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Abstract. Global land cover (GLC) information with fine spatial resolution is a fundamental data input 9 

for studies on biogeochemical cycles of the Earth system and global climate change. Although there are 10 

several public GLC products with 30 m resolution, considerable inconsistencies were found among them 11 

especially in fragmented regions and transition zones, which brings great uncertainties to various 12 

application tasks. In this paper, we developed an improved global land cover map in 2015 with 30 m 13 

resolution (GLC-2015) by fusing multiple existing land cover products based on the Dempster-Shafer 14 

theory of evidence (DSET). Firstly, we used more than 160,000 global point-based samples to locally 15 

evaluated the reliability of the input GLC products for each LC class within each 4°×4° geographical 16 

grid for the establishment of the basic probability assignment (BPA) function. Then, the Dempster’s rule 17 

of combination was used for each 30 m pixel to derive the combined probability mass of each possible 18 

land cover class from all the candidate maps. Finally, each pixel was determined with a land cover class 19 

based on a decision rule. Through this fusing process, each pixel is expected to be assigned with the land 20 

cover class that contributes to achieve a higher accuracy. We assessed our product separately with 34,987 21 

global point-based samples and 144 global patch-based samples. Results show that, the GLC-2015 map 22 

achieved the highest mapping performance globally, continentally, and eco-regionally compared with the 23 

existing 30 m GLC maps, with an overall accuracy of 76.0% (83.8%) and a kappa coefficient of 0.715 24 

(0.548) against the point-based (patch-based) validation samples. Additionally, we found that the GLC-25 

2015 map showed substantial outperformance in the areas of inconsistency, with an accuracy 26 
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improvement of 17.6%-23.2% in areas of moderate inconsistency, and 21.0%-25.2% in areas of high 27 

inconsistency. Hopefully, this improved GLC-2015 product can be applied to reduce uncertainties in the 28 

research on global environmental changes, ecosystem service assessments, and hazard damage 29 

evaluations, etc. The GLC-2015 map developed in this study is available at 30 

https://doi.org/10.6084/m9.figshare.19752856.v1 (Li et al., 2022).  31 

1. Introduction 32 

Land cover (LC), influenced by both nature and human activities (Running, 2008; Gong et al., 2013; 33 

Song et al., 2018; Liu et al., 2021a), is a significant component of the Earth system (Yang and Huang, 34 

2021). Global land cover (GLC) products can serve as fundamental data for various studies, such as 35 

climate and environmental changes (Bounoua et al., 2002; Foley et al., 2005; Grimm et al., 2008; Yang 36 

et al., 2013; Schewe et al., 2019), food security (Verburg et al., 2013; Ban et al., 2015), carbon cycling 37 

(Moody and Woodcock, 1994; Defries et al., 2002; Gómez et al., 2016), biodiversity conservation 38 

(Chapin et al., 2000; Giri et al., 2005) and land management (Mayaux et al., 2004; Verburg et al., 2011). 39 

Therefore, there is a pressing need for detailed, accurate, and high-quality GLC product to support global 40 

change research and sustainable development. 41 

In the preliminary stage, LC mapping mainly relied on visual interpretation, which is time-42 

consuming, labor-intensive and difficult to be applied at the global scale (Gong, 2012). In recent decades, 43 

satellite remote sensing data, which can provide information of large area coverage and long-term 44 

monitoring, has been adopted to generate GLC products. With coarse resolution satellite data such as 45 

Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging 46 

Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), and Global Land 47 

Surface Satellite (GLASS), a variety of GLC products have been developed at 5 km to 300 m 48 

resolution(Loveland et al., 2000; Hansen et al., 2000; Bartholomé and Belward, 2005; Friedl et al., 2010; 49 

Defourny et al., 2018; Liu et al., 2020a). Although these GLC products have been widely applied to many 50 

applications, it has been proved that the differences between sensors, classification systems, and 51 

considerably low accuracies in areas prevent harmonization of these products (Herold et al., 2008; 52 

Verburg et al., 2011; Grekousis et al., 2015). Also, these products are far from providing enough fine 53 

spatial details of LC due to their relatively coarse spatial resolution, which does not meet the demand of 54 
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many studies (Giri et al., 2013; Yang et al., 2017). To allow researches which can capture most human 55 

activity, finer-resolution (e.g., 30 m) GLC products are demanded (Giri et al., 2013). 56 

With the free accessibility of high-resolution satellite remote sensing data, GLC mapping at fine 57 

resolution has been successfully conducted. Using Landsat imagery, there has been a milestone 58 

achievement that the two GLC products are generated with fine resolution of 30 m, namely Finer 59 

Resolution Observation and Monitoring of Global Land Cover product (FROM_GLC)(Gong et al., 60 

2013)and Globeland30 (Chen et al., 2015). After that, a 30 m-resolution GLC mapping in 2017 was 61 

achieved using the first all-season sample set (Li et al., 2017). More recently, Zhang et al. (2021) used 62 

both Landsat time series imagery and high-quality training data from the Global Spatial Temporal Spectra 63 

Library (GSPECLib) to produce a 30 m GLC map in 2015 (GLC_FCS30) with a two-level classification 64 

scheme. Several attempts have been made to improve accuracy of 30 m GLC products which are 65 

prevail in the generation of GLC mapping task over the last few years. FROM_GLC was created by 66 

employing four classification algorithms to classify the Landsat images and choosing time series of 67 

MODIS EVI data for training and test. Globeland30 was created by proposing a pixel-object-knowledge-68 

based (POK) method to assure consistency and accuracy. GLC_FCS30 was generated by adopting local 69 

adaptive random forest models with high-quality training samples derived from GSPECLib. 70 

Despite the great efforts in producing more accurate products, the existing 30 m GLC products still 71 

show low accuracy performance in certain LC classes and some specific areas (Sun et al., 2016; Kang et 72 

al., 2020). Furthermore, the existing 30 m products showed great agreement in overall spatial distribution 73 

patterns but significant spatial inconsistency in some specific areas (heterogeneous areas and transition 74 

zones) and spectrally similar classes (forest and shrubland, cropland and grassland) (Gao et al., 2020; 75 

Liu et al., 2021b). The high spatial inconsistency between the existing 30m GLC products are resulted 76 

from differences in their classification systems, classification techniques employed, source data, and 77 

spatial distribution and size of training samples (Yang et al., 2017; Gao et al., 2020). Due to the aforesaid 78 

limitations, users of GLC products still have difficulties in an appropriate selection of data for their 79 

specific application. Ultimately, this situation leads to uncertainties in outcomes of related researches 80 

when different 30 m GLC products are used. For GLC mapping with fine spatial resolution, more efforts 81 

should be focused on improving the mapping in heterogenous and fragmented landscape (Herold et al., 82 

2008; Liu et al., 2021b). Therefore, it is pressing to generate a more accurate and reliable GLC product 83 
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with high classification accuracy, especially for spatially inconsistent regions and low-accuracy LC 84 

classes. 85 

According to Gong et al. (2016), inconsistencies between LC products indicate available 86 

complementary information and more robust and reliable data can be generated by integrating the input 87 

maps with the data fusion method. Given that different maps have disagreement and provide accurate 88 

information in different locations, we can make a best choice for the class label assigned to each pixel 89 

by weighting the credibility of all the available information and combining them through a decision rule 90 

(Clinton et al., 2015). In this way, the output map of integration on input maps can reduce the overall risk 91 

of assigning a wrong class label to a pixel and at least achieve the average performance of input maps. 92 

Several attempts have been made to employ a data fusion method for producing an accurate and 93 

consistent LC map. Jung et al. (2006) generated a 1km GLC map by combination of MODIS, GLC2000 94 

and GLCC data. Fritz et al. (2011) proposed a synergy method on five existing cropland datasets to map 95 

the cropland extent in Sub‐Saharan Africa. See et al. (2015) generated two GLC products by integrating 96 

medium resolution LC products with geographically weighted regression (GWR). Song et al. (2017) 97 

improved forest cover classification at the global scale using a data fusion method based on machine 98 

learning. All of these researches have demonstrated that fusion method can create an integrated LC 99 

product where the mapping accuracy is greatly improved by combing the best of candidate maps.   100 

In this research, we propose a multi-source product fusion approach on the Google Earth Engine 101 

(GEE) platform to produce an improved GLC product in 2015 (GLC-2015) with 30 m resolution. The 102 

fusion approach we proposed aims to deal with the inconsistency between previous 30 m GLC products 103 

and generate a map which has better mapping performance than any of the candidate maps by evaluating 104 

the mapping accuracy of these existing products at the local scale and choosing the most credible LC 105 

class. To fulfill the purpose, we first performed reliability evaluation, where the accuracy of each GLC 106 

product for each LC class in each 4° × 4° geographical grid is regarded as the evidential probability to 107 

create the BPA function. Then, the BPA values of all the LC classes from different GLC products are 108 

fused according to the Dempster’s rule of combination. Finally, the GLC-2015 map was integrated after 109 

a final accepted LC class with the maximum combined probability mass was assigned to each 30 m pixel. 110 

Our GLC-2015 map was separately validated with two different validation sets, namely global point-111 

based samples and global patch-based samples, and compared with three existing multiple-class GLC 112 
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products. Moreover, we provided an analysis for mapping improvement of the GLC-2015 compared to 113 

other products in areas of high mapping inconsistency. The GLC-2015 map is proved to be accurate and 114 

credible and can significantly improve the mapping accuracy in areas of high inconsistency between 115 

previous products. 116 

2. Datasets 117 

2.1 Multiple-class GLC products  118 

Three existing 30m GLC products with multiple classes, including GlobeLand30, FROM_GLC and 119 

GLC_FCS30, were employed as input maps in the fusion based on DSET. A summary of their detailed 120 

information is shown in Table 1. 121 

GlobeLand30, a widely-used global geo-information product, was produced by the POK-based 122 

method using Landsat and HJ-1 satellite images. Globeland30 products are freely accessible online at 123 

the website (http://www.globalland30.org) for 2000 and 2010. From the accuracy assessment, the 124 

Globeland30 for the year 2010 had an overall accuracy excessed 80% using large samples (Chen et al., 125 

2015). We employed the version of 2010 as one of the candidate maps for the mapping procedure.  126 

FROM_GLC was first generated using numerous Landsat images, which has a fine classification 127 

system with a two-level structure. It achieved an OA of 64.5% through validation with the complete test 128 

samples and 71.5% with a subset of test samples in homogeneous areas (Gong et al., 2013). We used the 129 

version of 2015 for the fusion.  130 

GLC_FCS30 was developed using Landsat time series data and large training samples from the 131 

GSPECLib. It has a two-level classification scheme that contains 16 global LCCS LC classes and 14 132 

detailed regional LC classes. The overall accuracy of the GLC_FCS30 according to LCCS level-1 133 

validation scheme reached 71.4% (Zhang et al., 2021).   134 
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Table 1. Detailed information of GLC products used in this paper. 135 

Product name Satellite sensors Year of reference Access Literature 

Globeland30 

Landsat TM/ETM+ 

HJ-1 A/B 

2010 http://www.globallandcover.com/ (Chen et al., 2015) 

FROM_GLC Landsat TM/ETM+/OLI 2015 http://data.ess.tsinghua.edu.cn/ (Gong et al., 2013) 

GLC_FCS30 Landsat OLI 2015 https://doi.org/10.5281/zenodo.3986872 (Zhang et al., 2021) 

GAUD Landsat TM/ETM+/OLI 2015 https://doi.org/10.6084/m9.figshare.11513178.v1 (Liu et al., 2020b) 

GFC Landsat TM/ETM+ 2015 

http://earthenginepartners.appspot.com/science-

2013-global-forest 

(Hansen et al., 2013) 

JRC GSW Landsat TM/ETM+/OLI 2015 http://global-surface-water.appspot.com/ (Pekel et al., 2016) 

GMW 

ALOS PALSAR 

Landsat TM/ETM+ 

2015 https://data.unep-wcmc.org/datasets/45 

(Bunting et al., 

2018) 

2.2 Single-class GLC products 136 

To improve the quality of the fusing result, a set of highly qualified GLC products with single class at 30 137 

m fine resolution were also used. Compared to the multiple-class GLC products, these single-class GLC 138 

products are more likely to provide accurate information since they usually focus on promoting mapping 139 

performance of specific LC class. These products include Global Forest Change (GFC) (Hansen et al., 140 

2013), Global Annual Urban Dynamics (GAUD) (Liu et al., 2020b), Joint Research Centre's Global 141 

Surface Water (JRC GSW) (Pekel et al., 2016), and Global Mangrove Watch (GMW) (Bunting et al., 142 

2018). While these single-class products are either annual or multi-epoch, we only selected these 143 

products in the target year of 2015. Table 1 also describes the information of these selected single-class 144 

GLC products. 145 

GFC was resulted from a time-series analysis of growing season Landsat scenes, aiming to provide 146 

information about global tree cover extent, gain, and loss at a 30m spatial resolution. The accuracy 147 

assessment was performed at global and climate domain scales and the forest gain reached an overall 148 

accuracy of 99.6% and forest loss reached 99.7% across the globe (Hansen et al., 2013). Up to now, it 149 

has a temporary coverage from 2000 to 2020. 150 

GAUD, which provides 30m annual urban extent for the time period of 1985 to 2015, was generated 151 

using numerous Landsat images with both data fusion approach and temporal segmentation approach on 152 
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the GEE platform. Validation was conducted across different urban ecoregions and the globe by the 153 

product developer. The accuracies of mapping urbanized year are 76% for the period of 1985 to 2000 154 

and 82% for the period of 2000 to 2015 at humid regions worldwide (Liu et al., 2020b). 155 

JRC GSW dataset provides a monthly presentation of global surface water changes from 1984 to 156 

2015 at a fine 30 m resolution. Expert systems, visual analytics and evidential reasoning were exploited 157 

to detect water extent and changes. Based on 40,124 validation points over the globe and across the 32 158 

years, commission accuracies were determined with overall accuracies of 99.45% (TM), 99.35% (ETM+) 159 

and 99.54% (OLI) and omission accuracies were reflected in overall accuracies of 97.01% (TM), 95.79% 160 

(ETM+) and 96.25%(OLI) (Pekel et al., 2016). The product is now updated to 2020 on the GEE platform.  161 

GMW dataset was produced as a resulted of the GMW initiative, which aims to provide consistent 162 

information of mangrove extent. The global mangrove map in 2010 was generated as a baseline map 163 

employing the Extremely Randomized Trees classifier to classify ALOS PALSAR and Landsat imagery. 164 

Assessed by a total of 53,878 sample points globally, the overall accuracy of the baseline map reached 165 

95.3% and the producer’s accuracy achieved 94.0% (Bunting et al., 2018). Based on the baseline in 2010, 166 

mangrove extent maps for six epochs between 1996 and 2016 have been established and annual change 167 

monitoring from 2018 and onwards are undertaken. 168 

2.3 Global point-based and patch-based samples 169 

In this study, we collected two sets of global samples, namely the global point-based samples and the 170 

global patch-based samples. To collect representative and sufficient samples efficiently, we divided the 171 

world’s terrestrial area into 4° × 4° geographical grids. A total of 1,507 grids are distributed evenly across 172 

the globe, shown as Fig. 1. 173 
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 174 

Figure 1. Spatial distribution of the 4° × 4° geographical grids over the world. Six black rectangle tiles with 175 

size of 0.25° were used for visual comparation between our product and other three products. 176 

In order to derive the global point-based samples, we adopted stratified random sampling in each 177 

grid. First, the FROM_GLC product was used to calculate the area ratio of each LC class. Then, points 178 

were randomly extracted with the LC class label taken from the FROM_GLC according to the area ratio 179 

and spatial location of each class. Finally, more than 20,000 global samples were collected. Through the 180 

sampling method mentioned above, the global point-based samples were even across the globe and 181 

sufficient for each LC class in each grid. Therefore, more than 50 points could be easily derived for LC 182 

classes with a small area ratio in the 4° × 4° grid. Since the FROM_GLC shows low accuracy for some 183 

LC classes, especially for cropland and forest (Gao et al., 2020; Liu et al., 2021b; Zhang et al., 2021; 184 

Zhang et al., 2022), there were inevitably errors in the selected global samples. To guarantee that the 185 

samples are accurate, all the points were checked visually according to Google Earth high-resolution 186 

images and rectified if they were wrongly labeled. The whole sample set was randomly split into two 187 

subsets: 80% of the global samples were used to assess the accuracy of each GLC product for various 188 

LC classes at the global scale and in each grid. The remaining 20% were used for the validation of the 189 

GLC-2015 map and data inter-comparison between different GLC products. Figure 2 presents the 190 

distribution of the whole global point-based samples and the subset for accuracy assessment and data 191 

inter-comparison. 192 
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 193 

Figure 2. Spatial distribution of (a) the global point-based samples, (b) the subset of the global point-based 194 

samples for accuracy assessment and data inter-comparison, the proportions of each LC class are shown in 195 

the pie chart. 196 

To verify the consistency between the GLC-2015 and the actual pattern of the landscape at the local 197 

scale, we also established the global patch-based samples. First, we randomly selected 93 grids of 4° × 198 

4° from a total of 1,507 grids worldwide. Secondly, each selected grid was divided into 5 km × 5 km 199 

blocks, and we randomly collected one to five blocks from each grid. In total, there were 144 blocks 200 

selected as the global patch-based samples, as displayed in Fig. 3. Finally, for each block in the patch-201 

based samples, we used ArcGIS 10.5 software to derive polygons (patches) of various sizes which 202 

captured the real landscape on the Sentinel-2 images. Meanwhile, each polygon was manually labeled 203 

with a LC class. An example of producing a patch-based sample is shown in Fig. 4. 204 
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 205 

Figure 3. Spatial distribution of the global patch-based samples.  206 

 207 

Figure 4. An example of the production of global patch-based samples based on manual interpretation. The 208 

results after vectorization of a Sentinel-2 image are shown as (a) and the corresponding patch-based sample 209 

is shown as (b). 210 

3. Methods 211 

In this study, we proposed a multi-source product fusion method to produce the GLC-2015 map. The 212 

procedure mainly comprised the fusion based on the Dempster-Shafer theory of evidence (DSET), 213 

accuracy assessment and data inter-comparison (Fig. 5). The basic of this study is the fusion of multi-214 

source GLC products based on DSET. The fusion method was performed at the pixel level and it involves 215 

the following three main steps: (1) Construct the basic probability assignment (BPA) function of each 216 

pixel that belongs to each LC class considering the accuracy assessment of different GLC products; (2) 217 
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calculate the combined probability mass for each class per pixel using the Dempster’s rule of combination; 218 

and (3) determine the finally accepted LC class per pixel by a decision rule. Afterwards, pixels with a 219 

determined LC class were integrated to generate a new map. To improve mapping and analysis efficiency, 220 

the entire framework was implemented in all 4° × 4° geographical grids on the GEE platform. 221 

 222 

Figure 5. The framework for generating the GLC-2015 map using a multi-source product fusion approach 223 

based on DEST. 224 

3.1 Definition of the classification system  225 

Due to the applications for different social needs, the existing GLC products were produced with different 226 

classification systems (Table S1). The GlobeLand30 used a simple classification system that only 227 

contained 10 first-level classes. Unlike the GlobeLand30, the FROM_GLC and GLC_FCS30 were 228 

classified with a two-level classification scheme. Through analysis of these systems, we found that the 229 

classification systems are not the same, but they have some agreements. For example, there are both 10 230 

major classes which have the same definition in the GlobeLand30 and FROM_GLC. Additionally, in 231 

contrast to the GlobeLand30 and FROM_GLC, the level-0 classification system of the GLC_FCS30 232 
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lacks tundra. However, in the level-2 detailed LC classes of the GLC_FCS30, Lichens/mosses has little 233 

distinction with tundra. Separately, we selected Lichens/mosses and renamed it as tundra, one of the first-234 

level classes. In this study, we adopted the classification system with 10 LC classes, including cropland, 235 

forest, grassland, shrubland, wetland, water bodies, tundra, impervious surfaces, bare land, and 236 

permanent snow and ice (Chen et al., 2015), as listed in Table 2. With the discrepancy in the classification 237 

system taken into consideration, the 30 level-2 detailed LC classes of GLC_FCS30 were reclassified into 238 

10 major classes according to the classification scheme adopted by our mapping process.  239 

Table 2. Classification system adopted in this paper. 240 

Id LC class Definition 

10 Cropland Land areas used for food production and animal feed. 

20 Forest Land areas dominated by trees with tree canopy cover over 30%. 

30 Grassland Land areas dominated by natural grass with a cover over 10%. 

40 Shrubland Land areas dominated by shrubs with a cover over 30%. 

50 Wetland Land areas dominated by wetland plants and water bodies. 

60 Water bodies Land areas covered with accumulated liquid water. 

70 Tundra Land areas dominated by lichen, moss, hardly perennial herb and shrubs in the polar regions. 

80 Impervious surfaces Land areas covered with artificial structures. 

90 Bare land Land areas with scarce vegetation with a cover lower than 10%. 

100 Permanent snow and ice Land areas dominated by permanent snow, glacier and icecap. 

3.2 A multi-source product fusion for the GLC-2015 mapping 241 

The DSET is an effective method widely applied for the fusion of multi-source data. To generate a new 242 

high-quality GLC map, a multi-source product fusion method using DSET was proposed. In the 243 

remainder of the section 3.2, We introduced the overview on the theory and presented the application of 244 

DSET in our mapping process. 245 

3.2.1 Dempster-Shafer theory of evidence 246 

The DSET is developed by Dempster and Shafer, which is an extension of Bayesian probability theory. 247 

This theory treats information from different data sources as independent evidence and integrated these 248 

evidences with no requirements regarding the prior knowledge. In the fusion, we assume a classification 249 
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process in which all the input data are to be classified into mutually exclusive classes. Let the set Ω of 250 

these classes be a frame of discrimination. 2Ω is the power set of Ω that includes all the classes and 251 

their possible unions. We defined the function m：2Ω → [0,1] as the basic probability assignment (BPA) 252 

function if and only if it satisfies m(𝛷) = 0 and ∑ m(A) = 1A⊆2Ω  with Ø denotes an empty set. For 253 

each class A ⊆ 2Ω, m(A) is called the basic probability mass which can be computed from the BPA 254 

function and represents the degree of support for class A or confidence in class A. 255 

The purpose of fusion is to evaluate and integrate information from multiple sources. In the DSET, 256 

these multi-source data are regarded as different evidence and provide different assessments. To generate 257 

all the evidences, Dempster-Shafer theory of evidence offers a rule. Suppose 𝑚𝑖(𝐵𝑗)  is the basic 258 

probability mass computed from the BPA function for each input data 𝑖 with 1 ≤ i ≤ n for all classes 259 

𝐵𝑗 ∈ 2𝛺. Dempster’s rule of combination is provided to calculate a combined probability mass from 260 

different evidences. The fusion rules are given in equation (1) and (2). 261 

𝑚(𝐶) =
∑ ∏ 𝑚𝑖(𝐵𝑗)1≤𝑖≤𝑛𝐵1∩𝐵2⋯∩𝐵𝑛=𝐶

1 − 𝑘
(1) 262 

 263 

𝑘 = ∑ ∏ 𝑚𝑖(𝐵𝑗)
1≤𝑖≤𝑛𝐵1∩𝐵2⋯∩𝐵𝑛=Ø

(2) 264 

Where 𝑘 represents the basic probability mass associated with conflicts among the sources of evidence. 265 

𝐶 is the intersection of all classes 𝐵𝑗  and carries the joint information from all the input data. After the 266 

combination, we took a decision rule to decide the class we finally accept. There are several ways to 267 

decide the final class by simply choosing the class with the maximum belief, plausibility, support, or 268 

commonality. 269 

3.2.2 Mapping based on DSET 270 

Here, we presented our implementation for the GLC-2015 mapping in the framework of DSET. All the 271 

multiple-class and single-class GLC products described in Sect. 2 were selected as input maps to be 272 

combined. In the integration of multi-source GLC products, since all the LC classes in our classification 273 

system are known, the frame of discrimination was defined to be our classification system: 274 

Ω = {
cropland, forest,  grassland,  shrubland,  wetland,  water bodies,  
tundra, impervious surfaces,  bare land, permanent snow and ice

} (3) 275 

The definition of BPA function is the critical point in applying DSET (Rottensteiner et al., 2005). 276 

In the fusion, we wanted to achieve a per-pixel classification into one of ten LC classes: cropland, forest, 277 
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grassland, shrubland, wetland, water bodies, tundra, impervious surfaces, bare land, and permanent snow 278 

and ice. For each single-class or multiple-class GLC product, the accuracy for each LC class was 279 

calculated and used as evidential probability to construct the BPA. Here, we defined the BPA function as 280 

follow: 281 

𝑚𝑖(𝑇𝑗) =
𝑃𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)

+ 𝑈𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)

2
× 75% +

𝑃𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)
+ 𝑈𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)

2
× 25% (4) 282 

Where 𝑚𝑖(𝑇𝑗)  represents the BPA function of evidence source 𝑖  for the LC class 𝑇𝑗  ; 𝑃𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)
 , 283 

𝑈𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)
 denote producer's accuracy and user's accuracy of evidence source 𝑖 for the LC class 𝑇𝑗 for 284 

each  4° × 4° geographical grid, respectively; 𝑃𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)
, 𝑈𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)

 denote producer's accuracy and 285 

user's accuracy of evidence source 𝑖 for LC class 𝑇𝑗 at the global scale. 286 

 To estimate the exact values of 𝑃𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)
, 𝑈𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)

, 𝑃𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)
 and 𝑈𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)

, we used 80% 287 

of the global point-based samples more than 160,000 points derived in Sect 2.3. As soon as we obtained 288 

the measurements of 𝑚𝑖(𝑇𝑗) , the combined probability masses 𝑚(𝑇𝑗)  were evaluated based on 289 

Dempster’s rule of combination for each pixel classified as the LC class 𝑇𝑗 by fusing BPA values of all 290 

the evidence sources: 291 

  292 

𝑚(𝑇𝑗) =
1

1 − 𝑘
∑ 𝑚𝑖(𝑇𝑗)

𝑇1𝑗∩𝑇2𝑗⋯∩𝑇𝑛𝑗=𝑇𝑗

(5) 293 

 294 

𝑘 = ∑ 𝑚𝑖(𝑇𝑗)

𝑇1𝑗∩𝑇2𝑗⋯∩𝑇𝑛𝑗=Ø

(6)
 295 

Where 𝑘 represents the basic probability mass associated with conflict; 𝑚𝑖(𝑇𝑗) represents the basic 296 

probability mass of a certain pixel belonging to the LC class 𝑇𝑗 from different GLC products. 297 

Additionally, a belief measure (Bel) was given to measure the degree of credibility that a pixel 298 

labeled as the finally accepted LC class when combining all the available evidences. The belief measure 299 

was determined by 300 

𝐵𝑒𝑙(𝑇𝑗) = ∑ 𝑚𝑖(𝑇𝑗)

𝑇𝑖𝑗⊆𝑇𝑗

(7)
 301 

To determine the finally accepted LC class per pixel, we took the rule of maximum combined 302 

probability mass as our decision rule and the LC class with the maximum combined probability mass is 303 

assigned to the 30 m pixel. Pixels labeled with the LC class were integrated to generate the GLC-2015 304 
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product.  305 

3.3 Accuracy assessment  306 

To assess the accuracy of the GLC-2015 map, we utilized two validation methods: validation with the 307 

global point-based samples and the global patch-based samples. Since the global point-based sample set 308 

is distributed evenly across the world and its sample size for each LC class is relatively sufficient and 309 

balanced, even for the rare classes, it can provide a representative and credible basis for estimation of the 310 

GLC-2015 map globally. Furthermore, we used the global patch-based samples to conduct accuracy 311 

assessment from the local landscape scale. Although the global patch-based sample set provide an 312 

inadequate sample size for rare LC classes, it can take advantage of the spatial context information and 313 

efficiently reflect the actual pattern of the landscape. 314 

The error matric was produced to evaluate and analyze the GLC-2015 mapping result. The error 315 

matrix is composed of entry 𝐴𝑖𝑗, which represents the number of samples with reference LC class 𝑗 316 

being classified as LC class 𝑖.The overall accuracy (OA), kappa coefficient, producer's accuracy (PA), 317 

and user's accuracy (UA) were generated from error matric to describe the quality of the GLC-2015 map. 318 

They are defined as follows: 319 

𝑂𝐴 =
∑ 𝐴𝑖𝑖𝑖

∑ ∑ 𝐴𝑖𝑗𝑗𝑖

(8) 320 

𝑃𝑜 = 𝑂𝐴 (9) 321 

𝑃𝑒 = ∑
∑ 𝐴𝑖𝑘𝑖

∑ ∑ 𝐴𝑖𝑗𝑗𝑖
𝑘

×
∑ 𝐴𝑘𝑗𝑗

∑ ∑ 𝐴𝑖𝑗𝑗𝑖

(10) 322 

𝑘𝑎𝑝𝑝𝑎 =
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒

(11) 323 

𝑃𝐴𝑖 =
𝐴𝑖𝑖

∑ 𝐴𝑘𝑖𝑘

(12) 324 

𝑈𝐴𝑖 =
𝐴𝑖𝑖

∑ 𝐴𝑖𝑘𝑘

(13) 325 

Where 𝑈𝐴𝑖 and 𝑃𝐴𝑖  represent UA and PA of the LC 𝑖, respectively; 𝑃𝑜 is the agreement between the 326 

reference and the classified data; 𝑃𝑒 is the hypothetical probability of chance agreement. 327 

3.4 Data inter-comparison 328 

To better reflect the quality of the GLC-2015 map, we intercompared the GLC-2015 map with the 329 

GlobeLand30, FROM_GLC and GLC_FCS30. In the accuracy assessment of different products, two 330 

https://doi.org/10.5194/essd-2022-142
Preprint. Discussion started: 3 August 2022
c© Author(s) 2022. CC BY 4.0 License.



16 

 

global validation sets described earlier were employed. 331 

To figure out whether the GLC-2015 map promotes accuracy in the areas with high classification 332 

difficulty and how much the improvement is compared to the other products, we conducted the spatial 333 

consistency analysis between the GlobeLand30, FROM_GLC, and GLC_FCS30 and compared the 334 

mapping performance of the GLC-2015 with others in the areas of low inconsistency, moderate 335 

inconsistency, and high inconsistency. To visually present the spatial consistency between three existing 336 

GLC maps, we employed the spatial superposition method to obtain the spatial correspondence pixel-337 

by-pixel between different maps. Based on the times of all the GLC products agreed for the same LC 338 

class, the degree of consistency for a pixel was identified as three levels with the agreement value equal 339 

to 3, 2, or 1. The areas of low inconsistency were regarded as pixels that classified as the same LC class 340 

in all three GLC maps (labeled as 3). The moderate inconsistency areas were regarded as pixels that were 341 

consistent in only two GLC maps (labeled as 2). The high inconsistency areas were regarded as pixels 342 

that were totally inconsistent in these three GLC maps (labeled as 1). For a visual comparison, all these 343 

GLC maps were aggregated to 0.05°, in which the LC class with the largest proportion determined the 344 

class in each 0.05° grid. 345 

4. Results and discussion 346 

4.1 Mapping result of the GLC-2015 map 347 

Using a multi-source product fusion method based on the DSET, we generated an improved 30m global 348 

land cover map in 2015 (GLC-2015). Figure 6 illustrates the GLC-2015 map. The GLC-2015 map can 349 

accurately describe the spatial distribution of various LC classes.  For example, cropland areas are mostly 350 

located in Central America, the region from the Hungarian plain to the Siberian plain, the eastern and 351 

southern parts of China, and the most of India. In addition, forest, which is one of the easily 352 

distinguishable classes from the map, is concentrated in the eastern part of North America, the Amazon 353 

basin of South America, the northern part of Eurasia and the equatorial region of Africa.   354 
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 355 

Figure 6. Global land cover map in 2015 with 30 m resolution (GLC-2015). 356 

4.2 Accuracy assessment of the GLC-2015 map 357 

4.2.1 Accuracy assessment with the global point-based samples 358 

The accuracy of the GLC-2015 map was first tested via the global point-based samples, and the results 359 

of assessment are listed in Table 3. The GLC-2015 map achieved an OA of 76.0% and kappa coefficient 360 

of 0.715 at the global scale, demonstrating the good performance of our map. Among all the LC classes, 361 

permanent snow and ice possessed the best mapping performance, with PA and UA achieving 88.1% and 362 

93.2%. The accuracy of water bodies was also high, where PA and UA exceeded 80%. The producer's 363 

accuracy of forest reached 91.7%, while the user's accuracy of that was 78.3%. Grassland, shrubland, 364 

and wetland had relatively low accuracy, with PA below 70%. Among them, grassland and shrubland 365 

were mainly confused with forest, which might be because these classes are both vegetation, thus causing 366 

difficulty in recognition by spectral information. Due to the complex spectral characteristics, wetland is 367 

often mixed with vegetation and water bodies (Ludwig et al., 2019). As shown in the confusion matrix, 368 

49.53% of wetland was misclassified as vegetation and water bodies.   369 
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Table 3. The error metric for the GLC-2015 map based on the global point-based samples. 370 

 Cropland Forest Grassland Shrubland Wetland Water bodies Tundra 

Impervious 

surfaces 

Bare land 

Permanent 

snow and ice 

Total PA 

Cropland 3449 465 418 73 21 53 4 73 96 0 4652 0.741 

Forest 173 8888 207 162 92 18 46 46 56 4 9692 0.917 

Grassland 65 370 1632 86 29 11 46 41 189 10 2479 0.658 

Shrubland 183 539 846 1305 43 32 76 99 514 4 3641 0.358 

Wetland 23 587 103 25 659 102 26 14 110 4 1653 0.399 

Water bodies 29 107 20 1 86 1937 18 12 51 3 2264 0.856 

Tundra 1 269 123 7 0 19 1417 2 268 19 2125 0.667 

Impervious surfaces 79 47 13 0 2 15 1 1284 56 1 1498 0.857 

Bare land 35 71 330 54 43 104 57 74 4855 40 5663 0.857 

Permanent snow and ice 0 11 16 0 4 19 13 1 93 1163 1320 0.881 

Total 4073 113543 3708 1713 979 2310 1704 1646 6288 1248 34987  

UA 0.854 0.783 0.440 0.762 0.673 0.839 0.832 0.780 0.772 0.932   

OA 0.760 

Kappa 0.715 

The regional accuracies are presented in Fig. 7. The OA of the GLC-2015 ranged from 66.1% to 371 

92.7%, and kappa coefficient from 0.552 to 0.813. From the perspective of OA, Water regions lead, 372 

followed by Tropical desert, Temperate continental forest, and Polar. These are areas with homogeneous 373 

land cover and have low difficulty in mapping. Tropical desert also achieved high OA, but its kappa 374 

coefficient was low. Boreal tundra woodland, Tropical dry forest, Tropical shrubland, and Subtropical 375 

desert are the regions with low OA. The first one may be related to the high latitudes. The followed two 376 

may be because they belong to areas with complicated and mixed LC classes which is not easily classified. 377 

The last one may be the consequence of sparse vegetation in desert areas. For the kappa coefficient, the 378 

ranking was similar to those for OA, expect for that Tropical desert achieved a low kappa coefficient.  379 
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 380 

Figure 7. Regional accuracy of the GLC-2015 map according to ecoregions. (a)overall accuracy, (b) kappa 381 

coefficient. The ecoregion boundaries are obtained from the Food and Agriculture Organization of the United 382 

Nations (FAO). 383 

Figure 8 shows the accuracies of the GLC-2015 map in different ecoregions, where Fig. 8a shows 384 

the results of overall accuracy and Fig. 8b of the kappa coefficient. Overall, the mean OA and kappa 385 

coefficient were over 60% and 0.50, respectively. However, the OA ranged from 18.8% to 100% and 386 

kappa coefficient from 0.15 to 1.00, indicating that the accuracies of mapping fluctuated obviously 387 

among different areas. Temperate continental forest and Water regions are the areas with high and stable 388 

accuracies. Subtropical desert is the area where accuracies had relatively large fluctuation. 389 

https://doi.org/10.5194/essd-2022-142
Preprint. Discussion started: 3 August 2022
c© Author(s) 2022. CC BY 4.0 License.



20 

 

 390 

Figure 8. The box-plot of the accuracy for twenty-one ecoregion zones (a) overall accuracy, (b)kappa 391 

coefficient. Ecoregion abbreviation and corresponding ecoregion is described in Table S2. 392 

4.2.2 Accuracy assessment with the global patch-based samples 393 

The accuracy assessment of the GLC-2015 map was also conducted with the global patch-based samples. 394 

Table 4 summarizes the results for accuracy assessment of each LC class in the GLC-2015 map. From 395 

the assessment results, it can be found that the OA of the GLC-2015 map reached 83.8%, which was 396 

higher than 76.0% tested with the global point-based samples. The kappa coefficient of the GLC-2015 397 

map was 0.548, which was 0.167 lower than the result calculated with the global point-based samples. 398 

In both accuracy assessment results based on two different validation data sets, water bodies, forest, and 399 

permanent snow and ice were validated to have high accuracy, and grassland, shrubland, and wetland 400 

were validated to have low accuracy. Nevertheless, the ranking of accuracy for each LC class had a slight 401 

difference. For example, in assessment based on the global point-based samples, impervious surfaces 402 

and permanent snow and ice ranked higher than that based on the global patch-based samples. This may 403 

be because a LC map can easily show where one LC class is distributed but hardly describe its actual 404 

shape. In addition to the accuracy assessment on a pixel scale, validation on a patch scale is equally 405 

important because it can reflect the shape consistency between the GLC-2015 map and the actual 406 

landscape, even if the size of global patch-based samples is relatively small. Overall, no matter from the 407 

respective of the global point-based samples or the global patch-based samples, the mapping accuracies 408 

of the GLC-2015 map are satisfactory. 409 
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Table 4. Mapping accuracy via global patch-based samples for the GLC-2015 map 410 

 Cropland Forest Grassland shrubland Wetland Water bodies Tundra Impervious surfaces Bare land Permanent snow and ice 

PA 0.862 0.899 0.622 0.565 0.234 0.944 0.683 0.740 0.747 0.820 

UA 0.918 0.811 0.633 0.673 0.647 0.916 0.881 0.719 0.604 0.750 

OA 0.838 

Kappa 0.548 

4.3 Inter-comparison with other GLC products 411 

4.3.1 Inter-comparison based on the global point-based samples 412 

Based on the global point-based samples, the inter-comparison of the GLC-2015 map with the 413 

GlobeLand30, FROM_GLC, and GLC_FCS30 were conducted. Since the three products used different 414 

classification systems, LC classes were transformed to the classification system we adopted in this paper 415 

to achieve consistent accuracy assessment. The accuracy assessment results for all GLC maps are listed 416 

in Table 5. It can be found that the GLC-2015 map achieved the highest OA of 76.0% compared with 417 

GlobeLand30 of 63.5%, FROM_GLC of 61.3%, and GLC_FCS30 of 63.5%, respectively. The accuracy 418 

gap between the GLC-2015 map and other existing ones was 12.5%-14.7%. Also, the GLC-2015 map 419 

possessed a better kappa coefficient than other products. For each LC class, the GLC-2015 map 420 

outperformed the other three maps in terms of PA in forest, water bodies, impervious surfaces, bare land, 421 

and permanent snow and ice. For cropland, grassland, shrub, wetland, and tundra, the GLC-2015 map 422 

also exhibited better performance for UA than the GlobeLand30, FROM_GLC and GLC_FCS30. Overall, 423 

for the PA or UA, the GLC-2015 map ranked first or second in nearly all LC classes, which demonstrated 424 

that the GLC-2015 map had smaller omission and commission errors against the other three products.   425 
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Table 5. Mapping accuracy of the GLC products with the global point-based samples. 426 

  Cropland Forest Grassland Shrubland Wetland Water bodies Tundra 

Impervious 

surfaces 

Bare land 

Permanent 

snow and ice 

OA 

(Kappa coefficient) 

GLC-2015 

PA 0.741 0.917 0.658 0.358 0.399 0.856 0.667 0.857 0.857 0.881 0.760 

(0.715) UA 0.854 0.783 0.440 0.762 0.673 0.839 0.832 0.780 0.772 0.932 

Globeland30 

PA 0.749 0.712 0.651 0.208 0.508 0.681 0.770 0.681 0.591 0.806 0.635 

(0.576) UA 0.770 0.805 0.220 0.386 0.521 0.870 0.575 0.790 0.864 0.907 

FROM_GLC 

PA 0.385 0.694 0.705 0.389 0.347 0.592 0.705 0.751 0.723 0.875 0.613 

(0.554) UA 0.647 0.862 0.269 0.418 0.282 0.753 0.687 0.646 0.774 0.763 

GLC_FCS30 

PA 0.744 0.764 0.389 0.354 0.439 0.600 0.227 0.777 0.783 0.712 0.635 

(0.568) UA 0.596 0.798 0.314 0.385 0.471 0.804 0.688 0.758 0.637 0.948 

Further quantitative accuracy assessments of different GLC products were performed in 4° × 4° 427 

grids using the global point-based samples, and box plots were produced for each product for all grids 428 

within different ecoregions, as shown in Fig. 9. It can be found that the GLC-2015 map outperformed 429 

other existing products with the best OA and kappa coefficient across different ecoregions. Also, the 430 

mean overall accuracy of the GLC-2015 map exceeded 65.0% in all ecoregions, showing the high quality 431 

of our mapping result. It is worth noting that the GLC-2015 map showed shorter boxes except in 432 

Subtropical mountain systems, Subtropical desert, Subtropical dry forest, Tropical shrubland, and 433 

Temperate desert, which means the GLC-2015 map had relatively small fluctuation than other ones. In 434 

Tropical dry forest, Tropical shrubland, Subtropical desert, and Boreal tundra woodland, the OA and 435 

kappa coefficient of the four products were relatively low. However, the GLC-2015 map exceeded the 436 

highest of others by 3.0%-12.9% and greatly improved the mean OA to at least 65.5% in these regions. 437 

 438 
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Figure 9. The box-plot of the accuracy for twenty-one ecoregion zones. (a) overall accuracy, (b)kappa 439 

coefficient. Ecoregion abbreviation and corresponding ecoregion is described in Table S2. 440 

4.3.2 Inter-comparison based on the global patch-based samples 441 

Although the global point-based samples are adequate and even across the globe, the distribution of 442 

points in each 4° × 4° geographical grid is too sparse to reflect the actual spatial pattern of the landscape. 443 

Focusing on LC pattern at the local scale, we also used the global patch-based samples which can provide 444 

spatial context information to conduct the accuracy assessment of the GLC-2015 map and compare 445 

difference GLC products. Table 6 lists the accuracies of the GLC-2015 map and the other three GLC 446 

products. Obviously, the GLC-2015 map achieved the best OA and kappa coefficient among these four 447 

GLC maps. The accuracy gap between the GLC-2015 product and others was 5.6%-20.7%, which 448 

presented a more significant variation compared with the result based on the global point-based samples. 449 

In terms of PA and UA, the GLC-2015 map was higher than the other three ones in most LC classes, such 450 

as forest, cropland, shrubland, and water bodies. Specifically, all the products had low accuracy for 451 

grassland, shrubland, and wetland, similar to that in the accuracy assessment based on the global point-452 

based samples. It is evident that the FROM_GLC had the worst performance in grassland, shrubland, 453 

and wetland (as low as 3.2% for UA), implying that the classification method of FROM_GLC is not 454 

reliable for these three LC classes. 455 

Table 6. Mapping accuracy of the GLC-2015 map with the global patch-based samples 456 

  Cropland Forest Grassland Shrubland Wetland 

Water 

bodies 

Tundra 

Impervious 

surfaces 

Bare 

land 

Permanent 

snow and ice 

OA 

(Kappa coefficient) 

GLC-2015 

PA 0.862 0.899 0.622 0.565 0.234 0.944 0.683 0.740 0.747 0.820 0.838 

(0.548) UA 0.918 0.811 0.633 0.673 0.647 0.916 0.881 0.719 0.604 0.750 

Globeland30 

PA 0.896 0.703 0.768 0.555 0.456 0.837 0.723 0.638 0.498 0.831 0.782 

(0.437) UA 0.892 0.906 0.453 0.530 0.160 0.891 0.489 0.701 0.826 0.706 

FROM_GLC 

PA 0.483 0.714 0.633 0.221 0.032 0.912 0.761 0.504 0.672 0.501 0.631 

(0.325) UA 0.873 0.804 0.189 0.119 0.187 0.883 0.714 0.804 0.482 0.703 

GLC_FCS30 

PA 0.865 0.780 0.395 0.563 0.364 0.878 0.058 0.643 0.644 0.742 0.742 

(0.428) UA 0.860 0.831 0.510 0.332 0.135 0.941 0.575 0.639 0.459 0.752 

Accuracy assessment was calculated in each patch-based sample, and box plots were produced for 457 
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each GLC product at the continental scale, as shown in Fig. 10. The GLC-2015 map showed a robust 458 

performance in each continent, with the highest accuracy among all the maps. Also, in all continents, the 459 

GLC-2015 map had the shortest boxes in terms of OA, which denoted that it had a more minor variation 460 

in accuracy at the continental scale. Among four products, the GLC_FCS30 and Globeland30 achieved 461 

similar accuracies in most regions. Obviously, the FROM_GLC gave the worst performance across 462 

different continents, especially in Oceania, where the OA for the FROM_GLC was below 40.0%, namely 463 

most of the pixels in Oceania were incorrectly classified. We further compared mapping accuracies for 464 

each LC class in different continents (Fig. S1-S2). Since tundra and permanent snow and ice are rare and 465 

only existent in certain regions, they were not included in the comparison. As for PA across different 466 

continents, the GLC-2015 map outperformed other maps in cropland, forest, water bodies, impervious 467 

surfaces, and bare land. As for UA across different continents, the GLC-2015 map outperformed other 468 

maps in cropland, grassland, shrubland, wetland, impervious surfaces, and bare land, and achieved 469 

similar accuracies with the GLC_FCS30 and Globeland30 in forest. Overall, the GLC-2015 map 470 

outperformed others regarding mapping accuracy at continental scale. In addition, all GLC products 471 

showed significant variation and low mean accuracy in grassland, shrubland, and wetland over most 472 

continents, which indicated that the mapping results for these three classes were not reliable enough. 473 

 474 

Figure 10. The box-plot of the accuracy for different continents, (a) overall accuracy, (b)kappa coefficient. 475 

Furthermore, to compare the OA of the GLC-2015 map with other GLC products, scatter plots were 476 

used to describe the relationship between the overall accuracy of the GLC-2015 map and one other 477 
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product in each patch-based sample, as displayed in Fig. 11. Most of the points were above the 1:1 line, 478 

implying that the GLC-2015 map surpassed other GLC products in terms of OA. The distribution of 479 

points was more dispersed from the 1:1 line in the plot of the GLC-2015 map against FROM_GLC 480 

compared to other plots. It indicated that these two products had a more significant difference, which 481 

was also proved in Table 6. 482 

 483 

Figure 11. Scatter plots between the GLC-2015 map and other products obtained using the global patch-based 484 

samples. 485 

4.3.3 Visual inter-comparison at the local scale 486 

Except for quantitative accuracy assessment, we selected six typical geographical tiles covering six 487 

continents and different landscape environments to further present the mapping performance of the GLC-488 

2015 map, Globeland30, FROM_GLC, and GLC_FCS30, as shown in Fig. 12. Overall, from a local 489 

point of view, the GLC-2015 map tended to be more diverse in LC classes and had better identification 490 

performance in various classes. In flattened cropland areas (Fig. 12a and Fig. 12b), the GLC-2015 map 491 

revealed diverse LC classes and accurately distinguished impervious surfaces; however, the Globeland30 492 

exaggerated the extent of impervious surfaces, and the remaining products failed to delineate impervious 493 

surfaces with small size. In addition, the FROM_GLC misclassified some cropland pixels as grassland 494 

(Fig. 12a) and had an abnormal “stamp” (Fig.12b). As for mountain areas (Fig. 12c and Fig. 12d), the 495 

GLC-2015 map uncovered the spatial pattern of natural and planted forest, cropland, and grassland. There 496 

were large confusions between cropland and grassland in the results of the FROM_GLC and 497 

GLC_FCS30, and some impervious surfaces and cropland areas were wrongly labeled as bare land by 498 

the FROM_GLC. The areas (Fig. 12c), which were classified as forest, were misidentified as cropland 499 

and grassland in three other products. For the rainforest areas where a large number of trees were 500 

reclaimed for cropland (Fig. 12e), the GLC-2015 map, Globeland30, and GLC_FCS30 had similarities 501 

in cropland areas; but the FROM_GLC recognized some reclaimed areas as grassland. Additionally, the 502 
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GLC-2015 map accurately presented the spatial distribution of impervious surfaces while other products 503 

had omission or commission errors. In the cropland-dominated areas (Fig. 12f), the GLC-2015 map and 504 

Globeland30 showed a higher agreement, and both of them mapped the undulating areas as grassland. 505 

Unlike the aforementioned two products, the FROM_GLC misclassified large tracts of croplands as 506 

grasslands, and the GLC_FCS30 did not capture the grassland in undulating areas. Figure 12 also shows 507 

the belief measure of the fused result in different geographical tiles. Although it does not directly evaluate 508 

the mapping accuracy, it serves as a degree of support for the hypothesis of an accepted LC class being 509 

true, it can still reflect the quality of the GLC-2015 map. Overall, Bel of the GLC-2015 map exceeded 510 

80% in most areas of each tile, demonstrating the credibility and high quality of our mapping result. 511 

 512 

Figure 12. Visual comparison between the GLC-2015 map and three other products for different continents. 513 

(a) to (f) are examples for Europe, Asia, Africa, North America, South America, and Oceania, respectively.  514 
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4.4 Improvement of the GLC-2015 map 515 

The spatial distribution of consistency between three GLC products at the global scale is illustrated in 516 

Fig. 13. From the consistency map, we found that areas of low inconsistency mainly corresponded to 517 

homogeneous regions with simple LC classes. For example, the northern part of Africa was mainly 518 

classified as bare land, the northern part of South America was mainly classified as forest, and the 519 

Greenland was classified as permanent snow and ice. On the contrary, areas of high inconsistency were 520 

located in regions with complicated LC classes, especially in mixed vegetation regions or sparse 521 

vegetation regions, such as northern Asia, South Africa, Sahel region, Australia, northern and southern 522 

North America, and eastern and southern South America. 523 

 524 

Figure 13. Distribution of consistency between the Globeland30, FROM_GLC, and GLC_FCS30.The blue 525 

rectangles are high-inconsistency grids that the area of pixels with value equal to 1 account for more than 20% 526 

of the total area. 527 

Based on the global point-based samples, we assessed the accuracies of the GLC-2015 map, 528 

Globeland30, FROM_GLC, and GLC_FCS30, in the aforementioned areas of low inconsistency, 529 

moderate inconsistency, and high inconsistency, as shown in Table 7. Overall, the GLC-2015 map had 530 

the highest accuracies against the other three ones in three areas. For each product, areas of low 531 

inconsistency obtained the highest accuracies, followed by areas of moderate inconsistency and then high 532 

inconsistency, which demonstrated that inconsistency of the existing products could indicate the quality 533 

of maps. In areas of low inconsistency, the overall accuracy gap between the GLC-2015 map and 534 

previous ones was as small as 0.2%-1%. However, for areas of moderate and high inconsistency, the 535 

comparison accuracy gap expanded to 17.6%-23.2% and 21.0%-25.2%, respectively. It proved the 536 

overwhelming superiority of the GLC-2015 map over the other three products in the areas of high 537 
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identification difficulty.  538 

Table 7. Accuracy assessments of the GLC products in three areas. 539 

 GLC-2015 Globeland30 FROM_GLC GLC_FCS30 

OA Kappa OA Kappa OA Kappa OA Kappa 

Areas of low inconsistency 0.939 0.922 0.931 0.912 0.929 0.909 0.937 0.919 

Areas of moderate inconsistency 0.717 0.671 0.534 0.467 0.485 0.416 0.541 0.464 

Areas of high inconsistency 0.509 0.430 0.285 0.196 0.299 0.212 0.257 0.144 

We further provided a comparative analysis of three previous GLC products and the GLC-2015 map 540 

in areas of high inconsistency. We calculated the area of pixels with a value equal to 1 in 4° × 4° grids. 541 

The grids that the area of pixels with a value equal to 1 account for more than 20% of the total area was 542 

selected as grids of high inconsistency. Finally, a total number of 147 grids were selected (Fig. 13). To 543 

compare the accuracy of the GLC-2015 map and other ones, we utilized scatter plots to represent the 544 

relationship between the overall accuracy of one previous product and the GLC-2015 map in each grid 545 

of high inconsistency based on the global point-based samples (Fig. 14). Most of the points were above 546 

the 1:1line, namely the values of y-axes corresponding to those points were larger than the values of x-547 

axes, which demonstrated that the GLC-2015 map performed better than other GLC products in most 548 

grids of high inconsistency. It can be found that the fitting line in each scatter plot had the intercept 549 

exceeding 0.39, the slope less than 0.50, and the R2 less than 0.30, showing that the GLC-2015 map had 550 

a large difference with other ones. 551 

 552 

Figure 14. Overall accuracy relationship between the GLC-2015 map and other products in grids of high 553 

inconsistency. 554 

To intuitively compare the mapping result of the GLC-2015 map and three existing ones in areas of 555 

high inconsistency, we focused on visual inspection in various areas based on four 5 km×5km patch-556 
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based samples and conducted accuracy statistics, as shown in Fig 15. In the detailed display, it is apparent 557 

that three previous products had a large difference in four areas. As can be seen from the four visual cases, 558 

the typical confusions between LC classes in areas of high inconsistency were as follows: (1) shrubland 559 

was easily misclassified as forest and grassland; (2) cropland, grassland, and shrubland were heavily 560 

confused with each other; (3) bare land was likely to be mixed with shrubland and grassland. Except for 561 

Fig.14d, the GLC-2015 map surpassed other products in the local accuracy assessment. In Western 562 

Australian mulga shrublands (Fig. 15a), the GLC-2015 map and GLC_FCS30 showed similar spatial 563 

distribution and shape of bare land and forest, which was consistent with the real landscape. While the 564 

Globeland30 wrongly classified bare land as grassland and the FROM_GLC under-classified bare land. 565 

As for Zambezian and mopane woodlands (Fig. 15b), the GLC-2015 map performed best with OA 566 

reaching 82.6%, followed by the FROM_GLC. In contrast, other products failed to distinguish shrubland 567 

from forest. In Western short grasslands (Fig. 15c), the GLC-2015 map had a similar mapping result with 568 

the ground truth, with only slight differences in detail. In the results of the Globeland30 and GLC_FCS30, 569 

grassland was poorly classified. When it comes to Guinean forest-savanna mosaic (Fig. 15d), the GLC-570 

2015 map and Globeland30 showed high spatial consistency, and both had accurate classification profile 571 

for cropland, forest, and impervious surfaces, while other products misidentified cropland as other LC 572 

classes. 573 
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 574 

Figure 15. Visual comparison between the GLC-2015 map and three other products based on 5km × 5km 575 

patch-based samples and Google Earth images for four areas of high inconsistency (a-d). The OA for each 576 

product was calculated by the corresponding patch-based sample. 577 

5. Data availability 578 

The improved global land cover map in 2015 with 30 m resolution is available at 579 

https://doi.org/10.6084/m9.figshare.19752856.v1 (Li et al., 2022). The GLC-2015 product is organized 580 

by a total of 1507 4° × 4° geographical grids in GeoTIFF format across the world’s terrestrial area. Each 581 

image of the GLC-2015 product is named as “GLC-2015_i” (i represents the id of the 4-degree grid).  582 

6. Conclusions 583 

GLC information at fine spatial resolution is vital for the global environment and climate studies which 584 

can capture most human activity. Resulting from the differences in classification scheme, satellite sensor 585 

data, classification algorithms and sampling strategies, the existing GLC products have high 586 

inconsistency in some parts of the world, especially in fragmented areas and transition zones. More 587 

accurate and reliable data with accuracy improved in areas of high mapping inconsistency is very 588 
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desirable. In this study, with the help of the GEE platform, we developed the GLC-2015 map by 589 

integrating multiple existing GLC maps based on the DSET. The GLC-2015 map can significantly 590 

increase the mapping accuracy and possess good recognition performance in various LC classes. 591 

The GLC-2015 map was validated by both the global point-based samples and the global patch-592 

based samples. Accuracy assessments show that the GLC-2015 map achieved an OA of 76.0%, a kappa 593 

coefficient of 0.715 using a total of 34,987 global point-based samples, and an OA of 83.8%, a kappa 594 

coefficient of 0.548 using a total of 144 global patch-based samples. Data inter-comparison indicated 595 

that the GLC-2015 map surpassed other three products both visually and quantitatively, by OA 596 

improvement of 12.5%-14.7% validated with the global point-based samples and 5.6%-20.7% with the 597 

global patch-based samples. Compared to other products, there are fewer misclassifications in the GLC-598 

2015 map for most LC classes, such as forest, cropland, shrubland, and water bodies. Meanwhile, the 599 

GLC-2015 map outperformed others in terms of OA and kappa coefficient across different ecoregions 600 

and different continents. Notably, the GLC-2015 map showed great superiority over others by an 601 

increment of 0.2%-1.0% in overall accuracy for areas of low inconsistency, 17.6%-23.2% for areas of 602 

moderate inconsistency, and 21.0%-25.2% for areas of high inconsistency. Therefore, it can be concluded 603 

that the GLC-2015 map is a robust and reliable map that can significantly improve mapping accuracy 604 

compared to previous GLC products. 605 
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