Spatially resolved hourly traffic emission over megacity Delhi using advanced traffic flow data

Akash Biswal1,2, Vikas Singh1*, Leeza Malik3, Geetam Tiwari4, Khaiwal Ravindra2, Suman Mor2

1 National Atmospheric Research Laboratory, Gadanki, AP, 517112, India
2 Department of Environment Studies, Panjab University, Chandigarh, 160014, India
3 Department of Civil Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
4 Transportation Research and Injury Prevention Programme, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
5 Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India

Correspondence: Vikas Singh (vikas@narl.gov.in)

Abstract. This paper presents a bottom-up methodology to estimate multi-pollutant hourly gridded on-road traffic emission using advanced traffic flow and speed data for Delhi. We have used the globally adopted COPERT (Computer Programme to Calculate Emissions from Road Transport) emission functions to calculate the emission as a function of speed for 127 vehicle categories. At first the traffic volume and congestion (travel time delay) relation is applied to model the 24-hour traffic speed and flow for all the major road links of Delhi. The modelled traffic flow and speed shows an anti-correlation behaviour having peak traffic and emissions in morning-evening rush hours. We estimated an annual emission of 1.82 Gg for PME (Exhaust particulate matter), 0.94 Gg for BC (Black Carbon), 0.75 Gg for OM (Organic matter), 221 Gg for CO (Carbon monoxide), 56 Gg for NOx (Oxide of Nitrogen), 64 Gg for VOC (Volatile Organic Carbon), 0.28 Gg for NH3 (Ammonia), 0.26 Gg for N2O (Nitrous Oxide) and 11.38 Gg for CH4 (Methane) for 2018. The hourly emission variation shows bimodal peaks corresponding to morning and evening rush hours and congestion. The minimum emission rates are estimated in the early morning hours whereas the maximum emissions occurred during the evening hours. Inner Delhi is found to have higher emission flux because of higher road density and relatively lower average speed. Petrol vehicles dominate emission share (> 50%) across all pollutants except PME, BC and NOx, and within them the 2W (Two-wheeler motorcycles) are the major contributors. Diesel fuelled vehicles contribute most of the PME emission. Diesel and CNG vehicles have a substantial contribution in NOx emission. This study provides very detailed spatio-temporal emission maps for megacity Delhi,
which can be used in air quality models for developing suitable strategies to reduce the traffic related pollution. Moreover, the developed methodology is a step forward in developing real-time emission with the growing availability of real-time traffic data. The complete dataset is publicly available on Zenodo at https://doi.org/10.5281/zenodo.6553770 (Singh et al., 2022).

Key words: COPERT, Multi-pollutant emission inventory, Diurnal Emission, Road transport, Exhaust emissions, Air quality.

1 Introduction

Exposure to vehicular emissions poses a greater risk to the air quality and human health (Lipfert et al., 2008; Salo et al., 2021, GBD 2021). On-road transport is the major contributor to the ambient air pollution and greenhouse gas emissions in urban areas, mainly near roads (Singh et al., 2014), therefore they are an important component of the local air quality management plans and policies (Gulia et al., 2015; DEFRA, 2016; NCAP, 2019; Sun et al., 2022). The actual traffic emission depends on several dynamic factors, such as emission factors, traffic volume, speed, vehicle age, road network and infrastructure, road type, fuel, driving behaviour, congestion etc. (Pinto et al, 2020; Jiang et al., 2021; Deng et al., 2020). Traffic emission modelling has evolved and improved over recent years, however gaps still exist because of the complexity and data involved in the emission inventory development. Moreover, the reliability of the emission decreases further when the emissions are spatially and temporally segregated (Super et al., 2020, Osses et al., 2021). There are differences in the reliability of emission inventories of developed and developing countries because of lack of space-time input data in developing countries (Pinto et al, 2020). The uncertainty associated with emission inventory is further propagated in air quality models making mitigation studies more challenging, mainly for developing countries such as India which is already facing air pollution issues (Pandey et al., 2021).

India is among the top 10 economies (6th GDP rank) in the world in 2020 (GDP, 2020) and is recognized as a developing country. The population and economic growth have led to dense urbanisation with poor air quality in cities (Ravindra et al., 2019; Liang et al., 2020; Singh et al., 2021). India hosts 22 cities among the top 30 polluted cities in the world (IQAIR, 2020). The national capital of India, Delhi, has pollution levels exceeding NAAQS and WHO guideline values (Singh et al., 2021). Earlier studies have estimated on-road traffic as the major local contributor to Delhi pollution (CPCB 2010; Sharma et al., 2016) along with long range
transport sources associated with stubble burning and dust leading to severe pollution episodes
(Liu et al., 2018; Bikkina et al., 2019; Khaiwal et al., 2019; Beig et al., 2020; Singh et al.,
2020).

Delhi traffic exhaust (tailpipe) emissions have been studied extensively using different
methodology for years. The emissions estimated by various studies show large variations (see
comparison tables in Guttikunda and Calori, 2013; Goyal et al., 2013; Sharma et al., 2016;
Singh et al., 2018, and in Table 5) suggesting that the emissions have large uncertainties
associated with the method and data used. Most of the studies adopted a bottom-up
methodology to calculate the total emission over Delhi based on the registered vehicles and
average vehicle kilometre travelled (VKT) multiplying with emission factors. A few studies
(eg., Sharma et al., 2016; Singh et al., 2018, 2020) use an on-road traffic flow approach where
emission is estimated for each line source (road link) then spatially segregated (Tsagatakis et
al., 2020, Spatial of emissions methodology). CPCB (2010), Goyal et al. (2013) further
spatially desegregated the total emissions to 2 km × 2km resolution but the method of gridding
is not discussed in detail. Sharma et al. (2016) and TERI (2018) also estimated 2km × 2km and
4km × 4km gridded emission respectively, by adopting a per grid traffic flow method.
Guttikunda and Calori (2013) estimated the 1km × 1km gridded emission by disaggregating
the net emission using various spatial proxies like gridded road density. Though these studies
with coarser resolution are helpful for identifying the emission hotspots but they lack actual
traffic flow information disaggregated by road type and vehicle type within the grids. Moreover
their emission estimate show large variations. For e.g., Das and Parikh (2004) and Nagpure et
al. (2013) estimated traffic emission using VKT methodology for the same base year 2004,
however their estimates varied by a factor of two or more. The annual emission estimate around
year 2010 by CPCB (2010), Sahu et al. (2011, 2015), Goyal et al. (2013), Guttikunda and Calori
(2013) and Singh et al. (2018) varied considerably from 3.5 Gg to ~15Gg for PM emission and
30 Gg to 200 Gg for NOx emissions. The VKT based estimation approaches (Nagpure et al.,
2013; Goel et al., 2015a; TERI 2018) tend to estimate higher emission compared to the traffic
flow methodology (Sharma et al., 2016; Singh et al., 2018). A 40% increase in PM2.5 emission
in 2018 as compared to 2010, is reported by SAFAR (2018) attributed to the increase in
vehicular growth.

Most of the studies for Delhi use EFs developed by ARAI (Automotive research association of
India, ARAI; 2008) and a few studies have used EFs from IVE (International Vehicular
Emission Model by USEPA, Davis et al., 2005) and COPERT (Ntziachristos et al., 2019).
ARAI EFs are measured in laboratory conditions, operating the vehicles in variable speed known as the Indian driving cycle (IDC, ARAI, 2008). The IVE emission factors are a function of the power bins of the vehicle engine, whereas in COPERT emission factors are a function of average vehicle speed, vehicle technologies, estimated pollutants, correction methods, and adjustments to local conditions (Cifuentes 2021). Goyal et al. (2013) used the IVE model to estimate the traffic emission over Delhi for the year 2008 and also studied the diurnal emission at a specific location. However the study is limited to a fixed major traffic intersection only. Kumari et al. (2013) used the COPERT-3 emission factor to estimate emission for Indian cities, focusing on the multi-year (1999-2006) evolution of vehicular emission. However, this study estimates the total emissions based on registered vehicles and does not provide spatial segregation. COPERT Tier-3 emissions have been used for comparison with real-world measured emission factors (Jaikumar et al., 2017; Choudhary et al., 2019). Jaikumar et al. (2017) identified vehicle idling is the major factor in the deviation between model-based estimation and measured emission as the vehicles spend 20% of their time in idling mode.

The traffic volume and speed information over each road are vital for accurate emission estimation. The data over Delhi has been very limited, therefore studies have used the VKT approach which uses the number of registered vehicles to estimate the emission. To the best of our knowledge, despite several studies for Delhi, none of the studies have studied Delhi emissions using advanced and detailed traffic data and speed based EFs to estimate the hourly gridded emissions at high resolution. Moreover, most of the studies are limited to the estimation of PM, NOx, CO and HC only. The availability of recent detailed traffic data and speed volume relation (Malik et al., 2018) as a part of the Transportation research and injury prevention programme (TRIPP) of IIT Delhi provides an opportunity to estimate and improve the emissions over Delhi. To the best of our knowledge, this is the first study of its kind which considers advanced traffic flow data and estimates the hourly multi-pollutant emissions as a function of speed.

In this study, we have adopted a globally accepted methodology based on COPERT-5 Tier3 to estimate the hourly gridded emission for Delhi at high resolution for 2018. COPERT EFs have been used in many studies Alamos et al. (2021) for Chile, Mangones et al. (2019) for Bogota Cifuentes et al. (2021) for Manizales, Wang et al. (2010) for Chinese cities, Vanhulsel et al. (2014) for Belgium, Tsagatakis et al., (2019) for the national emission inventory over the UK
and also has been used by many around the globe (https://www.emisia.com/utilities/copert/).

We combine advanced traffic volume and speed data (TRIPP, Malik et al., 2018) with speed based emission factors to calculate the emissions. The methodology considers different vehicle types, fuel type, engine capacity, emission standard and other key parameters such as congestion to estimate the emission for each road. We estimate the emission of particulate and gaseous pollutants, PME (Particulate matter exhaust) BC (Black carbon), OM (Organic matter), CO (Carbon monoxide), NO$_x$ (Oxides of Nitrogen), VOC (Volatile Organic Compound), NH$_3$ (Ammonia) and greenhouse gases, N$_2$O (Nitrous Oxide) and CH$_4$ (Methane).

We study the diurnal and spatial variability in the emission and identify the most polluting vehicle category, hotspots and the time when traffic emissions are highest. This study provides very detailed spatio-temporal emission maps for megacity Delhi that can be used in air quality models for developing suitable strategies to reduce the traffic related pollution. Moreover, the developed methodology is also a step forward in developing real-time emission models in the future with growing availability of real-time traffic data.

2 Methodology:

We estimated the emissions for 2018 over the National Capital Territory (NCT) of Delhi having an area of 1483 sq. km (Fig. 1) and a population of 16.8 million (Census, 2011). The domain has been further divided into three regions (viz. Inner, Outer and Eastside), as shown in Fig. 1, to study the spatial variation in the emissions. Inner Delhi constitutes the major business hubs and workplaces within the ring road and the Outer is the area away from the ring road whereas the Eastside is the east part beyond the Yamuna river.
A bottom-up emission methodology has been adopted and a python-based model has been developed to estimate gridded hourly emissions of major pollutants over an urban area. The model estimates emission of PME, BC, OM, CO, NO$_x$, VOC, NH$_3$, N$_2$O and CH$_4$. The model uses hourly traffic activity and COPERT based emission factors as a function of hourly speed for each road link across Delhi. The major vehicle categories include 2W (Two wheeler motor bikes), 3W (Auto rickshaws), CAR (Passenger cars), BUS (Buses), LCV (Light Commercial Vehicles) and HCV (Heavy Commercial Vehicles).
2.1 Traffic Activity

Classified traffic volume and speed study of Delhi (Malik et al., 2018) provides traffic count and speed for the roads of Delhi based on the Traffic volume and speed measurements conducted at 72 locations (Fig. 1) over Delhi in the year 2018 as a part of Transportation research and injury prevention programme (TRIPP) of IIT Delhi. We will refer to this dataset as TRIPP data from now on. TRIPP provides hourly traffic from 08:00-14:00 hours for eight fleet types (2W, 3W, Cars, Buses, Minibuses, HCV, LCV and NMV: Non-motorized vehicle) on over twelve thousand major road links over Delhi (Malik et al., 2018). These road links are further classified into five road classes (RClass1 to RClass5) based on the width of the road (Table S2). More detail of TRIPP traffic flow and its methodology is available elsewhere (Malik et al., 2018; Malik et al., 2021). As the TRIPP data is only available for 0800-1400 hours, we use speed-flow-density relationship by Malik et al. (2021) to estimate the hourly traffic for each road link in Delhi.

2.1.1 Generating traffic flow from congestion

The relation between traffic volume and congested speed has been studied extensively using Greenshield model, the Greenberg model and the Underwood model (Wang et al., 2014; Hooper et al., 2014) and used by many studies (Jing et al., 2016; Yang et al., 2019) to estimate the traffic from the congestion for emission development. For Delhi, this relation is mathematically represented in Eq. (3) of Malik et al. (2021). By rearranging, the same can be written as Eq. (1) of this paper.

\[x_i = c_i \left(\frac{1}{\alpha} \left(\frac{V_{o,i}}{V_{\text{Congested},i}} - 1 \right) \right)^{\frac{1}{\beta}} \]

(1)

Where,

\(x_i \) = Traffic flow for road link i
\(c_i \) = Traffic capacity for road link i
\(V_{\text{Congested},i} \) = Speed during congestion (km/h) for link i
\(V_{o,i} \) = Free flow velocity (FFV) of traffic for road link i
\(\alpha \) and \(\beta \) = constants (Table 1, Malik et al., 2021)
Traffic volume and road capacity determines the traffic speed. Increasing traffic volume leads to travel time delay (congestion) which further results in road traffic congestion resulting in increased traffic volume and decreased speed leading to traffic delays. Congested traffic speed ($V_{congested}$) is inversely proportional to the congestion (Afrin and Yodo., 2020). Here we define congestion as percentage increase in travel time, i.e. 50% congestion level in a city means that a trip will take 50% more time than it would during baseline uncongested conditions. In this study, we have used hourly congestion data for Delhi obtained from TomTom (https://www.tomtom.com/en_gb/traffic-index/about/). TomTom is one of the leading mapping and navigation services providing urban congestion worldwide. Congestion data has been taken for different days of the week then combined to create weekdays (Monday to Friday) and weekend (Saturday and Sunday) profiles. Because FFV (V_0) and congestion are known for a road link, $V_{congested}$ for weekdays and weekend has been calculated for each road link using the Eq. (2).

$$V_{congested} = \frac{V_0}{1 + congestion}$$ \hspace{1cm} (2)

Further, substituting the value of $V_{congested}$ in Eq. (1), we get a relation between congestion and traffic flow (Eq. 3) that has been used to estimate the weekdays and weekend traffic flow for all the road links in personal car units (PCU).

$$x_i = c_i \left(\frac{congestion}{\alpha}\right)^{\frac{1}{\beta}}$$ \hspace{1cm} (3)

PCU values for Delhi are taken from Malik et al. (2021) and are as follows (a) 1.0 for CAR, (b) 0.5 for 2W, (c) 1.0 for 3W, (d) 3.0 for BUS, (e) 1.5 for LCV and (f) 3.0 for HCV. We use C_i from TRIPP and congestion from TomTom. The values α, β and C_i used in this study are taken from Malik et al., (2021), and are shown in Table S2. Further, the speed and traffic volume has been corrected for each road link to match the observed PCU in TRIPP dataset for a better agreement. The hourly estimated traffic for each road link is further decomposed from PCU to different fleet categories using the percentage share provided by Malik et al., 2018. The hourly estimated traffic has been further corrected for the LCV and HCV using the percentage share provided by CRRI (Central Road Research Institute; Errampalli et al., 2020) to account for the travel restrictions of good vehicles peak traffic hours. To validate our results,
the annual VKT estimated for each fleet category is found to be comparable with that available in literature (Goel et al., 2015b; Malik et al., 2019). For simplicity, minibus has been combined with the bus category and NMVs are not used in this study.

2.2 Vehicular Classification:

The six types of primary vehicle categories (2W, 3W, CAR, BUS, LCV and HCV) have been further classified into 127 categories (Table S1) according to fuel, engine capacity and emission standards to match the COPERT-5 vehicular classification. The fuel share of petrol/gasoline, diesel and CNG/LPG vehicles in Delhi for passenger and freight vehicles has been obtained from Dhyani and Sharma (2017) and Malik et al. (2019) respectively. The engine share for primary vehicle categories has been taken from working papers (Sharpe and Sathiamoorthy., 2019; Anup and Yang., 2020; Deo and Yang., 2020) of the International Council on Clean Transportation (ICCT). In India, the emission norms/standards, known as Bharat Stage (BS), can be considered equivalent to the European Emission Standards - Euro, have been introduced in a phased manner. These norms were introduced for passenger cars then later extended to other vehicle categories. For example, the BS-I (India-2000) for passenger cars was implemented in 2000 followed by BS-II, BS-III and BS-IV in 2005, 2010 and 2017 respectively. The BS-VI for passenger cars are introduced recently in 2020 therefore has not been considered in our study. For Delhi, the timeline of BS implementation for passenger cars and other vehicles are shown in Table S3. The vehicles prior to the implementation of BS norms have been considered as Conventional (or BS-0 for simplicity). The BS share of the vehicles has been derived using the survival function method described in (Goel et al., 2015b; Malik et al., 2019). The vehicle survival was calculated for the past twenty year by considering 2018 as the base year and then the BS share was calculated based on the age of the vehicle with respect to 2018 (Table S4). The final share of the primary vehicle category as per fuel, engine and BS norms has been calculated by multiplying the fuel share, engine share and BS norms share and shown in Table S1. In this study, BS and EURO/Euro have been used interchangeably, and BS-I to BS-IV or BS1 to BS4 or EURO1 to EURO4 represent the same emission standard.
2.3 Emission Factors

Emission factor (EF) is a crucial parameter required for emission estimation. Road traffic vehicular emission depends on a variety of factors such as vehicle type, fuel used, engine types, driving pattern, road type, emission legislation type (BS/EURO) and speed of the vehicle. We have adopted the recent COPERT-5 tier-3 methodology and used the speed based emission factor (https://www.emisia.com/utilities/copert/) for 127 vehicle types (Table S1) and according to the emission legislation up to BS/EURO-4 (As in 2018 BS-VI is not implemented). The EF as a function of vehicle speed (v) is calculated using Eq. (4).

$$\text{EF}(v) = \frac{(\alpha \times v^2) + (\beta \times v) + \gamma + \left(\frac{\delta}{v}\right)}{(\epsilon \times v^2) + (\zeta \times v) + \eta}$$ \hspace{1cm} (4)

Where,

v is the speed,

α, β, γ, δ, ϵ, ζ and η are coefficients that vary with vehicle type

The coefficients for each pollutant and vehicle category are taken from the COPERT-5 database (COPERT-5 Guide book, 2020). The emission factors are further corrected for the emission degradation occurring in older vehicles considering the mileage as discussed in (COPERT-5 Guide book, 2020). The emissions are further adjusted with a factor of 1.2 to account for real-time driving behaviour (frequent braking, acceleration, deceleration) as per the study by Lejri et al., (2018). The non-exhaust emissions (Singh et al., 2020) have not been calculated in this study. As COPERT does not provide the EFs for the 3W CNG category, we have used EFs of CNG mini CAR for this. BC and OM emission are computed using the fraction (by COPERT-5 Guide Book, 2020) from PM exhaust.

2.4 Emission calculation

The model calculates hourly emissions for each road link of finite length and uses hourly traffic volume and emission factors as a function of speed for 127 vehicle categories (Table S1). The
hourly emission rate (Q) for each road link is calculated using Eq. (5). The total emission for a given hour is calculated by taking the sum of emission across all vehicle categories.

$$Q_{i,h}^p = \sum_j V_{i,j,h} \times EF_j^p (v_{i,h}) \times L_i$$

(5)

Where

- $Q_{i,h}^p$ is emission rate of a pollutant p for road link i and at hour h, where $h=0$ to 23
- $V_{i,j,h}$ is the traffic volume of vehicle category j for road link i at hour h, where $j=1$ to 127
- L_i is the length of road link i
- $EF_j^p (v_{i,h})$ is the emission factor of pollutant p for vehicle category j as a function speed $v_{i,h}$ for road link i at hour h.

The hourly emissions have been calculated for each pollutant over each road link then gridded at 100 m × 100 m resolution using the methodology described in Singh et al., (2018, 2020) to produce the hourly gridded emission inventory for Delhi.

3 Results

3.1 Diurnal variation of traffic volume and speed

The estimated hourly traffic volume (in PCU) and speed profiles for Delhi are shown in Fig. 2. An anticorrelated diurnal variation is seen in the traffic volume and speed. The weekdays traffic volume tends to have a bimodal profile with a morning peak (09:00-11:00) and an evening peak (18:00-20:00). A similar traffic volume profile has also been observed by other studies over Delhi (Dhyani and Sharma., 2017; Sharma et al., 2019). Similar bimodal traffic profile is also observed over the cities around the world subject to the city specific travel demand (Järvi et al., 2008 for Helsinki; Jing et al., 2016 for Beijing) The evening peak traffic volume tends to be 40% higher than the morning peak. The night-time goods vehicle share is more in comparison to the passenger and personal vehicles (Fig S1). However, the vehicular composition varies with respect to the road classes (Table S5). The weekend traffic volume does not show a morning peak due to closure of the offices/workplaces and shows evening peaks due to shopping and other weekend activities. As usual the minimum traffic volume is
observed at night (00:00-04:00 hours) because of the reduced human and commercial activities. Due to the minimum traffic at night, the traffic moves with an average speed of 51±6 km/h with almost no congestion. As traffic volume increases, it starts to build congestion, leading to reduced speed. The average speed during the weekdays morning peak hours is estimated to be 30±14 km/h whereas the evening speed is estimated to be 28±15 km/h. The evening congestion leads to an average 46% reduction in the average speed increasing the travel time by a factor of two. We calculated the average profiles for each road link by combining weekdays and weekends and used them in the emission calculations. The estimated profiles averaged across all road links are shown in Fig. 2. We estimate 27, 31, 0.95 and 3.1 billion-VKT driven by CAR, 2W, HCV and LCV categories respectively, which compares well with earlier estimates by (Malik et al., 2019) and (Goel et al. 2015b).

Figure 2. Weekdays, weekend and average diurnal profile for traffic volume in average PCU (red) and average speed (blue) over Delhi. The legend reflects the different markers used for weekdays, weekend and average profile.

3.2 Emission inventory

A multi-pollutant hourly and high spatial resolution (100m × 100m) emission inventory has been prepared for Delhi. As an example, the spatial distribution of NOx emission at 03:00-04:00, 09:00-10:00, 15:00-16:00 and 18:00-19:00 hours, representing early morning, morning
peak, afternoon and evening peak respectively, has been shown in Fig. 2. The emission rate during the evening peak hours is the highest during the day followed by morning peak hours. The high traffic volume along with traffic congestions lead to more emissions during the peak traffic hours (Jing et al., 2016). The emission during the afternoon hours is comparable or less than that of the morning hours whereas the early morning emissions are lowest because of low traffic volume moving with free flow speed. The diurnal profile of emissions has been discussed in detail in Section 3.5.

The annual emissions have been calculated by summing the hourly emissions to get daily emissions and then multiplying with 365 (number of days in a year) to get annual emissions. We estimated an annual emission of 1.82 Gg for PM$_E$, 0.94 Gg for BC, 0.75 Gg for OM, 221 Gg for CO, 56 Gg for NO$_x$, 64 Gg for VOC, 0.28 Gg for NH$_3$, 0.26 Gg for N$_2$O and 11.38 Gg for CH$_4$ in 2018.

3.3 Spatial variation

The hourly emissions over Delhi have been summed together to calculate the daily emissions for all the pollutants. The spatial variation of daily mean emission rate has been analysed over three selected regions, viz. inner, outer and eastside Delhi (as shown in Fig. 1). The total emission for each pollutant and for each region has been tabulated in Table S6. Outer Delhi region has the highest emission (51-53%) for all the pollutants because of its largest area of 1106 km2 which is 4.5 times of inner Delhi. To avoid the influence of area on the emissions, we have calculated the emission flux (i.e. emission per unit area) and shown in Table S7. The emission flux is highest for inner Delhi followed by eastside and outer Delhi region. For all pollutants, the emissions flux in inner Delhi is 40 - 50 % higher than the average emission of Delhi whereas the emissions flux in outer Delhi is ~46% lower. The emission flux is consistently high along the grids containing major roads (Fig. 3), intersections and major business hubs. Inner Delhi consists of major business hubs, workplaces and government offices, which entertain more vehicular activity in this region resulting in congestion leading to reduced speed and enhanced emissions. The daytime average speed across all roads in Inner Delhi is 29 km/h which is lower than the daytime average speed of 32 km/h in outer Delhi. The lower speed and higher traffic density influences the economic driving behaviour resulting in frequent braking, idling, acceleration and deceleration that enhances the vehicular emission. Moreover, the morning and evening peak hours with higher traffic and lower speed have the highest emission as compared to the rest of the day. In these heavy congested hours the vehicle is forced to run in lower speed which boosts the emission.
The emissions along the five road classes used in this study have been calculated and shown in Table 1 and the hourly variation of emission has been shown in Fig. 4. RClass3 has a substantial emission share (~35%) across all pollutants followed by RClass5 and RClass2, whereas RClass1 holds the minimum emissions share (~2-3%). The dominant emission share of RCalss3 is due to the optimum vehicular activities over the longer road length. RClass2, which are the feeder roads to the RClass3, RClass4 and RClass5, contribute ~23% to the emission. The multi-lane wider roads, RClass4 and RClass5 contribute ~13-15% and ~21-25% respectively to the total emission. To remove the dependency of the road length, we calculated the emission per km segment of a road. The emissions (per km) over multi-lane wider roads (RClass4 and RClass5) are almost two times of the RClass3 (Table S8 and Fig. S2) due to more traffic flow irrespective of the congested conditions. However, the emission per lane per kilometre (Table S9) for RClass1 is found to be the highest because of lower speed and congestion and major share of 2W. This shows that effective management of traffic in narrow roads to reduce the congestion will be beneficial in reducing the pollution without impacting the traffic volume. The multi-lane wider roads (RClass4 and RClass5) help the vehicle to maintain an economic speed resulting in minimum congestion and lower emission, however they are the emission hotpots in Delhi.

Table 1. Emission in Mega gram (Mg) per day (% share) across different road types.

<table>
<thead>
<tr>
<th>RClass</th>
<th>PME (Mg/d)</th>
<th>PME (%)</th>
<th>BC (Mg/d)</th>
<th>BC (%)</th>
<th>OM (Mg/d)</th>
<th>OM (%)</th>
<th>CO (Mg/d)</th>
<th>CO (%)</th>
<th>NOx (Mg/d)</th>
<th>NOx (%)</th>
<th>VOC (Mg/d)</th>
<th>VOC (%)</th>
<th>NH3 (Mg/d)</th>
<th>NH3 (%)</th>
<th>N2O (Mg/d)</th>
<th>N2O (%)</th>
<th>CH4 (Mg/d)</th>
<th>CH4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RClass1</td>
<td>0.16 (3%)</td>
<td>0.09 (3%)</td>
<td>0.07 (3%)</td>
<td>19 (3%)</td>
<td>4 (2%)</td>
<td>5 (2%)</td>
<td>0.02 (2%)</td>
<td>0.02 (2%)</td>
<td>1.0 (3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RClass2</td>
<td>1.17 (23%)</td>
<td>0.61 (23%)</td>
<td>0.49 (23%)</td>
<td>139 (23%)</td>
<td>35 (23%)</td>
<td>41 (23%)</td>
<td>0.16 (22%)</td>
<td>0.16 (22%)</td>
<td>7.3 (23%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RClass3</td>
<td>1.77 (35%)</td>
<td>0.75 (36%)</td>
<td>0.75 (34%)</td>
<td>228 (37%)</td>
<td>52 (34%)</td>
<td>67 (38%)</td>
<td>0.27 (35%)</td>
<td>0.25 (35%)</td>
<td>11.29 (36%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RClass4</td>
<td>0.72 (14%)</td>
<td>0.38 (14%)</td>
<td>0.29 (14%)</td>
<td>84 (13%)</td>
<td>22 (14%)</td>
<td>23 (13%)</td>
<td>0.12 (15%)</td>
<td>0.11 (15%)</td>
<td>4.43 (14%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RClass5</td>
<td>1.16 (23%)</td>
<td>0.62 (23%)</td>
<td>0.46 (22%)</td>
<td>132 (21%)</td>
<td>38 (25%)</td>
<td>37 (21%)</td>
<td>0.19 (25%)</td>
<td>0.17 (23%)</td>
<td>7.19 (23%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5 Diurnal variation of emission

Dynamic traffic volume and speed, as discussed in section 3.1, results in diurnal variation in the emissions during a day. Fig. 4 shows the hourly emissions (Mg/h) and contribution of each road class at each hour in Delhi. The temporal evolution of emission is linear with the traffic variation in a day with the minimum variation during the night-time and remarkable variation during the human active hours (08:00-20:00). Among different road types and for all the pollutants RClass1 has the lowest and RClass3 has the highest emission proportional to the traffic volume. A similar temporal variation of NO\textsubscript{x} emission rate is observed in a study, for different road types of Beijing (Jing et al., 2016). For most of the pollutants (except PME, BC and NO\textsubscript{x}), daytime (08:00 to 20:00) contributes ~70% to the daily emissions whereas the morning (09:00 to 11:00) and evening (18:00 to 20:00) rush hours alone altogether add 30-40% to the total emissions. The increasing activity of goods vehicle (HCV + LCV) during afternoon and night-time (Fig. S1) elevates the emission of PME, BC and NO\textsubscript{x} from these vehicles (Fig. 5) resulting a different diurnal profile compare to other pollutants. The NO\textsubscript{x} and particulate...
pollutants (PME and BC) emissions during late night hours (11:00-05:00) is relatively higher, adding up to 60% and 75% of total particulate and NOx night-time emissions respectively as shown in Fig. 5. The contribution of vehicle type has been discussed in detail in section 3.6. The diurnal evolution of emission is also visible in the hourly spatial map shown in Fig. 3. Early morning with minimum traffic volume has lower emission whereas the evening rush hour with increasing congestion has higher emission. The density of higher emission grids (Fig. 3) in the inner Delhi region is higher compare to other regions throughout the day.

Figure 4. Variation of hourly emission (in mega gram/hour) of the nine pollutants averaged across Delhi according to the five road classes (RClass1 to RClass5). Different colors indicate the hourly contribution of each RClass to the total emission.
Figure 5. Variation of hourly emission (mega gram/hour) of the nine pollutants averaged across Delhi according to the major vehicle type. Different colors indicate the hourly contribution of each vehicle type to the total emission.

3.6 Vehicular emission share

The percentage share of major vehicle types to the total emission of nine pollutants has been calculated and shown in Table 2 and its hourly contribution is shown in Fig. 5. The 2W vehicles, having major vehicular share (Table S5), are the major contributors to the total emissions for all the pollutants except for BC, NOx and N2O. The goods vehicles (HCV and LCV) contribute substantially, mainly during night-time, to the PME, BC and NOx emissions. Buses have highest contribution to NOx emissions and substantial contribution to PME, BC and CH4. Cars are the dominant source for NH3 and N2O and contribute substantially to PME, BC and NOx emissions. However, most of the emissions are from diesel cars.

Table 2. Emission in kg/day (% share) according to the vehicle types.

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>PME</th>
<th>BC</th>
<th>OM</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>NH3</th>
<th>N2O</th>
<th>CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>2102 (41.6%)</td>
<td>500 (19.0%)</td>
<td>1475 (71.5%)</td>
<td>532316 (88.0%)</td>
<td>10600 (6.8%)</td>
<td>159582 (90.5%)</td>
<td>249 (32.6%)</td>
<td>249 (35.4%)</td>
<td>20588 (66.0%)</td>
</tr>
<tr>
<td>Cars</td>
<td>740 (14.6%)</td>
<td>537 (20.4%)</td>
<td>146 (7.1%)</td>
<td>42276 (7.0%)</td>
<td>20185 (12.9%)</td>
<td>3546 (2.0%)</td>
<td>458 (60.0%)</td>
<td>308 (43.8%)</td>
<td>1425 (4.6%)</td>
</tr>
<tr>
<td>3w</td>
<td>25 (0.5%)</td>
<td>3 (0.1%)</td>
<td>11 (0.5%)</td>
<td>3305 (0.5%)</td>
<td>1593 (1.0%)</td>
<td>952 (0.5%)</td>
<td>32 (4.2%)</td>
<td>35 (5.0%)</td>
<td>1151 (3.7%)</td>
</tr>
</tbody>
</table>
Table 3. Emission in kg/day (% share) according to fuel type.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>PME</th>
<th>BC</th>
<th>OM</th>
<th>CO</th>
<th>NOₓ</th>
<th>VOC</th>
<th>NH₃</th>
<th>N₂O</th>
<th>CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNG</td>
<td>95</td>
<td>14</td>
<td>43</td>
<td>12703</td>
<td>45832</td>
<td>9335</td>
<td>68</td>
<td>73</td>
<td>9547</td>
</tr>
<tr>
<td></td>
<td>(1.9%)</td>
<td>(0.5%)</td>
<td>(2.1%)</td>
<td>(2.1%)</td>
<td>(29.8%)</td>
<td>(5.3%)</td>
<td>(8.9%)</td>
<td>(10.4%)</td>
<td>(30.6%)</td>
</tr>
<tr>
<td>Diesel</td>
<td>2698</td>
<td>2052</td>
<td>491</td>
<td>25583</td>
<td>91144</td>
<td>5308</td>
<td>36</td>
<td>225</td>
<td>805</td>
</tr>
<tr>
<td></td>
<td>(54.1%)</td>
<td>(79.5%)</td>
<td>(23.9%)</td>
<td>(4.2%)</td>
<td>(59.2%)</td>
<td>(3.0%)</td>
<td>(4.7%)</td>
<td>(32.0%)</td>
<td>(2.6%)</td>
</tr>
<tr>
<td>Petrol</td>
<td>2191</td>
<td>514</td>
<td>1517</td>
<td>565799</td>
<td>16890</td>
<td>161628</td>
<td>662</td>
<td>406</td>
<td>20848</td>
</tr>
<tr>
<td></td>
<td>(44.0%)</td>
<td>(19.9%)</td>
<td>(74.0%)</td>
<td>(93.7%)</td>
<td>(11.0%)</td>
<td>(91.7%)</td>
<td>(86.4%)</td>
<td>(57.7%)</td>
<td>(66.8%)</td>
</tr>
</tbody>
</table>

The vehicular fuel share to the total emission for each pollutant is shown in Table 3. Petrol vehicles are the largest contributors to the CO (~94%), VOC (91%), NH₃ (86%), OM (74%), CH₄ (67%) and N₂O (58%) whereas diesel vehicles are the largest contributor to the BC (~80%), NOₓ (59%) and PME (54%) emissions. The contribution of the CNG vehicles is relatively smaller except for the NOₓ and CH₄ where they contribute to ~30 %, almost one third, to the total emissions.

The larger contribution of petrol to the VOC, CO, OM and CH₄ emissions are dominated by 2W where we estimated that 2W in Delhi alone contribute 90%, 88%, 71%, and 66% respectively as shown in Table 2. The contribution of 2W is also highest to PME (42%). The larger share of 2W towards the CO emissions has also been reported earlier, 61% in Goyal et al., (2013); 43% in Sharma et al., (2016) and 37% in Singh et al., (2018). Higher emission share of 2W is due the higher emission factor of VOC in petrol fuelled 2W (Hakkim et al., 2021) that has been also reported in a multi-year emission study over Delhi by Goel et al. (2015a).

The PME emissions are dominated by diesel fuelled HCVs (16 %), LCVs (13%), Buses (14 %) and Cars (~13 %), whereas 2W are the main source in petrol fuelled vehicles contributing ~42% to the total PME emissions. Earlier, Sharma et al. (2016) reported 33% share of 2W emission in 2014. The share of petrol cars and CNG buses towards the PME, BC and OM emissions is less than 2%. While it is clear that diesel powered vehicles are the major source of PME emission, earlier studies have reported similar results but with large variations of HCVs in emission share. The largest share of diesel fuelled HCV is reported as 92% by Goyal et al.
(2013), 46% by Sharma et al. (2016) and 33% by Singh et al. (2018). All these studies reported minimal emission share (less than 10% combining both diesel and petrol cars). The largest share of HCV, LCV and diesel Cars to BC emission is because of higher emission factors (Zavala et al., 2017) contributing to total urban BC emission as shown by Bond et al., (2013).

The petrol cars contribute more than half of the total NH₃ emissions and among them the Euro 2 with higher emission factor has the largest share of 39%. The diesel vehicles (HCVs, LCVs, diesel Buses and Cars) altogether contribute significantly to the PME, BC and NOₓ emissions. The higher emission factor of diesel fuelled vehicles (Wu et al., 2012) clearly reflects in the emission share.

CNG buses have the highest share (27%) in NOₓ emission and around 23% in CH₄ emissions. The highest share of CNG is due to higher NOₓ emission factor for CNG vehicles compared to petrol vehicles (Dimaratos et al., 2019). The larger share of ~15% from CNG buses to the total traffic NOₓ emission is also reported in a study of CPCB (2010). In terms of Euro or BS standard, Euro 3 vehicles have the highest share (Table S10) in the total emission except for N₂O and NH₃. This is mainly because of the highest share of Euro 3 vehicles in 2W, Buses, HCV and LCV (Table S4 in the Supplement). In the case of N₂O, the emissions are dominated by Euro 4 cars which have around 84% share to the total cars. For CH₄, the highest share of Euro 3 vehicles is due to the higher emissions from Euro 3 2W as the emission factor of petrol vehicles is higher (Clairotte et al., 2020).

In order to have a clear picture of the dominant polluting vehicle categories, we grouped different vehicle types into 35 categories and calculated the percentage share to the total emission of nine pollutants as shown in Fig. 6. We further identified the top five polluting vehicle categories for each pollutant and tabulated in Table 4. For PME, the top five polluting vehicles account for 55% of the total emissions which is dominated by petrol Euro 3 petrol 2W and Euro 3 diesel HCVs. The BC emission is mainly driven by Euro 3 diesel HCVs, LCVs, Buses and the top five polluting vehicles account for 66% of the total emissions. The OM, CO, VOC emissions are dominated by 2W and the top five accounts for 71%, 89% and 91% of total emissions respectively.

Petrol fuelled cars and 2W hold the dominant share of NH₃ emissions because of the larger EF compared to other categories (COPERT-5 Guide Book, 2020). For N₂O, 2W Euro 3 holds the
highest share of 21%, followed by EURO IV diesel and petrol cars. The top five contributors to CH₄ emissions account for 86% of the total emissions which are dominated by 2W and CNG buses. These two categories of vehicles altogether contribute to ~97% of the emissions.

Table 4. Top five polluting vehicle categories for each pollutant.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PME</th>
<th>BC</th>
<th>OM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top 5 accounts for 55% emissions</td>
<td>Top 5 accounts for 66% emissions</td>
<td>Top 5 accounts for 71% emissions</td>
</tr>
<tr>
<td></td>
<td>1. 14% from 2W (Petrol, Euro 3)</td>
<td>1. 17% from HCV (Diesel Euro 3)</td>
<td>1. 22% from 2W (Petrol, Euro 3)</td>
</tr>
<tr>
<td></td>
<td>2. 12% from HCV (Diesel, Euro 3)</td>
<td>2. 14% from LCV (Diesel Euro 3)</td>
<td>2. 18% from 2W (Petrol, Euro 2)</td>
</tr>
<tr>
<td></td>
<td>3. 10% from Bus (Diesel, Euro 3)</td>
<td>3. 14% from Car (Diesel Euro 4)</td>
<td>3. 13% from 2W (Petrol, Euro 1)</td>
</tr>
<tr>
<td></td>
<td>4. 10% from 2W (Petrol Euro 2)</td>
<td>4. 14% from Bus (Diesel Euro 3)</td>
<td>4. 10% from 2W (Petrol, Euro 0)</td>
</tr>
<tr>
<td></td>
<td>5. 9% from LCV (Diesel Euro 3)</td>
<td>5. 7% from 2W (Petrol Euro 3)</td>
<td>5. 8% from 2W (Petrol, Euro 4)</td>
</tr>
<tr>
<td>CO</td>
<td>Top 5 accounts for 89% emissions</td>
<td>Top 5 accounts for 63% emissions</td>
<td>Top 5 accounts for 91% emissions</td>
</tr>
<tr>
<td></td>
<td>1. 29% from 2W (Petrol, Euro 3)</td>
<td>1. 21% from Bus (CNG, Euro 3)</td>
<td>1. 31% from 2W (Petrol, Euro 3)</td>
</tr>
<tr>
<td></td>
<td>2. 27% from 2W (Petrol, Euro 2)</td>
<td>2. 15% from HCV (Diesel, Euro 3)</td>
<td>2. 22% from 2W (Petrol, Euro 2)</td>
</tr>
<tr>
<td></td>
<td>3. 14% from 2W (Petrol, Euro 1)</td>
<td>3. 15% from Bus (Diesel, Euro 3)</td>
<td>3. 15% from 2W (Petrol, Euro 1)</td>
</tr>
<tr>
<td></td>
<td>4. 12% from 2W (Petrol, Euro 4)</td>
<td>4. 6% from Bus (CNG, Euro 2)</td>
<td>4. 13% from 2W (Petrol, Euro 0)</td>
</tr>
<tr>
<td></td>
<td>5. 7% from 2W (Petrol, Euro 0)</td>
<td>5. 6% from Car (Diesel Euro 4)</td>
<td>5. 10% from 2W (Petrol, Euro 4)</td>
</tr>
<tr>
<td>NH₃</td>
<td>Top 5 accounts for 79% emissions</td>
<td>Top 5 accounts for 61% emissions</td>
<td>Top 5 accounts for 86% emissions</td>
</tr>
<tr>
<td></td>
<td>1. 39% from Car (Petrol, Euro2)</td>
<td>1. 21% from 2W (Petrol, Euro 3)</td>
<td>1. 39% from 2W (Petrol, Euro 3)</td>
</tr>
<tr>
<td></td>
<td>2. 19% from 2W (Petrol, Euro3)</td>
<td>2. 14% from Car (Diesel, Euro 4)</td>
<td>2. 15% from 2W (Petrol, Euro 4)</td>
</tr>
<tr>
<td></td>
<td>3. 9% from Car (Petrol, Euro1)</td>
<td>3. 11% from Car (Petrol, Euro 4)</td>
<td>3. 13% from Bus (CNG, Euro 3)</td>
</tr>
<tr>
<td></td>
<td>4. 7% from 2W (Petrol, Euro4)</td>
<td>4. 8% from 2W (Petrol, Euro 4)</td>
<td>4. 10% from Bus (CNG, Euro 2)</td>
</tr>
<tr>
<td></td>
<td>5. 5% from Car (Petrol, Euro4)</td>
<td>5. 7% from LCV (Diesel, Euro 3)</td>
<td>5. 9% from 2W (Petrol, Euro 2)</td>
</tr>
</tbody>
</table>
Figure 6. Heat map showing the emission share of vehicles of different class, fuel and BS/EURO standards. Contributions less than 0.1% are not shown here. Contributions more than 10% are shown in the same colour. (D: Diesel, P: Petrol, C: CNG and number 0-4 represents the Euro type starting from 0 being conventional to 4 as Euro 4).
Limitations:

Geotagged dynamic traffic information and emission factors are the backbone of the emission inventory model. The traffic volume information is very crucial and traditionally obtained by manual counting or automated counters or through video surveillance at a few locations. However, in a real-world scenario, the traffic volume and speed can have large variations within a segment of a road. In this study we have adopted the congestion based approach (Jing et al., 2016; Yang et al., 2019) to model the traffic volume for each hour of the day. We use the same diurnal congestion profiles for all roads that could lead to emission uncertainty (Malik et al., 2021). In reality, some of the roads can be more congested than other roads based on the local population and traffic management.

The fleet composition can be different for different locations and at a given time of the day (Sharma et al., 2019). We have used the fleet composition based on surveyed composition at 72 locations during the daytime (08:00-14:00) (TRIPP). To account for the peak hour and daytime entry restrictions of goods vehicles, we have used the share of goods vehicle (HCV and LCV) from the study by Errampalli et al. (2020). We use a constant share of fuel type, engine type and Euro type across all road links. The availability of such data, though challenging, can improve the emission estimates.

Although the COPERT emission functions provide the speed dependent emission factors for various classes of vehicles, they have been developed for European conditions. This adds to uncertainties while applying for Indian vehicles. The COPERT speed dependent EFs are available only for the criteria pollutants such as PME, CO, NOx and VOC. The emission factors used here are functions of average speed for each hour. This does not account for the emission due to acceleration, deceleration and idling of the vehicles (Lyu et al., 2021). We have tried to address these by adding another 20% emission across all roads based on the earlier study (Lejri et al., 2018), however these could be uncertain.

This study only focuses on the hot emissions and does not include cold start, evaporative emission. We don’t consider change in the emissions due to the change in the ambient temperature and humidity (Franco et al., 2013). Additionally, we don’t consider emissions associated with road slope, vehicle degradation and maintenance in detail. But, we have
considered the vehicle degradation effect occurring in older vehicles considering the mileage as discussed in the COPERT-5 guide book.

Non-exhaust particulate matter emissions, such as dust resuspension, BW (Brake wear), TW (Tire wear), RW (Road wear) have not been considered in this study because of larger uncertainty. However, the non-exhaust emission of PM will be the dominant source of PM pollution in Delhi (Sharma et al., 2016; TERI, 2018; Singh et al., 2020).

Residential roads, the small roads in residential areas, account for 80% of the total length of Delhi, however their emission share has been reported to be only ~3% (Singh et al., 2018). We did not use these roads in our study, firstly, because of small share, secondly, we did not have a good quality data and thirdly, we wanted to optimise the computational cost.

The emissions estimated in this study for Delhi are comparable to the emission estimated for other megacities. For e.g. road transport emission of NOx and PM2.5 for London was 20.8 Gg and 1.12 Gg respectively in 2016 (LAEI, 2016). The megacity Beijing, which has three times larger road network, had 4.1 Gg of traffic PM emission in 2013 (Jing et al., 2016). While our estimates are comparable to other megacities, these are lower as compared to the one reported by earlier studies for Delhi (Table 5). The lower emissions for Delhi can be expected because India has implemented the recent emission standards in a phased manner (Table S3) which should reflect in the traffic emission calculations. In many parts of the world, the road transport emission has decreased, despite an increase in transport vehicles, because of the improvements in engine technology (Winkler et al., 2018, Sun et al., 2019). One of the reasons for higher emission estimation by earlier studies for Delhi is the use of old EFs developed by ARAI way back in 2008. Therefore these ARAI EFs tend to overestimate the emissions as it does not represent the recent emission standard technologies (i.e. Euro 3 and Euro 4). It is important to use recent emission factors such as COPERT-5 which can account for technology related emissions. Although we have considered advanced traffic flow data and estimated the hourly emission as a function of speed, the accuracy of the emissions are subject to quality of the input data and emission factors. In this study we have shown a data driven approach where the quality of input data is likely to improve the emission estimates.
Table 5. Traffic emission studies over Delhi.

<table>
<thead>
<tr>
<th>Studies</th>
<th>Area</th>
<th>Year</th>
<th>Method</th>
<th>EF</th>
<th>Diurnal</th>
<th>Resolution</th>
<th>PME (Gg)</th>
<th>BC (Gg)</th>
<th>OM (Gg)</th>
<th>CO (Gg)</th>
<th>NOx (Gg)</th>
<th>VOC (Gg)</th>
<th>NH3 (Gg)</th>
<th>N2O (Gg)</th>
<th>CH4 (Gg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagpure et al. (2012)</td>
<td>Delhi</td>
<td>2005</td>
<td>VKT</td>
<td>Variety of emission factor</td>
<td>NO</td>
<td>10</td>
<td>350</td>
<td>104</td>
<td>221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goyal et al. (2012)</td>
<td>Delhi</td>
<td>2008</td>
<td>VKT</td>
<td>IVE</td>
<td>Yes</td>
<td>2 km</td>
<td>5.3</td>
<td>186</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPCB (2010)</td>
<td>Delhi</td>
<td>2010</td>
<td>VKT</td>
<td>ARAI</td>
<td>NO</td>
<td>2 km</td>
<td>5.3</td>
<td>186</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saha et al. (2010, 2015)</td>
<td>NCR Delhi</td>
<td>2010</td>
<td>VKT</td>
<td>ARAI</td>
<td>NO</td>
<td>1.67 km</td>
<td>30.3</td>
<td>427</td>
<td>162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guttikunda and Calori (2013)</td>
<td>NCT Delhi</td>
<td>2010</td>
<td>VKT</td>
<td>ARAI and Other</td>
<td>NO</td>
<td>1 km</td>
<td>14</td>
<td>256</td>
<td>199</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singh et al. (2018)</td>
<td>NCT Delhi</td>
<td>2010</td>
<td>Non-VKT</td>
<td>ARAI</td>
<td>NO</td>
<td>100 m</td>
<td>4.5</td>
<td>114</td>
<td>51.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goel et al. (2015a)</td>
<td>NCT Delhi</td>
<td>2012</td>
<td>VKT</td>
<td>COPERT-3 and ARAI</td>
<td>NO</td>
<td>12.7</td>
<td>300</td>
<td>184</td>
<td>71.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharma et al. (2016)</td>
<td>NCT Delhi</td>
<td>2014</td>
<td>Non-VKT</td>
<td>ARAI</td>
<td>NO</td>
<td>2 km</td>
<td>4.7</td>
<td>117</td>
<td>41.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TERI (2018)</td>
<td>NCT Delhi</td>
<td>2016</td>
<td>VKT</td>
<td>ARAI</td>
<td>NO</td>
<td>4 km</td>
<td>12.4</td>
<td>501</td>
<td>126</td>
<td>342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFAR (2018)</td>
<td>NCR Delhi</td>
<td>2018</td>
<td>VKT</td>
<td>ARAI</td>
<td>NO</td>
<td>400 m</td>
<td>43.2</td>
<td>15.5</td>
<td>483.1</td>
<td>257.7</td>
<td>614.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This Study</td>
<td>NCT Delhi</td>
<td>2018</td>
<td>Non-VKT</td>
<td>COPERT-5</td>
<td>YES</td>
<td>100 m</td>
<td>1.82</td>
<td>0.94</td>
<td>0.75</td>
<td>221</td>
<td>56</td>
<td>64</td>
<td>0.28</td>
<td>0.26</td>
<td>11.38</td>
</tr>
</tbody>
</table>

* NCT area is around 1483 sq. km; NCR area is around 4550 sq. km.
5 Conclusion

Here we present a methodology to estimate high-resolution spatially resolved hourly traffic emission over Delhi using advanced traffic flow and speed. We estimated the emissions of major pollutants, viz. PME, BC, OM, CO, NO\textsubscript{x}, VOC, NH\textsubscript{3}, N\textsubscript{2}O and CH\textsubscript{4}.

We have used traffic volume and speed measurements conducted at 72 locations over Delhi in the year 2018 as a part of TRIPP of IIT Delhi. Additionally, we have used the hourly congestion data from TomTom to account for hourly changes in the speed. The studies relation between traffic volume and speed has been utilised to generate the hourly traffic volume and speed profile for each road link. The vehicles have been classified into 127 categories according to vehicle types, fuel type, engine capacity, emission standard. The COPERT-5 emission functions of speed are applied at a micro level for each hour along each road link to calculate the emissions that accounts for congestion and spatial variation in emission. To the best of our knowledge, this is the first study of its kind which considers advanced traffic flow data and estimates the hourly multi-pollutant emissions as a function of speed. We make the following conclusions:

1. We estimated an annual emission of 1.82 Gg for PME, 0.94 Gg for BC, 0.75 Gg for OM, 221 Gg for CO, 56 Gg for NO\textsubscript{x}, 64 Gg for VOC, 0.28 Gg for NH\textsubscript{3}, 0.26 Gg for N\textsubscript{2}O and 11.38 Gg for CH\textsubscript{4} in 2018.

2. The modelled traffic volume (in PCU) and speed profiles show bimodal distribution exhibiting an anti-correlation behaviour. The traffic volume peaks during morning and evening rush hours resulting in lower speed. There is a mild enhancement in speed during the afternoon due to the less traffic. During the early morning hours, the vehicles almost achieve the free flow speed.

3. The diurnal variation of emission of pollutants are like traffic variations and show distinct bimodal distribution with morning and dominant evening peaks for almost all pollutants. However, the difference in night-time and day-time emissions are less for PME, BC and NO\textsubscript{x} due to the enhanced share of goods vehicles during the night-time. The good vehicles significantly contribute to the night-time emission in Delhi. These emissions along with unfavourable meteorology (e.g. lower PBL and wind speed) might help in sustained PM levels during the night-time in Delhi.

4. In terms of the spatial distribution of the emissions, the emissions are higher along the major roads and the emission hotspots are near the traffic junctions. The emission flux in
inner Delhi is highest due to the higher road and traffic density, and lower average speed. This is 40-50% higher than the mean emission flux of Delhi. However, the total emission is higher for outer Delhi due to its larger area having a total road length more than inner Delhi.

5. According to the road classes (RClass1 to RClass5, from single lane to multi-lane roads), we find that RClass3 has the highest emission share due to highest total road length. However, the emission per km is highest over multi-lane wider roads (RClass4 and RClass5) that is almost two times RClass3 because of high traffic volume. Moreover, the emission per lane per kilometre is highest for RClass1 because of lower speed and congestion. While the effective management of traffic in narrow roads could be beneficial, the multi-lane roads act as emission hotpots. An analysis of the choice of road width should be performed to achieve the optimum emission without increasing the pollution exposure near the roads.

6. Petrol vehicles contribute to over 50% emission of OM, CO, VOC, NH$_3$, N$_2$O and CH$_4$ emissions. For OM, CO, VOC, N$_2$O and CH$_4$ the petrol share is dominated by 2W whereas for NH$_3$, share is dominated by petrol cars. The diesel vehicles are the dominant contributor to PME, BC and NO$_x$ emission.

7. In terms of emission standards, Euro3 vehicles contribute the highest to all pollutants followed by Euro4 with an exception to NH$_3$ where Euro2, mainly petrol cars, are the dominant source.

8. Among vehicle classes, the 2Ws contribute the most to the total emissions for all the pollutants except for BC, NO$_x$ and N$_2$O. The diesel vehicles including goods vehicles (HCV and LCV) contribute substantially to the PME, BC and NO$_x$ emissions. The goods vehicles have a dominant share in the night-time emissions. CNG Buses have the highest contribution to NO$_x$ and CH$_4$ emissions whereas diesel Buses have substantial contributions to PME emissions. Petrol cars are the dominant source for NH$_3$ whereas diesel cars contribute substantially to PME, BC and NO$_x$ emissions. The contribution of petrol cars to the PME emission is less than 2%.

9. For all the pollutants, the top 5 polluting vehicle categories account for more than half (55%-91%) of the emissions. The pollutants such as CO, VOC, CH$_4$ and OM have a distinct source such as 2W. However, the PME and BC have mixed sources including 2W and diesel vehicles. NO$_x$ emissions are mainly due to CNG and diesel vehicles. NH$_3$ is mainly emitted from petrol and diesel cars and N$_2$O has mixed sources including 2W and cars.

This spatio-temporal emissions can be used in air quality models for developing suitable strategies to reduce the traffic related pollution in Megacity Delhi. Moreover, the developed
methodology is a step forward in developing real-time emission prediction in the future with growing availability of real-time traffic data.

Data availability

The emission dataset can be accessed through the open-access data repository https://doi.org/10.5281/zenodo.6553770 (Singh et al., 2022), under a CC BY-NC-ND 4.0 license. This dataset is presented as a netDCF covering the rectangular domain around National Capital Territory (NCT) of Delhi. The data and analysis presented in the paper is only over the NCT area as shown in Figure 3. TOMTOM averaged congestion data is available online https://www.tomtom.com/en_gb/traffic-index/new-delhi-traffic/. COPERT-5 emission factors are obtained from the EMISIA online platform https://www.emisia.com/utilities/copert/ of Aristotle University, Thessaloniki.

Author contribution

Vikas Singh and Akash Biswal: Conceptualization, investigation, visualization, formal analysis, writing original draft, writing, reviewing and editing; Leeza Malik and Geetam Tiwari: Traffic data validation, investigation, discussion, reviewing and editing; Ravindra Khaiwal and Suman Mor: Investigation, discussion, reviewing and editing.

Declaration of competing interest

The authors declare that they have no conflict of interest.

Acknowledgments

The authors are thankful to the Director, National Atmospheric Research Laboratory (NARL, India), for encouragement to conduct this research and provide the necessary support. AB is thankful to the Department of Environment Studies, Panjab University, Chandigarh for providing the necessary support and greatly acknowledges the MoES (Ministry of Earth Sciences, India) for providing support as a part of PROMOTE project. Authors greatly acknowledge the Transportation Research and Injury Prevention Programme (TRIPP) of IIT Delhi to provide the advanced traffic data. We acknowledge and thank TOMTOM for making available the congestion profile over Delhi. We acknowledge the EMISIA platform of the Aristotle University of Thessaloniki for providing the COPERT-5 emission factor. This paper is based on interpretation of results and in no way reflects the viewpoint of the funding agencies.
References

Hakkim, H., Kumar, A., Annadate, S., Sinha, B., and Sinha, V.: RTEII: A new high-resolution (0.1° × 0.1°) road transport emission inventory for India of 74 speciated NMVOCs, CO, NOx, NH₃, CH₄, CO₂, PM₂.₅ reveals massive overestimation of NOx and CO and missing nitromethane emissions by existing inventories, Atmospheric Environment: X, 11, 100118, https://doi.org/10.1016/j.aeaoa.2021.100118, 2021.

NCAP.: National Clean Air Programme, Ministry of environment forest and climate change;

35

