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Abstract. Photovoltaic (PV) technology, an efficient solution for mitigating the impacts of climate change, has been 

increasingly used across the world to replace fossil-fuel power to minimize greenhouse gas emissions. With the world's highest 

cumulative and fastest built PV capacity, China needs to assess the environmental and social impacts of these established 

photovoltaic (PV) power plants. However, a comprehensive map regarding the PV power plants' locations and extent remain 15 

scarce on the country scale. This study developed a workflow combining machine learning and visual interpretation methods 

with big satellite data to map PV power plants across China. We applied a pixel-based Random Forest (RF) model to classify 

the PV power plants from composite images in 2020 with 30-meter spatial resolution on Google Earth Engine (GEE). The 

result classification map was further improved by a visual interpretation approach. Eventually, we established a map of PV 

power plants in China by 2020, covering a total area of 2917 km2. We found that most PV power plants were sited on cropland, 20 

followed by barren land and grassland based on the derived national PV map. In addition, the installation of PV power plants 

has generally decreased the vegetation cover. This new dataset is expected to be conducive to policy management, 

environmental assessment, and further classification of PV power plants. The dataset of photovoltaic power plant distribution 

in China by 2020 is available to the public at https://doi.org/10.5281/zenodo.6849477. 

1 Introduction 25 

Solar power is the most available renewable energy source with great potential to replace fossil fuels to reduce greenhouse 

gases (GHGs) emissions and mitigate climate change (Nemet, 2009; Creutzig et al., 2017). Photovoltaic (PV) technology can 

convert solar energy directly into electricity with large PV arrays. With the development of PV technology and decline in the 
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cost of PV power generation in recent years, the amount of PV power plants has been fast rising (Zou et al., 2017). China's PV 

industry leads the world regarding the cumulative installed and newly installed capacity. According to the National Energy 30 

Administration of China, the cumulative installed capacity of PV power in China had reached 253 Gigawatt (GW) by the end 

of 2020, with 48.2 GW being newly installed in 2020. As China aims to achieve a carbon emissions peak before 2030 and 

carbon neutrality before 2060, it is expected that PV power generation will keep rapidly growing across China. As the 

development of PV power plants requires a large amount of land (Capellán-Pérez et al., 2017), knowing the distributions of 

PV power plants is crucial for evaluating the eco-environmental effects and predicting the power generation of PV power 35 

plants in China (Taha, 2013; Hernandez et al., 2014; Hernandez et al., 2015; Li et al., 2018; Grodsky and Hernandez, 2020). 

However, data regarding the distributions of PV power plants remain to be scarce in China, which has been greatly hindering 

national policy management and environmental assessment of PV power plants in China. 

Remote sensing techniques can acquire features of different ground objects from images in spectral, temporal, and spatial 

dimensions globally (Zhu et al., 2012). A few studies have mapped the PV panels or power plants by using manually annotating 40 

(Bradbury et al., 2016; Dunnett et al., 2020) and machine learning methods with various remote sensing imagery (Malof et al., 

2016a; Malof et al., 2016b; Malof et al., 2017; Zhang et al., 2021). Machine learning algorithms can classify ground features 

with high accuracy by incorporating various input predictor data from remote sensing imagery without making assumptions 

about the data distribution (Maxwell et al., 2018). While machine learning methods have improved efficiency in identifying 

PV power plants, mapping PV power plants is still challenging on a continental scale, which is limited by the computing 45 

resources and accuracy in complex environments.  

Training an applicable machine learning model requires massive labelled training samples to cover as much system 

parameter space as possible. PV power plants are built in various landscapes, including deserts, mountains, coasts, and lakes 

(Sahu et al., 2016; Al Garni and Awasthi, 2017; Hammoud et al., 2019). The limited labelled data is insufficient to cover most 

of the spectral parameter space of PV power plants in complicated geographical environments. Thus, machine learning models 50 

will generate unavoidable misclassification when identifying PV power plants. Especially on a continental scale, the model's 

inaccuracy will lead to many misclassified PV areas because the background non-PV area is thousands of times larger than the 

actual PV area. Since the PV power plants will not change in a short time, visual interpretation provides a potential way to 

filter out misclassifications from machine learning results. 

Deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and residual 55 

networks (ResNet) (He et al., 2016; Schmidhuber, 2015; Krizhevsky et al., 2012), have also been applied to map the PV power 

plants in the United States (Yu et al., 2018), China (Hou et al., 2019), and worldwide (Kruitwagen et al., 2021). As a branch 

of machine learning, deep learning is characterized by neural networks (NNs) involving several to hundreds of layers that 

exploit feature representations learned exclusively from data. Deep learning models can accurately identify PV power plants 
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from remote sensing data by developing in-depth information without hand-crafting features, but these tasks need extensive 60 

computation resources. For example, Kruitwagen et al. (2021) used deep learning models and over 106 CPU-hours, 20000 

GPU-hours, 71 MWh, and approximately two months in real-time to map the PV power plants worldwide with remote sensing 

imagery. Not to mention that these tasks usually require additional storage resources to store an enormous amount of remote 

sensing imagery. As a result, updating or modifying such PV maps derived from deep learning methods for the regional places 

of interest such as China is infeasible for researchers in most of the countries who don’t have access to super computing 65 

facilities. 

Cloud computing platforms facilitate classification tasks on a global scale with shared data and computing resources. 

Google earth engine (GEE) is a cloud geospatial computing platform that supports freely available petabyte remote sensing 

data, multiple machine learning algorithms, and shared computing resources (Gorelick et al., 2017). With GEE's support, 

researchers in the remote sensing community have completed numerous classification works on a planetary scale (Deines et 70 

al., 2019; Li et al., 2019; Gong et al., 2019; Xie et al., 2019; Gong et al., 2020; Mao et al., 2021).  

In this study, we integrated the advantage of cloud computing, machine learning, and visual interpretation to map the PV 

power plants in China in 2020. We used GEE to acquire the preliminary classified result using a random forest model from 

Landsat-8 imagery. We further refined the classified results by visual interpretation. Based on the final filtering result, we also 

investigated the stats of the PV power plants within different climatic and geographic areas. The proposed approach in this 75 

study is easy to repeat, and the result will help future policymaking and environmental assessment for PV power facilities. A 

great amount of labelled PV power plant samples across China derived from visual interpretation could offer valuable data for 

future studies to update and improve maps of PV power plants.  

In summary, the objectives of this study are to (1) build a workflow to map the PV power plants on a continental scale with 

Landsat imagery on GEE; (2) produce a fine-resolution map of PV power plants in China and (3) analyse the distribution 80 

characteristics of PV power plants in China. 

2 Materials and Methods  

2.1 Machine Learning Classification  

2.1.1 Landsat-8 surface reflectance imagery 

This study used the Landsat-8 (L-8) surface reflectance (SR) product with a 30 m spatial resolution. L-8 product has been 85 

atmospherically and topographically corrected and is accessible on GEE. We removed the pixels contaminated by clouds and 

shadows in each image using the pixel quality control bands. We further composited L-8 image datasets using the median 

value of six reflective bands during a specific period. The composite image was robust against extreme values and provided 



4 

 

 

enough information about the particular period (Flood, 2013). We composited the images of autumn 2020 (September to 

November) and the whole year 2020 (January to December) over China, respectively. The composite image in autumn (C1) 90 

has the advantage of fewer clouds, snow, and vegetation in China compared to the image from other seasons. The composite 

image of the whole year (C2) was involved in nearly four times as many images as the C1, so the C2 is less affected by the 

contaminated pixels than C1 but has less timeliness. Therefore we used C2 as a substitute in the regions where the quality of 

C1 was poor. 

 95 

Figure 1. The composite image from Landsat-8 imagery during autumn 2020 (background) and PV samples of training and validation (red 
regions) in this study.  

2.1.2 Random forest classification 

We used a pixel-based Random forest (RF) algorithm on GEE to map the PV power plants over China (Zhang et al., 2021). 

The RF classifier is an ensemble classifier that uses a set of decision trees to predict classification or regression with advantages 100 

of high precision, efficiency, and stability (Belgiu and Drăguţ, 2016). The RF classifier has also been proven to be better than 

other machine learning classifiers on GEE (Zhou et al., 2020; Phalke et al., 2020) for mapping rangelands and croplands. For 

the RF classifier, we set the number of trees to 500 and left the rest of the parameters at GEE's default. Compared with the 
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object-based model classification, the pixel-based model classification uses the raw resolution pixel and does not require 

further segmentation of the classified image. 105 

2.1.3 Training and validation samples  

The RF classifier is sensitive to the sampling design (Belgiu and Drăguţ, 2016). Suitable training samples are crucial for 

an RF model's classification accuracy and stable performance. We collected and labelled samples as PV and non-PV regions, 

respectively, short as PV and NPV. We primarily collected the PV samples from Dunnett's dataset, a global solar plants dataset 

annotated by volunteers (Dunnett et al., 2020). The total area of the PV power plants in China is about 897 km2 from Dunnett's 110 

dataset.  

We manually modified this dataset with Google Earth's background to ensure the PV samples locating inside the PV power 

plants. We found that the labelled PV power plants in Dunnett's dataset are rarely distributed in eastern China, which will limit 

our model's performance to identify the PV power plant in similar areas. With high resolution Google Earth images of 2017, 

we further enriched the training dataset by manually selecting and labelling PV power plants over regions of eastern China, 115 

where PV power plants are rarely labelled in Dunnett's dataset. The improved training dataset is aim to ensure the labelled data 

covered most of the parameter space of PV power plants in China. We stored all the PV samples as polygon vectors. The area 

of the modified labelled PV polygons was 1121 km2. We randomly sampled points within the polygons with a balanced 

quantity from humid and arid regions (Fig. 1).  

We collected the NPV samples from adjacent regions of the PV power plant region within 5-kilometers buffer regions, the 120 

samples from manfully selected typical land types, and the samples from the whole of China, respectively. We prepared 20000 

points labelled as PV and 50000 points labelled NPV in this study. At last, after filtering out the low-quality pixels, we 

randomly chose 75% of the total points as the training set and the left 25% of the total points as the validation set (Table 1). 

Table 1. Training and validation dataset 

Set PV for 
Training 

non-PV for 
training 

PV for 
Validation 

non-PV for 
validation 

C1 14408 34780 4874 11850 

C2 15022 37605 4978 12257 

Note: Composite image one (CS1) is composited from Landsat images during 2020.9-2020.11 125 
          Composite image two (CS2) is composited from Landsat images during 2020.1-2020.12 
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2.1.4 Calculation of variables  

We collected nine variables from the Landsat-8 SR images data, including six original bands and three calculated indexes 

(Zhang et al., 2021). We used these variables to train machine learning models to distinguish the PV and NPV regions. The 

six original bands included blue (B2), green (B3), red (B4), near-infrared (B5), and two shortwave infrared bands (B6 and B7) 130 

from the L-8 images. The three indices included the Normalized Difference Vegetation Index (NDVI) (Tucker, 1979), the 

Normalized Difference Built-up Index (NDBI) (Zha et al., 2003), and the Modified Normalized Difference Water Index 

(MNDWI) (Xu, 2006). 

2.1.5 Classification accuracy assessment 

We evaluated the pixel-based RF model by using a validation set. By comparing the confusion matrix of categorized and 135 

labelled points in the validation set, we used the kappa coefficient, overall accuracy, producer's accuracy, and user's accuracy 

to assess the model's performance with the validation set (Congalton, 1991). The kappa coefficient calculated from the 

confusion matrix is widely used to check consistency and evaluate model performance. The overall accuracy is measured to 

examine the overall efficacy of the model. The producer's accuracy indicates the proportion of truth samples correctly judged 

as the target class. The user's accuracy indicates the proportion of samples judged as the target class on the classification map 140 

presented as truth samples. 

2.2 Visual interpretation 

2.2.1 Filter and morphological operations 

By applying the RF classification, we got pixels categorized as PV region and NPV region over entire China. We then 

filtered the pixels by topography. The PV power plants are not suitable for being built in locations with large slopes and shady 145 

slopes (Al Garni and Awasthi, 2017; Aydin et al., 2013). We calculated slope and hillshade from the Shuttle Radar Topography 

Mission (SRTM) with 30 m spatial resolution (Farr et al., 2007). We calculated the hillshade by setting azimuth as 180° and 

elevation angle as 45°. We filtered the pixels where the slope was over 30° and the value of the hillshade was less than 150.  

In pixel-based classification, sudden disturbances in the image signal and different objects with the same spectrum or the 

same objects with a different spectrum can cause a salt-and-pepper noise (i.e., impulse noise) which presents as image speckles. 150 

We filtered categorized PV pixels that connect less than 9 pixels to neighbours to reduce the salt-and-pepper noise. 

Additionally, the edge of the PV power plants mixed with roads or other PV facilities that are not categorized as PV regions 

should be part of the PV power plants. We then used morphological operations on the GEE platform to dilate the PV pixel 

clusters. The morphological operations included one round max filter and one round mode filter with a circle kernel of one-

pixel radius to conduct spatial filtering. 155 
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2.2.2 Visual interpretation 

We further convert the clusters of PV pixels into polygonal vectors on GEE. We used visual interpretation to identify all 

polygons categorized as the PV power plants by the RF model. To meet the visual interpretation needs, we calculated each 

polygon's areas and filtered the PV power plants with less than 0.04 km2, which equaled 45 adjacent pixels. According to 

Kruitwagen's dataset, PV power plants over 0.04 km2 account for 94.2 percent of the total area of PV power plants in China 160 

(Kruitwagen et al., 2021).  

With QGIS software (http://www. qgis. org/) and the GEE plugin (https://gee-community.github.io/qgis-earthengine-

plugin/), we filter the PV polygons with visual interpretation based on their sizes, shapes, color, and texture with background 

true-color images from Landsat-8, Sentinel-2, and Google Earth (Fig. 2). We first collected the PV power plants from the 

classified result of CS1, which stood for the image in autumn of 2020, and we then collected the PV power plants from the 165 

result of CS2, where clouds still contaminate CS1.   
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Figure 2. The visual interpretation examples (six sites) from (a) Landsat-8, (b) Sentinel-2, and (c) Google earth RGB true-color images. The 
green dashed line is the boundary of PV panels. © Google Earth 2021. 
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2.3 Dataset organization and statistical analysis 170 

We showed the flowchart of this study (Fig. 3). We also mapped some regions containing PV power plants as examples to 

show the changes in different steps (Fig. 4). 

 

Figure 3. The flowchart of mapping the PV power plant in China. 
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 175 

Figure 4. The examples of different steps (a-d 1) true-color of Landsat-8 composite image in autumn of 2020, (a-d 2) random forest 
classification result in red color (a-d 3), result in pink color after filtering, morphological operations and vector converting, (a-d 4) result in 
purple color after manually selecting and improving. 

We built a dataset of PV power plants in China. We stored the PV power plants as polygon objects with shapefile format 

(Falge et al., 2017). Since PV power plants are not entirely adjacent, we group the PV power plants within 10 kilometers for 180 

further analysis. We calculated area, average elevation, annual mean air temperature, cumulative yearly precipitation, 

population density, annual mean enhanced vegetation index (EVI), and land cover type for each PV power plant (Table 2). All 

the datasets are available on GEE.  
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Table 2. The attribute of the PV power plants in our dataset. 

Attribute label 

in dataset 

Data source  Data spatial 
resolution 

Calculated method  Periods 

Average 
elevation 

elev SRTM  

 

Farr et al. (2007) 30 meter Mean value within 
an object 

2000 

Annual mean 
temperature 

temp ERA5 

 

Service (2017) 0.25 Degree Value from object 
centroid 

1990 to 2020 

Annual 
precipitation 

precip ERA5  0.25 Degree Value from object 
centroid 

1990 to 2020 

Population 
density 

popu WorldPop 

 

Tatem (2017) 100 meter Mean value from 
object 100-
kilometers buffer 

2020 

Annual mean 
EVI in 2013 

EVI 2013 Landsat-8 
EVI 

Roy et al. (2014) 

Huete et al. (2002) 

30 meter Mean value within 
an object 

2013 

Annual mean 
EVI in 2020 

EVI 2020 Landsat-8 
EVI 

 30 meter Mean value within 
an object 

2020 

Land cover 
type 

landcover ESA 
WorldCover 

Zanaga (2021) 10 meter Mode value from 
object 2-kilometers 
buffer  

2020 

3 Result 185 

The map indicating the distributions of the PV power plants in China is shown below (Fig. 5a). The PV power plant mapped 

in this study was 2917 km2 by the autumn end of 2020. In the machine learning classification process, the result showed that 

the model with the dataset of CS1 had a comparable result with the model with the dataset of CS2 (Table 3). The kappa 

coefficient (kappa), overall accuracy (OA), user's accuracy (UA) of PV and non-PV (NPV), and producer's accuracy (PA) of 

PV and non-PV were 0.878, 95.04%, 95.51%, 93.82%, 97.59 and 88.83% for the CS1. The kappa, OA, UA of PV and NPV, 190 

and PA of PV and NPV were 0.886, 95.39%, 95.961%, 93.89%, 97.62, and 89.89% for the CS2, respectively (Table 3). 

Table 3. Validation parameters for the model trained model with different variables sets. 

Image Kappa OA (%) UA NPV (%) UA PV (%) PA NPV (%) PA PV (%) 

C1 0.878  95.04  95.51  93.82 97.59 88.83 

C2 0.886 95.39 95.96 93.89 97.62 89.89 

Note: kappa coefficient (Kappa), overall accuracy (OA), producer's accuracy (PA), and user's accuracy (UA).  
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The result showed that the top three provinces for installing PV power plants were Qinghai, Xinjiang, and Inner Mongolia, 

respectively (Fig. 5b). The result based on the land cover showed that most PV power plants were sited on cropland, followed 195 

by barren land and grassland (Fig. 5c). 

 

Figure 5. (a) The distribution and the heat map of the PV power plants in China, (b) the areas of PV power plants in each province of China, 
(c) the areas of PV power plants by the land cover of China. 

We have further counted the distributions of PV power plants by temperature, precipitation, elevation, population density, 200 

and location. From the result, many PV power plants are located in China's arid and alpine region, where solar energy resources 
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are plentiful, precipitation is low, vegetation is sparse, population density is low, and elevation is relativity high (Fig. 6). 

Additionally, some PV power plants are located in the industrially developed eastern coastal provinces of China, where 

precipitation is high, density population is high, and elevation is low. This distribution result also shows two tendencies in 

China's site selection of PV power plants. One tendency is to install in areas with suitable natural conditions but less power 205 

demand. The other tendency is to install in the areas with more local energy demand. 

 

Figure 6. The area of PV power plants is counted by (a) temperature, (b) precipitation, (c) elevation, (d) population density, (e) latitude and 
longitude. 
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Installation of PV power plants affects the local vegetation under different climate conditions (Zhang and Xu, 2020; 210 

Nghiem et al., 2019; Liu et al., 2019). We calculated and compared each PV power plant's annual mean EVI (larger than 0) in 

2013 and 2020 from Landsat-8 images. By the record of the National Energy Administration of China, the cumulative 

installation of PV capacity is 19.4 GW by 2013 and 252.8 GW by 2020, which indicates that over 92% of PV power plants are 

installed after 2013. We compared the EVI values in 2013 and 2020 and discovered the EVI values of PV power plants in 

2020 were strongly and positively linked with the EVI values in 2013, of which the linear regression with area weight (p < 215 

0.01) showed the estimated slope was 0.594 and intercept was 0.0312 (Fig. 7). From the linear regression result, we found that 

the installation of PV power plants generally decreased the EVI in regions of high vegetation cover. By contrast, in the hyper-

arid regions, where EVI was less than 0.07, the installation of PV power plants slightly increased the EVI values. 

 

Figure 7. EVI values of PV power plants in 2020 vs. those in 2013 across China. 220 

4 Discussion and conclusion 

In this study, we have successfully established a dataset for PV power plants with a total area of 2917 km2 in China until 

2020. To our knowledge, our dataset is the latest and most complete public dataset for the spatial extent of PV power plants in 

China. Our method integrates the efficiency of machine learning and the accuracy of visual interpretation. The two pixel-wise 

RF models performed well, with the producer's accuracy over 84% and overall accuracy over 96%.  225 

PV power plants are a mixture of PV panels and their occupied lands, which often cause challenges in mapping PV power 

plants. The PV power plants are more likely to have similar spectral features as other objects, such as plastic-cover sheds and 
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biological soil crust. PV power plants in different regions have different PV panel spacing and tilt angles due to the sunlight 

incident angle and terrain, which could cause spectral variability (Yadav and Chandel, 2013; Ji et al., 2021). The model trained 

by large and scattered training samples ensures that most PV power plants are successfully identified in China under various 230 

conditions.  

Nevertheless, there are still some omission errors in the RF classification result. Misclassified PV regions with sporadic 

distribution among the PV power plants will not impact the morphological operations and visual interpretation results. 

However, some PV power plants, which are of the low density of PV panels, would be misclassified as non-PV objects. In 

particular, these PV power plants situated in mountainous areas typically have unique installation spacing and installation 235 

angles for their solar panels. Additionally, the mountainous terrain also impacts the reflectance of the PV power plants (Wen 

et al., 2018). These PV power plants thus mainly were missed in our study but only took up a small portion of the total number. 

A large amount of misclassification of PV power plants due to commission errors in the machine learning step still exists 

in China. After transferring the pixel clusters to objects of vectors, we have spent dozens of hours of visual interpretation work 

filtering the misclassification regions with commission error.  240 

In the previous study, Dunnett et al. (2020) provided a harmonized solar plants dataset obtained from an open-access map 

containing PV power plants in China. The total area of PV power plants in China from Dunnett's dataset is 897.4 km2, of which 

842 km2 have spatially intersected with our dataset. The no intersected solar panels area is 55.4 km2. Some of them are too 

small for our method to recognize. The comparison between the two datasets suggested that the dataset relies on voluntary 

annotation is incomplete and with no guarantee of update timely in China. We also compared our result with Kruitwagen's 245 

dataset (Kruitwagen et al., 2021), which was classified by deep learning methods. The total area of PV power plants in China 

from Kruitwagen's dataset is 2169.8 km2 by 2018, of which 1873.5 km2 have spatially intersected with our dataset. The PV 

power plants in Kruitwagen's dataset that do not intersect with our dataset are 296.3 km2, some of which are too small to be 

identified by our method and some of which are misidentified in Kruitwagen's dataset. 

Our dataset could provide the training samples for researchers to identify PV power plants in the future. We calculated 250 

each PV power plant's geographical and climatic conditions based on the PV map and auxiliary data. The PV power plants in 

China are more likely to be installed in suitable natural conditions but with low power demand or in areas with high local 

energy demand. We also found that installing PV power plants will generally decrease the vegetation. Our dataset is conducive 

to policy management and environmental assessment. 

5 Data availability 255 
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The dataset of photovoltaic power plant distribution in China by 2020 and the training set are stored as shapefile format 

and available to the public at https://doi.org/10.5281/zenodo.6849477 (Zhang et al., 2022). 
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