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Abstract. Riverine transport of particulate organic carbon (POC) associated with terrigenous solids to the ocean has an 

important role in the global carbon cycle.The supply of particulate organic carbon (POC) associated with terrigenous solids 

transported to the ocean by rivers plays a significant role in the global carbon cycle. To advance our understanding of the 

source, transport, and fate of fluvial POC from regional to global scales, databases of riverine POC are needed, including 10 

elemental and isotope composition data from contrasted river basins in terms of geomorphology, lithology, climate, and 

anthropogenic pressure. Here, we present a new, open-access, georeferenced, global database called Modern River Archives 

of Particulate Organic Carbon (MOREPOC) version 1.01, featuring data on POC in suspended particulate matter (SPM) 

collected at 231 233 locations across 118 121 major river systems. This database includes 3,424 546 SPM data entries, among 

which 2,9433,053 with POC content, 3,260 402 with stable carbon isotope (δ13C) values, 2,018 283 with radiocarbon activity 15 

(Δ14C) values, 1,838 936 with total nitrogen content, and 309 299 with aluminum-to-silicon mass ratios (Al/Si). The 

MOREPOC database aims at being used by the Earth System community to build comprehensive and quantitative models for 

the mobilization, alteration, and fate of terrestrial POC. The database is made available on the Zenodo repository in machine-

readable formats as data table and GIS shapefile at 

https://doi.org/10.5281/zenodo.7055970https://doi.org/10.5281/zenodo.6541925 (Ke et al., 2022). 20 

1. Introduction 

Rivers are the main conveyor of terrestrial material to the ocean in the form of suspended particulate matter (SPM), which 

carries particulate organic carbon (POC) (Leithold et al., 2016; Blair and Aller, 2012). POC is defined as operationally defined 

asthe fraction of total organic carbon contained in the solid fraction recovered after filtration of river water.all combustible, 

non-carbonate carbon that can be collected on a filter.  Before reaching coastal environment and being eventually buried at the 25 

ocean bottom, terrestrial POC may experience alteration and/or degradation processes during fluvial transport. TThe input of 

terrestrial POC to coastal and ocean environments and alteration in the transport trajectory is aThese processes need to be 

better quantified as they are key features of the global carbon cycle, particularly in the context of current global environmental 

changes. 

Riverine POC is a mixture of organic carbon (OC or Corg) from various sources, which can be split into two major origins: 30 
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biospheric POC (POCbio) and petrogenic POC (POCpetro) (Blair et al., 2003; 2004; Galy et al., 2007; Hilton et al., 2008). Land 

Pplants, microbes, soils, and aquatic authigenic organisms, and microbes can all contribute radiocarbon-active riverine POC, 

with ages ranging from modern to multi-millennial (Galy et al 2007; Blair et al., 2010; Hilton et al., 2011). Radiocarbon-dead 

POCpetro is derived from the erosion of sedimentary rocks and consists of terrestrial or marine organic carbon photosynthesized 

millions of years ago and have has survived to at least one full erosion/sedimentation/exhumation cycle (Galy et al., 2008a; 35 

Hilton et al., 2011). The balance between the release of CO2 by oxidation of POCpetro and the drawdown of CO2 by burial of 

POCbio in marine sediments controls the impact of the OC cycle on atmospheric CO2 level at over geological time scales (> 

100,000 years). The resulting long-term global carbon fluxes are similar in magnitude to those from silicate weathering and 

volcanism (Berner, 2003; Hilton et al., 2014; Petsch, 2014; Galy et al., 2007; Galy and Eglinton, 2011; Hilton and West, 2020). 

Net continental POCbio burial accounts for about 35-70 MtC/yr considering that only 30% of the total riverine input to the 40 

ocean is efficiently buried (Blair and Aller, 2012; Burdige, 2005; Galy et al, 2015), while the oxidation of POCpetro in 

sedimentary rocks would release about 40-100 MtC/yr to the atmosphere (Petsch, 2014; Hilton and West, 2020). These fluxes 

are comparable to those induced by silicate weathering, carbonate weathering by oxidation of sulfides, and volcanism, 

demonstrating that POC could play an important role in the Earth’s long term carbon cycle (Berner, 2003; Hilton et al., 2014; 

Petsch, 2014; Galy et al., 2007; Galy and Eglinton, 2011; Hilton and West, 2020). Consequently, it is fundamental to quantify 45 

POC sources and fluxes as well as to understand the fate of the different POC pools, in order to better constrain the role that 

played by POC plays in the global carbon cycle. To that aim, radiocarbon activity provides unique information on POC age, 

residence time, and source. Thanks to improved carbon-dating technology and more easily accessible accelerator mass 

spectrometry (AMS, Wacker et al., 2010), routine and high-precision radiocarbon dating has been extensively applied for the 

analysis of radiocarbon abundance in riverine POC during the last two decades. Together with the stable isotope composition 50 

of carbon (13C/12C ratio, expressed as δ13C), POC content, or other organic-inorganic proxies (e.g., organic carbon-to-nitrogen 

Corg/N ratio, aluminum-to-organic carbon Al/OC ratio), radiocarbon activity helps to constrain the source, transport, and fate 

of riverine POC (Raymond and Bauer, 2001).  

Globally, rivers drain areas of contrasted lithology, climate, tectonics, vegetation, and anthropogenic pressure, parameters that 

can all impact riverine POC fluxes. At the global scale, riverine POCbio is known to be dominantly sourced from soil organic 55 

carbon (SOC) (e.g., Tao et al., 2015; Wu et al., 2018; Wild et al., 2019), whose turnover time (the ratio of OC stock to OC 

input flux in soil) and thus radiocarbon activity, are greatly controlled by temperature and precipitation (Shi et al., 2020; 

Eglinton et al., 2021; Carvalhais et al., 2014). In permafrost regions, SOC has a longer turnover time and is depleted in 14C, 

whereas SOC with the shortest turnover time and the most enriched 14C signature is found in tropical forests and savannahs 

(Shi et al., 2020; Carvalhais et al., 2014). Consequently, riverine POC is significantly older in Arctic rivers (e.g., Kolyma, 60 

Lena) than in tropical rivers such as the Congo or Amazon (Holmes et al., 2022; Marwick et al., 2015; Mayorga et al., 2005) 

due to a major input of aged biospheric OC from thawing permafrost (Wild et al., 2019; Hilton et al., 2015). The geodynamic 

setting of a river system also exerts a strong control on POC dynamics. In passive margins, terrigenous sediment typically 

experiences a series of erosion-deposition episodes because of the long distances between the upland source region and the 
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ocean (Blair and Aller, 2012). Consequently, it is on active margins that the original POC source signature is transmitted with 65 

the best greater fidelity (Blair and Aller, 2012). Finally, humans greatly modify the delivery of fluvial sediment and associated 

POC to the ocean. In the last decade, sediment delivery in fluvial systems has increased by 215% whereas the net export of 

riverine sediment to the ocean simultaneously decreased by 49% (Syvitski et al., 2022), indicating the changing amount of 

eroded POC mobilized to fluvial systems and the final exported POC mass to the ocean  (Stallard, 1998).in particular through 

massive storage of POC at reservoirs (Best et al., 2019; Battin et al., 2009) or a While land-use change (e.g., soil erosion by 70 

agricultural practices) can (Montgomery, 2007; Quinton et al, 2010) lead to increasing terrestrial POC input (Syvitski et al., 

2022; Dethier et al., 2022; Montgomery, 2007; Quinton et al, 2010.), massive sequestration of POC upstream of dams 

significantly alters the nature and flux of downstream POC (Syvistski et al., 2022; Maavara et al., 2017; Best et al., 2019; 

Battin et al., 2009). 

Even though recent research has advanced our understanding on the governing environmental factors from catchment- to 75 

global scales (Galy et al., 2015; Hilton, 2008; Coppola et al., 2018; Hemingway et al., 2019; Eglinton et al., 2021), there is 

still a lack of quantitative constraints on the effect of environmental drivers on the carbon isotopic composition of riverine 

POC. The recent release of the International Soil Radiocarbon Database (ISRaD) (Lawrence et al., 2020) enables to improve 

Earth system models aiming to predict global SOC radiocarbon distribution and turnover time (Shi et al., 2020; Carvalhais et 

al., 2014). However, such prediction is still hampered for fluvial POC, despite existing capabilities for modeling water 80 

discharge, SPM concentration, and POC content based on global water quality datasets (Ittekkot, 1988; Ludwig et al., 1996, 

Meybeck, 1993), such as the WBMsed global hydrology model (Cohen et al., 2014) or the Global NEWS2 (Mayorga et al., 

2010). Recently, owing to the improved water quality datasets, other sophisticated river biogeochemistry models have been 

built to understand riverine carbon cycling and environmental inturbations, such as the regional process-based Dynamic In-

Stream Chemistry module (DISC-CARBON), but still focus on different carbon fluxes (van Hoek et al., 2021).  85 

Here we provide a new database for riverine POC, called MOREPOC (for MOdern River archivEs of Particulate Organic 

Carbon) v1.10, compiling 2,018 283 Δ14C data, thereby representing a significant update of the previously reported global 

dataset by Marwick et al. (2015) with 531 reported Δ14C measurements Δ14C data. MOREPOC v1.01, featuring data published 

in international, peer-reviewed articles, provides the basis to 1) uncover the fundamental mechanisms of preservation and 

alteration of river POC (in terms of "bulk" POC as well as for the individual POCbio and POCpetro pools); and 2) help with the 90 

construction of numerical models able to simulate the isotopic compositions of POC in the context of global change. 

MOREPOC database is publicly available on the Zenodo repository at 

https://doi.org/10.5281/zenodo.7055970https://doi.org/10.5281/zenodo.6541925 (Ke et al., 2022). 

2. MOREPOC v1.01: a compilation of data on global riverine POC 

2.1 Data source 95 

In MOREPOC v1.01, through a comprehensive literature investigation of 117 115 peer-reviewed articles, we compiled 3,424 

https://doi.org/10.5281/zenodo.7055970
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546 POC-related data entries (each entry represents an individual sample), including 2,100 195 with SPM concentration, 

2,9433,053 with POC content, 3,260 402 with stable carbon isotope δ13C values, 2,018 283 with radiocarbon activity Δ14C 

values, 1,835 937 with total nitrogen content (see details in Table.1), and 309 299 with aluminum to silicon mass ratios (Al/Si). 

In addition, reported analytical uncertainties for POC content, δ13C, and Δ14C are included in MOREPOC. Note that river bed 100 

or bank sediments are not included in this database. We selected studies reporting at least one carbon isotopic data, and those 

with paired elemental and dual carbon isotopic values. Studies reporting only POC contents were not compiled into the 

MOREPOC v1.01. Error Potential mistake generated during the compilation of data entries was carefully checked through 

manual and statistical examination, and duplicate data were removed. A supplementary table “MOREPOC_RM” is provided 

to give additional information on references, sampling method of SPM, filtration strategy, decarbonization carbonate removal 105 

methods, and detailed information for the types of acid used to remove carbonateacid adopted, etc. 

Table 1: Riverine SPM data availability for each continent. 

Continent 
Samples SPM POC TN δ13C Δ14C 

no. no. no. no. no. no. 

Asia 1,889954 1,131159 1,793849 1,106166 1,811897 1,186361 

Africa 278291 277290 277290 103 278291 115 

Europe 130 81 99 23 125 113 

Oceania 91 59 91 89 91 26 

North America 756793 336365 424460 379411 676712 475558 

South America 280287 216241 259264 135 279286 103110 

Total 3,424546 2,100195 
2,9433,0

53 

1,8351,9

37 
3,260402 2,018283 

2.2 Georeferencing 

When available, sampling location was Location of samples was digitalized if available, and an associate ArcGIS data layer 

in shapefile format (see MOREPOC_v1.1.rar) is provided with all points projected in a Geographic Coordinate System using 110 

the World Geodetic System 1984 (WGS1984). For references only providing a sampling map without any numerical 

information on sampling location, sampling coordinates were manually extracted using ArcGIS 10.3 after georeferenced 

adjustment. In the end, 3,211 339 SPM samples have coordinate information among the 3,424 546 compiled SPM entries 

(Figure 1). Furthermore, it can be noted that most studies chose sampling locations where SPM can be taken as representative 

the average level of biogeochemical processes of at catchment scale, i.e., the river mouth, to better understand the compositions, 115 

transport behavior, and fluxes of POC either going to a confluence or an estuary (e.g., Bouchez et al., 2014; Hilton et al., 2015; 

Holmes et al., 2022). 
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Figure 1: Overview of the dual carbon isotope data of MOREPOC v1.01. A; Fm14C values; B :δ13C values. Note that an average 

value is presented when several samples have been collected at the same location. 120 

  



 6 

2.3 Database structure 

To make MOREPOC v1.0 1 machine-readable, the compiled parameters were labeled with a short name as shown in Table. 2. 

 

Table. 2 Description of the parameters of the MOREPOC v1.0 1 database. 125 

Parameter Description 
MOREPOC 

column name 

River name Name of the major river basin rivbas_naid 

Sub river name Name of the sampled river/stream basriv_naid 

Country Name of country or places country 

Continent Name of the continent cont 

Sampling site/code Expedition sampling ID code 

Sampling date Time (month/day/year) when the SPM sample was collected time_m/d/y 

Latitude Decimal latitude using WGS 1984 lat 

Longitude Decimal longitude using WGS 1984 lon 

Sampling technique Method of SPM sampling type_spm 

Size fraction of SPM Reported size fractions analyzed fra_spm 

SPM concentration (mg/L) The total dry weight of SPM in mg per liter water column conc_spm 

POC concentration (mg/L) The total dry weight of POC in mg per liter water column conc_poc 

POC content (%) The total POC content of SPM in wt % perc_poc 

POC content uncertainty (1σ) The analytical uncertainty for POC content (1σ) perc_poc_1sd 

δ13C (‰) δ13C values of POC (decarbonatedcarbonate removed) in ‰ d13cd13C_poc 

δ13C uncertainty (1σ) The analytical uncertainty for δ13C of POC d13C_1sd 

Δ14C (‰) Δ14C values of POC (decarbonatedcarbonate removed) in ‰ D14cD14C_poc 

Δ14C uncertainty (1σ) The analytical uncertainty for Δ14C of POC D14C_1sd 

Fraction modern (Fm) Fraction modern of POC f14cF14C 

Radiocarbon ages (year) Radiocarbon ages before present (1950) Rcaage_14C 

TN content (%) The total nitrogen content of SPM in wt % perc_tn 

Corg/N mass ratio Mass The mass ratio of POC to TN in SPM cn_marratio 

Al/Si mass ratio Mass The mass ratio of Al to Si in SPM asalsi_marratio 

Reference Full list of citations of the data source ref 

Complete reference Complete information for cited references ref_c 

Measured carbon 

isotopesparameters 

Summarization of 13C or/and 14C elemental and isotopic carbon 

parameters measured 
isopara_m 

Calculated parameters 
Summarization of elemental and isotopic carbon parameters 

calculated 
para_c 

Filter Filter used to obtain SPM filter 

Acid The acid type used to remove carbonate in SPM acid 

Decarbonization Carbonate 

removal method 
The method used to remove carbonate in SPM m_acid 
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Acid concentration The concentration of adopted acid to remove carbonate in SPM conc_acid 

Decarbonization Carbonate 

removal temperature 
The environmental temperature for acid to remove carbonate in SPM temp_acid 

Decarbonization Carbonate 

removal duration 
The reaction time used for acid to remove carbonate in SPM time_acid 

Note 
Additional information for the carbonate removaldecarbonization 

process 
note 

2.4 Information on sampling technique 

In the compiled studies, five different sampling techniques (parameter "type_spm" of MOREPOC v1.01) have been adopted 

to retrieve river sediments with the aim of measuring POC content and composition: 

• Surface SPM sampling ("type_spm = SS") consists in collecting SPM within the first meter below the channel surface. 

This sampling scheme is the most frequently used and widely adopted in riverine POC studies. 130 

• Mid-depth SPM sampling ("MS") consists in collecting SPM at an intermediate depth between the river surface and 

bottom. This sampling strategy has been used in studies on the Mekong (Martin et al., 2013) and the Mackenzie 

(Campeau et al., 2020). 

• Integrated sampling over depth profiles ("ISD") aims at obtaining a representative SPM sample accounting for grain 

size sorting along the water column, typically by making a flux-weighted composite of several samples collected at 135 

different depths along the water column. This sampling strategy has been adopted only for the Huanghe and the 

Changjiang (Wang et al., 2012), and for the Zengjiang, a tributary of the Zhujiang (Gao et al., 2007). 

• Point sampling along depth profiles ("PSD") is the collection of SPM along individual depth profiles at different depths 

in the water columns. In this method and in contrast to the previous one, each SPM sample is treated and analyzed 

separately. This method allows accessing the full range of particle sizes of SPM, explaining its wide use in the literature 140 

(e.g., Ganges-Brahmaputra [Galy et al., 2008a, b], Mackenzie [Hilton et al., 2015], Bermejo [Repasch et al., 2021]). 

• Point sampling over transects ("PST") corresponds to PSD collection of SPM along several depth profiles across a 

given river channel section. This sophisticated sampling scheme allows for the exploration of the potential lateral 

heterogeneity in a river channel. It has been recently used in the Amazon (Bouchez et al., 2014), the Salween and the 

Irrawaddy (Baronas et al., 2020), and the Danube (Freymond et al., 2018). 145 

2.5 Information on SPM extraction from river water samples and on analysed size fractions 

Broadly speaking, two methods are commonly adopted to extract SPM from a water sample, 1) continuous flow centrifugation, 

whereby large volumes of water can be centrifuged at high centrifugal forces; 2) filtration under pressure or vacuum using 

membranes made of glass fiber (GF/F), PolyEtherSulfone (PES), Polycarbonate (PTCE), Nylon, quartz fiber, or Mixed 

Cellulose Esters (MCE), at a porositymesh size of ranging from 0.2 μm to 1.0 μm. This information is recorded in 150 

MOREPOC_RM in detail if described in the corresponding source reference (parameter “Filters”). 
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In general, most studies used bulk SPM retrieved after filtration for the analysis of POC. However, in some studies, only 

certain size fractions of SPM were analyzed, after separation into e.g., a fine (<63 μm) and a coarse (>63 μm) fraction. This 

information is reported in MOREPOC v1.0 1 as the “fra_spm” parameter (see Table 2). 

2.6 Information on decarbonization carbonate removal method 155 

Particulate inorganic carbon (PIC) and POC have distinct carbon isotopic signatures, such that the accuracy of POC δ13C and 

Δ14C values could be compromised if the PIC is not efficiently removed by acidification prior to POC analysis (Komada et al., 

2008). Two Three methods have been mostly adoptedadopted in the studies referenced in MOREPOC v1.01:  

• The "acid rinse method", in which sediment samples are acidified soaked with diluted acid at a given temperature for 

a given time, and then rinsed with distilled water. 160 

• The "acid vapor method", in which sediment samples are exposed to vaporous concentrated hydrochloric acid in a 

closed system maintained at a given temperature for a given time, and then evacuated under vacuum. 

• The "acid infiltration method", in which sediment samples are infiltrated in-situ in silver capsules with diluted 

hydrochloric acid, and then subjected to drying. 

The “acid rinse method” and “acid vapor method” have been widely used by the community to remove carbonates from 165 

sediments, the “acid infiltration method” is also a common carbonate-removal method but is only reported by Menges et al., 

2020 in MOREPOC v1.1. 

In addition, Aa separate file of MOREPOC v1.0 1 ("MOREPOC_RM") provides detail on carbonate removaldecarbonization 

method (m_acid), acid type (acid), molarity and quality (conc_acid), reaction time in unit of hours (time_acid), and reaction 

temperature in Celsius degrees (temp_acid), allowing for quality evaluation of the method used in the cited references. 170 

2.7 Definitions of POC composition variables and units 

In MOREPOC v1.01, all data are either taken directly from references or calculated from the reference data. POC content 

(POC%), and total nitrogen content (TN%) are reported as dry weight percentage (%). Besides, POC concentration in river 

water (mg/L) can be calculated using SPM concentration reported as dry weight per liter (mg/L) and percentage content of 

POC (%)., 175 

Most importantly, the fundamental component of MOREPOC v1.0 1 consists in of an extensive dataset for stable carbon 

isotope values (δ13C, in ‰ relative to VPDB) and radiocarbon compositions (provided as both Δ14C in ‰ or as F14C; see 

below). Fraction modern, F14C, is the deviation of a sample’s 14C atoms from that of the modern standard. Conventional 

Radiocarbon Ages (RCA) are given in MOREPOC v1.0 1 following Stuiver and Polach (1977), using the Libby half-life of 

5,567 years with the mean life of 8,033 for 14C. RCA is expressed in units of years before present (BP), with year zero being 180 

1950": 

RCA =  −8033 ln (F C14 )                                                                                                                                                          (1) 
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Δ14C value, which is defined as the relative difference between the absolute international standard (the base year 1950) and 

sample activity corrected for age and mass-dependent fractionation (Stuiver and Polach, 1977), is reported in MOREPOC v1.0 

1 as well. A positive ∆14C indicates the presence of "bomb carbon", whereas a negative ∆14C indicates that the radioactive 185 

decay of C overwhelms any incorporation of bomb carbon into the sample. The Δ14C calculation is defined as equation 2: 

Δ C (in ‰)14 = [F C ∗ 𝑒𝑥𝑝14 (
1950−𝑦𝑟

8267
) − 1] ∗ 1000                                                                                                                 (2) 

Where yr is the year when the sediment was collected, 8,267 is the true mean life of 14C using the Cambridge half-life of 5,730 

years. 

The term fraction of modern (F14C) is adopted in the above equations, F14C is defined as equation 3 (Donahue et al., 1990): 190 

F C =

(
C14

C13 )

𝑠𝑎𝑚𝑝𝑙𝑒[−25]

0.95(
C14

C13 )

𝑂𝑥𝐼[−19]

14                                                                                                                                                              (3) 

Where the denominator is 95% of the 14C activity of the Oxalic Acid I (OxI) standard material in 1950, and the numerator is 

corrected for fractionation to a common δ13C value of -25‰. 

Lastly, if available, the aluminum-to-silicon mass ratio (Al/Si) is also provided in MOREPOC v1.0 1. This elemental ratio is 

an efficient proxy for the particle size of riverine sediment, allowing to characterize the grain size effect of sediments on POC 195 

loading in fluvial delivery (Bouchez et al., 2011; Galy et al., 20072008b; Bouchez et al., 2011; Hilton et al., 2015). The 

mineralogy and particle size of sediments are generally related, with coarse particles being quartz-rich (low Al/Si ratios) and 

fine particles being clay-rich (high Al/Si ratios) (Galy et al., 2008b). POC contents are usually positively correlated with 

proportions of fine-grained fractions (Mayer, 1994; Galy et al., 2008b; Bouchez et al., 2014). 

2.8 Extent of MOREPOC v1.01 200 

Although MOREPOC v1.0 1 features data from river systems worldwide, it does not offer the same degree of 

representativeness for all the continents with, for instance, an over-representation of Asian rivers and an under-representation 

of rivers draining Europe and Oceania (Table. 1). It can be noticed that there are relatively abundant POC studies in North 

America fluvial systems. However, MOREPOC database also indicates the lack of studies on POC in fluvial systems in the 

cryosphere regions such as Antarctica and Greenland as well as in arid regions, including Australia, and vast areas spanning 205 

from northern Africa to middle east Asia (Figure 1).  

MOREPOC v1.0 1 database does not compile elemental and dual isotopic compositions of molecular compounds (plant-wax 

fatty-acid and lignin-phenol), thermal labile fractions, or black carbon. However, such complementary data could be 

incorporated into future versions. 
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3. Global riverine POC patterns 210 

3.1 Trends of δ13C and Δ14C in MOREPOC v1.01 

The mobilization of terrestrial organic matter into fluvial systems depends on the interplay between tectonics, climate, 

geomorphology, lithology, and anthropogenic activities, all controlling to some extent the amount and composition of riverine 

POC (Blair and Leithold, 2010; Eglinton et al., 2021).  

Riverine POC displays significant heterogeneity in elemental and isotopic compositions of carbon around the globe (Figures 215 

1 and 2). δ13C values (n=3,244402) range from -38‰ to -17‰ with an average value of -26.23‰. As shown in Figure 2, the 

majority of the data falls between -28‰ and -24‰ (n=1,759770, 54.252.0% of total entries), which is consistent with the 

overall isotopic signature of the terrestrial biosphere of -26±7‰ (Schidlowski et al., 1988). The age of riverine POC spans 

from "modern" (that is, recording bomb-derived carbon) to "ancient" (strongly influenced by fossil petrogenic source), with 

Δ14C values (n=2,018283) ranging from -990.1‰ to 147.7‰ with a statistical average of -380.36‰. A large fraction of the 220 

Δ14C values (n=775, 38.433.9% of total entries) falls within the range -300‰ to 0‰, this range dominates the database in 

Marwick et al (2015) as well (n=278, 52.3% of Marwick’s total entries). The MOREPOC v1.0 1 dataset is on average more 

14C depleted than that of Marwick et al (2015). 

Around the globe, the most ancient POC (Δ14C = -990‰) is found in small mountainous rivers in Taiwan (Hilton et al., 2010), 

in which the entirety of POC is derived from the erosion of sedimentary rocks. In the riverine POC dataset of MOREPOC 225 

v1.01, bomb carbon signals are abundant (Δ14C > 0‰), particularly for African rivers in tropical regions such as Athi-Galana-

Sabaki, Tana, Zambezi, and Congo (Marwick et al., 2015; Spencer et al., 2012); rivers in North America including Hudson, 

Siuslaw, and York; rivers draining to the Hudson Bay (Leithold et al., 2006; Raymond and Bauer, 2001; Godin et al., 2017; 

Longworth et al., 2007); and the Andean Amazon (Mayorga et al., 2005; Townsend-Small et al., 2007). Around the Qinghai-

Tibet Plateau, where most large river systems in eastern and southern Asia share similar high elevation source regions, POC 230 

is usually characterized by relatively depleted 14C signals due to high erosion rates of sedimentary rocks in mountainous regions, 

like in the Ganges-Brahmaputra (Galy et al., 2007) or the Changjiang (Wang et al., 2012; Wang et al., 2019), etc., and erosion 

of soils containing pre-aged OC, e.g. Huanghe (Tao et al., 2015). The most depleted 13C signatures (less than -35‰) are 

observed for POC from Arctic rivers, such as the Ob’, Yukon, and Kolyma (Holmes et al., 2022). The highest δ13C  values 

(higher than -22‰) are found in rivers from in Africa (Athi-Galana-Sabaki, Betsiboka, and Tana; Marwick et al., 2015; 235 

Tamooh et al., 2013) and mountainous rivers (e.g., Taiwan [Hilton et al., 2010], upper Ganges [Galy et al., 2007,; Galy et al., 

2008b], Minjiang [Wang et al., 2019], etc.); Hilton et al., 2010; Galy et al., 2007; Galy et al., 2008b; Wang et al., 2019). 
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Figure 2: δ13C versus Δ14C of MOREPOC v1.0 1 (n=12,860129). Frequency distribution histograms for δ13C (x-axis) and Δ14C (y-240 
axis) are shown, with δ13C values binned every -2.5‰ from -40‰ to -15‰, and Δ14C values binned every -50‰ from -1000‰ to 

200‰. Each bin is labeled with the number of samples it hosts. Solid lines represent the corresponding probability density functions. 

Box charts represent the statistical analysis of POC% in each bine of δ13C (x-axis) and Δ14C (y-axis). 

As observed in the global compilation in Figure 2, elemental and isotopic data of POC generally show an inverse relationship 

between δ13C and Δ14C, and generally an increasing POC content with higher radiocarbon activity of POC. Indeed, OC from 245 

sedimentary rocks (i.e., dead OC with Δ14C=-1000‰ by definition) usually has 13C-enriched signatures compared to recent 

biomass. Eroded material from sedimentary rocks thus has lower POC content, is 14C-depleted signatures and has relatively 

high OC δ13C 13C signatures. This global pattern stems from the global dominance of C3 plants in the studied compiled 

catchments (Figure 2). However, it can also be observed that POC-rich riverine SPM can also be relatively enriched at in 13C, 

i.e., δ13C values larger than -20‰ (Figure 2 and Figure 3). This pattern indicates the presence of an additional pool of 14C- and 250 

13C-rich POC in the terrestrial environment (Cerling et al., 1997), consisting of modern C4-plants in catchments dominated by 

grasslands or savannah (e.g., Marwick et al., 2015). The maximum values of δ13C and Δ14C of POC (dotted line in Figure 3) 

tend to be more depleted at high latitudes than at low latitudes. This might reflect the combined effects of increasing coverage 

of C4 plants in tropical regions and the input of pre-aged OCbio from degrading permafrost at high latitude (Cerling et al., 1997; 

Still et al., 2003).the major POC components: 1) dominated by POCbio, the combined effects of increasing coverage of C4 255 

plants in tropical regions and the input of pre-aged OCbio of C3 plants from degrading permafrost at high latitude (Cerling et 
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al., 1997; Still et al., 2003); 2) dominated by POCpetro, rivers in mountainous regions tends to erode 13C-enrich petrogenic OC 

(Hilton et al., 2010; Galy et al., 2007). In addition, aquatic authigenic production can be an important mechanism contributing 

13C-depleted and 14C-enriched POC (Longworth et al., 2007; Marwick et al., 2015; Wu et al., 2018).  

 260 
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Figure 3: Latitudinal trends in δ13C (n=3,064204) and Δ14C (n=1,9442,212) in MOREPOC v1.01. Colors indicate POC content (wt. 

%). Dotted lines represent upper envelopes of δ13C and Δ14C values of POC. 

3.2 Relationships between riverine SPM and POC  

MOREPOC v1.0 1 features data from rivers with SPM concentrations ranging from 0.35 to 199,000 mg/L and with POC 265 

concentration content from 0.01% to 91.67%. SPM and POC concentrations (both expressed in mg/L; n=2,044115) are 

positively correlated (Figure 4). However, the global trend shows that an increase in SPM concentration is accompanied by a 

decrease in POC content (in %), which is largely owing to a dilution effect by inorganic materials (Figure 4, Ittekkot, 1998; 

Ludwig et al., 1996; Meybeck, 1993). In MOREPOC v1.01, large SPM concentrations (over 10,000 mg/L) are generally 

observed in mountainous rivers, such as the Choshui and Liwu rivers in Taiwan (Hilton et al., 2008; Kao et al., 2014), the 270 

Santa Clara River (USA) (Masiello and Druffel, 2001), or the Minjiang (a major tributary of the upper Changjiang, China) 

(Wang et al., 2019). The Huanghe is an exception in that it has very large SPM concentrations in its middle reaches where it 

drains the Chinese Loess Plateau (Qu et al., 2020; Hu et al., 2015). Although the sediment of highly turbid rivers is typically 

POC-poor, high sediment concentrations generate the largest POC export rates (Figure 4). This observation also underlines 

the importance of sediment transport near the channel bottom in large rivers where SPM concentration is usually much higher 275 

than at the surface (Figure 5, e.g., Ganges-Brahmaputra-Meghna [Galy et al 2007, 2008b], Mackenzie [Hilton et al., 2015], 

Amazon [Bouchez et al., 2014], and Yukon (Holmes et al., 2022) etc.), as well as the role of stochastic events leading to high-

turbidity episodes such as storms, landslides, or earthquakes (Hilton et al., 2008; Wang et al., 2015; Frith et al., 2018). Small 

SPM concentrations (less than 10 mg/L) are characteristic of generally found in rivers during the frozen season or rivers 
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draining either high-latitude or tropical areas characterized by low-relief settings, in which typical POC content is relatively 280 

high (Gao et al., 2007; Holmes et al., 2022). 

 

 
Figure 4: River SPM concentration vs. POC concentration (n=2,041135), both expressed in mg/L. Dotted lines represent contours 

of constant POC content. Colors indicate the POC content from data entries in MOREPOC v1.1. 285 

1 10 100 1000 10000 100000
0.01

0.1

1

10

100

1000

P
O

C
 c

o
n
c
e
n
tr

a
ti
o
n
 (

m
g
/L

)

SPM concentration (mg/L)

10
0%

10
%

1%

0.1
%

PO
C
%

 =
 0

.0
1%

1 10 100 1000 10000 100000
0.01

0.1

1

10

100

1000

P
O

C
 c

o
n

c
e
n

tr
a

ti
o
n

 (
m

g
/L

)

SPM concentration (mg/L)

0.0

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

P
O

C
 (w

t.%
)

No data

PO
C
%

=100
%

PO
C
%

=10%

PO
C
%

=1%

PO
C
%

=0.1
%

PO
C
%

=0.0
1%



 16 

 
Figure 5: POC concentration variation in vertical water columns from depth profiles in global large rivers. Selected depth profiles 

are from the Yukon, Lena, and Ob' (Holmes et al., 2022), Mackenzie including Peel and Arctic Red (Hilton et al., 2015), Amazon 

(Bouchez et al., 2014), Paraná (Repasch et al., 2021), and Ganges-Brahmaputra-Meghna systems (Galy et al., 2007, 2008b). 

Normalized river depth is calculated by normalizing the individual sample depth to the maximum sample depth of the corresponding 290 
profile.  

GloballyIn general, POC becomes 14C-depleted with increasing suspended sediment load (Figure 5) and decreasing POC 

content. . T (Figure 6). TtThese relationships patterns are most likely caused by the dilution of POCbio by POCpetro in areas of 

strong erosion (Leithold et al., 2016). However, MOREPOC v1.1 also shows new observationshighlights that low concentrated 

SPM load associated with high POC content is often characterized by significantly low Δ14C values (Figure 5, 6, 7). Most of 295 

those samples come from Arctic river systems. This rises some concerns because Arctic permafrost soils store approximately 

twice the current amount of carbon contained in the currently is in Earth’s atmosphere (Zimov et al., 2006), and biospheric OC 

that was previously stored in frozen soils over thousands of years is being released and can induce accelerated environmental 

changes (Schuur et al., 2015; Vonk et al., 2015; Wild et al., 2019). How OC in permafrost regions respondresponds to global 

warming should be a key research issue in future studies. Meanwhile, it is worth to notenoting, for a given SPM concentration, 300 

a large range of 14C composition abundancyabundance can be observedcan be contrasted. For example, rivers draining low-

latitude, tropical regions (especially 10°N – 10°S; e.g., African rivers) or high-latitude regions (60°N - 75°N; e.g., Siberian 

Arctic rivers) are usually characterized by relatively low SPM concentration and abundant POC composition. However, in 

general, But Nevertheless, riverine POC from the low-latitude African rivers is much younger compared to that from the Arctic 

Siberian regions. This difference most likely stems from the contrasting radiocarbon activities and turnover time of the soil 305 

organic carbon (SOC) between these two regions, which are primarily driven by climate (Eglinton et al., 2021; Marwick et al., 

2015; Wild et al., 2019; Vonk et al., 2015). 

The MOREPOC v1.0 1 dataset also reveals that under a given climate, river systems can be heterogeneous in terms of SPM 
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concentration and associated POC composition. For example, amongst circum-Arctic rivers, the Mackenzie River has a 

relatively large SPM concentration of 162 135.1 mg/L on average (1σ=16.6, n=118106) with 2.43.01% POC (1σ=0.39, 310 

n=109105) characterized by a fairly low Δ14C (average value of -599.5‰, 1σ=7.7, n=118) near the river mouth; (Hilton et al., 

2015; Schwab et al., 2020; Holmes et al., 2022; Campeau et al., 2020). In contrast, the Yenisei River only has an average SPM 

concentration of 5.2.7  mg/L (1σ=0.6, n=8386) but much higher POC contents (17.418.0%, 1σ=2.1, n=8183) and Δ14C values 

(-264342.3‰, 1σ=15.7, n=2766; Holmes et al., 2022). Such difference suggests that lithology and geomorphology can play 

an important role in riverine POC composition and load by providing a substantial fraction of fossil OC (Hilton et al., 2015). 315 

On the other hand, small mountainous rivers such as those in Taiwan or those draining the Himalayas show large SPM 

concentrations and low POC contents with low radiocarbon activities. These regions characterized by active tectonics, steep 

slopes, and intense precipitation, act as global hotspots for sediment production and thus petrogenic OC mobilization (Milliman 

and Farnsworth, 2011; Hilton and West, 2020). 
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Figure 56: POC Δ14C vs. SPM concentration (n=9131157). Colors indicate the latitude of the sampling location. Note the log-scale 

used for SPM concentration. 
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Figure 67: Δ14C values vs. POC content (n=1,610860). Colors indicate the latitude of the sampling location. Note the log scale used 

for POC content. 

4. Database availability 

MOREPOC v1.0 1 database is publicly available on the Zenodo repository in machine-readable formats as Excel spreadsheet 330 

(.xslx), comma limited table (.csv), and GIS shapefile at https://doi.org/10.5281/zenodo.7055970 

https://doi.org/10.5281/zenodo.6541925 (Ke et al., 2022). 

5. Conclusions 

In this paper, we introduce MOREPOC, the largest and most comprehensive database for riverine suspended particulate matter 

(SPM) concentration and particulate organic carbon (POC) composition, including POC and total nitrogen (TN) content, stable 335 

carbon isotope (13C), cosmogenic-radioactive carbon isotope (14C), as well as aluminum-to-silicon (Al/Si) mass ratios. 

MOREPOC will benefit the scientific community carrying out research on riverine POC sources, transport, and fate as well as 

Earth system modelers. . Furthermore, it will help feed and validate Earth system models in order to improve the ability of 

models to constrain all the components of the global carbon cycle. Combined with ocean sediment databases, such as 

CASCADE (Circum-Arctic Sediment Carbon DatabasE, Martens et al., 2021) or MOSAIC (Modern Ocean Sediment Archive 340 

and Inventory of Carbon, Van der Voort et al., 2021), MOREPOC will enable a better understanding of the fate of POC from 

the terrestrial source to sink at the ocean bottom. Existing environmental raster global datasets for climate, geomorphology, 

lithology, tectonics, hydrology, and land use, also offer promising prospects for the use of MOREPOC for identifying the 
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controls on POC fluxes and composition, in particular using advanced statistical analysis or machine learning techniques. 

Future updates of MOREPOC should include new bulk POC parameters as well as data on molecular fractions, thermal labile 345 

fractions, or specific components such as black carbon or fossil carbon, which should, in turn, provide additional insight into 

the alteration of riverine POC from source to sink, an essential feature of the global carbon cycle. 
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