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Abstract. A global gridded Net Ecosystem Exchange (NEE) of CO, dataset is vital in global and regional carbon cycle studies.
Top-down atmospheric inversion is one of the major methods to estimate the global NEE, however, the existing global NEE
datasets generated through inversion from conventional CO, observations have large uncertainties in places where
observational data are sparse. Here, by assimilating the GOSAT ACOS v9 XCO, product, we generate a ten-year (2010-2019)
global monthly terrestrial NEE dataset using the Global Carbon Assimilation System, version 2 (GCASv2), which is named
as GCAS2021. It includes gridded (1°x1°), globally, latitudinally, and regionally aggregated prior and posterior NEE and ocean
(OCN) fluxes, and prescribed wildfire (FIRE) and fossil fuel and cement (FFC) carbon emissions. Globally, the decadal mean
NEE is -3.73+0.52 PgC yr!, with interannual amplitude of 2.73 PgC yr'!. Combining the OCN flux, and FIRE and FFC
emissions, the net biosphere flux (NBE) and atmospheric growth rate (AGR) as well as their inter-annual variabilities (IAVs)
agree well with the estimates of Global Carbon Budget 2020. Regionally, our dateset shows that eastern North America,
Amazon, Congo Basin, Europe, boreal forests, southern China and Southeast Asia are carbon sinks, while western US, African
grasslands, Brazilian plateaus and parts of South Asia are carbon sources. In the TRANSCOM land regions, the NBEs of
temperate N. America, northern Africa and boreal Asia are between the estimates of CMS-Flux NBE 2020 and CT2019B, and
those in temperate Asia, Europe, and Southeast Asia are consistent with CMS-Flux NBE 2020 but significantly different from
CT2019B. In the RECCAP?2 regions, except for Africa and South Asia, the NBEs are comparable with the latest bottom-up
estimate of Ciais et al. (2021). Compared with previous studies, the IAVs and seasonal cycles of NEE of this dataset could
clearly reflect the impacts of extreme climates and large-scale climate anomalies on the carbon flux. The evaluations also show
that the posterior CO, concentrations at remote sites and in regional scale, as well as on vertical CO, profiles in the Asia-
Pacific region, are all consistent with independent CO, measurements from surface flask and aircraft CO, observations,
indicating that this dataset captures surface carbon fluxes well. We believe that this dataset can contribute to regional or

national-scale carbon cycle and carbon neutrality assessment, and carbon dynamics research. The dataset can be accessed at
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https://doi.org/10.5281/zenodo0.5829774 (Jiang, 2022).

1 Introduction

Terrestrial ecosystem uptakes CO, from the atmosphere through photosynthesis and releases CO; into the atmosphere through
respiration. Its net carbon exchange (NEE) plays a very important role in regulating the atmospheric CO, concentration, thereby
slowing down the global warming. However, NEE has significant spatial differences and inter-annual variations (IAV)
(Bousquet et al., 2000; Piao et al., 2020). Therefore, accurately quantifying global and regional NEE and clarifying their drivers
of IAV is a key scientific issue in global carbon cycle research, and a reliable global NEE dataset is vital for this research.

Until now, a series of global NEE or net biosphere exchange (NBE = NEE + wildfire carbon emission) products like
FLUXCOM (Jung et al., 2009), TRENDY (Sitch et al., 2015), Jena CarboScope (Rddenbeck et al., 2003), CT2019B (Jacobson
etal., 2020), and CMS-Flux NBE 2020 (Liu et al., 2021), are available and widely used in different studies, which were created
using data-driven machine learning methods, ecosystem models, or inversion models. Machine learning methods estimate
global carbon flux by upscaling eddy covariance data (Zeng et al., 2020), ecosystem models simulate photosynthesis and
respiration of ecosystems based on meteorological, soil, and land cover data and a series of parameters (Chen et al., 1999), and
inversion models estimate surface CO, fluxes using the globally distributed atmospheric CO, observations and/or satellite
retrievals of column averaged CO; dry air mole fraction (XCO,) (Enting and Newsam, 1990; Gurney et al., 2002; Jiang et al.,
2021). Different methods have their own advantages and disadvantages. The NEE estimated by top-down atmospheric
inversions is determined by the density and accuracy of the CO, observations, the accuracy of modeled atmospheric transport,
and knowledge of the prior uncertainties of the flux inventories (Liu et al., 2021). Generally, in situ and flask CO, observations
have high precision, with measurement error lower than 0.2 ppm, however, the global distribution of flask or in-situ sites is
extremely uneven, there are many sites over North America (N. America) and Europe, but very few sites over tropics, Africa,
and southern oceans (Schuldt et al., 2020). Therefore, the inversions generally have robust performance on global or
hemisphere scale (Houweling et al., 2015), but on regional scales, due to the uneven distribution of observations, the reliability
of inversion results varies greatly in different regions (Peylin el al., 2013).

Satellite XCOs retrievals from the Greenhouse Gases Observing Satellite (GOSAT) (Kuze et al., 2009) and the Observing
Carbon Observatory 2 (OCO-2) (Crisp et al., 2017) have much better spatial coverage (O'Dell et al., 2018) than ground-based
observations. Although the accuracy of XCOs is relatively lower (~ 1 ppm, Kulawik et al., 2019) compared to flask and in-situ
observations, and the response of XCO; to changes in the surface carbon flux is weaker, many inversion studies have proved
that satellite XCO; retrievals could improve the estimates of surface carbon fluxes (e.g., Basu et al., 2013; Maksyutov et al.,
2013; Saeki et al., 2013; Chevallier et al., 2014; Deng et al, 2016), especially for the fluxes in Africa, South America (S.

America), and Asia, where the sparsity of the surface monitoring sites is most evident (Takagi et al., 2011). Wang et al. (2019)
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compared the NEE inferred from GOSAT and OCO-2 retrievals, and surface flask observations, and found that the performance
of inversion with GOSAT data only was comparable with the one using surface observations. Moreover, studies also showed
that with satellite XCO retrievals, the inverted carbon flux could well reveal the impact of extreme droughts and large-scale
climate anomalies on regional and continental terrestrial carbon dynamics (Liu et al., 2018; Deng et al, 2016; Detmers et al.,
2015; Jiang et al., 2021).

By assimilating both GOSAT and OCO-2 XCO; retrievals, Liu et al. (2021) generated a global gridded monthly NBE
product (i.e., CMS-Flux NBE 2020) using the NASA Carbon Monitoring System Flux (CMS-Flux) inversion framework (Liu
et al., 2014, 2017, 2018; Bowman et al., 2017). This dataset spans over 2010-2018, in which the data from 2010-2014 and
2015-2018 were inferred from GOSAT XCO; and OCO-2 data, respectively. GOSAT and OCO-2 XCO; have large differences
on spatial resolution and coverage, which may lead to discontinuities in the inversion results of certain regions. The ACOS
GOSAT v9 XCO; data is now available on the NASA Goddard Earth Science Data and Information Services Center (GES-
DISC), which spans from April 2009 to June 2020, and has been well bias corrected and quality filtered (Taylor et al., 2021).

In this study, based on the GOSAT v9 XCO, retrievals, we generate a 10-year global monthly NEE dataset from 2010 to
2019 (GCAS2021) using a well-constructed Global Carbon Assimilation System, version 2 (GCASv2) (Jiang et al., 2021;
Wang et al., 2021a). Different from Liu et al. (2021), GCAS2021 focuses on NEE, because the wildfire (FIRE) emission was
not optimized in this study. The optimized ocean flux and prescribed FIRE and fossil fuel and cement carbon (FFC) emissions
are also included in this dataset. Users who want to use NBE data, could combine the NEE and FIRE emission by themselves.
It is worth pointing out that since we have not optimized FIRE emissions, the optimized NEE may include compensation for
the errors in FIRE emissions. This manuscript is organized as follows: Section 2 details the GOSAT retrievals, prior fluxes,
and the GCASv2 system as well as uncertainty settings. Section 3 introduces the evaluation data and method, Section 4 briefly
describes the dataset, Section 5 presents the characteristics of the dataset, including the estimates of global carbon budget and
regional NEE as well as their IAVs, Section 6 details the evaluations results against independent CO; observations, and Section

7 gives a summary and the main conclusions.

2 Methods and data

2.1 The ACOS v9 GOSAT XCO: retrievals

The GOSAT satellite launched in 2009 (Kuze et al., 2009) was developed jointly by the National Institute for Environmental
Studies (NIES), the Japanese Space Agency (JAXA) and the Ministry of the Environment (MOE) of Japan, which was designed
to retrieve total column abundances of CO, and CHa. In this study, the GOSAT XCO; retrieval is the ACOS Version 9.0 Level
2 Lite product (Taylor et al., 2021) at the pixel level during May 2009 - Dec 2019. The bias correction and quality filtering of

this XCO; product have been evaluated using estimates derived from the Total Carbon Column Observing Network (TCCON)
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as well as values simulated from a suite of global atmospheric inverse modeling systems (models), the results show that the
differences in XCO, between GOSAT v9 and both TCCON and models have an one sigma error of approximately 1 ppm for
ocean-glint observations and 1 to 1.5 ppm for land observations, and globally, the mean biases are less than approximately
0.2 ppm (Taylor et al., 2021). Compared with its previous version (ACOS v7.3), the proportion of data with a ‘good’ XCO,

quality flag has increased from 3.9 % in v7.3 to 5.4% in v9.

The GOSAT XCO; retrievals have a resolution of 10.5 km? at nadir. Considering the facts that the resolution of a global
atmospheric transport model is significantly lower than that of XCO, retrievals, we re-grid the XCO, data into 1°x1° grid cells.
The pixel level XCO; data are filtered with xco2 quality flag, which is a simple quality flag denoting science quality data
(0=Good, 1=Bad), and provided along with the XCO, product. In each 1°x1° grid and each day, only the XCO, with

xco2_quality flag equals O are selected and averaged according to Equation (1).
1w 1w
Cor = 2= Ce, T =2 i t €]

where (), denotes the selected pixel level XCOz located in 1°x1° grid G of one day, / is the identifier of the record, ¢ is the
observation time, and W denotes the number of C;.. T is the averaged observation time, and C; 7 is the re-grided XCO,
concentrations. The other variables in the XCO; product like column-averaging kernel, retrieval error, etc., which will be used

in the calculations of simulated XCO,, are also re-grided using this method.
2.2 Prior CO: fluxes

The prior carbon fluxes used in this study consist of terrestrial NEE, FIRE carbon emission, FFC carbon emission, and CO,
exchanges over the ocean surface (OCN). NEE in 3-hour interval is simulated using the Boreal Ecosystems Productivity
Simulator (BEPS) model, details about the BEPS simulations please refer to Chen et al. (2019). FIRE emission is directly
obtained from the Global Fire Emissions Database, Version 4.1 (GFED4s) (van der Werf et al., 2017; Mu et al., 2011). FFC
emission is an average of two products from Carbon Dioxide Information Analysis Center (CDIAC) (Andres et al., 2011) and
Open-source Data Inventory of Anthropogenic CO, (ODIAC) (Oda et al., 2018), respectively. OCN flux is derived from the
Takahashi et al. (2009) climatology of seawater pCO». Both FFC emission and OCN flux were downloaded from CT2019B
(Jacobson et al., 2020). It should be noted that there are no data in the pCO,-Clim product in many offshore areas like Japan
Sea, Mediterranean, Gulf of Mexico, and East China Sea. Following Jiang et al. (2021), the fluxes in 2009 modeled using a
combined global ocean circulation (OPA) and biogeochemistry model (PISCES-T) (Buitenhuis et al., 2006) is used to fill the
no data areas. The sea-air CO; fluxes simulated using the PISCES-T model have been used in many studies of ocean carbon
cycle dynamics (e.g., McKinley et al., 2006; Valsala et al., 2012; Le Quéré et al., 2007), and also used as a priori ocean fluxes
in previous inversion studies (e.g., Jiang et al., 2014; Deng et al., 2011; Chen et al., 2017). In addition, the CT2019B product

is only until the beginning of 2019. OCN flux in 2019 is assumed to be the same as 2018. FFC emission is adjusted from the
4
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emission in 2018 by ratios of 2019/2018 in different countries or regions (Figure S1), which was calculated based on the 2018

and 2019 emissions compiled by the Global Carbon Budget 2020 (GCP2020, Friedlingstein et al., 2020).

2.3 The Global Carbon Assimilation System (GCAS, version 2)

The global monthly NEE dataset is inferred using the Global Carbon Assimilation System, version 2 (GCASv2), which was
developed for estimating gridded surface carbon fluxes mainly using satellite XCO; retrievals (Jiang et al., 2021). In this
system, the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) (Emmons et al., 2010) was coupled to
simulate 3-D atmospheric CO, concentrations, and the Ensemble square root filter (EnSRF) algorithm (Whitaker and Hamill,
2002) was used to implement the inversion of surface fluxes. GCASv2 runs cyclically, and in each cycle (DA window), we
use a “two-step” calculation scheme to maintain quality conservation. First, the prior fluxes are optimized using XCO, data,
and then, the optimized fluxes are put again into the MOZART-4 model to generate the initial condition (IC) of the next window.
In order to reduce the representative error of XCO,, a ‘super-observation’ approach is also adopted, in which a super-
observation is generated by averaging all observations located within the same model grid within a DA window; and to reduce
the impact of spurious correlations, a localization technique is employed to determine which super-observations will be used
for the current grid’s optimization, which is based on the correlation coefficient between the simulated concentration ensembles
in each observation location and the perturbed fluxes in current model grids, and their distances. For details, please refer to

Jiang et al. (2021).

In this study, GCASv2 was run from May 1, 2009 to Dec 31, 2019 with the DA window of 1 week. The IC of 3-D CO,
concentrations at 00:00 UTC May 1, 2009 was obtained from the product of CarbonTracker, version 2017 (CT2017). The first
8 months are considered as a spin-up run, and the results from Jan 1, 2010 to Dec 31, 2019 are analyzed and evaluated in this
study. MOZART-4 is driven by the GEOS-5 meteorological fields, which has a spatial resolution of 1.9°x2.5°, and vertical
level of 72 layers. MOZART-4 uses the same spatial resolution and the lowest 56 vertical levels of GEOS-5. Following Jiang
et al. (2021), the model-data mismatch error of XCO; is constructed using the XCO; retrieval errors, which are provided along
with the XCO, product and re-grided using the same method as described in section 2.1. All retrieval errors are also uniformly

inflated by a factor of 1.9 in this study, but a lowest error is fixed as 1 ppm.

There are four state vectors combining schemes in GCASv2, including 1) only the NEE is treated as state vector and
optimized, 2) both NEE and OCN flux are state vectors; 3) NEE, OCN flux and FFC emissions are optimized at the same time;
and 4) only net flux is optimized. In this study, the second scheme was selected, both NEE and ocean flux are optimized, and
the FIRE and FFC are prescribed. The perturbation of prior fluxes is described in Equation (2), where §; represents random
perturbation samples, and is drawn from Gaussian distributions with mean zero and standard deviation of one. i is the identifier
of the perturbed samples, N is the ensemble size (here 50). A is a set of scaling factors, which represents the uncertainty of

5
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each prior flux. X2gg, XEire, XPrc, and X5y represent the prior fluxes of NEE, FIRE, FFC and OCN, respectively. The
spatial resolution of the perturbation factor (d;xA) we adopted is 3°%3°, and the resolution of the prior fluxes is 1°x1°, that is,
the prior fluxes within each 3° grid have the same perturbation factor. In each 3° grid, Ayzr and A,., are setto be 6 and 10,
respectively, which are corresponding to a global 1-8 uncertainty for NEE and OCN flux about 0.6 and 0.2 PgC yr,

respectively (for the method, see Text S1).

X? = )INEE X Si,NEE X XII\,IEE + Aocn X (Si,ocn X Xl(,)CN + X?«"ire + XIP"FC’ i= 1: 2’ ] N (2)

3 Evaluation data and method

Due to the huge difference of spatial scale between the inverted and directly observed fluxes, generally, it is impossible to
directly validate the posterior NEE using observations, and instead, we indirectly evaluate the posterior flux by comparing the
forward simulated atmospheric CO, mixing ratios against independent CO, measurements (e.g., Jiang et al., 2021; Wang et al.,
2019; Feng et al., 2020). Therefore, a forward simulation using the MOZART-4 model and the posterior fluxes were conducted
to create posterior CO; concentrations. For comparison, the prior CO; concentrations were also simulated with the prior fluxes.
The simulation period, model configuration of MOZART-4 as well as initial field are the same as the assimilation experiment

as described in section 2.3.

Surface flask and aircraft CO, observations are used for these independent evaluations in this study, which were obtained
from the obspack co2 1 GLOBALVIEWplus v6.0 2020-09-11 product (OBSPACKv6, Schuldt et al., 2020). OBSPACKv6
contains a collection of discrete (flask), programmable flask package (PFP) and quasi-continuous (in-situ) measurements at
surface, tower, ship and aircraft sites contributed by national and universities laboratories around the world. In this study,
surface flask CO, measurements (including surface PFP) from 74 sites, and aircraft measurements (including flask, PFP and
in-situ measurement methods) from 3 projects, are selected to evaluate the posterior CO, concentrations. There are 148 surface
flask and PFP sites of observations in OBSPACKv6. The 74 sites were selected according the following processes: 1) only the
sites with data more than 7 years during 2010 — 2019 were selected (48 sites removed); 2) for one location, if there are
observations from different institutes, only the data provided by the NOAA Global Monitoring Laboratory (with lab number
of 1 in each filename) were selected (21 sites removed); 3) for one location, if both flask and PFP observations are available,
only flask observations were adopted (1 site removed); 4) for PFP site, if there are observations at different heights, only the
observations at the top level were used (1 site removed); and 5) during the evaluations, we find that MOZART-4 model is
unable to capture the variations of CO, mixing ratios at BKT and LJO, thus these site were also removed. The locations of the
74 sites are shown in Figure 1 and the corresponding sites code as well as the information about latitude and longitude are

listed in Table S2 in the Supporting Information.
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There are 76 aircraft observation sites (independent data files) in OBSPACKV6. In this study, we chose observations from
the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project (Machida et al., 2008, 2018;
Matsueda et al., 2008, 2015), the HIAPER Pole-to-Pole Observations (HIPPO) programme (Wofsy et al., 2011), and the lower-
troposphere greenhouse-gas sampling programme in the Amazon basin of the CARBAM project (Gatti et al., 2014, 2021) to
further evaluate the posterior CO, concentrations. The CONTRAIL project measures CO, concentrations using Continuous
CO; Measuring Equipment (CME) on two passenger aircrafts (Boeing 747-400 and 777-200ER), thus there are observations
along flight paths (including level flight, taking off and landing) from Japan to N. America, to Europe, to Hawaii, to Australia,
and to Southeast and South Asia (Figure 2). During the taking off and landing, vertical profiles of CO, concentrations near
airports were observed. As shown in Figure 1, there are few surface observations over the Asia-Pacific region, especially in
Southeast and South Asia, therefore, the CO, vertical profiles near 8 cities over the Asia-Pacific region are selected in this
study. The 8 cities are Hong Kong, Singapore, Jakarta, Bangkok, Sydney, New Delhi, Shanghai, and Tokyo. The HIPPO
programme completed aircraft measurements spanning the Pacific from 85 ° N to 67 ° S during the periods of March to April
2010, and June to September 2011, with vertical profiles every approximately 2.2 © of latitude (Wofsy et al., 2011). The
CARBAM project conducted vertical CO, measurements at 4 sites (i.e., ALF, RBA, SAN, TAB, and TEF) in the Amazon basin
during 2010 ~ 2018 (Figure 2) with small aircrafts and PFP equipment. TAB was from 2010 to 2012, and TEF started in 2013.
During the evaluation of this study, TAB and TEF are combined as one site of TAB TEF. At each site, 1-3 spiral profiles from
approximately 4420 m to about 300 m a.s.l. were observed in each month. It is worth noting that OBSPACKv6 only provides
ALF, RBA, SAN and TAB observations from 2010 to 2012, the rest data were downloaded from Gatti et al. (2021). For the
CONTRALIL vertical profiles, the observations between the heights of 2 and 6 km are used, because the data measured below
2000 m are highly affected by local emissions (Jiang et al., 2014) due to the frequently ascending and descending of aircrafts.

And for the HIPPO and CARBAM observations, the data above 1 km are adopted.

Four basic statistical measures, i.e., mean bias (BIAS), mean absolute error (MAE), root mean square error (RMSE), and
correlation coefficient (CORR), are calculated against the surface and aircraft CO, observations, respectively. The functions

of these 4 basic statistical measures are expressed as:
1 -
BIAS = Ezyzl(xj -y)=y—% (3)

1
MAE = EZ?& |l — ;1 “4)

RMSE = /i M (- (5)

I (-0 =)

CORR =
[Eie-2 2,057

(6)
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where x; and y; denote the modeled and the observational values, respectively, at the jth out of M records, and the overbars
denote averages. The BIAS, MAE, RMSE, and CORR reflect the overall model tendency, both the model bias and error

variance, and the linear correspondence between the modeled and observational values, respectively.

4 Dataset description

GCAS2021 includes (1) monthly and annual prior and posterior NEE and OCN fluxes, and prescribed FIRE and FFC emissions
in a global spatial resolution of 1°x1°; (2) globally, latitudinally, and regionally aggregated monthly and annual posterior NEE
and NBE, and their uncertainties; and (3) weekly gridded ensemble members of posterior NEE and OCN fluxes. The regional
fluxes are aggregated both in the TRANSCOM (Gurney et al., 2003) and the REgional Carbon Cycle Assessment and Processes
Project (RECCAP2, Ciais et al., 2020) regions (Figure 3). The latitudinal fluxes are aggregated in northern mid-high latitudes
(>30°N, NL), tropical latitudes (30° S ~30° N, TL), and southern middle latitudes (<30° N, SL). The weekly gridded ensemble
members could be used for calculating the posterior uncertainties based on user defined regional masks. We also provide a
Fortran program for the calculation of posterior uncertainties. The method for calculating posterior uncertainties is given in
the Text S1 in the Supporting Information. The gridded data are in NETCDF-3 format, while the regional aggregated data are

in xIsx format.

5 Characteristics of the dataset

5.1 Global carbon budgets

Table 1 presents the year-by-year and decadal averaged posterior global carbon budgets during 2010 ~ 2019 of this study. The
global annual NEE is in the range of -2.51+0.53 to -5.24+0.50 PgC yr'!' (negative means absorbing CO, from the atmosphere,
and positive means releasing CO; to the atmosphere). The year of 2011 has the largest land sink in the decade, while the year
of 2016 has the weakest one, with interannual amplitude reaching 2.73 PgC yr'!. On average, the decadal mean NEE is -
3.73+0.52 PgC yr''. The OCN flux has an overall increase trend from 2010 to 2009, with a mean of -2.64+0.16 PgC yr.
Compared with the prior NEE (Figure S9I), the posterior NEEs increase significantly from 2010 to 2012, and decrease to
varying degrees (in range of 0.15 to 1.15 PgC yr!) from 2015 to 2019. Table 1 also lists the estimates from the CMS-Flux
(CMS-Flux NBE 2020, Liu et al., 2021) and CarbonTracker (CT2019B, Jacobson et al., 2020) systems. CMS-Flux NBE 2020
is a product for the period of 2010-2018, in which the results of 2010-2014 were inverted from the GOSAT XCO, v7.3, and
the rests were inferred from the OCO-2 XCO; v9 retrievals. Both GOSAT and OCO-2 retrievals were from the ACOS team,
created using the same retrieval algorithm and validated using the same strategy (Liu et al., 2021). CT2019B is a product
inverted from global surface, tower and aircraft CO, measurements. CMS-Flux NBE 2020 only presented the NBE results,

and the FIRE emission used in this study and CT2019B are also different. Therefore, this comparison focuses on NBE. In 2010
8
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and 2014, our estimates are close to CT2019B and significantly lower than the estimates of CMS-Flux NBE 2020; in contrast,
in2011,2012,2013,2016 and 2017, they are comparable to CMS-Flux NBE 2020 and higher than those of CT2019B. In 2015,
it is higher than both. Moreover, Figure 4 presents a comparison between the estimates of this study and GCP2020
(Friedlingstein et al., 2020). There are large differences for the land-use and land-cover change (LULCC) carbon emissions
between this study and GCP2020, we directly use the FIRE emission from GFED 4.1s as prescribed land-use emission, while
GCP2020 uses an average of three bookkeeping models (Houghton et al., 2017; Hansis et al., 2015; Gasser et al., 2020), which
account for changes in all carbon pools affected by LULCC. Therefore, we also compared the NBE between this study and
GCP2020. For GCP2020, the NBE is the sum of NEE and LULCC emissions. Additionally, GCP2020 also reported
atmospheric growth rate (AGR) of CO, in the atmosphere, which was estimated directly from atmospheric CO, concentration
measurements provided by the NOAA Earth System Research Laboratory (Friedlingstein et al., 2020). Ideally, the inverted
global net carbon flux (i.e., AGR) should agree with the observed AGR. As shown in Figure 4, the interannual changes of
global NBE and AGR of this study match well with the estimates of GCP2020, with CORR of 0.75 and 0.88, BIAS (this study
minus GCP2020) of 0.15 and 0.25 PgC yr'!, and MAE of 0.51 and 0.40 PgC yr!, respectively. The difference in NBE between
this study and GCP2020 is partly due to the imbalance item in GCP2020, especially in 2016. It also should be noted that in
this study, the AGR in 2019 is higher than that in 2015, and significantly higher than the observed value, which is mainly due
to the abnormally low carbon sink in the tropical latitudes (TL, 30° S ~ 30° N) in this year (Figure 7). The reason may be
related to the biases in the GOSAT XCOs retrievals in TL. We analyze the monthly changes of GOSAT XCO, in 2015 and
2019, and compare them with the OCO-2 XCO; retrievals (OCO-2 v10). We find that after detrending, in TL, the GOSAT
XCOs3 in 2019 is higher than that in 2015, while OCO-2 is the opposite (Figure S3). For the prior fluxes, the CORR, BIAS,
and MAE of NBE and AGR compared against the GCP2020 estimates are 0.16 and 0.49, -0.51 and 0.09 PgC yr'!, and 0.63
and 1.10 PgC yr'! (Figure S2). These indicate that the estimate of global carbon budgets has been significantly improved after

constrained by the GOSAT retrievals.

5.2 Annual NEE averaged from 2010-2019

Figure 5 shows the distributions of the mean posterior annual NEE during 2010 - 2019. Carbon uptakes mainly occur over
eastern N. America, Amazon, Congo Basin, Europe, boreal forests, southern China, and southeast Asia; and carbon releases
mainly occur in western N. America (main western US), the East African and Ethiopian Plateaus and the Sahel region (mainly
the grasslands in Africa), the Brazilian plateau, and parts of South Asia. Compared with the prior NEE, the land sinks in western
N. America, most S. America, the grasslands in Africa, most East and South Asia, and eastern Siberia are decreased, while the
sinks in eastern N. America, Europe, and western Siberia are significantly increased (Figure S4). In N. America, the distribution
of NEE constrained with GOSAT XCO, exhibits a similar pattern to that of a recent regional inversion using surface CO, and

14CO, measurements, which also showed significant sources over western US and sinks over central and eastern US (Basu et
9
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al., 2020). By using the Community Land Model (CLM5.0) and a Data Assimilation Research Testbed (DART) that assimilated
with remotely sensed observations of leaf area and above-ground biomass, Raczka et al. (2021) simulated the NEE over
western US and also found that there are large areas with carbon release. The western US is dominated by natural lands, which
is particularly vulnerable to forest mortality from droughts, insect attacks, and wildfires, Ghimire et al. (2015) found large
carbon release legacy from bark beetle outbreaks across western US. In addition, the ageing and decline of forest may be
another reason for the carbon release in western US (Sleeter et al., 2018). The significant sources of NEE in the grasslands of
Africa are consistent with previous top-down estimates based on satellite retrievals (Palmer et al., 2019) and surface CO,
measurements (Valentini et al., 2014). Many observations based on the eddy covariance also reported carbon sources of NEE
in the savanna grassland of West and South Africa (e.g., Veenendaal et al., 2004; Résédnen et al., 2017; Quansah et al., 2015).
The significant increase of carbon release in the grasslands of Africa may be related to the underestimates of carbon emissions
from small fires in GFED 4s. The FIRE emission in GFED 4s was estimated based on global burned area, which were from
coarse spatial-resolution sensors. Ramo et al. (2021) showed that coarse sensers are unsuitable for detecting small fires that
burn only a fraction of a satellite pixel, and pointed out that the FIRE emission of Africa in GFED 4s was underestimated by
about 31% in 2016.

Table 2 lists the aggregated mean posterior annual NEE, NBE and FIRE emissions during the 1- years for the 11
TRANSCOM regions and the 10 RECCAP2 regions. Compared with the prior NEE, the absolute relative changes in most
TRANSCOM regions are greater than 50% (Figure S5) after constrained with GOSAT data. In all regions, the aggregated
posterior NEE are negative, indicating a carbon sink in each region. For the 11 TRANSCOM regions, we estimate that Europe
has the strongest sink, followed by boreal Asia, tropical S. America, and northern Africa has the weakest sink. Among the 10
RECCAP?2 regions, Russia’s sink is the strongest, followed by N. America and Europe, and West Asia’s sink is the weakest. It
is worth noting that the Europe's NEE in the TRANSCOM region is twice that in RECCAP2. This is because the coverage of
Europe is different in TRANSCOM and RECCAP2, the former includes the entire European continent, while the latter does
not include European Russia.

Figure 6 shows a comparison between the results of this study and previous studies for both the TRANSCOM and
RECCAP?2 regions. For the TRANSCOM region, as shown in Figure 6a, in temperate N. America, northern Africa, boreal Asia,
the estimates of this study are between the results of CMS-Flux NBE 2020 and CT2019B; in temperate Asia, Europe, and
tropical Asia, our estimates are very close to CMS-Flux, but are significant differences with CT2019B, conversely, in Australia,
our estimates are very consistent with CT2019B, but are significantly different from CMS-Flux. In tropical S. America, our
result shows a strong carbon sink, which is consistent with previous mean annual biomass sink estimate of -0.39 +0.10 PgC
yr'! in Amazon during the 1980-2004 period based on repeated censuses at a widespread forest plot network (Phillips et al.,

2009) and is roughly consistent with a regional inversion in a wet year of -0.25 PgC yr'! based on aircraft CO, measurements
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(Gatti et al., 2014), while CMS-Flux NBE 2020 and CT2019B are both carbon sources. On the contrary, in temperate S.
America, our result shows a weak carbon source, while the other two are both carbon sinks. In addition, in southern Africa,
our estimate is also significantly different from them, we show strong carbon source, while CMS-Flux NBE 2020 and
CT2019B show weak sink and source, respectively. The differences between this study and CMS-Flux NBE 2020 may be
related to the different XCO, products used. As mentioned before, the NBE of CMS-Flux from 2010-2014 and 2015-2018
were inferred from GOSAT and OCO-2 products, respectively. In general, OCO-2 XCO; has much better spatial coverage than
GOSAT XCO,. Wang et al. (2019) pointed out that data amount is one of the most important factors affecting the inversion
results, generally, in one region with more XCO, data, the carbon flux relative to the prior flux is changed more. Therefore,
we conduct an additional comparison for the periods of 2010 to 2014 and 2015 to 2018, respectively, since in the first stage,
the XCO; used in these two studies are almost the same (both GOSAT), while in the second stage, they are different. As shown
in Figure S6, except for southern Africa, the difference between the two is significantly smaller in 2010-2014 than in 2015-
2018, especially in temperate S. America, northern Africa, and Australia, confirming that the significant differences are mainly
from the different XCO, products used in these two studies. In addition to XCO, data, the prior carbon flux can also have a
significant impact on the inversion results (Philip et al., 2019). We further examine the prior and posterior NBE over southern
Africa in these two studies, and find that the prior NBE used in these two systems are quite different (a strong sink in CMS-
Flux, and a source in this study). In the first stage, the NBE changes (Awse, a posteriori minus a priori) due to the GOSAT
constraints are quite small in both studies (Figure S7), resulting in the large difference in the posterior NBE between these two
studies, while in the second stage, because of the better spatial coverage of OCO-2 XCO,, the Aygr in CMS-Flux increase
significantly, resulting in a shift of NBE from a priori strong sink to a posteriori medium source, thus reducing the difference
of the posterior NBE in these two studies. We also find that there is also an increase in the Aygg in this study, which may be
related to the increase of GOSAT XCO; data from 2010 to 2019 (Taylor et al., 2022).

Based on inventory data of carbon-stock changes and satellite estimates of biomass changes where inventory data are
missing, Ciais et al. (2021) gave a state-of-the-art estimate for the NBE of the RECCAP2 regions for the period of 2000-2009,
which was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and
riverine-carbon export to the ocean. Figure 6b shows a comparison between this study and Ciais et al. (2021). Although the
inverted NBE is not completely equivalent to the land sink obtained by the bottom-up method, generally, to reconcile top-
down and bottom-up results, the inverted NBE should be adjusted with the lateral transport of reduced carbon compounds
(RCC) and carbon release from net imported products (Ciais et al., 2008; Jiang et al., 2016). Overall, except for Africa and
South Asia, the NBE estimated in this study and Ciais et al. (2021) are comparable. In Africa, we show a strong carbon source
of 0.87+0.27 PgC yr'!, while Ciais et al. (2021) reported a very weak sink of —0.07 + 0.29 PgC yr~!. Until now, there are still

big differences in top-down estimates of African NBE in different studies. Generally, the estimates based on surface CO,
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measurements show carbon sinks or weak source, which are mainly in the range of -0.26 to 0.32 PgC yr'!' (Valentitni et al.,
2014; Jacobson et al., 2020), while the estimates from satellite XCO, retrievals report strong carbon sources, with values
mainly in the range of 0.61 to 2.2 PgC yr! (Liu et al., 2021; Palmer et al., 2019). Peiro et al. (2022) also found a similar
phenomenon by comparing the carbon fluxes constrained using in-situ observations and OCO-2 retrievals within the same
inversion frameworks. Although the estimates based on surface measurements are much closer to Ciais et al. (2021)’s result,
the surface CO, observation sites in Africa are very sparse, there are only 4 stations over the African continent and 2 stations
located in adjacent islands, indicating that the constraints from surface measurements are very poor, and the inverted fluxes
often reflect the prior fluxes used in these inversions (Valentitni et al., 2014). In our prior flux, the NBE in Africa is 0.34 PgC
yrl, that is consistent with above surface-based estimates. This indicates that the strong carbon source is almost constrained
from satellite XCOx. Since there is no TCCON site in Africa, which is usually used to verify and correct the satellite XCO,
retrievals, leading larger uncertainties in the XCO, products, thus probably resulting in an overestimation of the surface flux.
Peiro et al. (2022) reported that the version of OCO-2 retrievals had a significant effect on the inversion results in Africa.
However, due to the lack of validation data for XCO, and few in situ CO; measurements, it is hard to know for sure which is
more accurate. In South Asia, we show a very weak sink of -0.05+0.10 PgC yr'!, while Ciais et al. (2021) presented a moderate
sink of -0.25 PgC yr''. Based on bottom-up and top-down methods, there have been many studies on NBE in South Asia in the
past. Overall, the bottom-up estimates are in the range of -0.01 ~ -0.25 PgC yr! (Cervarich et al., 2016; Ciais et al., 2021;
Nayak et al., 2015; Gahlot et al., 2017; Patra et al., 2013), while the top-down estimates are in the range of 0.04 ~ -0.37 PgC
yr'! (Patra et al., 2013; Thompson et al., 2016; Cervarich et al., 2016; Niwa et al. 2012; Jiang et al., 2014; Swathi et al. 2021).

Our result for South Asia is in the range of these previous studies.

5.3 Interannual variations and seasonal cycles

Figure 7a, b, and ¢ show interannual variations (IAV) of the NEE in the NL, TL and SL, respectively. In NL, the IAV of NEE
is relatively small, with an interannual amplitude of 1.09 + 0.50 PgC/yr. The smallest year of NEE appeared in 2018, which
was -1.87 £+ 0.38 PgC/yr, and the largest year appeared in 2014, with value of -2.91 + 0.33 PgC yr''. In TL, the inter-annual
variability is very large, with the biggest NEE in 2011 of -2.27 & 0.33 PgC yr! and the smallest NEE in 2016 only -0.31 + 0.41
PgC yr''. The interannual amplitude of NEE in TL is nearly twice that of NL, which reaches 1.96 = 0.53 PgC yr™'. The strongest
carbon sink in 2011 and weakest sink in 2016 are related to the strongest 2011 La Nifia and 2015/2016 El Nifio events,
respectively, which is in good agreement with many previous findings (Liu et al. 2017; Bastos et al. 2018; Wang et al., 2018;
Koren et al., 2018). Bastos et al. (2018) showed a smaller difference of carbon fluxes between 2015 and 2011 using both
bottom-up and top-down approaches, which was in the range of 0.7 ~ 1.9 PgC yr~'. With the constraints of GOSAT and OCO-
2 XCO,, Liu et al. (2017) found that relative to the 2011 La Nifia, the pantropical biosphere released 2.5 = 0.34 PgC more

carbon into the atmosphere in 2015, and during the peak 2015-2016 El Nifio between May 2015 and April 2016, the more
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released carbon reached 3.3 + 0.34 PgC. In this dataset, the changes of carbon flux between 2011 La Nifia and 2015-2016 El
Nifio events in the pantropical area are lower than the estimates of Liu et al. (2017), but close to Bastos et al. (2018). We
estimate the change of NBE between 2015 and 2011 is 1.59 = 0.34 PgC yr!, and the peak period of 2015-2016 El Nifio released
2.79 PgC more than in 2011 (Figure S8). In addition, it also could be found there are weak carbon sinks in 2010 and 2019 in
TL. There have been many studies on the decline of carbon sinks in tropical regions in 2010 (van der Laan-Luijkx et al., 2015;
Doughty et al., 2015; Gatti et al., 2014). In 2019, the decrease of NEE may be related to the Indian Ocean Dipole event, which
has significantly reduced the carbon uptakes over southern China, Indo-China peninsula, and Australia (Wang et al., 2021b).
In SL, due to the small land area, its NEE is an order of magnitude lower than the other two regions. It could be found that
there is a continuous decreasing trend. This trend is basically consistent with that in Australia (Figure 8j), indicating that the
IAV of NEE in SL is dominated by that in southern Australia, especially in southeastern Australia (Byrne e t al., 2021). Previous
studies have revealed that the enhanced carbon uptake in Australia from 2010 to 2012 was associated with the La Nifia phase
from the end of 2010 to early 2012 (Detmers et al., 2015), while the significantly increased carbon loss in 2019 was due to
extreme drought (Byrne e t al., 2021) associated with the Indian Ocean Dipole event (Wang et al., 2021b), indicating that the
decreasing trend of carbon sink in SL is caused by the extreme climate events occurred in the start and end years of this decade,
respectively, thus this downtrend is just a coincidence. On average, the NEE in NL, TL, and SL during this decade are -2.33 +
0.35, -1.25 + 0.38, and -0.05 = 0.07 PgC yr!, which account for 62.6%, 33.4% and 1.4% of the global total land sink,
respectively, indicating that the global land NEE is dominated by the NEE in NL. However, the correlation coefficients between
the IAVs of NEE in these three regions (NL, TL, and SL) and the IAV of global terrestrial NEE are 0.57, 0.86, and 0.37,
respectively, indicating that the IAV of global NEE is dominated by its inter-annual changes in TL.

In Figure 8, we further present the IAVs and seasonal cycles of NEE in the 11 TRANSCOM regions. Since there are some
overlaps between the TRANSCOM and RECCAP2 regions, for example, the N. America region in RECCAP2 is almost the
sum of the boreal and temperate N. America, the Africa region in RECCAP2 is the sum of the northern and southern Africa in
TRANSCOM. Besides, the [AVs of NEE in some regions of RECCAP2 like Russia, East Asia are dominated by the NEE
changes in corresponding regions in TRANSCOM. Therefore, here we only analyze the annual and monthly changes of NEE
in the TRANSCOM regions. The differences for the IAVs between the prior and posterior NEE in each region are shown in
Figure S9.

There are significant differences in the IAVs of annual NEE in each region. For example, in boreal N. America, there is
the weakest sink in 2016 and the strongest sink in 2017, while in temperate N. America, the weakest sink occurs in 2018, and
the strongest in 2010; Europe has the weakest sink in 2018, but the strongest sink is in 2014. For the interannual amplitudes,
temperate N. America, tropical S. America, southern Africa, Australia and Europe have relatively larger interannual amplitudes,

with values above 0.6 PgC yr'!; in temperate S. America, boreal Asia, northern Africa, temperate Asia and tropical Asia, the
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interannual amplitudes are comparable, ranging from 0.33 to 0.40 PgC yr!, while in boreal N. America, it has the smallest
interannual amplitude of 0.22 PgC yr!. Except for boreal N. America, boreal Asia, and Europe, the interannual amplitudes in
other regions are larger than their ten-year averaged carbon sinks, especially in the temperate S. America, northern and southern
Africa, and Australia, their inter-annual amplitudes of NEE reach more than 5 times of the mean carbon sinks.

For the seasonal cycles, the northern middle and high latitudinal regions have similar pattern, with carbon sources during
the cold season (from October to April), and carbon sinks during the warm season (from May to September). In the cold season,
the difference of carbon releases in different regions is relatively small, but in the warm season, the intensity of carbon sinks
in different regions is significantly different, and the months in which the strongest carbon sinks appear are also different.
Boreal Asia, temperate and boreal N. America have the strongest sinks in July, Europe has the strongest one in June, while
temperate Asia has the strongest in August. For the southern lands, southern Africa and temperate S. America have a similar
seasonal cycle. their carbon sources occur from July to about December, with peak in October, and carbon sinks appear from
January to May. In Australia, the carbon sinks mainly occur from March to October. In tropics, northern Africa has an opposite
seasonal cycle with its adjacent region of southern Africa, its carbon sink occurs during June to November. The seasonal cycles
in tropical Asia and tropical S. America are also nearly opposite. Tropical S. America has the strongest sink in September and
October, while tropical Asia has the strongest carbon release in October. In general, the tropical regions have a smaller seasonal
amplitude, while the high latitudes have a larger seasonal amplitude. In boreal Asia and Europe, their seasonal amplitudes
reach 1.17 and 0.96 PgC mo™, respectively, while in tropical Asia and tropical S. America, the seasonal amplitudes are only
about 0.12 PgC mo™'. The same region has basically similar seasonal cycles in different years, but the intensity of its carbon
sources and sinks, the time of transition from carbon source to carbon sink, and the months with the strongest sink or source
are also significantly different in different years. For example, in tropical Asia, the carbon sources from January to April in
2010 and 2016 are significantly stronger than those in normal years; in temperate N. America, the carbon sinks in the spring
of 2012 are significantly stronger than normal, but the carbon sinks in the summer are significantly weaker than normal.

Generally, the IAVs of annual NEE and seasonal cycles are related to large-scale climate anomalies and regional extreme
climate events like droughts, heatwaves and precipitation, which have been widely studied around the world (e.g., Ciais et al.,
2005; Betts et al., 2020; Bastos et al., 2018; Koren et al., 2018; Reichstein et al., 2013; Frank et al., 2015; Zhao and Running,
2010). Evidences have shown that severe drought events occurred in Amazon in 2010 (Potter et al., 2011; Doughty et al., 2015),
Europe in 2010 (Bastos et al., 2020a), 2012 (He et al., 2019) and 2018 (Bastos et al., 2020b; Graf et al., 2020; Wang et al.,
2020), the United States in 2011-2012 (He et al., 2018; Wolf et al., 2016; Liu et al., 2018; Byrne et al., 2020) and 2018 (Li et
al., 2020), and Australia in 2019 (Byrne et al., 2021) had caused significant reductions of terrestrial carbon uptakes.
Accordingly, as shown in Figure 8, the NEE in this dataset are also much smaller in those years and regions compared with

the normal year. Specially, in 2012, the contiguous United States experienced exceptionally warm temperatures and the most
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severe drought since the Dust Bowl era of the 1930s, Wolf et al. (2016) found that the warm spring reduced the impact of the
summer drought on net annual carbon uptake across the United States. As mentioned above, our dataset also shows the
significant increase of carbon sink in the spring of 2012, and large decrease during the summertime in temperate N. America.
In the summer 2010, western Russia was hit by an extraordinary heat wave, with the region experiencing by far the warmest
July since records began (Otto, et al., 2012; Guerlet et al., 2013; Ishizawa et al., 2016), correspondingly, we find that in our
dataset, the carbon sink in boreal Asia in July 2010 is the weakest in this decade, and the areas with significant positive anomaly
of NEE (source increase) are mainly in western Russia (Figure S10). The strong El Nifio events in 2015 and 2016 led to a
significant reduction in carbon sinks in the pantropical regions, and many regions even turned to carbon sources (Liu et al.,
2017; Bastos et al., 2018). Clearly, during 2015 — 2016, the inverted carbon sink in this study is much weaker than normal
years in tropical S. America and tropical Asia, and it turns to carbon sources in northern and southern Africa. These indicate
that this NEE dataset could clearly reveal the impact of climate extremes on carbon uptakes, thus it will benefit for the studies

of the trends and drivers of carbon flux in different regions of the world.

6 Evaluations

6.1 Against surface flask observations

As shown in section 3, surface flask observations from 74 sites are used to evaluate the inversion results. The modeled CO;
concentrations were extracted from the simulated 3-hour interval 3-D CO; fields according to the locations, time and heights
of each observation. It should be noted that the records with absolute biases between the posterior CO, concentrations and CO,
measurements greater than 10 ppm were removed, which are considered to be lack of regional representativeness. Due to the
low spatial resolution (1.9°%2.5°) of our model, we cannot reproduce such observations. Figure 9 shows the comparisons
between the posterior CO, concentrations and surface flask CO, measurements. At most sites located in ocean areas, tropical
lands, and southern lands, the BIAS is within 0.5 ppm, and MAE lower than 1 ppm. In the northern mid-high latitudes, BIAS
of some stations is higher than £1.0 ppm, and MAE of almost all stations is higher than 1.5 ppm (Table S1). The global mean
BIAS, MAE, and RMSE are 0.36, 1.76, and 2.28 ppm. The CORR of each site are in the range of 0.86 and 1, with global mean
0f 0.96.

The higher deviations in the northern mid-high latitudes, especially in temperate N. America and Europe, are probably
due to the mismatch of spatial and temporal representativeness between the observations and simulations. In order to further
increase the spatial and temporal representativeness of the observations, regional and monthly mean observed and modeled
concentrations in 7 land regions are compared. As shown in Figure 1, the 7 regions are high latitudes (> 60° N), N. America,
S. America, Europe, East Asia, Africa, and Australia. There are 8 sites in the high latitudes, 19 sites in N. America, 9 sites in
Europe, 5 sites in East Asia, 3 sites in S. America, 5 sites in Africa, and 4 sites in Australia (Figure 1, Table S1). Figure 10
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shows the time series of the monthly observed and modelled CO, concentrations in the 7 regions. Besides, the Mauna Loa
Observatory (MLO) in Hawaii is a global background site, the comparisons of monthly mean concentrations at MLO are also
shown in Figure 10. Clearly, the modeled regional and monthly mean CO, concentrations agree well with the observations.
The mean BIAS are in the range of 0.1 to 0.56 ppm, and MAE and RMSE are in the range of 0.42 ~ 1.46, and 0.52 ~ 1.73 ppm,
respectively. In S. America, Africa, and Australia, the posterior CO, concentrations are very consistent with the observations,
with BIAS only in the range of 0.1 ~ 0.24 ppm, and MAE about 0.5 ppm. Among these regions, the deviations in Europe and
high latitude regions are relatively larger, with MAE greater 1.4 ppm and RMSE about 1.7 ppm. Significant positive biases
mainly occur during the winter. This is understandable, because in the winter at high latitudes, satellite observations are very
scarce, leading to very insufficient constraints on the winter carbon flux. This indicates that there may be an overestimation of
carbon releases at high latitudes in winter. At MLO, the simulations also agree well with the observations, with BIAS, MAE,
and RMSE of 0.2, 0.46, and 0.57 ppm, respectively. Figure S11 shows the time series of biases in the 7 regions and at the MLO
site, for comparison, the biases of prior CO» concentrations are also shown in this figure. Clearly, the biases of the simulated
CO; concentrations are significantly decreased relative to the prior. It also could be found that there is an upward trend in the
biases of the posterior CO; concentrations in all regions except East Asia, as well as at the MLO site. On global average (74
sites), the annual mean biases increase from -0.36 ppm in 2010 to 0.75 ppm in 2019, with uptrend slope of 0.115 ppm yr!
(Figure S12). By multiplying by a factor of 2.124 PgC ppm ! (Ballantyne et al., 2012), this bias accumulation rate is equal to
0.244 PgC yr !, which is very consistent with the 10-year averaged bias in the inverted global AGR given in Section 5.1 (0.25

PgC yr"). This uptrend is a result of a residual trend in the inversions fit to the GOSAT data. We analyzed the timeseries of the

global averaged monthly mean posterior XCO, and GOSAT XCO, concentrations, and found that the mismatches between the

posterior XCO, fields and GOSAT data also have an upward trend from 2010 to 2019, with an annual mean increment about

0.09 ppm yr! (Figure S13).

6.2 Against aircraft measurements

We further evaluate the posterior CO, concentrations against the aircraft observations. First, the posterior CO, were extracted
from the simulated CO, fields according to the locations, time and heights of each aircraft observation, and then, both the
observed and modeled CO; concentrations were divided into 14 layers: 1000—1500, 1500-2000, 20002500, 2500-3000,
3000-3500, 3500—4000, 4000-4500, 4500-5000, 5000-5500, 5500-6000, 6000—7000, 7000-8000, 8000-9000 and above
9000 m (CONTRAIL only 3-10 layer, and CARBAM only 1-8 layer). Monthly mean observed and modeled CO,
concentrations at each height were calculated and compared for the CONTRAIL and CARBAM profiles. For comparisons
against the HIPPO observations, the data were further divided into 2° interval along longitudinal direction, and all data in each
layer and 2° of latitudes were averaged.

Figure 11 and 12 shows the evaluation results of monthly mean profiles in the 8 cities over the Asia-Pacific region, and
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at the 4 sites in the Amazon basin, respectively. Overall, the deviations between the simulations and observations decrease
with height. In the Asia-Pacific region, the BIAS are basically within 0.5 ppm, and most MAE are smaller than 1 ppm,
especially in Southeast Asia, indicating that we have a good estimate of NEE in this area. Shanghai and New Delhi have
relatively larger MAE and RMSE, with MAE about 1.5 ppm, and RMSE existing 2 ppm in the lowest level, probably due to
the fact that Shanghai and New Delhi are one of the largest cities in China and India, respectively, and have very strong
anthropogenic CO, emissions, which may affect the performance of the MOZART model. In the Amazon basin, the MAE and
RMAE of all 4 sites decrease with height, with MAE and RMSE decreasing from about 2 ppm near 1000 m height to about
1.5 ppm near 4000 m. For BIAS, below 2000 m, they increase significantly with height. There are negative (~ -1.0 ppm, data
not shown), small (~ 0.2 ppm), and significant positive BIAS (~ 0.9 ppm) below 1000 km, at 1000 ~ 1500 m, and 1500 ~ 2000
m heights, respectively, indicating that there are considerable vertical transport errors, and the carbon sinks over tropical S.
America may have systematic biases.

Figure 13 shows the comparisons against the HIPPO observations at different heights and latitudes. Overall, most BIAS
are within 0.5 ppm, showing a good agreement between the simulations and observations. Relatively large BIAS occurs over
northern high latitudes, which is consistent with the comparisons against the surface observations as shown in Figure 10, and

also reveals an overestimation of carbon releases at high latitudes.

7 Summary

A global NEE dataset is essential for estimating the regional terrestrial carbon budget and understanding the responses of
carbon fluxes to extreme climates. Here, by assimilating the GOSAT ACOS v9 XCO; product, we generate a ten-year global
monthly terrestrial NEE dataset from 2010 to 2019 (GCAS2021) using the GCASv2 system. GCAS2021 includes monthly
and annual gridded (1°x1°) prior and posterior NEE and OCN flux, and prescribed FIRE and FFC emissions, and globally,
latitudinally, and regionally aggregated fluxes and their uncertainties. Globally, the decadal mean NBE and AGR as well as
their [AVs match well with the estimates of GCP2020. Regionally, our product shows carbon sinks over eastern N. America,
Amazon, Congo Basin, Europe, boreal forests, southern China, and southeast Asia, and carbon sources over western US,
African grasslands, Brazilian plateau, and parts of South Asia. In the 11 TRANSCOM land regions, the NBEs of temperate N.
America, northern Africa and boreal Asia are between the results of CMS-Flux NBE 2020 and CT2019B, and those in
temperate Asia, Europe, and tropical Asia are very close to CMS-Flux NBE 2020 but significantly different from CT2019B.
In the RECCAP?2 regions, except for Africa and South Asia, the NBEs are comparable with the latest bottom-up estimate of
Ciais et al. (2021). The IAVs and seasonal cycles of NEE could clearly reflect the impact of extreme climates or large-scale
climate anomalies. We also qualitatively evaluate the NEE estimates by comparing posterior CO, concentrations with

independent CO, measurements from surface flask and aircraft CO, observations, and the results show that the simulated
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remote site and regional average CO, concentrations, as well as the vertical CO, profiles, are all consistent with the
observations. We believe that this dataset will be useful in the estimates of regional or national-scale terrestrial carbon budgets,
the study of carbon sink evolution mechanisms, the evaluation of ecosystem models, and the assessments of carbon neutrality

strategies.
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Figure 1: Distributions of the surface flask observation sites used in this study.
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Figure 2: Locations of aircraft observations (red and gray, observations of the CONTRAIL project, in while red marks show

observations below 6 km; dark blue, observations of the HIPPO project; green, data of the CARBAM project).
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Table 1: Global carbon budget (PgC yr™).

FFC FIRE NBE

Year NEE OCN flux o o NBE Net Flux CMS-Flux

emission  emission CT2019B

NBE 2020
2010 -3.28+0.49 -2.11+0.15 9.04 2.15 -1.1320.49  5.80+0.51 2.1 -0.9
2011 -5.24+0.50 -2.21+0.15 9.40 1.87 -3.37+0.50  3.81+0.52 -3.71 -2.56
2012 -3.77+0.50 -2.27+0.15 9.58 2.05 -1.7240.50  5.58+0.52 -2.05 -0.89
2013 -4.13+0.49 -2.40+0.15 9.63 1.77 -2.36+0.49  4.86+0.51 -2.13 -1.89
2014 -4.50+0.51 -2.46+0.16 9.71 2.04 -2.46+0.51  4.79+0.53 -3.82 -2.39
2015 -3.50+0.53 -2.5240.16 9.68 2.29 -1.21£0.53  5.95+0.56 -0.56 -0.84
2016 -2.51+0.53 -2.73+0.16 9.71 1.87 -0.64+0.53  6.33+0.56 -0.85 -0.27
2017 -3.74+0.56 -3.06+0.17 9.87 1.92 -1.82+0.56  4.99+0.58 -2.05 -1.41
2018 -3.54+0.56 -3.37+0.16 10.07 1.83 -1.71£0.56  4.99+0.58 -1.77 -1.86
2019 -3.04+0.49 -3.23+0.16 10.03 2.32 -0.72+£0.49  6.08+0.52 - -
Mean -3.73+0.52 -2.64+0.16 9.67 2.01 -1.71£0.52  5.32+0.54 2,12 -1.45
Table 2: Regional terrestrial ecosystem carbon flux (PgC yr).
TRANSCOM region NEE FIRE NBE RE.CCAPZ NEE FIRE NBE
region

Boreal N. America -0.3240.12  0.08  -0.23+0.12  N. America -0.78£0.23  0.14  -0.64+0.23
Temperate N. America -0.43+0.19 0.04  -0.40+0.19  S. America -0.53£0.21 029  -0.24+0.22
Tropical S. America -0.50+0.16 020 -0.30+0.16 Russia -1.02£0.20  0.15  -0.87+0.20
Temperate S. America -0.06+£0.14  0.10  0.04+0.14  Europe* -0.36+£0.13  0.01  -0.35+0.13
Northern Africa -0.03£0.21 0.37 0.34+£0.21  West Asia -0.05+£0.03  0.01 -0.04+0.03
Southern Africa -0.13£0.17  0.66 0.53+0.17  Africa -0.17+0.27 1.03 0.87+£0.27
Boreal Asia -0.6840.18 0.14  -0.54+0.18  East Asia -0.30+£0.15  0.03 -0.27+0.15
Temperate Asia -0.3240.17  0.04  -0.29+0.17  South Asia -0.07+0.10  0.02  -0.05+0.10
Tropical Asia -0.32+£0.09 020 -0.12+0.09  Southeast Asia ~ -0.25+0.08  0.19  -0.06+0.08
Australia -0.12£0.06  0.12 0.00+£0.06  Australasia -0.12£0.06  0.12 0.00£0.06
Europe -0.7240.17  0.02  -0.70+0.17 - - - -

*Excluding European Russia
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Text S1: Method for calculating prior and posterior uncertainties

The posterior and prior uncertainties are calculated based on the prior and posterior perturbations of X? and X2, which
are calculated using equation (S1) ~ (S5). X? is perturbed from the prior flux X” with a Gaussian random distribution §;
and a set of scaling factors A. §; has a mean of 0 and a standard deviation of 1, and A represents the uncertainty of each
prior flux. After constrained using satellite XCO, observations, the perturbed flux of X? is changed to X{ according
equation (S2) ~ (S5). In these equations, H is the observation operator that maps the state variable from model space to
observation space; R is observation error covariance, P? is the background error covariance; K and K are the Kalman gain
matrix of the ensemble mean and ensemble perturbation, respectively. Equation (S2) ~ (S5) are solved in the EnSRF module
in our system. In this study, the fluxes are independently perturbed with a spatial resolution of 3°x3°, while X? and X{
have a spatial resolution of 1°x1°, that means the fluxes X within each 3° grid have the same perturbation factor (A X §;).

In addition, we use a data assimilation window of 1 week, namely the time interval of X? and X& is 1 week.

X0 =X +Ax§;xXx" ,i=1,2,...,N 1)

Xt =X+ (X — X") — KH(X{ — X") 52

R - (1 + ’R/HPHT + R)—lK (83)

K = PH"(HPHT + R)™! 4
1

P = LS (X - X%) (X2 — x0T (5

For the uncertainty ¢ in a defined region during a time period (monthly or annual), we firstly aggregate each
perturbed flux i at each time step ¢ (DA window) to F;; according to equation (S6), where j is the identifier of grid located
in this region, and m is the number of grid in this region. Then, the uncertainty of the regional flux at each time step u, is
given by the standard deviation of F;;according to equation (S7). Finally, the uncertainty ¢ during this time period is

estimated following equation (S8), where 7 denotes the time steps within this period.

Foi =27 Xij¢ (S6)

ue = AT (Fyi — R (s7)

0= uboq U X Uy (S8)
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Figure S1: The change rate of fossil fuel and cement carbon emissions in each region in 2019 compared with 2018
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Figure S2: Comparisons between this study and GCP2020 for the estimates of annual (a) NBE and (b) AGR from 2010 to 2019
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Figure S3: Monthly variations of (a) XCO: and (b) NBE in tropical latitudes (TL, 30° S ~30° N) in 2015 and 2019 (because
GOSAT lacks data in January 2015, XCO: for each month is its change relative to February. It could be found that the carbon

sinks in January-August and September-December 2019 were significantly smaller and stronger than those in the same period

in 2015, respectively. Correspondingly, compared with 2015, GOSAT has higher XCO: in March - August, and lower ones in

September-December in 2019. Although OCO-2 has a similar pattern, compared with 2015, the XCO: increase in March-

August is significantly smaller than that of GOSAT, while the decrease in September-December is significantly higher than
that of GOSAT. The annual mean GOSAT XCOz in 2019 is higher than that in 2015, while OCO-2 is the opposite)
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Figure S4: Global distributions of the mean differences between the prior and posterior NEE averaged from 2010 to 2019
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Figure S5: Differences between the prior and posterior NEE in each TRANSCOM 3 regions
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Figure S6: Comparison of NBE between this study and CMS-Flux NBE 2010 for the periods of 2010-2014 and 2015-2018
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Figure S7: Changes in posterior NBE relative to prior fluxes in southern Africa (positive means source increase)
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Figure S9: Interannual variations of the prior and posterior NEE in each TRANSCOM 3 region and in the global scale. (a,
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Figure S11: Time series of monthly averaged biases between observations and simulations and the frequency distribution of the
biases in the 7 regions and MLO site (the black dotted line represents the linear trend of the biases between the observations

and the posterior simulations)
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Figure S12: Inter-annual variations of the global averaged annual mean bias (error bar represents standard deviation of

monthly mean biases in one year; the dotted line is its linear trend)
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Table S1: Information of the selected surface flask observations and the evaluation results

Locations  Site Lab Lat Lon BIAS MAE RMSE CORR No.of
id data
alt 1 82.45 297.49 0.7 1.54 2.07 0.98 518
brw 1 71.32 203.39 0.29 2 2.61 0.97 555
crv 1 64.99 212.4 0.47 2.79 3.52 0.93 1260
High ice 1 63.4 339.71 0.56 1.63 2.01 0.96 161
latitudes  pal 1 67.97 24.12 -0.04 2.53 3.34 0.96 438
sum 1 72.6 321.58 0.35 1.27 1.54 0.99 506
tik 1 71.6 128.89 0.96 3.11 4.03 0.94 303
zep 1 78.91 11.89 0.88 1.83 2.44 0.97 500
amt 1 45.03 291.32 1.97 3.26 4.07 0.95 1356
bao 1 40.05 255 -0.8 2.49 3.28 0.86 1754
bmw 1 32.26 295.12 1.69 1.99 2.58 0.97 397
hsu 1 41.03 235.65 -0.24 2.67 3.46 0.9 69
inx 1 39.8 273.98 0.51 3.79 4.66 0.93 409
key 1 25.67 279.84 0.49 1.65 2.38 0.96 413
lef 1 45.95 269.73 0.69 3 3.8 0.95 1611
mbo 1 43.98 238.31 0.15 1.59 2.11 0.96 1500
mex 1 18.98 262.69 0.97 1.27 1.66 0.98 387
Aillrrtilla mwo 1 34.22 241.94 -0.81 2.24 3.11 0.92 3185
nwr 1 40.05 254.41 0.06 1.6 2.15 0.96 489
sct 1 33.41 278.17 0.47 3.22 4.05 0.93 1689
sgp 1 36.61 262.51 0.72 3.28 3.99 0.93 437
str 1 37.76 237.55 0.05 2.35 3.09 0.94 4842
thd 1 41.05 235.85 -1.05 2.35 3.13 0.91 330
uta 1 39.9 246.28 1.5 2.54 3.23 0.94 462
wbi 1 41.72 268.65 1.33 3.43 4.32 0.94 1645
wgc 1 38.26 238.51 -0.09 3.34 4.14 0.9 1238
wkt 1 31.31 262.67 0.58 2.47 32 0.93 1326
bgu 11 41.97 3.23 -0.3 2.74 3.45 0.92 223
cib 1 41.81 355.07 0.35 2.99 3.72 0.92 406
fkl 11 35.34 25.67 0.49 2.41 2.97 0.94 207
hpb 1 47.8 11.02 2.61 43 5.04 0.92 394
Europe hun 1 46.95 16.65 0.65 3.62 4.42 0.94 426
lmp 1 35.52 12.62 0.58 1.91 2.4 0.96 415
mhd 1 53.33 350.1 0.2 1.52 2.15 0.97 474
oxk 1 50.03 11.81 -0.13 3.3 4.07 0.91 360
pdm 11 42.94 0.14 -0.44 1.82 2.35 0.95 170
dsi 1 20.7 116.73 0.87 2.29 2.92 0.94 376
East Asia lln 1 23.47 120.87 1.06 2.33 3.15 0.95 384
tap 1 36.74 126.13 1.52 3.5 441 0.92 411
uum 1 44.45 111.1 -0.41 2.79 3.57 0.93 453



wlg 1 36.29 100.9 -0.45 1.89 2.62 0.95 477

South nat 1 -5.8 32481 0.11 1.09 1.52 0.97 331
America pb 1 13.16 300.57 0.36 0.72 0.95 0.99 511
ush 1 -54.85 291.69 0.24 0.64 0.88 0.99 206

ask 1 23.26 5.63 0.01 0.65 0.83 1 474

cpt 1 -34.35 18.49 0.53 0.66 0.9 0.99 241

Africa nmb 1 -23.58 15.03 -0.11 0.78 1.09 0.99 403
sey 1 -4.68 55.53 0.57 0.81 1.2 0.99 416

wis 1 29.96 35.06 0.17 1.98 2.57 0.95 479

bhd 1 -41.41 174.87 -0.01 0.71 1.13 0.99 144

Australia cfa 2 -19.28 147.06 -0.03 0.92 1.27 0.99 176
cgo 1 -40.68 144.69 0.02 0.46 0.82 0.99 337

gpa 2 -12.25 131.04 1.29 2.23 2.71 0.92 64

asc 1 -7.97 345.6 0.57 0.73 0.91 1 836

azr 1 38.77 332.62 0.29 1.57 2.02 0.96 218

cba 1 55.21 197.28 -0.91 2.08 2.82 0.96 808

chr 1 1.7 202.85 0.59 0.85 1.07 0.99 249

crz 1 -46.43 51.85 0.1 0.32 0.41 1 396

cya 2 -66.28 110.52 0.24 0.31 0.39 1 222

eic 1 -27.16 250.57 0.16 0.91 1.39 0.98 342

gmi 1 13.39 144.66 0.41 1.07 1.58 0.98 525

hba 1 -75.61 333.79 0.34 0.4 0.47 1 323

izo 1 28.31 343.5 0.59 1.06 1.44 0.99 483

kum 1 19.56 205.11 -0.18 1.25 1.79 0.98 718

maa 2 -67.62 62.87 0.36 0.38 0.46 1 239

mid 1 28.21 182.62 0.54 1.34 1.73 0.98 465

mlo 1 19.54 204.42 0.22 0.61 0.8 1 637

mqga 2 -54.48 158.97 0.17 0.4 0.55 1 242

psa 1 -64.92 296 0.21 0.38 0.47 1 466

rkl 426 -29.2 182.1 -0.07 0.58 0.7 1 49

shm 1 52.71 174.13 -0.2 2.07 2.76 0.96 429

smo 1 -14.25 189.44 0.37 0.57 0.76 1 798

spo 1 -89.98 335.2 0.3 0.35 0.41 1 494

syo 1 -69.01 39.59 0.28 0.34 0.4 1 237

All 0.35 1.76 2.28 0.96 -
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