors. 367 

 368 

Figure 5 – Relationship between forest height (GEDI mean RH98) and two AnisoVeg layers 369 
obtained in June 2019 over the Amazon: (a) EVINAD and (b) EVIANI. The RH98 metric is the 370 
relative height at the 98th percentile, which represents the top of canopy height. 7,000 random 371 
matching pixels were used in this analysis (1% of 700,000 total matching pixels available), 372 
resulting from the filtering of both GEDI and AnisoVeg data. The red line indicates the fitted line 373 
by a simple linear model. 374 

https://earthdata.nasa.gov).
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Terrain illumination is a factor of spectral variability, which can affect EVINAD determination and 375 
its relationship with biophysical attributes of vegetation, as shown by previous literature (Huang 376 
et al., 2010; Chen and Cao, 2012). Even at 1-km spatial resolution, EVIANI results of Figures 3, 4 377 
and 5 can be affected to some extent by terrain illumination effects observed locally at some sites. 378 
For instance, topographic effects on EVIANI occurred probably at the São Felix do Xingu site 379 
where topographic roughness, observed in SRTM data (results not shown), was coincident with 380 
increased EVIANI values in Figure 3E. Furthermore, even in relatively flat terrains, variations in 381 
topographic aspect (surface orientation to Sun) can affect the EVI variability in MODIS data 382 
because of the different amounts of energy reflected in the NIR towards the sensor by inclined 383 
surfaces in the forward and backscattering view directions. Such effects have been observed in 384 
southern Brazil with MODIS at 250-m spatial resolution and increased in magnitude at higher 385 
spatial resolution data obtained by other sensors (Galvão et al., 2016). Therefore, it may prove 386 
useful to include topographic variables in modelling exercises to offset these effects. 387 

In a prospective analysis, we also explored the behavior of the two EVI AnisoVeg metrics over 388 
the Amazonian phenoregions mapped by Xu et al. (2015). The EVINAD and EVIANI monthly means 389 
over different phenoregions highlighted the strong heterogeneity of the Amazonian forests 390 
(Figure 6). For instance, the profiles showed strong differences between both metrics from 391 
January to September in a phenoregion with well-defined dry and wet seasons (phenoregion one 392 
in Figure 6a at the Xingu Park). Large differences between EVINAD and EVIANI were also observed 393 
in some phenoregions without a very long dry season in the northwest Amazon (phenoregion five 394 
in Figure 6e). On the other hand, EVINAD and EVIANI showed temporal decoupling in phenoregion 395 
three located at central-east Amazon (Figure 6c). Overall, while the seasonality of EVINAD has 396 
been investigated by many studies in the past, the seasonality of EVIANI is something to be further 397 
explored with the support of auxiliary data (e.g., airborne LiDAR and field campaigns). This is 398 
important to better understand the differences in seasonal patterns between both AnisoVeg 399 
metrics. 400 

 401 

Figure 6 – Monthly means of EVINAD (black) and EVIANI (red) for nine phenoregions mapped by 402 
Xu et al. (2015) in the Amazon. The phenoregions are shown in increasing order from 1 to 9 in 403 
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corresponding panels (a) to (i). They represent forests with similar seasonality and landscape 404 
structure. Solid line and shaded area represent the mean and 95% confidence interval around the 405 
mean. The values were extracted from 20 years of data (from 2001 to 2021) for 100 random 406 
coordinates within each region, and extracted from 3 x 3 windows of pixels. 407 

 408 

4. Prospective use of the dataset 409 

The NAD layers from the AnisoVeg product have been used in previous studies to explore: the 410 
climate drivers of the Amazon forest greening (Wagner et al., 2017); the large-scale Amazon 411 
forest sensitivity to drought (Anderson et al., 2018); the structure and dominance of bamboo 412 
species in southwest Amazon (Dalagnol et al., 2018); the productivity in a flooded forest in 413 
eastern Amazon (Fonseca et al., 2019); the productivity and relationship with Sun-Induced 414 
Fluorescence over the Brazilian Caatinga biome (Bontempo et al., 2020); the relationships with 415 
leaf-age demography in central Amazon (Gonçalves et al., 2020); and the relationships with fire 416 
disturbance and SAR-based Vegetation Optical Depth in southern Amazon (Zhang et al., 2021).  417 

The ANI layers from the AnisoVeg product have been mainly used to characterize Amazon forest 418 
structure properties (Moura et al., 2015; 2016). These layers now open new venues of 419 
investigation on vegetation, including (but not limited to): the characterization of biophysical 420 
attributes of forests, including their seasonality and trends; the assessment of changes in 421 
vegetation structure due to natural disturbances or degradation (logging, fire, edge effects); and 422 
the evaluation of forest health and productivity (greenness and browning). We expect that this 423 
dataset contributes to upscaling studies over large areas of key forest properties such as the AGB 424 
and canopy roughness (Foody & Curran, 1994; Saatchi et al., 2008). This information is required 425 
for dynamic vegetation models to accurately represent the carbon cycle. This dataset is not limited 426 
to study Amazonian forests and can be used to explore other biomes of South America such as 427 
the Atlantic Forest, savannas (Cerrado), Caatinga, Chaco, Pantanal, and Pampas. Such studies 428 
could improve our understanding of large-scale vegetation functioning, carbon storage, and 429 
cycling. Ultimately, they can contribute to refine global ecosystem models, and to obtain accurate 430 
estimates of carbon cycle in response to climate and environmental change. Furthermore, 431 
auxiliary backward and forward scattering data are also available with the dataset. Beyond the 432 
use of the provided ANI layers, this effectively allows the computation of several other multi-433 
angular anisotropy indices from the literature (Table 3). The advantage or disadvantage of one 434 
specific anisotropy index rather than others is not established in the literature given the range of 435 
vegetation applications and the lack of available datasets up to date. We calculated and provided 436 
only ANI due to its demonstrated relationships with Amazonian forests structure and functioning 437 
(Moura et al., 2015; Moura et al., 2016; Hilker et al., 2017). However, we expect other indices, 438 
including ratios and normalized differences between the backward and forward scattering 439 
components, offer additional possibilities for tropical vegetation studies which should be explored 440 
in future studies. 441 

 442 

Table 3 – Examples of other multi-angular anisotropy indices that can be further calculated using 443 
layers of the AnisoVeg product. Lambda represents the selected spectral band or vegetation index. 444 
N, B, and F represent nadir-view normalization, backward scattering, and forward scattering 445 
estimates, respectively.  446 

Anisotropy Indices Formula Reference 

Anisotropy index (ANIX) ఒಳ
ఒಷ

  Sandmeier et 
al. (1998) 
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Nadir BRDF-adjusted NDVI (NDVIISO)  ேூோಿ  ି ோா஽ಿ
ேூோಿାோா஽ಿ

  Schaaf et al. 
(2002) 

Hot-spot dark-spot index (HDSRED) ோா஽ಳ  ି ோா஽ಷ
ோா஽ಷ

  Lacaze et al. 
(2002) 

Normalized difference between hot-spot 
and dark-spot index (NDHDNIR) 

ேூோಳ  ି ேூோಷ
ேூோಳା ேூோಷ

  Chen et al. 
(2005) 

Hot-spot dark-spot NDVI (NDVIHD) ேூோಳ ି ோா஽ಷ
ேூோಳା ோா஽ಷ

  Pocewicz et 
al. (2007) 

Hot-spot-incorporated NDVI (NDVIHS) ܰܫܸܦே  × (1−  ஻)  Pocewicz etܦܧܴ 
al. (2007) 

Anisotropy difference (ANI)* ߣ஻ −  .ி  Moura et alߣ 
(2015) 

Vegetation Structure Index (VSI) ே஽௏ூಷ  ି ே஽௏ூಳ
ଵିேூோಷ

  Sharma et al. 
(2021) 

*ANI is included in the AnisoVeg product. Source: Adapted from Sharma et al. (2021). 447 

 448 

5. Code and data availability 449 

All code is available at GitHub (https://github.com/ricds/maiac_processing) (Dalagnol & 450 
Wagner, 2022). The full dataset can be found at the official AnisoVeg repository at Zenodo 451 
(https://doi.org/10.5281/zenodo.3878879) (Dalagnol et al., 2022). The dataset was organized in 452 
compressed files (“.zip” format) sub-divided by years (currently 2000-2021) and layers (bands 1-453 
8, NDVI, and EVI) for both nadir-normalization (code = NAD) and anisotropy (code = ANI). The 454 
number of samples layers (code = NO_SAMPLES) are also provided. Inside each compressed 455 
file there will be 12 image files (“.tif” format), one per month, except for the year 2000 which 456 
starts in March. The storage size for the whole dataset is 162.6 GB. The data have a scale factor 457 
of 10,000 to reduce file storage size. Thus, to obtain surface reflectance values of bands or correct 458 
range of values for indices, you should divide the layers by 10,000. The exception is the number 459 
of samples, which already shows the correct range of values from 0 to 60 observations. The dataset 460 
is planned to be updated on a yearly-basis. Auxiliary data that allow the calculation of other 461 
anisotropy metrics (listed in Table 3) are included in two separate Zenodo repositories for 462 
backward (https://doi.org/10.5281/zenodo.6040300) (Dalagnol, 2022a) and forward scattering 463 
(https://doi.org/10.5281/10.5281/zenodo.6048785) (Dalagnol, 2022b), including the selected 464 
layers Red, NIR, NDVI and EVI. The EVIANI and EVINAD layers were also uploaded to the GEE 465 
platform using the geeup tool v0.5.3 (Roy, 2022). They can be accessed through the GEE 466 
ImageCollection assets “projects/anisoveg/assets/evi_anisotropy” and 467 
“projects/anisoveg/assets/evi_nadir”, found at 468 
<https://code.earthengine.google.com/?asset=projects/anisoveg/assets/evi_anisotropy> and 469 
<https://code.earthengine.google.com/?asset=projects/anisoveg/assets/evi_nadir>.  470 
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