

1 **Spatially resolved hourly traffic emission over megacity Delhi**
2 **using advanced traffic flow data**

3 Akash Biswal^{1,2}, Vikas Singh^{1*}, Leeza Malik³, Geetam Tiwari⁴, Khaiwal Ravindra⁵, Suman Mor²

4 ¹National Atmospheric Research Laboratory, Gadanki, AP, 517112, India

5 ²Department of Environment Studies, Panjab University, Chandigarh, 160014, India

6 ³Department of Civil Engineering, Indian Institute of Technology (Indian School of
7 Mines), Dhanbad, Jharkhand 826004, India

8 ⁴Transportation Research and Injury Prevention Programme, Indian Institute of
9 Technology Delhi, Hauz Khas, New Delhi 110016, India

10 ⁵Department of Community Medicine and School of Public Health, Post Graduate
11 Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
12

13 *Correspondence:* Vikas Singh (vikas@narl.gov.in)

14 **Abstract.** This paper presents a bottom-up methodology to estimate multi-pollutant hourly
15 gridded on-road traffic emission using advanced traffic flow and speed data for Delhi. We have
16 used the globally adopted COPERT (Computer Programme to Calculate Emissions from Road
17 Transport) emission functions to calculate the emission as a function of speed for 127 vehicle
18 categories. At first the traffic volume and congestion (travel time delay) relation is applied to
19 model the 24-hour traffic speed and flow for all the major road links of Delhi. The modelled
20 traffic flow and speed shows an anti-correlation behaviour having peak traffic and emissions
21 in morning-evening rush hours. We estimated an annual emission of 1.82 Gg for PM
22 (Particulate Matter), 0.94 Gg for BC (Black Carbon), 0.75 Gg for OM (Organic Matter), 221
23 Gg for CO (Carbon monoxide), 56 Gg for NO_x (Oxide of Nitrogen), 64 Gg for VOC (Volatile
24 Organic Carbon), 0.28 Gg for NH₃ (Ammonia), 0.26 Gg for N₂O (Nitrous Oxide) and 11.38
25 Gg for CH₄ (Methane) for 2018 with an uncertainty of 60%- 68%. The hourly emission
26 variation shows bimodal peaks corresponding to morning and evening rush hours and
27 congestion. The minimum emission rates are estimated in the early morning hours whereas the
28 maximum emissions occurred during the evening hours. Inner Delhi is found to have higher
29 emission flux because of higher road density and relatively lower average speed. Petrol
30 vehicles dominate emission share (> 50%) across all pollutants except PM, BC and NO_x, and
31 within them the 2W (Two-wheeler motorcycles) are the major contributors. Diesel fuelled
32 vehicles contribute most of the PM emission. Diesel and CNG vehicles have a substantial
33 contribution in NO_x emission. This study provides very detailed spatio-temporal emission maps

34 for megacity Delhi, which can be used in air quality models for developing suitable strategies
35 to reduce the traffic related pollution. Moreover, the developed methodology is a step forward
36 in developing real-time emission with the growing availability of real-time traffic data. The
37 complete dataset is publicly available on Zenodo at <https://doi.org/10.5281/zenodo.6553770>
38 (Singh et al., 2022).

39

40 **Key words:** COPERT, Multi-pollutant emission inventory, Diurnal Emission, Road transport,
41 Exhaust emissions, Air quality.

42

43 1 Introduction

44 Exposure to vehicular emissions poses a greater risk to the air quality and human health (Lipfert
45 et al., 2008; Salo et al., 2021, GBD 2021). On-road transport is the major contributor to the
46 ambient air pollution and greenhouse gas emissions in urban areas, mainly near roads (Singh
47 et al., 2014), therefore they are an important component of the local air quality management
48 plans and policies (Gulia et al., 2015; DEFRA, 2016; NCAP, 2019; Sun et al., 2022). The actual
49 traffic emission depends on several dynamic factors, such as emission factors, traffic volume,
50 speed, vehicle age, road network and infrastructure, road type, fuel, driving behaviour,
51 congestion etc. (Pinto et al, 2020; Jiang et al., 2021; Deng et al., 2020). Traffic emission
52 modelling has evolved and improved over recent years, however gaps still exist because of the
53 complexity and data involved in the emission inventory development. Moreover, the reliability
54 of the emission decreases further when the emissions are spatially and temporally segregated
55 (Super et al., 2020, Osses et al., 2021). There are differences in the reliability of emission
56 inventories of developed and developing countries because of lack of space-time input data in
57 developing countries (Pinto et al, 2020). The uncertainty associated with emission inventory is
58 further propagated in air quality models making mitigation studies more challenging, mainly
59 for developing countries such as India which is already facing air pollution issues (Pandey et
60 al., 2021).

61 India is among the top 10 economies (6th GDP rank) in the world in 2020 (GDP, 2020) and is
62 recognized as a developing country. The population and economic growth have led to dense
63 urbanisation with poor air quality in cities (Ravindra et al., 2019; Liang et al., 2020; Singh et
64 al., 2021). India hosts 22 cities among the top 30 polluted cities in the world (IQAIR, 2020).
65 The national capital of India, Delhi, has pollution levels exceeding NAAQS and WHO
66 guideline values (Singh et al., 2021). Earlier studies have estimated on-road traffic as the major

67 local contributor to Delhi pollution (CPCB 2010; Sharma et al., 2016) along with long range
68 transport sources associated with stubble burning and dust leading to severe pollution episodes
69 (Liu et al., 2018; Bikkina et al., 2019; Khaiwal et al., 2019; Beig et al., 2020; Singh et al.,
70 2020).

71 Delhi traffic exhaust (tailpipe) emissions have been studied extensively using different
72 methodology for years. The emissions estimated by various studies show large variations (see
73 comparison tables in Guttikunda and Calori, 2013; Goyal et al., 2013; Sharma et al., 2016;
74 Singh et al., 2018, and in Table 6) suggesting that the emissions have large uncertainties
75 associated with the method and data used. Most of the studies adopted a bottom-up
76 methodology to calculate the total emission over Delhi based on the registered vehicles and
77 average vehicle kilometre travelled (VKT) multiplying with emission factors. A few studies
78 (eg., Sharma et al., 2016; Singh et al., 2018, 2020) use an on-road traffic flow approach where
79 emission is estimated for each line source (road link) then spatially segregated (Tsagatakis et
80 al., 2020, Spatial of emissions methodology). CPCB (2010), Goyal et al. (2013) further
81 spatially desegregated the total emissions to 2 km × 2 km resolution but the method of gridding
82 is not discussed in detail. Sharma et al. (2016) and TERI (2018) also estimated 2km × 2km and
83 4 km × 4 km gridded emission respectively, by adopting a per grid traffic flow method.
84 Guttikunda and Calori (2013) estimated the 1 km × 1 km gridded emission by disaggregating
85 the net emission using various spatial proxies like gridded road density. Though these studies
86 with coarser resolution are helpful for identifying the emission hotspots but they lack actual
87 traffic flow information disaggregated by road type and vehicle type within the grids.
88 Moreover, their emission estimate shows large variations. For e.g., Das and Parikh (2004) and
89 Nagpure et al. (2013) estimated traffic emission using VKT methodology for the same base
90 year 2004, however their estimates varied by a factor of two or more. The annual emission
91 estimate around year 2010 by CPCB (2010), Sahu et al. (2011, 2015), Goyal et al. (2013),
92 Guttikunda and Calori (2013) and Singh et al. (2018) varied considerably from 3.5 Gg to
93 ~15Gg for PM emission and 30 Gg to 200 Gg for NO_x emissions. The VKT based estimation
94 approaches (Nagpure et al., 2013; Goel et al., 2015a; TERI 2018) tend to estimate higher
95 emission compared to the traffic flow methodology (Sharma et al., 2016; Singh et al., 2018).
96 A 40% increase in PM_{2.5} emission in 2018 as compared to 2010, is reported by SAFAR (2018)
97 attributed to the increase in vehicular growth.

98
99 Most of the studies for Delhi use EFs developed by ARAI (Automotive research association of
100 India, ARAI; 2008) and a few studies have used EFs from IVE (International Vehicular

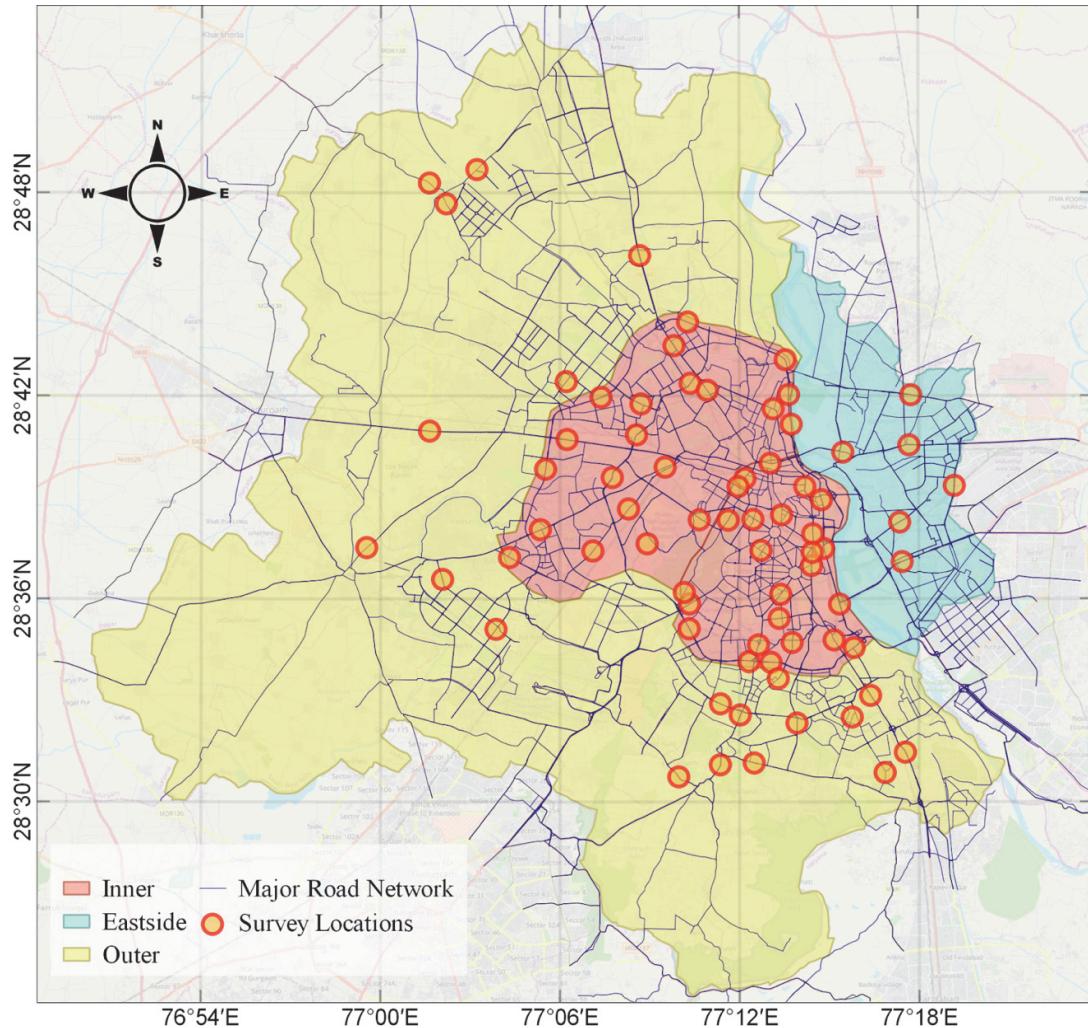
101 Emission Model by USEPA, Davis et al., 2005) and COPERT (Ntziachristos et al., 2019).
102 ARAI EFs are measured in laboratory conditions, operating the vehicles in variable speed
103 known as the Indian driving cycle (IDC, ARAI., 2008). The IVE emission factors are a function
104 of the power bins of the vehicle engine, whereas in COPERT emission factors are a function
105 of average vehicle speed, vehicle technologies, estimated pollutants, correction methods, and
106 adjustments to local conditions. (Cifuentes 2021). Goyal et al. (2013) used the IVE model to
107 estimate the traffic emission over Delhi for the year 2008 and also studied the diurnal emission
108 at a specific location. However, the study is limited to a fixed major traffic intersection only.
109 Kumari et al. (2013) used the COPERT-3 emission factor to estimate emission for Indian cities,
110 focusing on the multi-year (19991-2006) evolution of vehicular emission. However, this study
111 estimates the total emissions based on registered vehicles and does not provide spatial
112 segregation. COPERT Tier-3 emissions have been used for comparison with real-world
113 measured emission factors (Jaikumar et al., 2017; Choudhary and Gokhale, 2019). Jaikumar et
114 al. (2017) identified vehicle idling is the major factor in the deviation between model-based
115 estimation and measured emission as the vehicles spend 20% of their time in idling mode.

116

117 The traffic volume and speed information over each road are vital for accurate emission
118 estimation. The data over Delhi has been very limited, therefore studies have used the VKT
119 approach which uses the number of registered vehicles to estimate the emission. To the best of
120 our knowledge, despite several studies for Delhi, none of the studies have studied Delhi
121 emissions using advanced and detailed traffic data and speed based EFs to estimate the hourly
122 gridded emissions at high resolution. Moreover, most of the studies are limited to the estimation
123 of PM, NO_x, CO and HC only. The availability of recent detailed traffic data and speed volume
124 relation (Malik et al., 2018; 2021) as a part of the Transportation research and injury prevention
125 programme (TRIPP) of IIT Delhi provides an opportunity to estimate and improve the
126 emissions over Delhi. To the best of our knowledge, this is the first study of its kind which
127 considers advanced traffic flow data and estimates the hourly multi-pollutant emissions as a
128 function of speed.

129

130 In this study, we have adopted a globally accepted methodology based on COPERT-5 Tier3 to
131 estimate the hourly gridded emission for Delhi at high resolution for 2018. COPERT EFs have
132 been used in many studies Alamos et al. (2021) for Chile, Mangones et al. (2019) for Bogota
133 Cifuentes et al. (2021) for Manizalesto, Wang et al. (2010) for Chinese cities, Vanhulsel et al.
134 (2014) for Belgium, Tsagatakis et al., (2019) for the national emission inventory over the UK


135 and also has been used by many around the globe (<https://www.emisia.com/utilities/copert/>).
136 We combine advanced traffic volume and speed data (TRIPP, Malik et al., 2018) with speed
137 based emission factors to calculate the emissions. The methodology considers different vehicle
138 types, fuel type, engine capacity, emission standard and other key parameters such as
139 congestion to estimate the emission for each road. We estimate the emission of particulate and
140 gaseous pollutants namely PM (Particulate Matter), BC (Black Carbon), OM (Organic Matter),
141 CO (Carbon Monoxide), NO_x (Oxides of Nitrogen), VOC (Volatile Organic Compound), NH₃
142 (Ammonia) and greenhouse gases, N₂O (Nitrous Oxide) and CH₄ (Methane). Most of the PM
143 (~98%) from the vehicular exhaust is PM_{2.5} (ARAI 2008; Pant and Harrison 2013). We study
144 the diurnal and spatial variability in the emission and identify the most polluting vehicle
145 category, hotspots and the time when traffic emissions are highest. This study provides very
146 detailed spatio-temporal emission maps for megacity Delhi that can be used in air quality
147 models for developing suitable strategies to reduce the traffic related pollution. Moreover, the
148 developed methodology is also a step forward in developing real-time emission models in the
149 future with growing availability of real-time traffic data.

150

151 **2 Methodology:**

152 We estimated the emissions for 2018 over the National Capital Territory (NCT) of Delhi having
153 an area of 1483 km² (Fig. 1) and a population of 16.8 million (Census, 2011). The domain has
154 been further divided into three regions (viz. Inner, Outer and Eastside), as shown in Fig. 1, to
155 study the spatial variation in the emissions. Inner Delhi constitutes the major business hubs and
156 workplaces within the ring road and the Outer is the area away from the ring road whereas
157 the Eastside is the east part beyond the Yamuna River.

158 A bottom-up emission methodology has been adopted and a python-based model has been
159 developed to estimate gridded hourly emissions of major pollutants over an urban area. The
160 model estimates emission of PM, BC, OM, CO, NO_x, VOC, NH₃, N₂O and CH₄. The model
161 uses hourly traffic activity and COPERT based emission factors as a function of hourly speed
162 for each road link across Delhi. The major vehicle categories include 2W (Two wheeler motor
163 bikes), 3W (Auto rickshaws), CAR (Passenger cars), BUS (Buses), LCV (Light Commercial
164 Vehicles) and HCV (Heavy Commercial Vehicles).

165

166 Figure 1. Map showing the study domain with TRIPP survey locations and the major road links
 167 over Delhi. The domain is segregated to three regions (Inner, Eastside and Outer) shown in
 168 different colours. The background map is from <https://www.openstreetmap.org/>; ©
 169 OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database
 170 License (ODbL) v1.0.

171

172 2.1 Traffic Activity

173 Classified traffic volume and speed study of Delhi (Malik et al., 2018) provides traffic count
 174 and speed for the roads of Delhi based on the Traffic volume and speed measurements
 175 conducted at 72 locations (Fig. 1) over Delhi in the year 2018 as a part of Transportation
 176 research and injury prevention programme (TRIPP) of IIT Delhi. We will refer to this dataset

177 as TRIPP data from now on. TRIPP provides hourly traffic from 08:00-14:00 hours for eight
178 fleet types (2W, 3W, Cars, Buses, Minibuses, HCV, LCV and NMV: Non-motorized vehicle)
179 on over twelve thousand major road links over Delhi (Malik et al., 2018). These road links are
180 further classified into five road classes (RClass1 to RClass5) based on the width of the road
181 (Table S2). More detail of TRIPP traffic flow and its methodology is available elsewhere
182 (Malik et al., 2018; Malik et al., 2021). As the TRIPP data is only available for 0800-1400
183 hours, we use speed-flow-density relationship by Malik et al. (2021) to estimate the hourly
184 traffic for each road link in Delhi.

185 **2.1.1 Generating traffic flow from congestion**

186 The relation between traffic volume and congested speed has been studied extensively using
187 Greenshield model, the Greenberg model and the Underwood model (Wang et al., 2014;
188 Hooper et al., 2014) and used by many studies (Jing et al., 2016; Yang et al., 2019) to estimate
189 the traffic from the congestion for emission development. For Delhi, this relation is
190 mathematically represented in Eq. (3) of Malik et al. (2021). By rearranging, the same can be
191 written as Eq. (1) of this paper.

$$x_i = c_i \left(\frac{1}{\alpha} \left(\frac{V_{o,i}}{V_{Congested,i}} - 1 \right) \right)^{\frac{1}{\beta}} \quad (1)$$

192

193 Where,

194 x_i = Traffic flow for road link i

195 c_i = Traffic capacity for road link i

196 $V_{Congested,i}$ = Speed during congestion (km/h) for link i

197 $V_{o,i}$ = Free flow velocity (FFV) of traffic for road link i

198 α and β = constants (Table 1, Malik et al., 2021)

199

200 Traffic volume and road capacity determines the traffic speed. Increasing traffic volume leads
201 to travel time delay (congestion) which further results in road traffic congestion resulting in
202 increased traffic volume and decreased speed leading to traffic delays. Congested traffic speed
203 ($V_{congested}$) is inversely proportional to the *congestion* (Afrin and Yodo., 2020). Here we define
204 *congestion* as percentage increase in travel time, i.e. 50% congestion level in a city means that
205 a trip will take 50% more time than it would during baseline uncongested conditions. In real

206 world situations, even with the light traffic the congestion exists where minimum time delay is
 207 observed to reduce the likelihood of collision, known as single interaction (Vickrey, 1969).
 208 Therefore, the congestion cannot be zero in large cities such as Delhi with complex urban
 209 geometry and night-time activity. Wei et al. (2022) has reported lowest congestion value ranging
 210 from 0.01 to 0.08 during night-time across 77 Chinese cities. In this study, we have used hourly
 211 *congestion* data for Delhi obtained from TomTom (https://www.tomtom.com/en_gb/traffic-index/about/). TomTom is one of the leading mapping and navigation services providing urban
 212 congestion worldwide. Congestion data has been taken for different days of the week then
 213 combined to create weekdays (Monday to Friday) and weekend (Saturday and Sunday)
 214 profiles. Because FFV (V_o) and *congestion* are known for a road link, $V_{congested}$ for weekdays
 215 and weekend has been calculated for each road link using the Eq. (2).
 216

$$V_{congested} = \frac{V_o}{1 + \text{congestion}} \quad (2)$$

217 Further, substituting the value of $V_{congested}$ in Eq. (1), we get a relation between congestion and
 218 traffic flow (Eq. 3) that has been used to estimate the weekdays and weekend traffic flow for
 219 all the road links in personal car units (PCU).
 220

$$x_i = c_i \left(\frac{\text{congestion}}{\alpha} \right)^{\frac{1}{\beta}} \quad \text{congestion} > 0 \quad (3)$$

221 For large cities such as Delhi, the night-time congestion and traffic are not zero. It can be
 222 considered as a smooth traffic flow situation with congestion greater than zero. Therefore, to
 223 avoid zero traffic in equation 3, we have used a minimum congestion value of 0.03 (3%) for
 224 Delhi. We use c_i from TRIPP and *congestion* from TomTom. The values α , β and c_i used in
 225 this study are taken from Malik et al., (2021), and are shown in Table S2. We take three-point
 226 moving average of hourly congestion and calculate the traffic flow using equation 3. The traffic
 227 flow is calculated in terms of PCU. The PCU values for Delhi are taken from Malik et al. (2021)
 228 and are as follows (a) 1.0 for CAR, (b) 0.5 for 2W, (c) 1.0 for 3W, (d) 3.0 for BUS, (e) 1.5 for
 229 LCV and (f) 3.0 for HCV. Malik et al. (2021) has reported speed–volume relationship for
 230 different road classes in Delhi and has given for different lanes (1 lane, 2 lanes, 3 lanes and >4
 231 lanes). In order to harmonize the road classes, we use RClass1 for 1 lane, RClass2 for 2 lanes,
 232 RClass3 for 3 lanes, and RClass4 and RClass5 for >4 lanes. We selected the parameters of the
 233 road classes that have high numbers of sample points and R^2 corresponding to each road class.
 234 For e.g., for RClass3, we considered the 3 lanes having higher R^2 . Further, the speed and traffic

volume has been corrected for each road link to match the observed PCU in TRIPP dataset for a better agreement. The PCU and speed variation across all road classes are shown as a box plot in Fig. S5. The comparison of observed and estimated traffic at the 72 location of TRIPP is shown in Fig. S3. The estimated and measured traffic have a correlation of 0.99 and the difference (estimated - measured) varies from -0.6% to 2.6%. The hourly estimated traffic for each road link is further decomposed from PCU to different fleet categories using the percentage share provided by Malik et al., 2018. The hourly estimated traffic has been further corrected for the LCV and HCV using the percentage share provided by CRRI (Central Road Research Institute; Errampalli et al., 2020) to account for the travel restrictions of good vehicles during peak traffic hours. For simplicity, minibus has been combined with the bus category and NMVs are not used in this study. To validate our activity data, the annual VKT estimated for each fleet category has been compared with earlier reported studies (Sahu et al., 2011; Kumar et al., 2011; Guttikunda and Calori., 2013; Goel et al., 2015b; Malik et al., 2019) and is tabulated in Table S11 and discussed in section 3.1.

2.2 Vehicular Classification:

The six types of primary vehicle categories (2W, 3W, CAR, BUS, LCV and HCV) have been further classified into 127 categories (Table S1) according to fuel, engine capacity and emission standards to match the COPERT-5 vehicular classification. The fuel share of petrol/gasoline, diesel and CNG/LPG vehicles in Delhi for passenger and freight vehicles has been obtained from Dhyani and Sharma. (2017) and Malik et al. (2019) respectively. The engine share for primary vehicle categories has been taken from working papers (Sharpe and Sathiamoorthy., 2019; Anup and Yang., 2020; Deo and Yang., 2020) of the International Council on Clean Transportation (ICCT). In India, the emission norms/standards, known as Bharat Stage (BS), can be considered equivalent to the European Emission Standards - Euro, have been introduced in a phased manner. These norms were introduced for passenger cars then later extended to other vehicle categories. For example, the BS-I (India-2000) for passenger cars was implemented in 2000 followed by BS-II, BS-III and BS-IV in 2005, 2010 and 2017 respectively. The BS-VI for passenger cars is introduced recently in 2020 therefore has not been considered in our study. For Delhi, the timeline of BS implementation for passenger cars and other vehicles are shown in Table S3. The vehicles prior to the implementation of BS norms have been considered as Conventional (or BS-0 for simplicity). The BS share of the vehicles has been derived using the survival function method described in (Goel et al., 2015b;

267 Malik et al., 2019). The vehicle survival was calculated for the past twenty years by considering
268 2018 as the base year and then the BS share was calculated based on the age of the vehicle with
269 respect to 2018 (Table S4). The final share of the primary vehicle category as per fuel, engine
270 and BS norms has been calculated by multiplying the fuel share, engine share and BS norms
271 share and shown in Table S1. In this study, BS and EURO/Euro have been used
272 interchangeably, and BS-I to BS-IV or BS1 to BS4 or EURO1 to EURO4 represent the same
273 emission standard.

274 **2.3 Emission Factors**

275 Emission factor (EF) is a crucial parameter needed for emission estimation. Road traffic
276 vehicular emission depends on a variety of factors such as vehicle type, fuel used, engine types,
277 driving pattern, road type, emission legislation type (BS/EURO) and speed of the vehicle. We
278 have adopted the recent COPERT-5 tier-3 methodology and used the speed based emission
279 factor (<https://www.emisia.com/utilities/copert/>) for 127 vehicle types (Table S1) and
280 according to the emission legislation up to BS/EURO-4 (As in 2018 BS-VI is not
281 implemented). The EF as a function of vehicle speed (v) is calculated using Eq. (4).

$$EF(v) = \frac{(\alpha \times v^2) + (\beta \times v) + \gamma + \left(\frac{\delta}{v}\right)}{(\varepsilon \times v^2) + (\zeta \times v) + \eta} \quad (4)$$

282
283
284 Where,
285 v is the speed,
286 $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta$ and η are coefficients that varies with vehicle type
287

288 The coefficients for each pollutant and vehicle category are taken from the COPERT-5
289 database (COPERT-5 Guidebook, 2020). The emission factors are further corrected for the
290 emission degradation occurring in older vehicles considering the mileage as discussed in
291 (COPERT-5 Guidebook, 2020). COPERT relies on mean driving speed and travel distance.
292 The mean speeds are relatively low under urban driving conditions, and emission factors are
293 highly variable within this speed range due to the speed fluctuations caused due to real-time
294 driving behaviour (frequent braking, acceleration, deceleration, idling). Lejri et al. (2018) have
295 estimated the relative errors on fuel consumption and NO_x emissions related to mean speed

296 variations from 2 to 10 km/h and estimated errors up to 25-30% in fuel consumption and NO_x
297 emissions. Therefore, to account for the emissions due to the speed fluctuations around the
298 mean speed, a factor of 1.2, i.e. 20% increase has been applied to the final dataset. This has
299 been applied for all the hours and all the pollutants. Although we apply the same factor for all
300 hours of the day, the added emissions are more during high congestion hours and less during
301 low congestion hours.

302 The non-exhaust emissions (Singh et al., 2020) have not been calculated in this study. As
303 COPERT does not provide the EFs for the 3W CNG category, we have used EFs of CNG mini
304 CAR for this. BC and OM emission are computed using the fraction (by COPERT-5
305 Guidebook, 2020) from PM exhaust. We have compared the COPERT EFs used in this study
306 with the earlier reported EFs and shown in Table S12 to elaborate upon the potential uncertainty
307 in the key vehicle categories. Further, the emission uncertainties have been discussed in section
308 4.

309 **2.4 Emission calculation**

310 The model calculates hourly emissions for each road link of finite length and uses hourly traffic
311 volume and emission factors as a function of speed for 127 vehicle categories (Table S1). The
312 hourly emission rate (Q) for each road link is calculated using Eq. (5). The total emission for a
313 given hour is calculated by taking the sum of emission across all vehicle categories.

$$314 Q_{i,h}^p = \sum_j V_{i,j,h} \times EF_j^p(v_{i,h}) \times L_i \quad (5)$$

315 Where

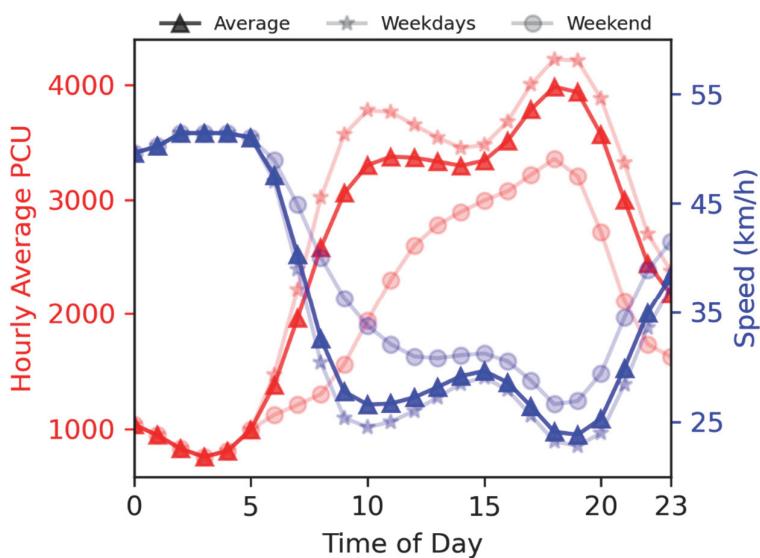
316 $Q_{i,h}^p$ is emission rate of a pollutant p for road link i and at hour h , where $h=0$ to 23

317 $V_{i,j,h}$ is the traffic volume of vehicle category j for road link i at hour h , where $j=1$ to 127

318 L_i is the length of road link i

319 $EF_j^p(v_{i,h})$ is the emission factor of pollutant p for vehicle category j as a function speed $v_{i,h}$
for road link i at hour h .

320 The hourly emissions have been calculated for each pollutant over each road link then gridded
321 at 100 m × 100 m resolution using the methodology described in Singh et al., (2018, 2020) to
322 produce the hourly gridded emission inventory for Delhi.


323 **3 Results**

324 **3.1 Diurnal variation of traffic volume and speed**

325 The estimated hourly traffic volume (in PCU) and speed profiles for Delhi are shown in Fig. 2.
326 An anticorrelated diurnal variation is seen in the traffic volume and speed. The weekdays traffic
327 volume tends to have a bimodal profile with a morning peak (09:00-11:00) and an evening
328 peak (18:00-20:00). A similar traffic volume profile has also been observed by other studies
329 over Delhi (Dhyani and Sharma., 2017; Sharma et al., 2019). Similar bimodal traffic profile is
330 also observed over the cities around the world subject to the city specific travel demand (Järvi
331 et al., 2008 for Helsinki; Jing et al., 2016 for Beijing) The evening peak traffic volume tends
332 to be 40% higher than the morning peak. The vehicular composition changes hourly (Fig. S1)
333 and also varies with respect to the road classes (Table S5). The night-time goods vehicle share
334 is more in comparison to the passenger and personal vehicles (Fig. S1). The weekend traffic
335 volume does not show a morning peak due to closure of the offices/workplaces and shows
336 evening peaks due to shopping and other weekend activities. As usual the minimum traffic
337 volume is observed at night (00:00-04:00 hours) because of the reduced human and commercial
338 activities. Due to the minimum traffic at night, the traffic moves with an average speed of 51 ± 6
339 km/h with almost no congestion. As traffic volume increases, it starts to build congestion,
340 leading to reduced speed. The average speed during the weekdays morning peak hours is
341 estimated to be 30 ± 14 km/h whereas the evening speed is estimated to be 28 ± 15 km/h. The
342 evening congestion leads to an average 46% reduction in the average speed increasing the
343 travel time by a factor of two. We calculated the average profiles for each road link by
344 combining weekdays and weekends and used them in the emission calculations. The estimated
345 profiles averaged across all road links are shown in Fig. 2.

346 We have estimated 27, 31, 6, 1.7, 0.95 and 3.14 billion VKT driven by CAR, 2W, 3W, BUS,
347 HCV and LCV respectively. The comparison between estimated annual VKT and reported by
348 other studies is tabulated in TableS11. This comparison table includes the studies which have
349 either reported annual VKT or have provided enough data to calculate annual VKT. The VKT
350 values compare well with the earlier studies by considering the fact that the uncertainties exist
351 in the method of estimation, year and study domain. Malik et al. (2019) estimated the destined
352 and non-destined VKT of freight vehicles (HCV and LCV) with the actual measured traffic at
353 several entry points in Delhi. Goel et al. (2015b) estimated the annual VKT based on the annual
354 mileage of the 2W and cars obtained from PUC (Pollution under control) certification data and
355 the number of registered vehicles. The VKT reported by Goel et al. (2015b) for Cars and 2W

356 are slightly lower than our study. The study by Goel et al. was conducted in 2012 since then
 357 the cars and taxis share has almost doubled in Delhi due to increased travel demand and
 358 economic growth (DDA, 2021). The study by Kumar et al. (2011), which is for 2010, reported
 359 higher VKT for Buses and HCV as compared to the one estimated by the current study. Their
 360 estimates were based on the assumed distance travelled by each vehicle and the number of
 361 registered vehicles than the actual on road vehicle. Guttikunda and Calori. (2013) reported
 362 high VKT for buses and HCV. The study by Sahu et al. (2011) for NCR Delhi estimated very
 363 high VKT for 2W and Cars. While earlier studies have reported different VKT values the
 364 relative VKT share compares well with our study. Moreover, the VKT estimated by recent
 365 studies are close to our estimates.

366
 367 Figure 2. Weekdays, weekend and average diurnal profile for traffic volume in average PCU
 368 (red) and average speed (blue) over Delhi. The legend reflects the different markers used for
 369 weekdays, weekend and average profile.

370 3.2 Emission inventory

371 A multi-pollutant hourly and high spatial resolution ($100\text{m} \times 100\text{m}$) emission inventory has
 372 been prepared for Delhi. As an example, the spatial distribution of NO_x emission at 03:00-
 373 04:00, 09:00-10:00, 15:00-16:00 and 18:00-19:00 hours, representing early morning, morning
 374 peak, afternoon and evening peak respectively, has been shown in Fig. 2. The emission rate
 375 during the evening peak hours is the highest during the day followed by morning peak hours.
 376 The high traffic volume along with traffic congestions lead to more emissions during the peak
 377 traffic hours (Jing et al., 2016). The emission during the afternoon hours is comparable or less
 378 than that of the morning hours whereas the early morning emissions are lowest because of low

379 traffic volume moving with free flow speed. The diurnal profile of emissions has been
380 discussed in detail in Section 3.5.

381 The annual emissions have been calculated by summing the hourly emissions to get daily
382 emissions and then multiplying with 365 (number of days in a year) to get annual emissions.
383 The monthly variation in the emission has not been considered as the monthly variations are
384 much smaller than the hourly variations. We estimated an annual emission of 1.82 Gg for PM,
385 0.94 Gg for BC, 0.75 Gg for OM, 221 Gg for CO, 56 Gg for NO_x, 64 Gg for VOC, 0.28 Gg for
386 NH₃, 0.26 Gg for N₂O and 11.38 Gg for CH₄ in 2018.

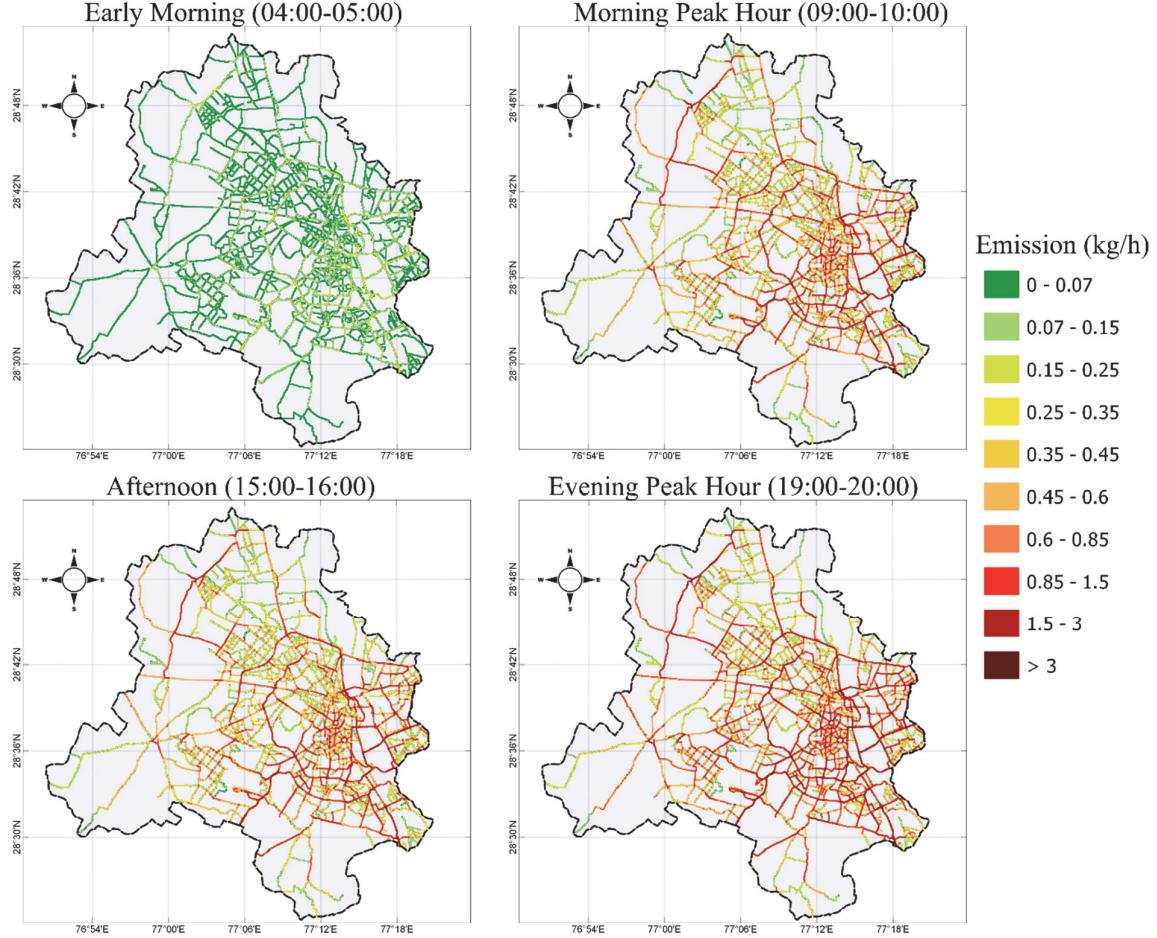
387

388 **3.3 Spatial variation**

389 The hourly emissions over Delhi have been summed together to calculate the daily emissions
390 for all the pollutants. The spatial variation of daily mean emission rate has been analysed over
391 three selected regions, viz. inner, outer and eastside Delhi (as shown in Fig. 1). The total
392 emission for each pollutant and for each region has been tabulated in Table S6. Outer Delhi
393 region has the highest emission (51-53%) for all the pollutants because of its largest area of
394 1106 km² which is 4.5 times of inner Delhi. To avoid the influence of area on the emissions,
395 we have calculated the emission flux (i.e. emission per unit area) and shown in Table S7. The
396 emissions flux is highest for inner Delhi followed by eastside and outer Delhi region. For all
397 pollutants, the emissions flux in inner Delhi is 40 - 50 % higher than the average emission of
398 Delhi whereas the emissions flux in outer Delhi is ~46% lower. The emission flux is
399 consistently high along the grids containing major roads (Fig. 3), intersections and major
400 business hubs. Inner Delhi consists of major business hubs, workplaces and government
401 offices, which entertain more vehicular activity in this region resulting in congestion leading
402 to reduced speed and enhanced emissions. The daytime average speed across all roads in Inner
403 Delhi is 29 km/h which is lower than the daytime average speed of 32 km/h in outer Delhi. The
404 lower speed and higher traffic density influences the economic driving behaviour resulting in
405 frequent braking, idling, acceleration and deceleration that enhances the vehicular emission.
406 Moreover, the morning and evening peak hours with higher traffic and lower speed have the
407 highest emission as compared to the rest of the day. In these heavy congested hours, the vehicle
408 is forced to run in lower speed which boosts the emission.

409

410 **3.4 Emissions along the Road class**


411 The emissions along the five road classes used in this study have been calculated and shown in
412 Table 1 and the hourly variation of emission has been shown in Fig. 4. RClass3 has a

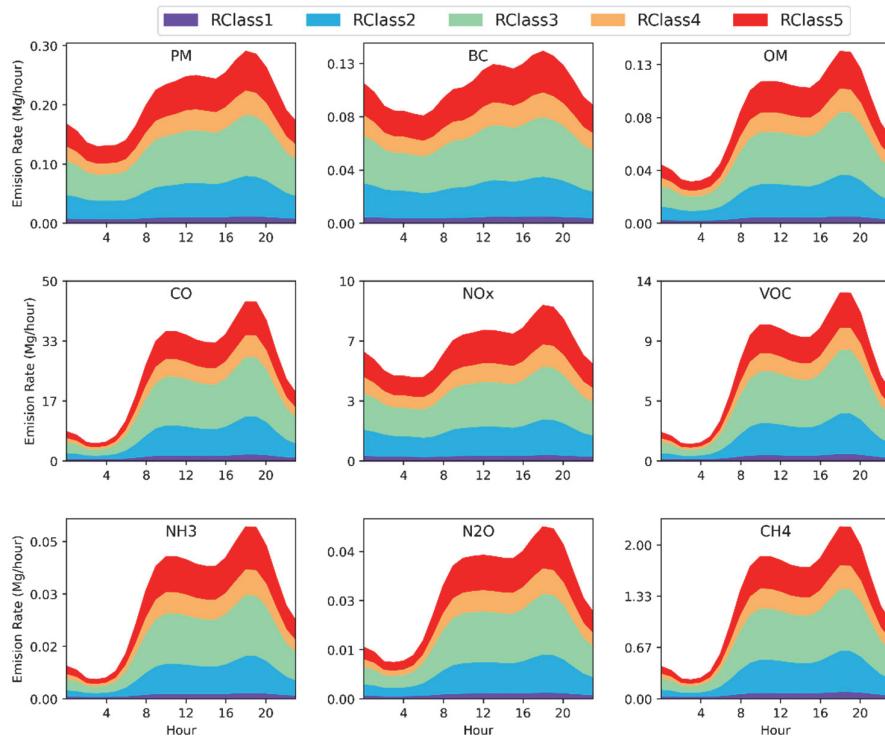
413 substantial emission share (~35%) across all pollutants followed by RClass5 and RClass2,
 414 whereas RClass1 holds the minimum emissions share (~2-3%). The dominant emission share
 415 of RClass3 is due to the optimum vehicular activities over the longer road length. RClass2,
 416 which are the feeder roads to the RClass3, RClass4 and RClass5, contribute ~23% to the
 417 emission. The multi-lane wider roads, RClass4 and RClass5 contribute ~13-15 % and ~21-25
 418 % respectively to the total emission. To remove the dependency of the road length, we
 419 calculated the emission per km segment of a road. The emissions (per km) over multi-lane
 420 wider roads (RClass4 and RClass5) are almost two times of the RClass3 (Table S8 and Fig.
 421 S2) due to more traffic flow irrespective of the congested conditions. However, the emission
 422 per lane per kilometre (Table S9) for RClass1 is found to be the highest because of lower speed
 423 and congestion and major share of 2W. This shows that effective management of traffic in
 424 narrow roads to reduce the congestion will be beneficial in reducing the pollution without
 425 impacting the traffic volume. The multi-lane wider roads (RClass4 and RClass5) help the
 426 vehicle to maintain an economic speed resulting in minimum congestion and lower emission,
 427 however they are the emission hotspots in Delhi.

428 Table 1. Emission in Mega gram (Mg) per day (% share) across different road types.

RClass	PM	BC	OM	CO	NO _x	VOC	NH ₃	N ₂ O	CH ₄
RClass1	0.16 (3%)	0.09 (3%)	0.07 (3%)	19 (3%)	4 (2%)	5 (2%)	0.02 (2%)	0.02 (2%)	1.0 (3%)
RClass2	1.17 (23%)	0.61 (23%)	0.49 (23%)	139 (23%)	35 (23%)	41 (23%)	0.16 (21%)	0.16 (22%)	7.3 (23%)
RClass3	1.77 (35%)	0.9 (34%)	0.75 (36%)	228 (37%)	52 (34%)	67 (38%)	0.27 (35%)	0.25 (35%)	11.29 (36%)
RClass4	0.72 (14%)	0.38 (14%)	0.29 (14%)	84 (13%)	22 (14%)	23 (13%)	0.12 (15%)	0.11 (15%)	4.43 (14%)
RClass5	1.16 (23%)	0.62 (23%)	0.46 (22%)	132 (21%)	38 (25%)	37 (21%)	0.19 (25%)	0.17 (23%)	7.19 (23%)

429
 430

431

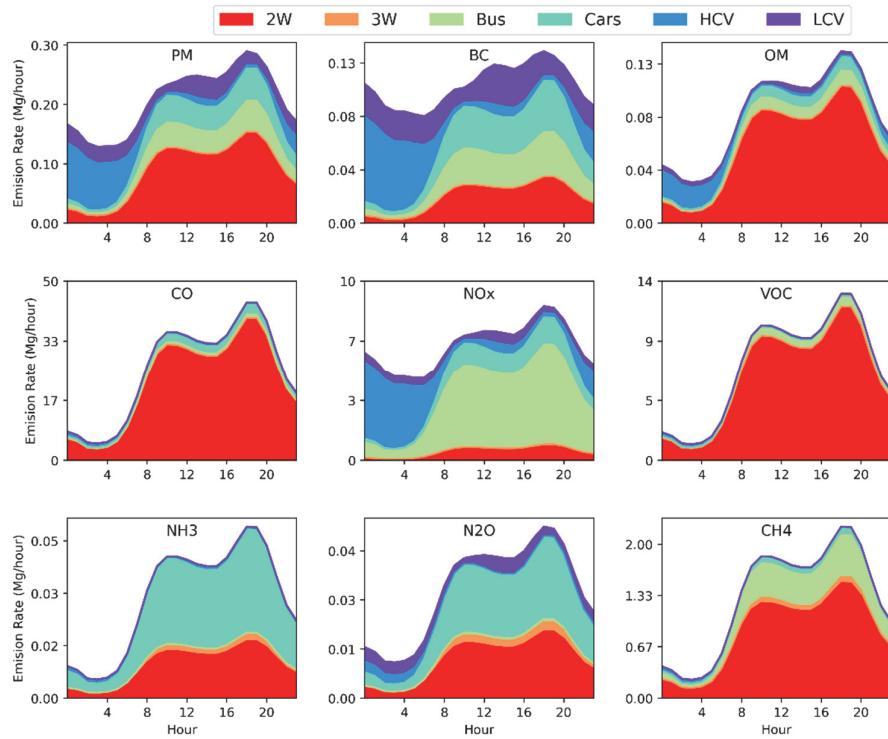

432 Figure 3. Estimated gridded NO_x emission in kg/h (kilogram per hour) at 100m × 100m
 433 spatial resolution at different times of the day representative of different congestion levels.

434

435 **3.5 Diurnal variation of emission**

436 Dynamic traffic volume and speed, as discussed in section 3.1, results in diurnal variation in
 437 the emissions during a day. Fig. 4 shows the hourly emissions (Mg/h) and contribution of each
 438 road class at each hour in Delhi. The temporal evolution of emission is linear with the traffic
 439 variation in a day with the minimum variation during the night-time and remarkable variation
 440 during the human active hours (08:00-20:00). Among different road types and for all the
 441 pollutants RClass1 has the lowest and RClass3 has the highest emission proportional to the
 442 traffic volume. A similar temporal variation of NO_x emission rate is observed in a study, for
 443 different road types of Beijing (Jing et al., 2016). For most of the pollutants (except PM, BC
 444 and NO_x), daytime (08:00 to 20:00) contributes ~70% to the daily emissions whereas the
 445 morning (09:00 to 11:00) and evening (18:00 to 20:00) rush hours alone altogether add 30-40%
 446 to the total emissions. The increasing activity of goods vehicles (HCV + LCV) during afternoon

447 and night-time (Fig. S1) elevates the emission of PM, BC and NO_x from these vehicles (Fig.
448 5) resulting in a different diurnal profile compared to other pollutants. The NO_x and particulate
449 pollutants (PM and BC) emissions during late night hours (11:00-05:00) is relatively higher,
450 adding up to 60% and 75% of total particulate and NO_x night-time emissions respectively as
451 shown in Fig. 5. The contribution of vehicle type has been discussed in detail in section 3.6.
452 The diurnal evolution of emission is also visible in the hourly spatial map shown in Fig. 3.
453 Early morning with minimum traffic volume has lower emission whereas the evening rush hour
454 with increasing congestion has higher emission. The density of higher emission grids (Fig. 3)
455 in the inner Delhi region is higher compared to other regions throughout the day.
456


457
458 Figure 4. Variation of hourly emission (in megagram/hour) of the nine pollutants averaged
459 across Delhi according to the five road classes (RClass1 to RClass5). Different colors
460 indicate the hourly contribution of each RClass to the total emission.

461

462 3.6 Vehicular emission share

463 The percentage share of major vehicle types to the total emission of nine pollutants has been
464 calculated and shown in Table 2 and its hourly contribution is shown in Fig. 5. The 2W
465 vehicles, having a major vehicular share (Table S5), are the major contributors to the total
466 emissions for all the pollutants except for BC, NO_x and N₂O. The goods vehicles (HCV and

467 LCV) contribute substantially, mainly during night-time, to the PM, BC and NO_x emissions.
 468 Buses have the highest contribution to NO_x emissions and substantial contribution to PM, BC
 469 and CH₄. Cars are the dominant source for NH₃ and N₂O and contribute substantially to PM,
 470 BC and NO_x emissions. However, most of the emissions are from diesel cars.
 471

472
 473 Figure 5. Variation of hourly emission (megagram/hour) of the nine pollutants averaged
 474 across Delhi according to the major vehicle type. Different colors indicate the hourly
 475 contribution of each vehicle type to the total emission.

476
 477 Table 2. Emission in kg/day (% share) according to the vehicle types.

Vehicle	PM	BC	OM	CO	NO _x	VOC	NH ₃	N ₂ O	CH ₄
2W	2102 (41.6%)	500 (19.0%)	1475 (71.5%)	532316 (88.0%)	10600 (6.8%)	159582 (90.5%)	249 (32.6%)	249 (35.4%)	20588 (66.0%)
Cars	740 (14.6%)	537 (20.4%)	146 (7.1%)	42276 (7.0%)	20185 (12.9%)	3546 (2.0%)	458 (60.0%)	308 (43.8%)	1425 (4.6%)
3w	25 (0.5%)	3 (0.1%)	11 (0.5%)	3305 (0.5%)	1593 (1.0%)	952 (0.5%)	32 (4.2%)	35 (5.0%)	1151 (3.7%)
Buses	691 (13.7%)	459 (17.4%)	160 (7.8%)	12739 (2.1%)	75536 (48.4%)	9249 (5.2%)	4 (0.5%)	12 (1.7%)	7456 (23.9%)
HCV	787 (15.8%)	546 (21.2%)	171 (8.3%)	8645 (1.4%)	35404 (23.0%)	2057 (1.2%)	9 (1.2%)	24 (3.4%)	452 (1.4%)
LCV	636 (12.8%)	534 (20.7%)	87 (4.2%)	4803 (0.8%)	10547 (6.9%)	884 (0.5%)	11 (1.4%)	75 (10.7%)	126 (0.4%)

478

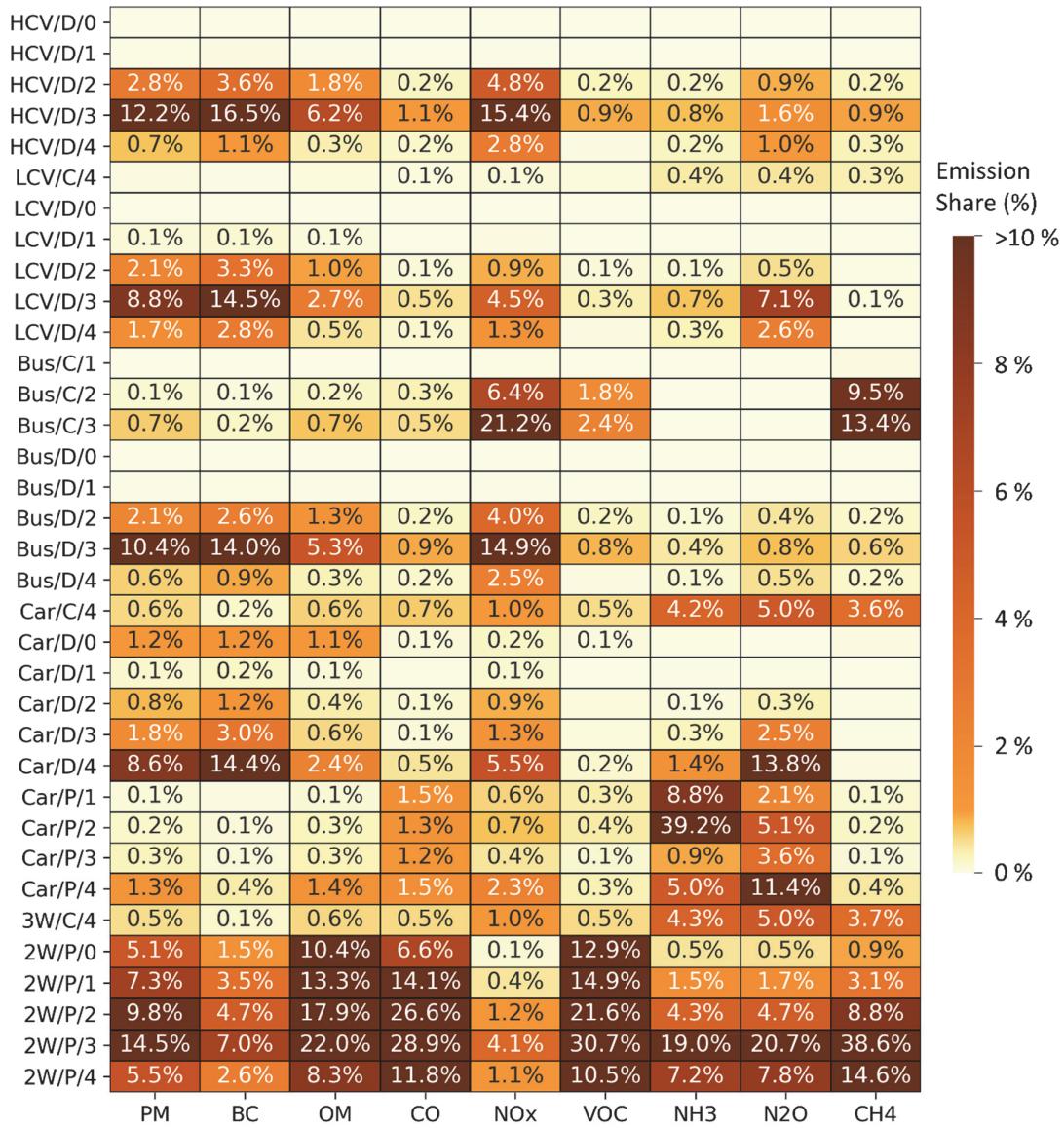
479 Table 3. Emission in kg/day (% share) according to fuel type.

Fuel	PM	BC	OM	CO	NO _x	VOC	NH ₃	N ₂ O	CH ₄
CNG	95 (1.9%)	14 (0.5%)	43 (2.1%)	12703 (2.1%)	45832 (29.8%)	9335 (5.3%)	68 (8.9%)	73 (10.4%)	9547 (30.6%)
Diesel	2698 (54.1%)	2052 (79.5%)	491 (23.9%)	25583 (4.2%)	91144 (59.2%)	5308 (3.0%)	36 (4.7%)	225 (32.0%)	805 (2.6%)
Petrol	2191 (44.0%)	514 (19.9%)	1517 (74.0%)	565799 (93.7%)	16890 (11.0%)	161628 (91.7%)	662 (86.4%)	406 (57.7%)	20848 (66.8%)

480
481 The vehicular fuel share to the total emission for each pollutant is shown in Table 3. Petrol
482 vehicles are the largest contributors to the CO (~94%), VOC (91%), NH₃ (86%), OM (74%),
483 CH₄ (67%) and N₂O (58%) whereas diesel vehicles are the largest contributor to the BC
484 (~80%), NO_x (59%) and PM (54%) emissions. The contribution of the CNG vehicles is
485 relatively smaller except for the NO_x and CH₄ where they contribute to ~30 %, almost one
486 third, to the total emissions.

487
488 The larger contribution of petrol to the VOC, CO, OM and CH₄ emissions are dominated by
489 2W where we estimated that 2W in Delhi alone contribute 90%, 88%, 71%, and 66%
490 respectively as shown in Table 2. The contribution of 2W is also highest to PM (42%). The
491 larger share of 2W towards the CO emissions has also been reported earlier, 61% in Goyal et
492 al., (2013); 43% in Sharma et al., (2016) and 37% in Singh et al., (2018). Higher emission
493 share of 2W is due the higher emission factor of VOC in petrol fuelled 2W (Hakkim et al.,
494 2021) that has been also reported in a multi-year emission study over Delhi by Goel et al.
495 (2015a).

496
497 The PM emissions are dominated by diesel fuelled HCVs (16 %), LCVs (13%), Buses (14 %)
498 and Cars (~13 %), whereas 2W are the main source in petrol fuelled vehicles contributing ~42%
499 to the total PM emissions. Earlier, Sharma et al. (2016) reported 33% share of 2W emission in
500 2014. The share of petrol cars and CNG buses towards the PM, BC and OM emissions is less
501 than 2%. While it is clear that diesel powered vehicles are the major source of PM emission,
502 earlier studies have reported similar results but with large variations of HCVs in emission share.
503 The largest share of diesel fuelled HCV is reported as 92% by Goyal et al. (2013), 46% by
504 Sharma et al. (2016) and 33% by Singh et al. (2018). All these studies reported minimal
505 emission share (less than 10% combining both diesel and petrol cars). The largest share of
506 HCV, LCV and diesel Cars to BC emission is because of higher emission factors (Zavala et
507 al., 2017) contributing to total urban BC emission as shown by Bond et al., (2013).


508
509 The petrol cars contribute more than half of the total NH₃ emissions and among them the Euro
510 2 with higher emission factor has the largest share of 39%. The diesel vehicles (HCVs, LCVs,
511 diesel Buses and Cars) altogether contribute significantly to the PM, BC and NO_x emissions.
512 The higher emission factor of diesel fuelled vehicles (Wu et al., 2012) clearly reflects in the
513 emission share.

514
515 CNG buses have the highest share (27%) in NO_x emission and around 23% in CH₄ emissions.
516 The highest share of CNG is due to higher NO_x emission factor for CNG vehicles compared to
517 petrol vehicles (Dimaratos et al., 2019). The larger share of ~15% from CNG buses to the total
518 traffic NO_x emission is also reported in a study of CPCB (2010). In terms of Euro or BS
519 standard, Euro 3 vehicles have the highest share (Table S10) in the total emission except for
520 N₂O and NH₃. This is mainly because of the highest share of Euro 3 vehicles in 2W, Buses,
521 HCV and LCV (Table S4 in the Supplement). In the case of N₂O, the emissions are dominated
522 by Euro 4 cars which have around 84% share to the total cars. For CH₄, the highest share of
523 Euro 3 vehicles is due to the higher emissions from Euro 3 2W as the emission factor of petrol
524 vehicles is higher (Clairotte et al., 2020).

525
526 In order to have a clear picture of the dominant polluting vehicle categories, we grouped
527 different vehicle types into 35 categories and calculated the percentage share to the total
528 emission of nine pollutants as shown in Table 4. We further identified the top five polluting
529 vehicle categories for each pollutant and tabulated in Table 5. For PM, the top five polluting
530 vehicles account for 55% of the total emissions which is dominated by petrol Euro 3 petrol
531 2W and Euro 3 diesel HCVs. The BC emission is mainly driven by Euro 3 diesel HCVs, LCVs,
532 Buses and the top five polluting vehicles account for 66% of the total emissions. The OM, CO,
533 VOC emissions are dominated by 2W and the top five accounts for 71%, 89% and 91% of total
534 emissions respectively.

535
536 Petrol fuelled cars and 2W hold the dominant share of NH₃ emissions because of the larger EF
537 compared to other categories (COPERT-5 Guidebook, 2020). For N₂O, 2W Euro 3 holds the
538 highest share of 21%, followed by EURO IV diesel and petrol cars. The top five contributors
539 to CH₄ emissions account for 86% of the total emissions which are dominated by 2W and CNG
540 buses. These two categories of vehicles altogether contribute to ~97% of the emissions.

542 Table 4. Emission share of vehicles of different class, fuel and BS/EURO standards.
 543 Contributions less than 0.1% are not shown here. Contributions more than 10% are shown in
 544 the same colour. (D: Diesel, P: Petrol, C: CNG and number 0-4 represents the Euro type starting
 545 from 0 being conventional to 4 as Euro 4).

546

547

548

549

550

551

552

553

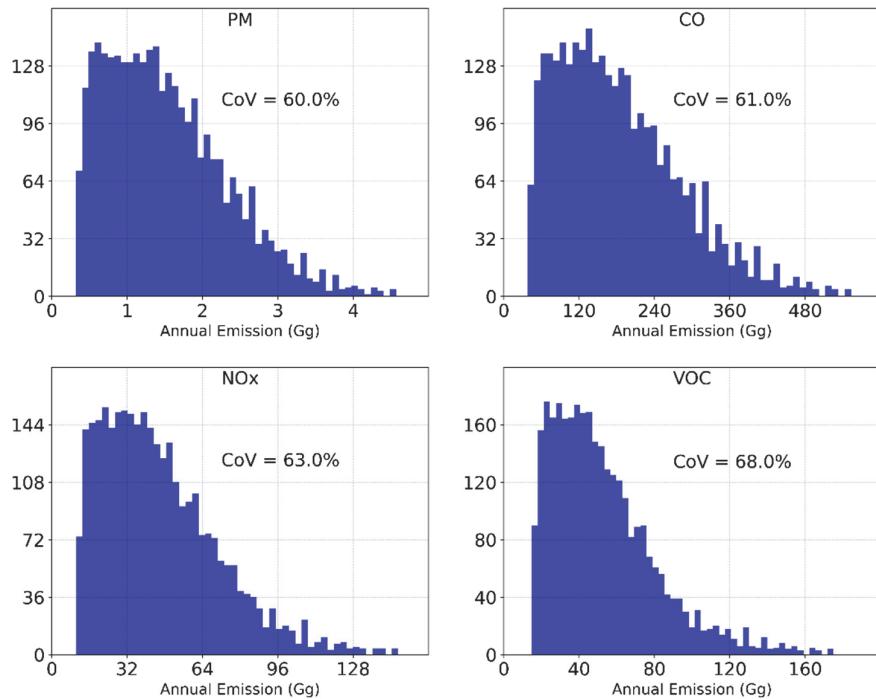
554

555

556

557 Table 5. Top five polluting vehicle categories for each pollutant.

PM	BC	OM
Top 5 accounts for 55% emissions 1. 14% from 2W (Petrol, Euro 3) 2. 12% from HCV (Diesel, Euro 3) 3. 10% from Bus (Diesel, Euro 3) 4. 10% from 2W (Petrol Euro 2) 5. 9% from LCV (Diesel Euro 3)	Top 5 accounts for 66% emissions 1. 17% from HCV (Diesel Euro 3) 2. 14% from LCV (Diesel Euro 3) 3. 14% from Car (Diesel Euro 4) 4. 14% from Bus (Diesel Euro 3) 5. 7% from 2W (Petrol Euro 3)	Top 5 accounts for 71% emissions 1. 22% from 2W (Petrol, Euro 3) 2. 18% from 2W (Petrol, Euro 2) 3. 13% from 2W (Petrol, Euro 1) 4. 10% from 2W (Petrol, Euro 0) 5. 8% from 2W (Petrol, Euro 4)
CO	NO _x	VOC
Top 5 accounts for 89% emissions 1. 29% from 2W (Petrol, Euro 3) 2. 27% from 2W (Petrol, Euro 2) 3. 14% from 2W (Petrol, Euro 1) 4. 12% from 2W (Petrol, Euro 4) 5. 7% from 2W (Petrol, Euro 0)	Top 5 accounts for 63% emissions 1. 21% from Bus (CNG, Euro 3) 2. 15% from HCV (Diesel, Euro 3) 3. 15% from Bus (Diesel, Euro 3) 4. 6% from Bus (CNG, Euro 2) 5. 6% from Car (Diesel Euro 4)	Top 5 accounts for 91% emissions 1. 31% from 2W (Petrol, Euro 3) 2. 22% from 2W (Petrol, Euro 2) 3. 15% from 2W (Petrol, Euro 1) 4. 13% from 2W (Petrol, Euro 0) 5. 10% from 2W (Petrol, Euro 4)
NH ₃	N ₂ O	CH ₄
Top 5 accounts for 79% emissions 1. 39% from Car (Petrol, Euro2) 2. 19% from 2W (Petrol, Euro3) 3. 9% from Car (Petrol, Euro1) 4. 7% from 2W (Petrol, Euro4) 5. 5% from Car (Petrol, Euro4)	Top 5 accounts for 61% emissions 1. 21% from 2W (Petrol, Euro 3) 2. 14% from Car (Diesel, Euro 4) 3. 11% from Car (Petrol, Euro 4) 4. 8% from 2W (Petrol, Euro 4) 5. 7% from LCV (Diesel, Euro 3)	Top 5 accounts for 86% emissions 1. 39% from 2W (Petrol, Euro 3) 2. 15% from 2W (Petrol, Euro 4) 3. 13% from Bus (CNG, Euro 3) 4. 10% from Bus (CNG, Euro 2) 5. 9% from 2W (Petrol, Euro 2)


558

559 **4 Uncertainty in emissions:**

560 The emission uncertainty depends on the uncertainty of the model internal parameters (e.g.
 561 emission factors) and the uncertainty of the external parameters or input data (e.g. traffic
 562 activity, i.e. traffic volume and speed, distance travelled, vehicle category share, engine share,
 563 fuel share, technology share etc.). Emissions are also influenced by environmental factors such
 564 as relative humidity, temperature (Kouridiset al., 2010; Dey et al., 2019). In most cases, model
 565 outputs are contingent on the accuracy of the input data. Because of the lack of very detailed
 566 spatio-temporal activity data, the calculated emissions are highly uncertain.

567 We have made an attempt to estimate the uncertainty in emissions of CO, PM, NO_x and VOC
 568 for which speed-based emission factors are available. We have calculated the uncertainty in
 569 the emissions by performing sensitivity analysis to VKT and EF. VKT is a good proxy to
 570 represent the traffic activity. First, we have estimated the uncertainty of ~40% and ~80% in
 571 VKT and EF respectively based on the reported VKT and EF by earlier studies as shown in
 572 Table S11 and Table S12 respectively. Then we have calculated the total emission of pollutants
 573 by varying the VKT from -40% to +40% of the VKT estimated by our study and by varying

574 the EF from -80% to +80% with an interval of 10%. The obtained distribution of the emission
 575 of pollutants is shown in Fig. 6. We calculated the coefficient of variation (CoV = [Std/
 576 Mean]*100%) of the distribution and estimated an uncertainty of 61%, 60%, 63% and 68% for
 577 CO, PM, NO_x and VOC respectively. Dey et al., (2019) had estimated uncertainties of the
 578 emission of CO, VOC and NMVOC for Ireland in the range of -58% to +76%. Kouridis et al.
 579 (2010) estimated coefficient of variation of 10% for CO₂, in the order of 20-30% for NO_x,
 580 VOC, PM_{2.5}, PM₁₀, 50-60% for CO and CH₄ and over 100% for N₂O.

581
 582 Figure 6. Histogram showing the variation in the annual emissions with the combination of
 583 sensitive parameters (VKT and EF).

584

585 **5 Limitations:**

586 Geotagged dynamic traffic information and emission factors are the backbone of the emission
 587 inventory model. The traffic volume information is very crucial and traditionally obtained by
 588 manual counting or automated counters or through video surveillance at a few locations.
 589 However, in a real-world scenario, the traffic volume and speed can have large variations
 590 within a segment of a road. In this study we have adopted the congestion based approach (Jing
 591 et al., 2016; Yang et al., 2019) to model the traffic volume for each hour of the day. We use
 592 the same diurnal congestion profiles for all roads that could lead to emission uncertainty (Malik

593 et al., 2021). In reality, some of the roads can be more congested than other roads based on the
594 local population and traffic management.

595 The fleet composition can be different for different locations and at a given time of the day
596 (Sharma et al., 2019). We have used the fleet composition based on surveyed composition at
597 72 locations during the daytime (08:00-14:00) (TRIPP). To account for the peak hour and day-
598 time entry restrictions of goods vehicles, we have used the share of goods vehicles (HCV and
599 LCV) from the study by Errampalli et al. (2020). We use a constant share of fuel type, engine
600 type and Euro type across all road links. The availability of detailed traffic data, though
601 challenging, can improve the emission estimates.

602 Although the COPERT emission functions provide the speed dependent emission factors for
603 various classes of vehicles, they have been developed for European conditions. This adds to
604 uncertainties while applying for Indian vehicles. The COPERT speed dependent EFs are
605 available only for the criteria pollutants such as PM, CO, NO_x and VOC. The emission factors
606 used here are functions of average speed for each hour. These do not account for the emission
607 errors due to the speed fluctuations caused due to real-time driving behaviour (frequent
608 braking, acceleration, deceleration and idling) of the vehicles (Lejri et al., 2018; Lyu et al.,
609 2021). We have tried to address these by adding another 20% emission across all roads based
610 on the earlier study (Lejri et al., 2018), however these could be uncertain but are within the
611 range of uncertainty.

612 This study only focuses on the hot emissions and does not include cold start, evaporative
613 emission. We don't consider change in the emissions due to the change in the ambient
614 temperature and humidity (Franco et al., 2013). Additionally, we don't consider emissions
615 associated with road slope, vehicle degradation and maintenance in detail. But we have
616 considered the vehicle degradation effect occurring in older vehicles considering the mileage
617 as discussed in the COPERT-5 guidebook.

618 Non-exhaust particulate matter emissions, such as dust resuspension, BW (Brake wear), TW
619 (Tire wear), RW (Road wear) have not been considered in this study because of larger
620 uncertainty. However, the non-exhaust emission of PM will be the dominant source of PM
621 pollution in Delhi (Sharma et al., 2016; TERI, 2018; Singh et al., 2020).

622 Residential roads, the small roads in residential areas, account for 80% of the total length of
623 Delhi, however their emission share has been reported to be only ~3% (Singh et al., 2018). We

624 did not use these roads in our study, firstly, because of small share, secondly, we did not have
625 a good quality data and thirdly, we wanted to optimise the computational cost.

626 We reported annual average emissions by considering weekdays and weekends traffic
627 variations (Figure 2). We did not consider monthly variations as they are much smaller than
628 the hourly variations. For example, CoV of the EDGAR (Emissions Database for Global
629 Atmospheric Research; Crippa et al., 2020) monthly emission data over Delhi (shown in Figure
630 S4) is around 2.5-3% for CO, NMVOC (Non-Methane Volatile Organic Carbon), NO_x and
631 PM_{2.5} whereas we estimate hourly CoV of 54%, 55%, 19% and 26% for CO, VOC, NO_x and
632 PM respectively. We do consider the weekdays and weekends traffic variation as they have
633 substantial variations (Figure 2). Moreover, the hourly weekend and weekdays congestion from
634 TOMTOM was available as annual mean for 2018, therefore we estimated the annual average
635 hourly emissions which was converted into annual emissions by summing the hourly emissions
636 to get daily emissions and then multiplying with 365.

637 The emissions estimated in this study for Delhi are comparable to the emission estimated for
638 other megacities. For e.g. road transport emission of NO_x and PM_{2.5} for London was 20.8 Gg
639 and 1.12 Gg respectively in 2016 (LAEI, 2016). The megacity Beijing, which has three times
640 larger road network, had 4.1 Gg of traffic PM emission in 2013 (Jing et al., 2016). While our
641 estimates are comparable to other megacities, these are lower as compared to the one reported
642 by earlier studies for Delhi (Table 6). The lower emissions for Delhi can be expected because
643 India has implemented the recent emission standards in a phased manner (Table S3) which
644 should reflect in the traffic emission calculations. In many parts of the world, the road transport
645 emission has decreased, despite an increase in transport vehicles, because of the improvements
646 in engine technology (Winkler et al., 2018, Sun et al., 2019). One of the reasons for higher
647 emission estimation by earlier studies for Delhi is the use of old EFs developed by ARAI way
648 back in 2008. Therefore, these ARAI EFs tend to overestimate the emissions as it does not
649 represent the recent emission standard technologies (i.e. Euro 3 and Euro 4). It is important to
650 use recent emission factors such as COPERT-5 which can account for technology related
651 emissions. Although we have considered advanced traffic flow data and estimated the hourly
652 emission as a function of speed, the accuracy of the emissions is subject to quality of the input
653 data and emission factors. Supplying a quality input data and removing ambiguity can improve
654 the emission estimates and reduce the input data related uncertainty.

Table 6. Traffic emission studies over Delhi.

Studies	Area	Year	Method	EF	Diurnal	Resolution	PM (Gg)	BC (Gg)	OM (Gg)	CO (Gg)	NO _x (Gg)	VOC (Gg)	NH ₃ (Gg)	N ₂ O (Gg)	CH ₄ (Gg)
<i>Das and Parkikh (2004)</i>	Delhi	2005	VKT	ARAI	NO	-	5.4		203	39					
<i>Nagpure et al. (2012)</i>	Delhi	2005	VKT	Variety of emission factor	NO	-	10		350	104	221				
<i>Goyal et al. (2012)</i>	Delhi	2008	VKT	IVE	Yes	2 km	5.3		186	71					
<i>CPCB (2010)</i>	Delhi	2010	VKT	ARAI	NO	2 km	3.5			30.73					
<i>Sahu et al. (2010, 2015)</i>	NCR Delhi	2010	VKT	ARAI	NO	1.67 km	30.3		427	162					
<i>Guttikunda and Calori (2013)</i>	NCT Delhi	2010	VKT	ARAI and Other	NO	1 km	14		256	199	132				
<i>Singh et al. (2018)</i>	NCT Delhi	2010	Non-VKT	ARAI	NO	100 m	4.5		114	51.5					
<i>Goel et al. (2015a)</i>	NCT Delhi	2012	VKT	COPERT-3 and ARAI	NO	-	12.7		300	184	71.6				
<i>Sharma et al. (2016)</i>	NCT Delhi	2014	Non-VKT	ARAI	NO	2 km	4.7		117	41.5					
<i>TERI (2018)</i>	NCT Delhi	2016		ARAI	NO	4 km	12.4		501	126	342				
<i>SAFAR (2018)</i>	NCR Delhi	2018	VKT	ARAI	NO	400 m	43.2	15.5	483.1	257.7	614.5				
<i>This Study</i>	NCT Delhi	2018	Non-VKT	COPERT-5	YES	100 m	1.82	0.94	0.75	221	56	64	0.28	0.26	11.38

* NCT area is around 1483 km²; NCR area is around 4550 km².

657

658 **6 Conclusion**

659 Here we present a methodology to estimate high-resolution spatially resolved hourly traffic
660 emission over Delhi using advanced traffic flow and speed. We estimated the emissions of
661 major pollutants, viz. PM, BC, OM, CO, NO_x, VOC, NH₃, N₂O and CH₄.

662 We have used traffic volume and speed measurements conducted at 72 locations over Delhi in
663 the year 2018 as a part of TRIPP of IIT Delhi. Additionally, we have used the hourly congestion
664 data from TomTom to account for hourly changes in the speed. The studies relation between
665 traffic volume and speed has been utilised to generate the hourly traffic volume and speed
666 profile for each road link. The vehicles have been classified into 127 categories according to
667 vehicle types, fuel type, engine capacity, emission standard. The COPERT-5 emission
668 functions of speed are applied at a micro level for each hour along each road link to calculate
669 the emissions that accounts for congestion and spatial variation in emission. To the best of our
670 knowledge, this is the first study of its kind which considers advanced traffic flow data and
671 estimates the hourly multi-pollutant emissions as a function of speed. We make the following
672 conclusions:

- 673 1. We estimated an annual emission of 1.82 Gg for PM, 0.94 Gg for BC, 0.75 Gg for OM,
674 221 Gg for CO, 56 Gg for NO_x, 64 Gg for VOC, 0.28 Gg for NH₃, 0.26 Gg for N₂O and
675 11.38 Gg for CH₄ in 2018. We estimated an uncertainty of 60%- 68% in these emissions
676 by adding 40% uncertainty in VKT and 80% uncertainty in EFs.
- 677 2. The modelled traffic volume (in PCU) and speed profiles show bimodal distribution
678 exhibiting an anti-correlation behaviour. The traffic volume peaks during morning and
679 evening rush hours resulting in lower speed. There is a mild enhancement in speed during
680 the afternoon due to the less traffic. During the early morning hours, the vehicles almost
681 achieve the free flow speed.
- 682 3. The diurnal variation of emission of pollutants are like traffic variations and show distinct
683 bimodal distribution with morning and dominant evening peaks for almost all pollutants.
684 However, the difference in night-time and day-time emissions are less for PM, BC and NO_x
685 due to the enhanced share of goods vehicles during the night-time. The good vehicles
686 significantly contribute to the night-time emission in Delhi. These emissions along with
687 unfavourable meteorology (e.g. lower PBL and wind speed) might help in sustained PM
688 levels during the night-time in Delhi.

689 4. In terms of the spatial distribution of the emissions, the emissions are higher along the
690 major roads and the emission hotspots are near the traffic junctions. The emission flux in
691 inner Delhi is highest due the higher road and traffic density, and lower average speed. This
692 is 40-50% higher than the mean emission flux of Delhi. However, the total emission is
693 higher for outer Delhi due to its larger area having a total road length more than inner Delhi.

694 5. According to the road classes (RClass1 to RClass5, from single lane to multi-lane roads),
695 we find that RClass3 has the highest emission share due to highest total road length.
696 However, the emission per km is highest over multi-lane wider roads (RClass4 and
697 RClass5) that is almost two times RClass3 because of high traffic volume. Moreover, the
698 emission per lane per kilometre is highest for RClass1 because of lower speed and
699 congestion. While the effective management of traffic in narrow roads could be beneficial,
700 the multi-lane roads act as emission hotspots. An analysis of the choice of road width should
701 be performed to achieve the optimum emission without increasing the pollution exposure
702 near the roads.

703 6. Petrol vehicles contribute to over 50% emission of OM, CO, VOC, NH₃, N₂O and CH₄
704 emissions. For OM, CO, VOC, N₂O and CH₄ the petrol share is dominated by 2W whereas
705 for NH₃, share is dominated by petrol cars. The diesel vehicles are the dominant contributor
706 to PM, BC and NO_x emission.

707 7. In terms of emission standards, Euro3 vehicles contribute the highest to all pollutants
708 followed by Euro4 with an exception to NH₃ where Euro2, mainly petrol cars, are the
709 dominant source.

710 8. Among vehicle classes, the 2Ws contribute the most to the total emissions for all the
711 pollutants except for BC, NO_x and N₂O. The diesel vehicles including goods vehicles (HCV
712 and LCV) contribute substantially to the PM, BC and NO_x emissions. The goods vehicles
713 have a dominant share in the night-time emissions. CNG Buses have the highest
714 contribution to NO_x and CH₄ emissions whereas diesel Buses have substantial contributions
715 to PM emissions. Petrol cars are the dominant source for NH₃ whereas diesel cars contribute
716 substantially to PM, BC and NO_x emissions. The contribution of petrol cars to the PM
717 emission is less than 2%.

718 9. For all the pollutants, the top 5 polluting vehicle categories account for more than half (55%
719 - 91%) of the emissions. The pollutants such as CO, VOC, CH₄ and OM have a distinct
720 source such as 2W. However, the PM and BC have mixed sources including 2W and diesel
721 vehicles. NO_x emissions are mainly due to CNG and diesel vehicles. NH₃ is mainly emitted
722 from petrol and diesel cars and N₂O has mixed sources including 2W and cars.

723 This spatio-temporal emissions can be used in air quality models for developing suitable
724 strategies to reduce the traffic related pollution in Megacity Delhi. Moreover, the developed
725 methodology is a step forward in developing real-time emission prediction in the future with
726 growing availability of real-time traffic data.

727 **Data availability**

728 The emission dataset can be accessed through the open-access data repository
729 <https://doi.org/10.5281/zenodo.6553770> (Singh et al., 2022), under a CC BY-NC-ND 4.0
730 license. This dataset is presented as a netCDF covering the rectangular domain around National
731 Capital Territory (NCT) of Delhi. The data and analysis presented in the paper is only over the
732 NCT area as shown in Figure 3. TOMTOM averaged congestion data is available online
733 (https://www.tomtom.com/en_gb/traffic-index/new-delhi-traffic/). COPERT-5 emission
734 factors are obtained from the EMISIA online platform
735 (<https://www.emisia.com/utilities/copert/>) of Aristotle University, Thessaloniki.

736 **Author contribution**

737 **Vikas Singh and Akash Biswal:** Conceptualization, investigation, visualization, formal
738 analysis, writing original draft, writing, reviewing and editing; **Leeza Malik and Geetam
739 Tiwari:** Traffic data validation, investigation, discussion, reviewing and editing; **Ravindra
740 Khaiwal and Suman Mor:** Investigation, discussion, reviewing and editing.

741 **Declaration of competing interest**

742 The authors declare that they have no conflict of interest.

743 **Acknowledgments**

744 The authors are thankful to the Director, National Atmospheric Research Laboratory (NARL,
745 India), for encouragement to conduct this research and provide the necessary support. AB is
746 thankful to the Department of Environment Studies, Panjab University, Chandigarh for
747 providing the necessary support and greatly acknowledges the MoES (Ministry of Earth
748 Sciences, India) for providing support as a part of PROMOTE project. Authors greatly
749 acknowledge the Transportation Research and Injury Prevention Programme (TRIPP) of IIT
750 Delhi to provide the advanced traffic data. We acknowledge and thank TOMTOM for making
751 available the congestion profile over Delhi. We acknowledge the EMISIA platform of the
752 Aristotle University of Thessaloniki for providing the COPERT-5 emission factor. This paper

753 is based on interpretation of results and in no way reflects the viewpoint of the funding
754 agencies.

755

756 **References**

757 Afrin, T. and Yodo, N.: A Survey of Road Traffic Congestion Measures towards a Sustainable
758 and Resilient Transportation System, 12, 4660, <https://doi.org/10.3390/su12114660>, 2020.

759 Anup, S. and Yang, Z.: New two-wheeler vehicle fleet in India for fiscal year 2017–18,
760 Working paper, International Council for Clean Transport, [https://theicct.org/publication/new-
761 two-wheeler-vehicle-fleet-in-india-for-fiscal-year-2017-18/](https://theicct.org/publication/new-two-wheeler-vehicle-fleet-in-india-for-fiscal-year-2017-18/), 2020.

762 ARAI.: Automotive Research Association of India, Development of emission factor for Indian
763 vehicles in the year 2008, Air Quality Monitoring Project-Indian Clean Air Programme
764 (ICAP), pp. 1-89, http://www.cpcb.nic.in/Emission_Factors_Vehicles.pdf, 2008.

765 Beig, G., Sahu, S. K., Singh, V., Tickle, S., Sobhana, S. B., Gargeva, P., Ramakrishna, K.,
766 Rathod, A., and Murthy, B. S.: Objective evaluation of stubble emission of North India and
767 quantifying its impact on air quality of Delhi, Science of The Total Environment, 709, 136126,
768 <https://doi.org/10.1016/j.scitotenv.2019.136126>, 2020.

769 Bikkina, S., Andersson, A., Kirillova, E. N., Holmstrand, H., Tiwari, S., Srivastava, A. K.,
770 Bisht, D. S., and Gustafsson, Ö.: Air quality in megacity Delhi affected by countryside biomass
771 burning, Nat Sustain, 2, 200–205, <https://doi.org/10.1038/s41893-019-0219-0>, 2019.

772 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J.,
773 Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim,
774 M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N.,
775 Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
776 Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the
777 role of black carbon in the climate system: A scientific assessment, 118, 5380–5552,
778 <https://doi.org/10.1002/jgrd.50171>, 2013.

779 Choudhary, A. and Gokhale, S.: On-road measurements and modelling of vehicular emissions
780 during traffic interruption and congestion events in an urban traffic corridor, Atmospheric
781 Pollution Research, 10, 480–492, <https://doi.org/10.1016/j.apr.2018.09.008>, 2019.

782 Cifuentes, F., González, C. M., Trejos, E. M., López, L. D., Sandoval, F. J., Cuellar, O. A.,
783 Mangones, S. C., Rojas, N. Y., and Aristizábal, B. H.: Comparison of Top-Down and Bottom-
784 Up Road Transport Emissions through High-Resolution Air Quality Modeling in a City of
785 Complex Orography, *Atmosphere*, 12, 1372, <https://doi.org/10.3390/atmos12111372>, 2021.

786 Clairotte, M., Suarez-Bertoa, R., Zardini, A. A., Giechaskiel, B., Pavlovic, J., Valverde, V.,
787 Ciuffo, B., and Astorga, C.: Exhaust emission factors of greenhouse gases (GHGs) from
788 European road vehicles, *Environmental Sciences Europe*, 32, 125,
789 <https://doi.org/10.1186/s12302-020-00407-5>, 2020.

790 COPERT-5 Guidebook, Road transport emission factor guide book.
791 <https://www.eea.europa.eu/publications/emeep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view>, 2020.

793 CPCB, F.: Air quality monitoring, emission inventory and source apportionment study for
794 Indian cities. Central Pollution Control Board.
795 <https://cpcb.nic.in/displaypdf.php?id=RmluYWxOYXRpb25hbFN1bW1hcnkucGRm>, 2010.

796 Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., Schieberle,
797 C., Friedrich, R., and Janssens-Maenhout, G.: High resolution temporal profiles in the
798 EmissionsDatabase for Global Atmospheric Research, *Sci. Data.*, 7,
799 121, <https://doi.org/10.1038/s41597-020-0462-2>, 2020.

800 Das, A. and Parikh, J.: Transport scenarios in two metropolitan cities in India: Delhi and
801 Mumbai, *Energy Conversion and Management*, 45, 2603–2625,
802 <https://doi.org/10.1016/j.enconman.2003.08.019>, 2004.

803 Davis, N., Lents, J., Osses, M., Nikkila, N., and Barth, M.: Development and Application of an
804 International Vehicle Emissions Model, *Transportation Research Record*, 1939, 156–165,
805 <https://doi.org/10.1177/0361198105193900118>, 2005.

806 DDA: Baseline report for transport: Delhi Development Authority and National Institute of
807 Urban Affair, Master Plan for Delhi 2041,
808 https://online.dda.org.in/mpd2041dda/_layouts/MPD2041FINAL SUGGESTION/Baseline_Transport_%20160721.pdf, 2021.

810 Defra: Local Air Quality Management Technical Guidance
811 (TG16), <https://laqm.defra.gov.uk/documents/LAQM-TG16-April-21-v1.pdf>, 2016.

812 Deng, F., Lv, Z., Qi, L., Wang, X., Shi, M., and Liu, H.: A big data approach to improving the
813 vehicle emission inventory in China, *Nat Commun*, 11, 2801, <https://doi.org/10.1038/s41467-020-16579-w>, 2020.

815 Deo, A. and Yang, Z.: Fuel consumption of new passenger cars in India: Manufacturers
816 performance in fiscal year 2018–19 (No. 2020-13) May, International Council for Clean
817 Transport, <https://theicct.org/wp-content/uploads/2021/06/India-PV-fuel-consumption-052020.pdf>, 2020.

819 Dey, S., Caulfield, B., and Ghosh, B.: Modelling uncertainty of vehicular emissions inventory:
820 A case study of Ireland, *Journal of Cleaner Production*, 213, 1115–1126,
821 <https://doi.org/10.1016/j.jclepro.2018.12.125>, 2019.

822 Dhyani, R. and Sharma, N.: Sensitivity Analysis of CALINE4 Model under Mix Traffic
823 Conditions, *Aerosol Air Qual. Res.*, 17, 314–329, <https://doi.org/10.4209/aaqr.2016.01.0012>,
824 2017.

825 Dimaratos, A., Toumasatos, Z., Doulgeris, S., Triantafyllopoulos, G., Kontses, A., and
826 Samaras, Z.: Assessment of CO₂ and NO_x Emissions of One Diesel and One Bi-Fuel
827 Gasoline/CNG Euro 6 Vehicles During Real-World Driving and Laboratory Testing, *Front. Mech. Eng.*, 5, 62, <https://doi.org/10.3389/fmech.2019.00062>, 2019.

829 Errampalli, M., Kayitha, R., Chalumuri, R. S., Tavasszy, L. A., Borst, J., and Chandra, S.:
830 Assessment of urban freight travel characteristics - A case study of Delhi, *Transportation
831 Research Procedia*, 48, 467–485, <https://doi.org/10.1016/j.trpro.2020.08.053>, 2020.

832 Franco, V., Kousoulidou, M., Muntean, M., Ntziachristos, L., Hausberger, S., and Dilara, P.:
833 Road vehicle emission factors development: A review, *Atmospheric Environment*, 70, 84–97,
834 <https://doi.org/10.1016/j.atmosenv.2013.01.006>, 2013.

835 GBD.: Global Burden of Disease from Major Air Pollution Sources,
836 <https://www.healtheffects.org/publication/global-burden-disease-major-air-pollution-sources-gbd-maps-global-approach>, 2021.

838 GDP.: Gross domestic product report, World Bank,
839 <https://databank.worldbank.org/data/download/GDP.pdf>, 2020.

840 Goel, R. and Guttikunda, S. K.: Evolution of on-road vehicle exhaust emissions in Delhi,
841 Atmospheric Environment, 105, 78–90, <https://doi.org/10.1016/j.atmosenv.2015.01.045>,
842 2015a.

843 Goel, R., Guttikunda, S. K., Mohan, D., and Tiwari, G.: Benchmarking vehicle and passenger
844 travel characteristics in Delhi for on-road emissions analysis, Travel Behaviour and Society, 2,
845 88–101, <https://doi.org/10.1016/j.tbs.2014.10.001>, 2015b.

846 Goyal, P., Mishra, D., and Kumar, A.: Vehicular emission inventory of criteria pollutants in
847 Delhi, Springerplus, 2, 216, <https://doi.org/10.1186/2193-1801-2-216>, 2013.

848 Gulia, S., Nagendra, S. S., Khare, M., & Khanna, I.: Urban air quality management-A review,
849 Atmospheric Pollution Research, 6(2), 286-304, 2015.

850 Guttikunda, S. K. and Calori, G.: A GIS based emissions inventory at 1 km × 1 km spatial
851 resolution for air pollution analysis in Delhi, India, Atmospheric Environment, 67, 101–111,
852 <https://doi.org/10.1016/j.atmosenv.2012.10.040>, 2013.

853 Hakkim, H., Kumar, A., Annadate, S., Sinha, B., and Sinha, V.: RTEII: A new high-resolution
854 (0.1° × 0.1°) road transport emission inventory for India of 74 speciated NMVOCs, CO, NOx,
855 NH₃, CH₄, CO₂, PM_{2.5} reveals massive overestimation of NOx and CO and missing
856 nitromethane emissions by existing inventories, Atmospheric Environment: X, 11, 100118,
857 <https://doi.org/10.1016/j.aeaoa.2021.100118>, 2021.

858 Hooper, E., Chapman, L., and Quinn, A.: The impact of precipitation on speed–flow
859 relationships along a UK motorway corridor, Theor Appl Climatol, 117, 303–316,
860 <https://doi.org/10.1007/s00704-013-0999-5>, 2014.

861 IQAIR.: Global map of PM_{2.5} exposure by city in 2020, [world-air-quality-report-2020-en.pdf](https://www.iqair.com/reports/world-air-quality-report-2020-en.pdf),
862 last accessed March 2022, 2020.

863 Jaikumar, R., Shiva Nagendra, S. M., and Sivanandan, R.: Modeling of real time exhaust
864 emissions of passenger cars under heterogeneous traffic conditions, *Atmospheric Pollution*
865 *Research*, 8, 80–88, <https://doi.org/10.1016/j.apr.2016.07.011>, 2017.

866 Järvi, L., Junninen, H., Karppinen, A., Hillamo, R., Virkkula, A., Mäkelä, T., Pakkanen, T.,
867 and Kulmala, M.: Temporal variations in black carbon concentrations with different time scales
868 in Helsinki during 1996–2005, 8, 1017–1027, <https://doi.org/10.5194/acp-8-1017-2008>, 2008.

870 Jiang, L., Xia, Y., Wang, L., Chen, X., Ye, J., Hou, T., Wang, L., Zhang, Y., Li, M., Li, Z.,
871 Song, Z., Jiang, Y., Liu, W., Li, P., Rosenfeld, D., Seinfeld, J. H., and Yu, S.: Hyperfine-
872 resolution mapping of on-road vehicle emissions with comprehensive traffic monitoring and
873 an intelligent transportation system, 21, 16985–17002, <https://doi.org/10.5194/acp-21-16985-2021>, 2021.

875 Jing, B., Wu, L., Mao, H., Gong, S., He, J., Zou, C., Song, G., Li, X., and Wu, Z.: Development
876 of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic
877 data and its impact on air pollution in Beijing – Part 1: Development and evaluation of vehicle
878 emission inventory, 16, 3161–3170, <https://doi.org/10.5194/acp-16-3161-2016>, 2016.

879 Kouridis, C., Gkatzoflias, D., Kioutsioukis, I., Ntziachristos, L., Pastorello, C. and Dilara, P.:
880 Uncertainty estimates and guidance for road transport emission calculations: Publications
881 Office, LU,
882 <https://publications.jrc.ec.europa.eu/repository/bitstream/JRC57352/uncertainty%20eur%20report%20final%20for%20print.pdf>, 2010.

884 Kumar, P., Gurjar, B. R., Nagpure, A. S., and Harrison, R. M.: Preliminary Estimates of
885 Nanoparticle Number Emissions from Road Vehicles in Megacity Delhi and Associated Health
886 Impacts, *Environ. Sci. Technol.*, 45, 5514–5521, <https://doi.org/10.1021/es2003183>, 2011.

887 Kumari, R., Attri, A. K., Panis, L. I., and Gurjar, B. R.: Emission estimates of particulate matter
888 and heavy metals from mobile sources in Delhi (India), *J. Environ. Science & Engg*, 55(2),
889 127–142, 2013.

890 LAEI.: London Atmospheric Emissions Inventory (LAEI) 2016
891 <https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory--lai--2016>,
892 2016.

893 Lejri, D., Can, A., Schiper, N., and Leclercq, L.: Accounting for traffic speed dynamics when
894 calculating COPERT and PHEM pollutant emissions at the urban scale, *Transportation*
895 Research Part D: Transport and Environment, 63, 588–603,
896 <https://doi.org/10.1016/j.trd.2018.06.023>, 2018.

897 Liang, L. and Gong, P.: Urban and air pollution: a multi-city study of long-term effects of urban
898 landscape patterns on air quality trends, *Sci Rep*, 10, 18618, <https://doi.org/10.1038/s41598-020-74524-9>, 2020.

900 Lipfert, F. W. and Wyzga, R. E.: On exposure and response relationships for health effects
901 associated with exposure to vehicular traffic, *J Expo Sci Environ Epidemiol*, 18, 588–599,
902 <https://doi.org/10.1038/jes.2008.4>, 2008.

903 Liu, T., Marlier, M. E., DeFries, R. S., Westervelt, D. M., Xia, K. R., Fiore, A. M., Mickley,
904 L. J., Cusworth, D. H., and Milly, G.: Seasonal impact of regional outdoor biomass burning on
905 air pollution in three Indian cities: Delhi, Bengaluru, and Pune, *Atmospheric Environment*,
906 172, 83–92, <https://doi.org/10.1016/j.atmosenv.2017.10.024>, 2018.

907 Lyu, P., Wang, P. (Slade), Liu, Y., and Wang, Y.: Review of the studies on emission evaluation
908 approaches for operating vehicles, *Journal of Traffic and Transportation Engineering (English*
909 *Edition)*, 8, 493–509, <https://doi.org/10.1016/j.jtte.2021.07.004>, 2021.

910 Malik, L., Tiwari, G., and Khanuja, R. K.: Classified Traffic Volume and Speed Study Delhi,
911 Transportation Research and Injury Prevention Programme (TRIPP),
912 http://tripp.iitd.ac.in/assets/publication/classified_volume_speed_studyDelhi-2018.pdf, 2018.

913 Malik, L., Tiwari, G., Biswas, U., and Woxenius, J.: Estimating urban freight flow using
914 limited data: The case of Delhi, India, *Transportation Research Part E: Logistics and*
915 *Transportation Review*, 149, 102316, <https://doi.org/10.1016/j.tre.2021.102316>, 2021.

916 Malik, L., Tiwari, G., Thakur, S., and Kumar, A.: Assessment of freight vehicle characteristics
917 and impact of future policy interventions on their emissions in Delhi, *Transportation Research*

918 Part D: Transport and Environment, 67, 610–627, <https://doi.org/10.1016/j.trd.2019.01.007>,
919 2019.

920 Mangones, S. C., Jaramillo, P., Fischbeck, P., and Rojas, N. Y.: Development of a high-
921 resolution traffic emission model: Lessons and key insights from the case of Bogotá, Colombia,
922 Environmental Pollution, 253, 552–559, <https://doi.org/10.1016/j.envpol.2019.07.008>, 2019.

923 Nagpure, A. S., Sharma, K., and Gurjar, B. R.: Traffic induced emission estimates and trends
924 (2000–2005) in megacity Delhi, Urban Climate, 4, 61–73,
925 <https://doi.org/10.1016/j.uclim.2013.04.005>, 2013.

926 NCAP.: National Clean Air Programme, Ministry of environment forest and climate change;
927 NATIONAL CLEAN AIR PROGRAMME (NCAP) - India ,
928 <http://www.indiaenvironmentportal.org.in> › file, 2019.

929 Ntziachristos, L., & Samaras, Z.: Exhaust Emissions for Road Transport—EMEP/EEA
930 Emission Inventory Guidebook 2019. European Environment Agency, 2019.

931 Osses, M., Rojas, N., Ibarra, C., Valdebenito, V., Laengle, I., Pantoja, N., Osses, D., Basoa,
932 K., Tolvett, S., Huneeus, N., Gallardo, L., and Gómez, B.: High-resolution spatial-distribution
933 maps of road transport exhaust emissions in Chile, 1990–2020, Earth System Science Data, 14,
934 1359–1376, <https://doi.org/10.5194/essd-14-1359-2022>, 2022.

935 Pandey, A., Brauer, M., Cropper, M. L., Balakrishnan, K., Mathur, P., Dey, S., et al.: Health
936 and economic impact of air pollution in the states of India: the Global Burden of Disease Study
937 2019, The Lancet Planetary Health, 5, e25–e38, [https://doi.org/10.1016/S2542-5196\(20\)30298-9](https://doi.org/10.1016/S2542-5196(20)30298-9), 2021.

939 Pant, P. and Harrison, R. M.: Estimation of the contribution of road traffic emissions to
940 particulate matter concentrations from field measurements: A review, Atmospheric
941 Environment, 77, 78–97, <https://doi.org/10.1016/j.atmosenv.2013.04.028>, 2013.

942 Pinto, J. A., Kumar, P., Alonso, M. F., Andreão, W. L., Pedruzzi, R., dos Santos, F. S., Moreira,
943 D. M., and Albuquerque, T. T. de A.: Traffic data in air quality modeling: A review of key
944 variables, improvements in results, open problems and challenges in current research,

945 Atmospheric Pollution Research, 11, 454–468, <https://doi.org/10.1016/j.apr.2019.11.018>,
946 2020.

947 Ravindra, K., Singh, T., and Mor, S.: Emissions of air pollutants from primary crop residue
948 burning in India and their mitigation strategies for cleaner emissions, Journal of Cleaner
949 Production, 208, 261–273, <https://doi.org/10.1016/j.jclepro.2018.10.031>, 2019.

950 SAFAR: SAFAR-HIGH RESOLUTION EMISSION INVENTORY OF MEGA CITY DELHI
951 – 2018, System of Air Quality and Weather Forecasting And Research (SAFAR) – Delhi,
952 Special Scientific Report, ISSN 0252-1075, 2018.

953 Sahu, S. K., Beig, G., and Parkhi, N. S.: Emissions inventory of anthropogenic PM_{2.5} and
954 PM₁₀ in Delhi during Commonwealth Games 2010, Atmospheric Environment, 45, 6180–
955 6190, <https://doi.org/10.1016/j.atmosenv.2011.08.014>, 2011.

956 Sahu, S. K., Beig, G., and Parkhi, N.: High Resolution Emission Inventory of NO_x and CO for
957 Mega City Delhi, India, Aerosol Air Qual. Res., 15, 1137–1144,
958 <https://doi.org/10.4209/aaqr.2014.07.0132>, 2015.

959 Salo, L., Hyvärinen, A., Jalava, P., Teinilä, K., Hooda, R. K., Datta, A., Saarikoski, S.,
960 Lintusaari, H., Lepistö, T., Martikainen, S., Rostedt, A., Sharma, V. P., Rahman, Md. H.,
961 Subudhi, S., Asmi, E., Niemi, J. V., Lihavainen, H., Lal, B., Keskinen, J., Kuuluvainen, H.,
962 Timonen, H., and Rönkkö, T.: The characteristics and size of lung-depositing particles vary
963 significantly between high and low pollution traffic environments, Atmospheric Environment,
964 255, 118421, <https://doi.org/10.1016/j.atmosenv.2021.118421>, 2021.

965 Sharma, M., and Dikshit O.: Comprehensive study on air pollution and greenhouse gases
966 (GHGs) in Delhi, A report of NCT Delhi and DPCC Delhi,
967 <https://cerca.iitd.ac.in/uploads/Reports/1576211826iitk.pdf>, 2016.

968 Sharma, N., Kumar, P. P., Dhyani, R., Ravisekhar, C., and Ravinder, K.: Idling fuel
969 consumption and emissions of air pollutants at selected signalized intersections in Delhi,
970 Journal of Cleaner Production, 212, 8–21, <https://doi.org/10.1016/j.jclepro.2018.11.275>, 2019.

971 Sharpe, B. and Sathiamoorthy, B.: Market analysis of heavy-duty vehicles in India for fiscal
972 year 2017–18, International Council for Clean Transport, Working Paper (2019-20), 2019.

973 Singh, T., Biswal, A., Mor, S., Ravindra, K., Singh, V., and Mor, S.: A high-resolution
974 emission inventory of air pollutants from primary crop residue burning over Northern India
975 based on VIIRS thermal anomalies, *Environmental Pollution*, 266, 115132,
976 <https://doi.org/10.1016/j.envpol.2020.115132>, 2020.

977 Singh, V., Biswal, A., Kesarkar, A. P., Mor, S., and Ravindra, K.: High resolution vehicular
978 PM10 emissions over megacity Delhi: Relative contributions of exhaust and non-exhaust
979 sources, *Science of The Total Environment*, 699, 134273,
980 <https://doi.org/10.1016/j.scitotenv.2019.134273>, 2020.

981 Singh, V., Sahu, S. K., Kesarkar, A. P., and Biswal, A.: Estimation of high resolution emissions
982 from road transport sector in a megacity Delhi, *Urban Climate*, 26, 109–120,
983 <https://doi.org/10.1016/j.ulclim.2018.08.011>, 2018.

984 Singh, V., Singh, S., and Biswal, A.: Exceedances and trends of particulate matter (PM2.5) in
985 five Indian megacities, *Science of The Total Environment*, 750, 141461,
986 <https://doi.org/10.1016/j.scitotenv.2020.141461>, 2021.

987 Singh, V., Sokhi, R. S., and Kukkonen, J.: PM 2.5 concentrations in London for 2008–A
988 modeling analysis of contributions from road traffic, *Journal of the Air & Waste Management
989 Association*, 64, 509–518, <https://doi.org/10.1080/10962247.2013.848244>, 2014.

990 Singh, V., Biswal, A., Malik, L., Tiwari, G., Ravindra, K., and Mor, S.: On-road traffic
991 emission over megacity Delhi, V1 [data set], <https://doi.org/10.5281/zenodo.6553770>, 2022.

992 Sun, C., Xu, S., Yang, M., and Gong, X.: Urban traffic regulation and air pollution: A case
993 study of urban motor vehicle restriction policy, *Energy Policy*, 163, 112819,
994 <https://doi.org/10.1016/j.enpol.2022.112819>, 2022.

995 Sun, S., Zhao, G., Wang, T., Jin, J., Wang, P., Lin, Y., Li, H., Ying, Q., and Mao, H.: Past and
996 future trends of vehicle emissions in Tianjin, China, from 2000 to 2030, *Atmospheric
997 Environment*, 209, 182–191, <https://doi.org/10.1016/j.atmosenv.2019.04.016>, 2019.

998 Super, I., Dellaert, S. N. C., Visschedijk, A. J. H., and Denier van der Gon, H. A. C.:
999 Uncertainty analysis of a European high-resolution emission inventory of CO₂ and CO to

1000 support inverse modelling and network design, 20, 1795–1816, <https://doi.org/10.5194/acp-20-1795-2020>, 2020.

1002 TERI.: ARAI, Automotive Research Association of India, Source Apportionment of PM2.5 &
1003 PM10, of Delhi NCR for Identification of Major Sources.
1004 https://www.teriin.org/sites/default/files/2018-08/Report_SA_AQM-Delhi-NCR_0.pdf, 2018.

1005 Tsagatakis, I., Ruddy, M., Richardson, J., Otto, A., Pearson, B., & Passant, N.: UK Emission
1006 Mapping Methodology: A report of the National Atmospheric Emission Inventory 2018,
1007 Ricardo Energy & Environment. https://uk-air.defra.gov.uk/assets/documents/reports/cat07/1710261436_Methodology_for_NAEI_2017.pdf, 2020.

1008

1009

1010 Vanhulsel, M., Degraeuwe, B., Beckx, C., Vankerkom, J., and De Vlieger, I.: Road
1011 transportation emission inventories and projections – Case study of Belgium: Methodology and
1012 pitfalls, Transportation Research Part D: Transport and Environment, 27, 41–45,
1013 <https://doi.org/10.1016/j.trd.2013.12.002>, 2014.

1014 Vickrey, W. S.: Congestion Theory and Transport Investment, The American Economic
1015 Review, 59, 251–260, <https://www.jstor.org/stable/1823678>, 1969.

1016 Wang, H., Fu, L., Zhou, Y., Du, X., and Ge, W.: Trends in vehicular emissions in China's mega
1017 cities from 1995 to 2005, Environmental Pollution, 158, 394–400,
1018 <https://doi.org/10.1016/j.envpol.2009.09.002>, 2010.

1019 Wang, Z., Wu, Y., Zhou, Y., Li, Z., Wang, Y., Zhang, S., and Hao, J.: Real-world emissions
1020 of gasoline passenger cars in Macao and their correlation with driving conditions, Int. J.
1021 Environ. Sci. Technol., 11, 1135–1146, <https://doi.org/10.1007/s13762-013-0276-2>, 2014.

1022 Wei, X., Ren, Y., Shen, L., and Shu, T.: Exploring the spatiotemporal pattern of traffic
1023 congestion performance of large cities in China: A real-time data based investigation,
1024 Environmental Impact Assessment Review, 95, 106808,
1025 <https://doi.org/10.1016/j.eiar.2022.106808>, 2022.

1026 Winkler, S. L., Anderson, J. E., Garza, L., Ruona, W. C., Vogt, R., and Wallington, T. J.:
1027 Vehicle criteria pollutant (PM, NO_x, CO, HC_s) emissions: how low should we go?, *npj Clim
1028 Atmos Sci*, 1, 1–5, <https://doi.org/10.1038/s41612-018-0037-5>, 2018.

1029 Wu, Y., Zhang, S. J., Li, M. L., Ge, Y. S., Shu, J. W., Zhou, Y., Xu, Y. Y., Hu, J. N., Liu, H.,
1030 Fu, L. X., He, K. B., and Hao, J. M.: The challenge to NO_x emission control for heavy-duty
1031 diesel vehicles in China, 12, 9365–9379, <https://doi.org/10.5194/acp-12-9365-2012>, 2012.

1032 Yang, D., Zhang, S., Niu, T., Wang, Y., Xu, H., Zhang, K. M., and Wu, Y.: High-resolution
1033 mapping of vehicle emissions of atmospheric pollutants based on large-scale, real-world traffic
1034 datasets, 19, 8831–8843, <https://doi.org/10.5194/acp-19-8831-2019>, 2019.

1035 Zavala, M., Molina, L. T., Yacovitch, T. I., Fortner, E. C., Roscioli, J. R., Floerchinger, C.,
1036 Herndon, S. C., Kolb, C. E., Knighton, W. B., Paramo, V. H., Zirath, S., Mejía, J. A., and
1037 Jazcilevich, A.: Emission factors of black carbon and co-pollutants from diesel vehicles in
1038 Mexico City, 17, 15293–15305, <https://doi.org/10.5194/acp-17-15293-2017>, 2017.