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Abstract. Global land cover (GLC) information with fine spatial resolution is a fundamental data input 9 

for studies on biogeochemical cycles of the Earth system and global climate change. Although there are 10 

several public GLC products with 30 m resolution, considerable inconsistencies were found among them 11 

especially in fragmented regions and transition zones, which brings great uncertainties to various 12 

application tasks. In this paper, we developed an improved global land cover map in 2015 with 30 m 13 

resolution (GLC-2015) by fusing multiple existing land cover products based on the Dempster-Shafer 14 

theory of evidence (DSET). Firstly, we used more than 160,000 global point-based samples to locally 15 

evaluated the reliability of the input GLC products for each LC class within each 4°×4° geographical 16 

grid for the establishment of the basic probability assignment (BPA) function. Then, the Dempster’s rule 17 

of combination was used for each 30 m pixel to derive the combined probability mass of each possible 18 

land cover class from all the candidate maps. Finally, each pixel was determined with a land cover class 19 

based on a decision rule. Through this fusing process, each pixel is expected to be assigned with the land 20 

cover class that contributes to achieve a higher accuracy. We assessed our product separately with 34,711 21 

global point-based samples and 201 global patch-based samples. Results show that, the GLC-2015 map 22 

achieved the highest mapping performance globally, continentally, and eco-regionally compared with the 23 

existing 30 m GLC maps, with an overall accuracy of 79.5% (83.6%) and a kappa coefficient of 0.757 24 

(0.566) against the point-based (patch-based) validation samples. Additionally, we found that the GLC-25 

2015 map showed substantial outperformance in the areas of inconsistency, with an accuracy 26 
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improvement of 19.3%-28.0% in areas of moderate inconsistency, and 27.5%-29.7% in areas of high 27 

inconsistency. Hopefully, this improved GLC-2015 product can be applied to reduce uncertainties in the 28 

research on global environmental changes, ecosystem service assessments, and hazard damage 29 

evaluations, etc. The GLC-2015 map developed in this study is available at 30 

https://doi.org/10.6084/m9.figshare.22358143.v2 (Li et al., 2022).  31 

1. Introduction 32 

Land cover (LC), influenced by both nature and human activities (Running, 2008; Gong et al., 2013; 33 

Song et al., 2018; Liu et al., 2021a), is a significant component of the Earth system (Yang and Huang, 34 

2021). Global land cover (GLC) products can serve as fundamental data for various studies, such as 35 

climate and environmental changes (Bounoua et al., 2002; Foley et al., 2005; Grimm et al., 2008; Yang 36 

et al., 2013; Schewe et al., 2019), food security (Verburg et al., 2013; Ban et al., 2015), carbon cycling 37 

(Moody and Woodcock, 1994; Defries et al., 2002; Gómez et al., 2016), biodiversity conservation 38 

(Chapin et al., 2000; Giri et al., 2005) and land management (Mayaux et al., 2004; Verburg et al., 2011). 39 

Therefore, there is a pressing need for detailed, accurate, and high-quality GLC product to support global 40 

change research and sustainable development. 41 

In the preliminary stage, LC mapping mainly relied on visual interpretation, which is time-42 

consuming, labor-intensive and difficult to be applied at the global scale (Gong, 2012). In recent decades, 43 

satellite remote sensing data, which can provide information of large area coverage and long-term 44 

monitoring, has been adopted to generate GLC products. With coarse resolution satellite data such as 45 

Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging 46 

Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), and Global Land 47 

Surface Satellite (GLASS), a variety of GLC products have been developed at 5 km to 300 m 48 

resolution(Loveland et al., 2000; Hansen et al., 2000; Bartholomé and Belward, 2005; Friedl et al., 2010; 49 

Defourny et al., 2018; Liu et al., 2020a). Although these GLC products have been widely applied to many 50 

applications, it has been proved that the differences between sensors, classification systems, and 51 

considerably low accuracies in areas prevent harmonization of these products (Herold et al., 2008; 52 

Verburg et al., 2011; Grekousis et al., 2015). Also, these products are far from providing enough fine 53 

spatial details of LC due to their relatively coarse spatial resolution, which does not meet the demand of 54 
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many studies (Giri et al., 2013; Yang et al., 2017). To allow researches which can capture most human 55 

activity, finer-resolution (e.g., 30 m) GLC products are demanded (Giri et al., 2013). 56 

With the free accessibility of high-resolution satellite remote sensing data, GLC mapping at fine 57 

resolution has been successfully conducted. Using Landsat imagery, there has been a milestone 58 

achievement that the two GLC products are generated with fine resolution of 30 m, namely Finer 59 

Resolution Observation and Monitoring of Global Land Cover product (FROM_GLC)(Gong et al., 60 

2013)and Globeland30 (Chen et al., 2015). After that, a 30 m-resolution GLC mapping in 2017 was 61 

achieved using the first all-season sample set (Li et al., 2017). More recently, Zhang et al. (2021) used 62 

both Landsat time series imagery and high-quality training data from the Global Spatial Temporal Spectra 63 

Library (GSPECLib) to produce a 30 m GLC map in 2015 (GLC_FCS30) with a two-level classification 64 

scheme. Several attempts have been made to improve accuracy of 30 m GLC products which are 65 

prevail in the generation of GLC mapping task over the last few years. FROM_GLC was created by 66 

employing four classification algorithms to classify the Landsat images and choosing time series of 67 

MODIS EVI data for training and test. Globeland30 was created by proposing a pixel-object-knowledge-68 

based (POK) method to assure consistency and accuracy. GLC_FCS30 was generated by adopting local 69 

adaptive random forest models with high-quality training samples derived from GSPECLib. The 70 

Globeland30, FROM_GLC, and GLC_FCS30 are excellent and indispensable GLC products which have 71 

contributed much to various researches, such as biodiversity conservation (Wu et al., 2020; Meng et al., 72 

2023), climate change (Kim et al., 2016; Xue et al., 2021; Zheng et al., 2022), and land management 73 

(Shafizadeh-Moghadam et al., 2019). 74 

Despite the great efforts in producing more accurate products, the existing 30 m GLC products still 75 

show unstable performance in certain LC classes and some specific areas (Sun et al., 2016; Kang et al., 76 

2020). Furthermore, the existing 30 m products showed great agreement in overall spatial distribution 77 

patterns but significant spatial inconsistency in some specific areas (heterogeneous areas and transition 78 

zones) and spectrally similar classes (forest and shrubland, cropland and grassland) (Gao et al., 2020; 79 

Liu et al., 2021b). The spatial inconsistency between the existing 30m GLC products are resulted from 80 

differences in their classification systems, classification techniques employed, source data, and spatial 81 

distribution and size of training samples (Yang et al., 2017; Gao et al., 2020). Due to the aforesaid 82 

limitations, users of GLC products still have difficulties in an appropriate selection of data for their 83 
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specific application. Ultimately, this situation leads to uncertainties in outcomes of related researches 84 

when different 30 m GLC products are used. For GLC mapping with fine spatial resolution, more efforts 85 

should be focused on improving the mapping in heterogenous and fragmented landscape (Herold et al., 86 

2008; Liu et al., 2021b). Therefore, it is pressing to generate a more accurate and reliable GLC product 87 

with high classification accuracy, especially for spatially inconsistent regions and low-accuracy LC 88 

classes. 89 

According to Gong et al. (2016), inconsistencies between LC products indicate available 90 

complementary information and more robust and reliable data can be generated by integrating the input 91 

maps with the data fusion method. Given that different maps have disagreement and provide accurate 92 

information in different locations, we can make a best choice for the class label assigned to each pixel 93 

by weighting the credibility of all the available information and combining them through a decision rule 94 

(Clinton et al., 2015). In this way, the output map of integration on input maps can reduce the overall risk 95 

of assigning a wrong class label to a pixel and at least achieve the average performance of input maps. 96 

Several attempts have been made to produce an accurate and consistent LC map using various methods, 97 

such as majority voting (MV), fuzzy agreement and Bayesian theory. Iwao et al. (2011) created a GLC 98 

map based on a simple majority voting method. Jung et al. (2006) generated a 1km GLC map by 99 

combination of MODIS, GLC2000 and GLCC data based on fuzzy agreement scoring. Subsequently, 100 

Fritz et al. (2011) extended the synergy method of Jung et al. (2006) by ranking LC maps and mapped 101 

the cropland extent in Sub‐Saharan Africa. See et al. (2015) generated two GLC products by integrating 102 

medium resolution LC products with geographically weighted regression (GWR). Gengler and Bogaert 103 

(2018) proposed a Bayesian data fusion method and applied it to the LC mapping for a specific region in 104 

Belgium. All these researches have demonstrated that fusion method can create an integrated LC product 105 

where the mapping accuracy is greatly improved by combing the best of candidate maps. However, the 106 

MV method is sensitive to the quality of the candidate maps and has significant uncertainties when the 107 

input products exhibit great disagreement(Chen and Venkataramanan, 2005). The fuzzy agreement is 108 

highly subjective since it depends on expert assessment, while the Bayesian theory requires a prior 109 

knowledge or conditional probabilities and fails to handle the states of ignorance(Liu and Xu, 2021). 110 

The Dempster-Shafer theory of evidence (DSET) is an evidence-based approach to reason with 111 

uncertainties. Unlike the majority voting, the DSET method can discount evidence from inaccurate 112 
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information with a probability mass that reflects the degree of belief rather than a binary decision (Razi 113 

et al., 2019). In contrast to the Bayesian theory, the DSET can integrate evidence from a variety of sources 114 

without the requirement of prior knowledge (Chen and Venkataramanan, 2005). Moreover, the reliability 115 

of the final fused results is measured the DSET method with a total degree of belief. Although previous 116 

literature focused on the application of the DSET method in multisource data aggregation, very little 117 

research has been conducted at a global scale due to the lack of accurate and sufficient samples and the 118 

demand for adequate computing resources. 119 

In this research, we propose a multi-source product fusion approach on the Google Earth Engine 120 

(GEE) platform to produce an improved GLC product in 2015 (GLC-2015) with 30 m resolution. The 121 

fusion approach we proposed aims to deal with the inconsistency between previous 30 m GLC products 122 

and generate a map which has better mapping performance than any of the candidate maps by evaluating 123 

the mapping accuracy of these existing products at the local scale and choosing the most credible LC 124 

class. To fulfill the purpose, we first performed reliability evaluation, where the accuracy of each GLC 125 

product for each LC class in each 4° × 4° geographical grid is regarded as the evidential probability to 126 

create the basic probability assignment (BPA) function. Then, the BPA values of all the LC classes from 127 

different GLC products are fused according to the Dempster’s rule of combination. Finally, the GLC-128 

2015 map was integrated after a final accepted LC class with the maximum combined probability mass 129 

was assigned to each 30 m pixel. Our GLC-2015 map was separately validated with two different 130 

validation sets, namely global point-based samples and global patch-based samples, and compared with 131 

three existing multiple-class GLC products. Moreover, we provided an analysis for mapping 132 

improvement of the GLC-2015 compared to other products in areas of high mapping inconsistency. The 133 

GLC-2015 map is proved to be accurate and credible and can significantly improve the mapping accuracy 134 

in areas of high inconsistency between previous products. 135 

2. Datasets 136 

2.1 Multiple-class GLC products  137 

Three existing 30m GLC products with multiple classes, including GlobeLand30, FROM_GLC and 138 

GLC_FCS30, were employed as input maps in the fusion based on DSET. A summary of their detailed 139 

information is shown in Table 1. 140 
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GlobeLand30, a widely-used global geo-information product, was produced by the POK-based 141 

method using Landsat and HJ-1 satellite images. Globeland30 products are freely accessible online at 142 

the website (http://www.globalland30.org) for 2000 and 2010. From the accuracy assessment, the 143 

Globeland30 for the year 2010 had an overall accuracy excessed 80% using large samples (Chen et al., 144 

2015). Although the data time of GlobeLand30 is 2010, which has a five-year gap with other products, 145 

it was used in our project for the following reasons: (1) The changed areas of LC caused by the time 146 

interval are tiny compared to the global land area. In addition, there is relatively less uncertainty due to 147 

LC changes than due to inaccurate classification (Xu et al., 2014). Most spatial disagreements between 148 

the existing maps are about classification errors rather than LC changes over the time interval (Mccallum 149 

et al., 2006; See et al., 2015); (2) We used a global point-based sample set for the year 2015 to evaluate 150 

the reliability of the input products in all 4° × 4° grids. At locations where land cover changed between 151 

2010 and 2015, the Globeland30 was more likely to have low accuracy based on the validation and less 152 

likely to contribute to the fusion using the DSET approach. In this way, the errors due to land cover 153 

changes can be largely avoided. 154 

FROM_GLC was first generated using numerous Landsat images, which has a fine classification 155 

system with a two-level structure. It achieved an OA of 64.5% through validation with the complete test 156 

samples and 71.5% with a subset of test samples in homogeneous areas (Gong et al., 2013). We used the 157 

version of 2015 for the fusion.  158 

GLC_FCS30 was developed using Landsat time series data and large training samples from the 159 

GSPECLib. It has a two-level classification scheme that contains 16 global LCCS LC classes and 14 160 

detailed regional LC classes. The overall accuracy of the GLC_FCS30 according to LCCS level-1 161 

validation scheme reached 71.4% (Zhang et al., 2021).  162 

Land cover products which focus on a national scale are more likely to possess higher accuracy 163 

because they were produced by experts who have good knowledge of land cover classes nationally. Thus, 164 

the National Land Cover Database 2016 (NLCD 2016) for the year 2016 (Yang et al., 2018), China’s 165 

land-use/cover datasets (CLUDs) (Liu et al., 2014) for 2015, and the annual China land cover dataset 166 

(CLCD) (Yang and Huang, 2021) for 2015 were also included in the fusion. NLCD 2016 database, which 167 

provides continuous and accurate information about land cover and change from 2001 to 2016 at an 168 

interval of 2 or 3 years, was produced based on a pixel- and object-based approach and an effective post-169 
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classification process (Yang et al., 2018). The level-1 and level-2 overall accuracy of NLCD 2016 170 

database for 2016 was 90.6% and 86.4%, respectively (Wickham et al., 2021). CLUDs, developed by the 171 

digital interpretation method using Landsat images, provide land cover information over China from 172 

1980s to 2015. The overall accuracy of CLUDs reached 94.3% and 91.2% for level-1 and level-2 land 173 

cover classes, respectively (Liu et al., 2014). CLCD was generated with stable training samples derived 174 

from CLUDs and Landsat time series. Assessed with 5463 validation samples, CLCD obtained an overall 175 

accuracy of 79.31% (Yang and Huang, 2021).  176 

Table 1. Detailed information of GLC products and national-scale LC products used in this paper. 177 

Product name Satellite sensors Year of reference Access Literature 

Globeland30 

Landsat TM/ETM+ 

HJ-1 A/B 

2010 http://www.globallandcover.com/ (Chen et al., 2015) 

FROM_GLC Landsat TM/ETM+/OLI 2015 http://data.ess.tsinghua.edu.cn/ (Gong et al., 2013) 

GLC_FCS30 Landsat OLI 2015 https://doi.org/10.5281/zenodo.3986872 (Zhang et al., 2021) 

GAUD Landsat TM/ETM+/OLI 2015 

https://doi.org/10.6084/m9.figshare.115131

78.v1 

(Liu et al., 2020b) 

GFC Landsat TM/ETM+ 2015 

http://earthenginepartners.appspot.com/scie

nce-2013-global-forest 

(Hansen et al., 2013) 

JRC GSW Landsat TM/ETM+/OLI 2015 http://global-surface-water.appspot.com/ (Pekel et al., 2016) 

GMW 

ALOS PALSAR 

Landsat TM/ETM+ 

2015 https://data.unep-wcmc.org/datasets/45 (Bunting et al., 2018) 

NLCD 2016 Landsat TM /OLI 2016 

https://www.mrlc.gov/data/nlcd-2016-land-

cover-conus 

(Yang et al., 2018) 

CLUDs 

Landsat TM 

HJ-1  

 CBERS-1 

2015 / (Liu et al., 2014) 

CLCD Landsat TM/ETM+/OLI 2015 https://doi.org/10.5281/zenodo.4417810 (Yang and Huang, 2021) 

2.2 Single-class GLC products 178 

To improve the quality of the fusing result, a set of highly qualified GLC products with single class at 30 179 
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m fine resolution were also used. Compared to the multiple-class GLC products, these single-class GLC 180 

products are more likely to provide accurate information since they usually focus on promoting mapping 181 

performance of specific LC class. These products include Global Forest Change (GFC) (Hansen et al., 182 

2013), Global Annual Urban Dynamics (GAUD) (Liu et al., 2020b), Joint Research Centre's Global 183 

Surface Water (JRC GSW) (Pekel et al., 2016), and Global Mangrove Watch (GMW) (Bunting et al., 184 

2018). While these single-class products are either annual or multi-epoch, we only selected these 185 

products in the target year of 2015. The background information of these single-class products was 186 

considered as another land cover class (e.g., non-water) participating in the fusion. The accuracy of the 187 

background information was defaulted to 0 since it did not provide information about any of the other 188 

nine categories in our classification system. Table 1 also describes the information of these selected 189 

single-class GLC products. 190 

GFC was resulted from a time-series analysis of growing season Landsat scenes, aiming to provide 191 

information about global tree cover extent, gain, and loss at a 30m spatial resolution. The accuracy 192 

assessment was performed at global and climate domain scales and the forest gain reached an overall 193 

accuracy of 99.6% and forest loss reached 99.7% across the globe (Hansen et al., 2013). Up to now, it 194 

has a temporary coverage from 2000 to 2020. 195 

GAUD, which provides 30m annual urban extent for the time period of 1985 to 2015, was generated 196 

using numerous Landsat images with both data fusion approach and temporal segmentation approach on 197 

the GEE platform. Validation was conducted across different urban ecoregions and the globe by the 198 

product developer. The accuracy of mapping urbanized year was 76% for the period of 1985 to 2000 and 199 

82% for the period of 2000 to 2015 at humid regions worldwide (Liu et al., 2020b). 200 

JRC GSW dataset provides a monthly presentation of global surface water changes from 1984 to 201 

2015 at a fine 30 m resolution. Expert systems, visual analytics and evidential reasoning were exploited 202 

to detect water extent and changes. Based on 40,124 validation points over the globe and across the 32 203 

years, commission accuracies were determined with overall accuracies of 99.45% (TM), 99.35% (ETM+) 204 

and 99.54% (OLI) and omission accuracies were reflected in overall accuracies of 97.01% (TM), 95.79% 205 

(ETM+) and 96.25%(OLI) (Pekel et al., 2016). We used the GSW Yearly Water Classification History 206 

v1.1 in the GEE catalog. A single 'waterClass' band is present in each image that provides the water’s 207 

seasonality throughout the year with four types: no data, no water, seasonal water, and permanent water. 208 
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Since the seasonal water in GSW data is not as reliable as the permanent water (Meyer et al., 2020), we 209 

selected permanent water bodies and excluded seasonal water bodies. 210 

 GMW dataset was produced as a resulted of the GMW initiative, which aims to provide consistent 211 

information of mangrove extent. The global mangrove map in 2010 was generated as a baseline map 212 

employing the Extremely Randomized Trees classifier to classify ALOS PALSAR and Landsat imagery. 213 

Assessed by a total of 53,878 sample points globally, the overall accuracy of the baseline map reached 214 

95.3% and the producer’s accuracy achieved 94.0% (Bunting et al., 2018). Based on the baseline in 2010, 215 

mangrove extent maps for six epochs between 1996 and 2016 have been established and annual change 216 

monitoring from 2018 and onwards are undertaken. 217 

2.3 Global point-based and patch-based samples 218 

In this study, we collected two sets of global samples, namely the global point-based samples and the 219 

global patch-based samples. To collect representative and sufficient samples efficiently, we divided the 220 

world’s terrestrial area into 4° × 4° geographical grids. A total of 1,507 grids are distributed evenly across 221 

the globe, shown as Figure 1. 222 

 223 

Figure 1. Spatial distribution of the 4° × 4° geographical grids over the world. Six black rectangle tiles with 224 

size of 0.25° were used for visual comparation between our product and other three products. 225 

To derive the global point-based samples, we adopted stratified random sampling in each grid. The 226 

stratified random sampling depends on area ratio of LC classes from a LC product. We used the 227 

FROM_GLC as prior knowledge rather than the Globeland30 and GLC_FCS30 with two considerations: 228 
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(1) the FROM_GLC has the same data time as our target map (GLC-2015) while the Globeland30 has a 229 

5-year interval from our samples, which affects the size of samples for each LC class; (2)the 10 level-1 230 

land cover classes of the FROM_GLC is similar to that in the classification system of the GLC-2015, 231 

while the GLC_FCS30 has differences with the GLC-2015 in the classification scheme and definition of 232 

land cover classes. First, the FROM_GLC product was used to calculate the area ratio of each LC class. 233 

Then, points were randomly extracted from the FROM_GLC according to the area ratio and spatial 234 

location of each class. Finally, more than 200,000 global samples were collected. Through the sampling 235 

method mentioned above, the global point-based samples were even across the globe and sufficient for 236 

each LC class in each grid. Therefore, more than 50 points could be easily derived for LC classes with a 237 

small area ratio in the 4° × 4° grid. The FROM_GLC shows low accuracy for some LC classes, especially 238 

for cropland and forest (Gao et al., 2020; Liu et al., 2021b; Zhang et al., 2021; Zhang et al., 2022). If the 239 

global samples were extracted with LC class label from the FROM_GLC, there would be inevitable 240 

errors. Therefore, the FROM_GLC was only used to determine the size and location of samples for each 241 

LC class. Instead, all the points were manually labeled according to Google Earth high-resolution images. 242 

The whole sample set was randomly split into two subsets: 80% of the global samples were used to assess 243 

the accuracy of each GLC product for various LC classes at the global scale and in each grid. The 244 

remaining 20% were used for the validation of the GLC-2015 map and data inter-comparison between 245 

different GLC products. Figure 2 presents the distribution of the whole global point-based samples and 246 

the subset for accuracy assessment and data inter-comparison. 247 
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 248 

Figure 2. Spatial distribution of (a) the global point-based samples, (b) the subset of the global point-based 249 

samples for accuracy assessment and data inter-comparison, the proportions of each LC class are shown in 250 

the pie chart. 251 

To verify the consistency between the GLC-2015 and the actual pattern of the landscape at the local 252 

scale, we also established the global patch-based samples. Simple random sampling was used to derive 253 

5 km × 5 km blocks over the world's terrestrial area and across different ecoregions because it is easy to 254 

perform and capable to augment the sample size from target areas (Pengra et al., 2020). Since 255 

inconsistency between current GLC maps tends to appear in those heterogeneous areas, such as 256 

fragmented regions and transition zones, we slightly increased the sample size for areas with the 257 

heterogeneous landscape to better evaluate our mapping results. In total, there were 201 blocks selected 258 

as the global patch-based samples, as displayed in Figure 3a. Then, for each block in the patch-based 259 

samples, we used ArcGIS 10.5 software to derive polygons (patches) of various sizes which captured the 260 

real landscape on the high-resolution images. Meanwhile, each polygon was manually labeled with a LC 261 

class. Four examples of producing patch-based samples are shown in Figure 3b, c. 262 
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 263 

Figure 3. Spatial distribution and selected examples of the global patch-based samples. The location of 5 km 264 

× 5 km patch-based samples are shown as panel (a), the locations of four selected samples are remarked by 265 

red dash circles. Panels (b) and (c) illustrate the production of global patch-based samples on manual 266 

interpretation. The red lines in high-resolution images circa 2015 are results after vectorization using ArcGIS 267 

10.5 software. Four corresponding patch-based samples are shown as (c). 268 

3. Methods 269 

In this study, we proposed a multi-source product fusion method to produce the GLC-2015 map. The 270 

procedure mainly comprised the fusion based on the Dempster-Shafer theory of evidence (DSET), 271 

accuracy assessment and data inter-comparison (Figure 4). The basic of this study is the fusion of multi-272 

source GLC products based on DSET. The fusion method was performed at the pixel level and it involves 273 

the following three main steps: (1) Construct the basic probability assignment (BPA) function of each 274 

pixel that belongs to each LC class considering the accuracy assessment of different GLC products; (2) 275 

calculate the combined probability mass for each class per pixel using the Dempster’s rule of combination; 276 

and (3) determine the finally accepted LC class per pixel by a decision rule. Afterwards, pixels with a 277 

determined LC class were integrated to generate a new map. For large-scale or global land cover mapping, 278 
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previous researchers divided the study area into a lot of sub-regions and conducted classification in each 279 

sub-region on GEE (Gong et al., 2020; Liu et al., 2020b; Huang et al., 2021; Jin et al., 2022; Zhang et 280 

al., 2021; Zhao et al., 2021). The shape and size of sub-region vary in previous work, such as hexagons 281 

with a side length of 2°, geographical grids with a size of 1°×1°, 3.5º×3.5°, 5º×5°, or 10º×10°. When 282 

deciding on the size of sub-regions, two important factors should be considered. The size of samples in 283 

each sub-region should be sufficient so that the rare land cover classes will not be missed. On the other 284 

hand, it is impossible to implement mapping work at a sub-region as larger as we want due to memory 285 

constraints. To determine the appropriate size, we tested different sizes of the sub-region (see Table S1). 286 

Result shows that dividing the study area into 4º×4° grids performed best. Therefore, we split the world’s 287 

terrestrial area into 1507 4º×4° geographical grids. The entire framework was implemented in all 4° × 4° 288 

geographical grids on the GEE platform. 289 

 290 

Figure 4. The framework for generating the GLC-2015 map using a multi-source product fusion approach 291 

based on DEST. 292 

3.1 Definition of the classification system  293 

In this study, we adopted the classification system with 10 LC classes, including cropland, forest, 294 
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grassland, shrubland, wetland, water bodies, tundra, impervious surfaces, bare land, and permanent snow 295 

and ice (Chen et al., 2015), as listed in Table 2. Due to the applications for different social needs, the 296 

existing GLC products and national-scale LC products were produced with different classification 297 

systems (Tables S2-S3). The GlobeLand30 used a simple classification system that only contained 10 298 

first-level classes. Unlike the GlobeLand30, the FROM_GLC and GLC_FCS30 were classified with a 299 

two-level classification scheme. Through analysis of these systems, we found that the classification 300 

systems are not the same, but they have some agreements. There are both 10 major classes in the 301 

GlobeLand30 and FROM_GLC despite that the definition of some classes differs. Additionally, in 302 

contrast to the GlobeLand30 and FROM_GLC, the level-0 classification system of the GLC_FCS30 303 

lacks tundra. However, in the level-2 detailed LC classes of the GLC_FCS30, lichens and mosses has 304 

little distinction with tundra.  305 

Table 2. Classification system adopted in this paper. 306 

Id LC class Definition 

10 Cropland Land areas used for food production and animal feed. 

20 Forest Land areas dominated by trees with tree canopy cover over 30%, and sparse trees with tree 

canopy cover between 10%-30%. 

30 Grassland Land areas dominated by natural grass with a cover over 10%. 

40 Shrubland Land areas dominated by shrubs with a cover over 30%, including mountain shrubs, 

deciduous shrubs, evergreen shrubs and desert shrubs with a cover over 10%. 

50 Wetland Land areas dominated by wetland plants and water bodies. 

60 Water bodies Land areas covered with accumulated liquid water. 

70 Tundra Land areas dominated by lichen, moss, hardly perennial herb and shrubs in the polar regions. 

80 Impervious surfaces Land areas covered with artificial structures. 

90 Bare land Land areas with scarce vegetation with a cover lower than 10%. 

100 Permanent snow and ice Land areas dominated by permanent snow, glacier and icecap. 

According to the classification system adopted in the study, the original LC classes of FROM_GLC 307 

and GLC_FCS30, CLUD for 2015, and NLCD 2016 for 2016 were converted into the 10 target land 308 

cover classes based on the similarity of LC definition. Note that cropland in our classification system 309 

was defined as land areas for food production and animal feed. Therefore, pasture in level-2 classes of 310 
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the FROM_GLC was converted into cropland rather than grassland. In addition, lichens/mosses in the 311 

level-2 detailed LC classes of GLC_FCS30 was converted into tundra.  312 

3.2 A multi-source product fusion for the GLC-2015 mapping 313 

The DSET is an effective method widely applied for the fusion of multi-source data. To generate a new 314 

high-quality GLC map, a multi-source product fusion method using DSET was proposed. In the 315 

remainder of the section 3.2, We introduced the overview on the theory and presented the application of 316 

DSET in our mapping process. 317 

3.2.1 Dempster-Shafer theory of evidence 318 

The DSET is developed by Dempster and Shafer, which is an extension of Bayesian probability theory. 319 

This theory treats information from different data sources as independent evidence and integrated these 320 

evidences with no requirements regarding the prior knowledge. In the fusion, we assume a classification 321 

process in which all the input data are to be classified into mutually exclusive classes. Let the set Ω of 322 

these classes be a frame of discrimination. 2Ω is the power set of Ω that includes all the classes and 323 

their possible unions. We defined the function m：2Ω → [0,1] as the basic probability assignment (BPA) 324 

function if and only if it satisfies m(𝛷) = 0 and ∑ m(A) = 1A⊆2Ω  with Ø denotes an empty set. For 325 

each class A ⊆ 2Ω, m(A) is called the basic probability mass which can be computed from the BPA 326 

function and represents the degree of support for class A or confidence in class A. 327 

The purpose of fusion is to evaluate and integrate information from multiple sources. In the DSET, 328 

these multi-source data are regarded as different evidence and provide different assessments. To generate 329 

all the evidences, Dempster-Shafer theory of evidence offers a rule. Suppose 𝑚𝑖(𝐵𝑗)  is the basic 330 

probability mass computed from the BPA function for each input data 𝑖 with 1 ≤ i ≤ n for all classes 331 

𝐵𝑗 ∈ 2𝛺. Dempster’s rule of combination is provided to calculate a combined probability mass from 332 

different evidences. The fusion rules are given in equation (1) and (2). 333 

𝑚(𝐶) =
∑ ∏ 𝑚𝑖(𝐵𝑗)1≤𝑖≤𝑛𝐵1∩𝐵2⋯∩𝐵𝑛=𝐶

1 − 𝑘
(1) 334 

 335 

𝑘 = ∑ ∏ 𝑚𝑖(𝐵𝑗)
1≤𝑖≤𝑛𝐵1∩𝐵2⋯∩𝐵𝑛=Ø

(2) 336 

Where 𝑘 represents the basic probability mass associated with conflicts among the sources of evidence. 337 
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𝐶 is the intersection of all classes 𝐵𝑗  and carries the joint information from all the input data. After the 338 

combination, we took a decision rule to decide the class we finally accept. There are several ways to 339 

decide the final class by simply choosing the class with the maximum belief, plausibility, support, or 340 

commonality. 341 

3.2.2 Mapping based on DSET 342 

Here, we presented our implementation for the GLC-2015 mapping in the framework of DSET. All the 343 

multiple-class and single-class GLC products described in Sect. 2 were selected as input maps to be 344 

combined. In the integration of multi-source GLC products, since all the LC classes in our classification 345 

system are known, the frame of discrimination was defined to be our classification system: 346 

Ω = {
cropland, forest,  grassland,  shrubland,  wetland,  water bodies,  
tundra, impervious surfaces,  bare land, permanent snow and ice

} (3) 347 

The definition of BPA function is the critical point in applying DSET (Rottensteiner et al., 2005). 348 

In the fusion, we wanted to achieve a per-pixel classification into one of ten LC classes: cropland, forest, 349 

grassland, shrubland, wetland, water bodies, tundra, impervious surfaces, bare land, and permanent snow 350 

and ice. For each single-class or multiple-class GLC product, the accuracy for each LC class was 351 

calculated and used as evidential probability to construct the BPA. Given that the local accuracy for a 352 

4º×4° grid was not able to adequately reflect the actual land cover landscape, especially for the rare LC 353 

classes, the global accuracy was incorporated into the construction of the BPA to avoid uncertainties from 354 

a local point of view. Since the assessment based on local samples plays a more critical role in BPA 355 

construction for a local grid, a higher weight should be assigned to the local accuracy. To identify the 356 

best weight, we tested different weights of the local accuracy (see Figure S1). The esult shows that using 357 

75% performed robustly and obtained relatively higher overall accuracy. Therefore, we chose 75% as 358 

the weight for local accuracy and 25% for global accuracy. Here, we defined the BPA function as follow: 359 

𝑚𝑖(𝑇𝑗) =
𝑃𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)

+ 𝑈𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)

2
× 75% +

𝑃𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)
+ 𝑈𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)

2
× 25% (4) 360 

Where 𝑚𝑖(𝑇𝑗)  represents the BPA function of evidence source 𝑖  for the LC class 𝑇𝑗  ; 𝑃𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)
 , 361 

𝑈𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)
 denote producer's accuracy and user's accuracy of evidence source 𝑖 for the LC class 𝑇𝑗 for 362 

each  4° × 4° geographical grid, respectively; 𝑃𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)
, 𝑈𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)

 denote producer's accuracy and 363 

user's accuracy of evidence source 𝑖 for LC class 𝑇𝑗 at the global scale. 364 

 To estimate the exact values of 𝑃𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)
, 𝑈𝐴𝑙𝑜𝑐𝑎𝑙(𝑖𝑗)

, 𝑃𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)
 and 𝑈𝐴𝑔𝑙𝑜𝑏𝑎𝑙(𝑖𝑗)

, we used 80% 365 
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of the global point-based samples more than 160,000 points derived in Sect 2.3. As soon as we obtained 366 

the measurements of 𝑚𝑖(𝑇𝑗) , the combined probability masses 𝑚(𝑇𝑗)  were evaluated based on 367 

Dempster’s rule of combination for each pixel classified as the LC class 𝑇𝑗 by fusing BPA values of all 368 

the evidence sources:  369 

𝑚(𝑇𝑗) =
1

1 − 𝑘
∑ 𝑚𝑖(𝑇𝑗)

𝑇1𝑗∩𝑇2𝑗⋯∩𝑇𝑛𝑗=𝑇𝑗

(5) 370 

𝑘 = ∑ 𝑚𝑖(𝑇𝑗)

𝑇1𝑗∩𝑇2𝑗⋯∩𝑇𝑛𝑗=Ø

(6)
 371 

Where 𝑘 represents the basic probability mass associated with conflict; 𝑚𝑖(𝑇𝑗) represents the basic 372 

probability mass of a certain pixel belonging to the LC class 𝑇𝑗 from different GLC products. 373 

Additionally, a belief measure (Bel) was given to measure the degree of credibility that a pixel 374 

labeled as the finally accepted LC class when combining all the available evidences. The belief measure 375 

was determined by 376 

𝐵𝑒𝑙(𝑇𝑗) = ∑ 𝑚𝑖(𝑇𝑗)

𝑇𝑖𝑗⊆𝑇𝑗

(7)
 377 

To determine the finally accepted LC class per pixel, we took the rule of maximum combined 378 

probability mass as our decision rule and the LC class with the maximum combined probability mass is 379 

assigned to the 30 m pixel. Pixels labeled with the LC class were integrated to generate the GLC-2015 380 

product.  381 

3.3 Accuracy assessment  382 

To assess the accuracy of the GLC-2015 map, we utilized two validation methods: validation with the 383 

global point-based samples and the global patch-based samples. Since the global point-based sample set 384 

is distributed evenly across the world and its sample size for each LC class is relatively sufficient and 385 

balanced, even for the rare classes, it can provide a representative and credible basis for estimation of the 386 

GLC-2015 map globally. Furthermore, we used the global patch-based samples to conduct accuracy 387 

assessment from the local landscape scale. Although the global patch-based sample set provide an 388 

inadequate sample size for rare LC classes, it can take advantage of the spatial context information and 389 

efficiently reflect the actual pattern of the landscape. 390 

The confusion matrix was produced to evaluate and analyze the GLC-2015 mapping result. The 391 

error matrix is composed of entry 𝐴𝑖𝑗, which represents the number of samples with reference LC class 392 
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𝑗 being classified as LC class 𝑖.The overall accuracy (OA), kappa coefficient, producer's accuracy (PA), 393 

and user's accuracy (UA) were generated from confusion matrix to describe the quality of the GLC-2015 394 

map. They are defined as follows: 395 

𝑂𝐴 =
∑ 𝐴𝑖𝑖𝑖

∑ ∑ 𝐴𝑖𝑗𝑗𝑖

(8) 396 

𝑃𝑜 = 𝑂𝐴 (9) 397 

𝑃𝑒 = ∑
∑ 𝐴𝑖𝑘𝑖

∑ ∑ 𝐴𝑖𝑗𝑗𝑖
𝑘

×
∑ 𝐴𝑘𝑗𝑗

∑ ∑ 𝐴𝑖𝑗𝑗𝑖

(10) 398 

𝑘𝑎𝑝𝑝𝑎 =
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒

(11) 399 

𝑃𝐴𝑖 =
𝐴𝑖𝑖

∑ 𝐴𝑘𝑖𝑘

(12) 400 

𝑈𝐴𝑖 =
𝐴𝑖𝑖

∑ 𝐴𝑖𝑘𝑘

(13) 401 

Where 𝑈𝐴𝑖 and 𝑃𝐴𝑖  represent UA and PA of the LC 𝑖, respectively; 𝑃𝑜 is the agreement between the 402 

reference and the classified data; 𝑃𝑒 is the hypothetical probability of chance agreement. 403 

3.4 Data inter-comparison 404 

To better reflect the quality of the GLC-2015 map, we intercompared the GLC-2015 map with LC 405 

products at multiple scales. In the accuracy assessment of different products, two global validation sets 406 

described earlier were employed. 407 

To figure out whether the GLC-2015 map promotes accuracy in the areas with high classification 408 

difficulty and how much the improvement is compared to the other products, we conducted the spatial 409 

consistency analysis between the GlobeLand30, FROM_GLC, and GLC_FCS30 and compared the 410 

mapping performance of the GLC-2015 with others in the areas of low inconsistency, moderate 411 

inconsistency, and high inconsistency. To visually present the spatial consistency between three existing 412 

GLC maps, we employed the spatial superposition method to obtain the spatial correspondence pixel-413 

by-pixel between different maps. Based on the times of all the GLC products agreed for the same LC 414 

class, the degree of consistency for a pixel was identified as three levels with the agreement value equal 415 

to 3, 2, or 1. The areas of low inconsistency were regarded as pixels that classified as the same LC class 416 

in all three GLC maps (labeled as 3). The moderate inconsistency areas were regarded as pixels that were 417 

consistent in only two GLC maps (labeled as 2). The high inconsistency areas were regarded as pixels 418 

that were totally inconsistent in these three GLC maps (labeled as 1). For a visual comparison, all these 419 
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GLC maps were aggregated to 0.05°, in which the LC class with the largest proportion determined the 420 

class in each 0.05° grid. 421 

3.5 Assessment on mapping performance of DSET and other methods 422 

In addition to inter-comparison between the GLC-2015 map and three existing GLC products, we 423 

compared the DSET method with two existing commonly used fusion methods, including the majority 424 

voting (MV) and spatial correspondence (SC) based on two global validation sets including 20% of the 425 

global point-based samples and the whole global patch-based samples. MV is a fusion approach that 426 

combines input maps and adopts the LC class favored by the majority of the candidate maps. In the MV 427 

method, we compared the GlobeLand30, FROM_GLC, and GLC_FCS30 at each pixel and chose the 428 

class that two or three LC products agreed for. For pixels where three LC products were different, the 429 

LC class of the product with the highest accuracy was adopted. SC method produces an integrated land 430 

cover map by selecting the LC class of the input map that has the highest spatial correspondence with 431 

the reference data. In this study, 80% of the global point-based samples were used as the reference data 432 

to obtain the SC map of each global LC product. If the class of a product agreed with that of the point-433 

based sample, a value equal to 1 was assigned to that sample. On the contrary, a value equal to 0 was 434 

assigned to the sample if the class of the product differed from that of the sample. In each 4° × 4° grid, 435 

we used the Kriging method to obtain spatial correspondence maps which have the correspondence value 436 

ranging from 0 to 1 for three products. Then, the class of the product with the highest spatial 437 

correspondence was chosen for each pixel. 438 

Furthermore, we compared the mapping performance of DSET with Random Forest (RF) which is 439 

considered one of the most popular algorithms for land cover mapping. In the land cover classification 440 

using the FR classifier, all available Level-2 Tier 1surface reflectance (SR) data of Landsat 8 OLI 441 

(Operational Land Imager) sensors from the year 2015 and two adjacent years on GEE was employed. 442 

All Landsat images have been atmospherically corrected. The following six bands were used as input 443 

features: blue, green, red, NIR, SWIR1, and SWIR2. To improve the mapping performance, several 444 

important spectral indices, including DNVI, NDWI, and NDBI were also used as auxiliary data to the 445 

RF classifier. The RF classifier was trained on 80% of the global point-based samples since those samples 446 

were of high quality after manual visual interpretation of high-resolution images. As the global land cover 447 

mapping based on the RF classifier is a tough task, we randomly selected a total of 300 grids with the 448 
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size of 4° (Figure S2) and applied corresponding local RF classifiers to these grids. Then, the mapping 449 

results were validated by the remaining 20% of the point-based samples. 450 

4. Results and discussion 451 

4.1 Mapping result of the GLC-2015 map 452 

Using a multi-source product fusion method based on the DSET, we generated an improved 30m global 453 

land cover map in 2015 (GLC-2015). Figure 5 illustrates the GLC-2015 map. The GLC-2015 map can 454 

accurately describe the spatial distribution of various LC classes.  For example, cropland areas are mostly 455 

located in Central America, the region from the Hungarian plain to the Siberian plain, the eastern and 456 

southern parts of China, and the most of India. In addition, forest, which is one of the easily 457 

distinguishable classes from the map, is concentrated in the eastern part of North America, the Amazon 458 

basin of South America, the northern part of Eurasia and the equatorial region of Africa.   459 

460 

Figure 5. Global land cover map in 2015 with 30 m resolution (GLC-2015). 461 

4.2 Accuracy assessment of the GLC-2015 map 462 

4.2.1 Accuracy assessment with the global point-based samples 463 

The accuracy of the GLC-2015 map was first tested via the global point-based samples, and the results 464 

of assessment are listed in Table 3. The GLC-2015 map achieved an OA of 79.5% and kappa coefficient 465 

of 0.757 at the global scale, demonstrating the good performance of our map. Among all the LC classes, 466 

permanent snow and ice possessed the best mapping performance, with PA and UA achieving 89.1% and 467 
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93.7%. The accuracy of water bodies, forest and impervious surfaces was also high, where PA and UA 468 

exceeded 80.0%. Grassland, shrubland, and wetland had relatively low accuracy, with PA below 75.0%. 469 

Among them, grassland and shrubland were mainly confused with forest, which might be because these 470 

classes are both vegetation, thus causing difficulty in recognition by spectral information. Due to the 471 

complex spectral characteristics, wetland is often mixed with vegetation (Ludwig et al., 2019).  472 

Table 3. The confusion matrix for the GLC-2015 map based on the global point-based samples. 473 

 Cropland Forest Grassland Shrubland Wetland Water bodies Tundra 

Impervious 

surfaces 

Bare land 

Permanent 

snow and ice 

Total PA 

Cropland 3623 387 356 61 27 48 2 71 81 0 4656 0.778 

Forest 155 8813 186 141 232 16 43 43 53 3 9685 0.910 

Grassland 10 337 1920 19 24 13 47 36 184 9 2599 0.739 

Shrubland 155 438 656 1469 39 29 70 78 442 4 3380 0.435 

Wetland 47 287 82 14 1067 64 22 18 110 4 1715 0.622 

Water bodies 27 90 15 1 73 1936 17 10 44 3 2216 0.874 

Tundra 1 242 119 6 29 19 1411 2 269 17 2115 0.667 

Impervious surfaces 74 41 11 3 8 11 1 1295 45 0 1489 0.870 

Bare land 36 59 237 32 44 91 55 60 4909 38 5561 0.883 

Permanent snow and ice 0 11 8 0 4 18 13 1 86 1154 1295 0.891 

Total 4128 10705 3590 1746 1547 2245 1681 1614 6223 1232 34711  

UA 0.878 0.823 0.535 0.841 0.690 0.862 0.839 0.802 0.789 0.937   

OA 0.795 

Kappa 0.757 

The regional accuracies are presented in Figure 6. The OA of the GLC-2015 ranged from 66.4% to 474 

93.4%, and kappa coefficient from 0.552 to 0.813. From the perspective of OA, Water regions lead, 475 

followed by Tropical desert, Temperate continental forest, and Polar. These are areas with homogeneous 476 

land cover and have low difficulty in mapping. Boreal tundra woodland, Tropical dry forest, Tropical 477 

shrubland, and Subtropical desert are the regions with low OA. The first one may be related to the high 478 

latitudes. The followed two may be because they belong to areas with complicated and mixed LC classes 479 

which is not easily classified. The last one may be the consequence of sparse vegetation in desert areas. 480 
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For the kappa coefficient, the ranking was similar with those for OA.  481 

 482 

Figure 6. Regional accuracy of the GLC-2015 map according to ecoregions. (a)overall accuracy, (b) kappa 483 

coefficient. The ecoregion boundaries are obtained from the Food and Agriculture Organization of the United 484 

Nations (FAO). 485 

4.2.2 Accuracy assessment with the global patch-based samples 486 

The accuracy assessment of the GLC-2015 map was also conducted with the global patch-based samples. 487 

Table 4 summarizes the results for accuracy assessment of each LC class in the GLC-2015 map. From 488 

the assessment results, it can be found that the OA of the GLC-2015 map reached 83.6%, which was 489 

higher than 79.5% tested with the global point-based samples. The kappa coefficient of the GLC-2015 490 

map was 0.566, which was 0.191 lower than the result calculated with the global point-based samples. 491 

In both accuracy assessment results based on two different validation data sets, water bodies, forest, and 492 

permanent snow and ice were validated to have high accuracy, and grassland, shrubland, and wetland 493 

were validated to have low accuracy. Nevertheless, the ranking of accuracy for each LC class had a slight 494 

difference. For example, in assessment based on the global point-based samples, impervious surfaces 495 

and permanent snow and ice ranked higher than that based on the global patch-based samples. This may 496 
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be because a LC map can easily show where one LC class is distributed but hardly describe its actual 497 

shape. In addition to the accuracy assessment on a pixel scale, validation on a patch scale is equally 498 

important because it can reflect the shape consistency between the GLC-2015 map and the actual 499 

landscape, even if the size of global patch-based samples is relatively small. Overall, no matter from the 500 

respective of the global point-based samples or the global patch-based samples, the mapping accuracies 501 

of the GLC-2015 map are satisfactory. 502 

Table 4. Mapping accuracy via the global patch-based samples for the GLC-2015 map 503 

 Cropland Forest Grassland shrubland Wetland Water bodies Tundra Impervious surfaces Bare land Permanent snow and ice 

PA 0.887 0.895 0.629 0.589 0.301 0.939 0.701 0.757 0.682 0.825 

UA 0.916 0.844 0.617 0.714 0.511 0.917 0.872 0.713 0.599 0.767 

OA 0.836 

Kappa 0.566 

4.3 Inter-comparison with other GLC products 504 

4.3.1 Inter-comparison based on the global point-based samples 505 

Based on the global point-based samples, the inter-comparison of the GLC-2015 map with the 506 

GlobeLand30, FROM_GLC, and GLC_FCS30 were conducted. Since the three products used different 507 

classification systems, LC classes were transformed to the classification system we adopted in this paper 508 

to achieve consistent accuracy assessment. The accuracy assessment results for all GLC maps are listed 509 

in Table 5. It can be found that the GLC-2015 map achieved the highest OA of 79.5% compared with 510 

GlobeLand30 of 65.3%, FROM_GLC of 61.7%, and GLC_FCS30 of 65.5%, respectively. The accuracy 511 

gap between the GLC-2015 map and other existing ones was 14.0%-17.8%. Also, the GLC-2015 map 512 

possessed a better kappa coefficient than other products. For each LC class, the GLC-2015 map 513 

outperformed the other three maps in terms of PA except for tundra. For cropland, grassland, shrubland, 514 

wetland, and tundra, the GLC-2015 map also exhibited better performance for UA than the GlobeLand30, 515 

FROM_GLC and GLC_FCS30. Overall, for the PA or UA, the GLC-2015 map ranked first or second in 516 

nearly all LC classes, which demonstrated that the GLC-2015 map had smaller omission and commission 517 

errors against the other three products.  518 

Table 5. Mapping accuracy of the GLC products with the global point-based samples. 519 
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  Cropland Forest Grassland Shrubland Wetland 

Water 

bodies 

Tundra 

Impervious 

surfaces 

Bare 

land 

Permanent 

snow and ice 

OA 

(Kappa coefficient) 

GLC-2015 

PA 0.778 0.910 0.739 0.435 0.622 0.874 0.667 0.870 0.883 0.891 0.795 

(0.757) UA 0.878 0.823 0.535 0.841 0.690 0.862 0.839 0.802 0.789 0.937 

Globeland30 

PA 0.752 0.719 0.713 0.245 0.540 0.680 0.769 0.688 0.609 0.821 0.653 

(0.598) UA 0.786 0.818 0.255 0.428 0.573 0.869 0.577 0.809 0.868 0.905 

FROM_GLC 

PA 0.389 0.694 0.707 0.411 0.307 0.607 0.712 0.732 0.731 0.881 0.617 

(0.558) UA 0.671 0.859 0.278 0.422 0.289 0.742 0.686 0.661 0.761 0.773 

GLC_FCS30 

PA 0.757 0.775 0.452 0.399 0.455 0.604 0.228 0.777 0.809 0.726 0.655 

(0.591) UA 0.616 0.816 0.384 0.405 0.515 0.808 0.688 0.774 0.645 0.947 

Further quantitative accuracy assessments of different GLC products were performed in 4° × 4° 520 

grids using the global point-based samples, and box plots were produced for each product for all grids 521 

within different ecoregions, as shown in Figure 7. It can be found that the GLC-2015 map outperformed 522 

other existing products with the best OA and kappa coefficient across different ecoregions. Also, the 523 

mean overall accuracy of the GLC-2015 map exceeded 65.0% in all ecoregions, showing the high quality 524 

of our mapping results. It is worth noting that the GLC-2015 map showed shorter boxes except in 525 

Subtropical dry forest and Subtropical desert, which means the GLC-2015 map had relatively small 526 

fluctuation than other ones. In Subtropical desert, Tropical dry forest, and Boreal tundra woodland, the 527 

OA and kappa coefficient of the four products were relatively low. However, the GLC-2015 map 528 

exceeded the highest of others and greatly improved the mean OA in these regions. 529 

530 

Figure 7. The box-plot of the accuracy for twenty-one ecoregion zones. (a) overall accuracy, (b)kappa 531 

coefficient. Ecoregion abbreviation and corresponding ecoregion is described in Table S4. 532 



25 

 

4.3.2 Inter-comparison based on the global patch-based samples 533 

Although the global point-based samples are adequate and even across the globe, the distribution of 534 

points in each 4° × 4° geographical grid is too sparse to reflect the actual spatial pattern of the landscape. 535 

Focusing on LC pattern at the local scale, we also used the global patch-based samples which can provide 536 

spatial context information to conduct the accuracy assessment of the GLC-2015 map and compare 537 

difference GLC products. Table 6 lists the accuracies of the GLC-2015 map and the other three GLC 538 

products. Obviously, the GLC-2015 map achieved the best OA and kappa coefficient among these four 539 

GLC maps. The overall accuracy gap between the GLC-2015 product and others was 5.9%-24.5%, which 540 

presented a more significant variation compared with the result based on the global point-based samples. 541 

In terms of PA and UA, the GLC-2015 map was higher than the other three ones in most LC classes. 542 

Specifically, all the products had lower accuracy for grassland, shrubland, and wetland, similar to that in 543 

the accuracy assessment based on the global point-based samples. It is evident that the FROM_GLC had 544 

the lowest mapping accuracy for grassland, shrubland, and wetland, implying that the classification 545 

method of FROM_GLC is not robust for these three LC classes. 546 

Table 6. Mapping accuracy of the GLC products with the global patch-based samples 547 

  Cropland Forest Grassland Shrubland Wetland 

Water 

bodies 

Tundra 

Impervious 

surfaces 

Bare 

land 

Permanent 

snow and ice 

OA 

GLC-2015 

PA 0.887 0.895 0.629 0.589 0.301 0.939 0.701 0.757 0.682 0.825 0.836 

(0.566) UA 0.916 0.844 0.617 0.714 0.511 0.917 0.872 0.713 0.599 0.767 

Globeland30 

PA 0.896 0.698 0.765 0.539 0.455 0.824 0.752 0.643 0.492 0.831 0.777 

(0.437) UA 0.891 0.906 0.444 0.527 0.157 0.893 0.500 0.703 0.829 0.705 

FROM_GLC 

PA 0.485 0.714 0.640 0.254 0.032 0.904 0.760 0.506 0.681 0.501 0.591 

(0.360) UA 0.872 0.809 0.193 0.139 0.186 0.884 0.696 0.808 0.496 0.703 

GLC_FCS30 

PA 0.865 0.779 0.398 0.565 0.363 0.869 0.051 0.648 0.658 0.742 0.748 

(0.418) UA 0.857 0.832 0.509 0.330 0.132 0.942 0.573 0.643 0.462 0.752 

Accuracy assessment was calculated in each patch-based sample, and box plots were produced for 548 

each GLC product at the continental scale, as shown in Figure 8. The GLC-2015 map showed a robust 549 

performance in each continent, with the highest OA and kappa coefficient among all the maps. Also, in 550 

all continents, the GLC-2015 map had the shortest boxes in terms of OA, which denoted that it had a 551 
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more minor variation in accuracy at the continental scale. Among four products, the GLC_FCS30 and 552 

Globeland30 achieved similar accuracies in most continents. Obviously, the FROM_GLC showed lowest 553 

accuracy across different continents, especially in Oceania, where the OA of most patch-based samples 554 

was below 40.0%, namely most of the pixels in Oceania were incorrectly classified. We further compared 555 

mapping accuracies for each LC class in different continents (Figures S3-S4). Since tundra and 556 

permanent snow and ice are rare and only existent in certain regions, they were not included in the 557 

comparison. As for PA across different continents, the GLC-2015 map outperformed other maps in forest, 558 

water bodies, and bare land. As for UA across different continents, the GLC-2015 map outperformed 559 

other maps in cropland, grassland, shrubland and wetland, and achieved similar accuracies with the 560 

GLC_FCS30 and Globeland30 in forest. Overall, the GLC-2015 map outperformed others regarding 561 

mapping accuracy at continental scale. In addition, all GLC products showed significant variation and 562 

low mean accuracy in grassland, shrubland, and wetland over most continents. 563 

 564 

Figure 8. The box-plot of the accuracy for different continents. (a) overall accuracy, (b)kappa coefficient. 565 

Furthermore, to compare the OA of the GLC-2015 map with other GLC products, scatter plots were 566 

used to describe the relationship between the overall accuracy of the GLC-2015 map and one other 567 

product in each patch-based sample, as displayed in Figure 9. Most of the points were above the 1:1 line, 568 

implying that the GLC-2015 map surpassed other GLC products in terms of OA. The distribution of 569 

points was more dispersed from the 1:1 line in the plot of the GLC-2015 map against FROM_GLC 570 

compared to other plots. It indicated that these two products had a more significant difference, which 571 

was also proved in Table 6. 572 
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 573 

Figure 9. Scatter plots between the GLC-2015 map and other products obtained using the global patch-based 574 

samples. 575 

4.3.3 Areal comparison for individual classes  576 

To assess the similarities and discrepancies between the GLC-2015 and other GLC products, we 577 

compared the area of various LC classes at multiple scales, including global, continental, national, and 578 

ecoregional scales. 579 

The areal comparison for various classes of different GLC products over the globe is shown in 580 

Figure 10. Generally, the areas of water bodies and permanent snow and ice of four GLC products were 581 

very similar, which may be related to the similar LC definitions. In contrast, the areas of cropland, forest, 582 

grassland, and shrubland in GLC-2015 differed significantly from those in other GLC products. The area 583 

of forest in GLC-2015 is much higher than other products. This may be because FROM_GLC and 584 

GLC_FCS30 defined forest with tree cover over 15%, while GLC-2015 used a threshold of over 10%. 585 

The cropland areas in GLC-2015 and Globeland30 were close, higher than FROM_GLC but lower than 586 

GLC_FCS30. Moreover, the FROM_GLC underestimated the cropland area as it had a low producer’s 587 

accuracy for cropland (see Table 5), which was also demonstrated in previous researches (Liu and Xu, 588 

2021; Zhang et al., 2021). FROM_GLC and Globeland30 shared similar grassland areas since a similar 589 

accuracy for grassland was found in these two products (see Table 5). However, the FROM_GLC and 590 

Globeland30 significantly overestimated grassland extent, with much bare land misclassified as 591 

grassland (Hu et al., 2014). The GLC_FCS30 showed the smallest area for grassland, which might be 592 

related to its higher threshold in vegetation cover for grassland. For shrubland, the area difference 593 

between GLC-2015 and Globeland30 was minimal, and the areas in FROM_GLC and GLC_FCS30 were 594 

similar. Furthermore, the wetland area in FROM_GLC was the lowest among all the products, with a 595 

total area of 0.168 million km2. In contrast, the Globeland30 and GLC_FCS30 exhibited greater wetland 596 

extent than GLC-2015 since these two products classified non-wetlands sensitive to water as wetlands 597 
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(Zhang et al., 2023). In particular, the tundra area in GLC_FCS30 was much smaller than other products. 598 

This is mainly because only lichens/mosses in the original classification system of GLC_FCS30 was 599 

converted into tundra in the classification system we used, which leads to the omission of tundra. The 600 

areas of impervious surfaces in GLC-2015, Globeland30, and GLC_FCS30 were very close and higher 601 

than FROM_GLC. For bare land, there was large difference between Globeland30 and other products, 602 

while the area in GLC-2015 and GLC_FCS30 was very close. 603 

 604 

Figure 10. Areal comparison of various land cover classes among GLC products at the global scale. Class IDs 605 

10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 denote cropland, forest, grassland, shrubland, wetland, water bodies, 606 

tundra, impervious surfaces, bare land, and permanent snow and sea ice, respectively. 607 

The area similarity and difference for various classes of different GLC products were also compared 608 

over six continents, the top 40 countries ranked by area, and 21 ecoregions (Figures S5-S7). Overall, the 609 

four products showed a similar distribution trend of different classes. For most LC classes, the continental, 610 

national, and ecoregional rankings of four products agreed with their ranking at the global scale. Whereas, 611 

for grassland and shrubland, the area ranking of four products varied at three different regional scales. 612 

4.3.4 Visual inter-comparison for individual classes  613 

The visual comparison of cropland in GLC-2015, Globeland30, FROM_GLC, GLC_FCS30, GSFAD30 614 

(Xiong et al., 2017; Teluguntla et al., 2018), and other national-scale maps was conducted in three local 615 

regions (Figure S8). In the Egyptian agricultural area, GLC-2015, FROM_GLC, and GLC-FCS30 shared 616 

similar delineation of the cropland and had a good representation of cropland with fine spatial details. 617 

Since the date time of the Google Earth image is 2015, Globeland30 missed the newly cultivated cropland. 618 

GFASD30 had the largest cropland area among five products but misclassified bare land as cropland. In 619 

the agricultural area of Southeastern China, GLC-2015 had an agreement with GFSAD30 and CLCD. 620 
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Globeland30 and GLC_FCS30 overestimated the area of cropland. As for FROM_GLC, it failed to depict 621 

the spatial distribution of cropland and had many omissions. In cropland-dominated areas of the United 622 

States, FROM_GLC significantly underestimated the extent of cropland. The other five products 623 

exhibited a similar delineation of cropland, but there were little differences in some small areas. For 624 

example, Globeland30 misclassified some grassland into cropland, and NLCD 2016 had a good ability 625 

to distinguish the farm rack. 626 

We also compared the performance in the forest of different products in three forest-prevalent 627 

regions of Congo, China, and the United States (Figure S 9). Overall, GLC-2015 and Globeland30 628 

showed accurate delineation in three regions. FROM_GLC also had good performance for the forest in 629 

Congo and USA but overestimated the forest in China, mislabeling shrubland and grassland as forest. 630 

Furthermore, GFC tended to miss sparse trees in China, and GLC_FCS30 underestimated the extent of 631 

forest in both three regions. As for national-scale products, CLCD and NLCD 2016 had a good ability to 632 

identify the details of forest, while CLUD dramatically missed both dense and sparse woodlands.  633 

Furthermore, to compare the performance in the wetland of GLC-2015 with other global and 634 

national-scale products, three wetland regions in South-central Canada, coastal America, and Sundarbans 635 

were selected. It can be found that GLC-2015 and Globeland30 had similar representation and performed 636 

well in identifying the wetland over three regions (Figure S10). Unexpectedly, FROM_GLC performed 637 

poorly in each region, with almost no wetlands captured. GLC_FCS30 also showed unstable quality in 638 

three regions. For example, it highly underestimated the wetland area in coastal America and completely 639 

mislabeled the mangroves as cropland in Sundarbans. NLCD 2016 and GMW accurately demonstrated 640 

the spatial pattern of the wetland, while the CA_wetlands map underestimated the wetland extent because 641 

it defined wetlands by wetland frequency of no less than 80% from 2000 to 2016 (Wulder et al., 2018).  642 

To understand the spatial distribution of impervious surfaces in different products, a comparison of 643 

mapping results for three megacities, including Tokyo, Shanghai, and New York, was shown in Figure 644 

S11. In Tokyo, a high consistency was found between GLC-2015, FROM_GLC, and GAUD, and both 645 

successfully captured the impervious surfaces in peri-urban areas. GLC_FCS30 showed the largest area 646 

for impervious surfaces because it misclassified many croplands into impervious surfaces. In Shanghai, 647 

GLC_FCS30 underestimated the central city, and CLUD lost the details of impervious surfaces because 648 

it was developed using the visual interpretation method. Other products generally had the similar 649 
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representation and accurately demonstrated the spatial distribution of the city. For New York, the 650 

FROM_GLC, GLC_FCS30, and GAUD agreed well with GLC-2015, while Globeland30 and NLCD 651 

2016 had high impervious areas than others. 652 

4.3.5 Visual inter-comparison at the local scale 653 

Except for visual comparison for individual classes among various products, we selected six typical 654 

geographical tiles covering six continents and different landscape environments to further present the 655 

mapping performance of the GLC-2015 map, Globeland30, FROM_GLC, and GLC_FCS30, as shown 656 

in Figure 11. Overall, from a local point of view, the GLC-2015 map tended to be more diverse in LC 657 

classes and had better identification performance in various classes. In flattened cropland areas (Figure 658 

11a and Figure 11b), the GLC-2015 map revealed diverse LC classes and accurately distinguished 659 

impervious surfaces; however, the Globeland30 exaggerated the extent of impervious surfaces, and the 660 

FROM_GLC failed to delineate impervious surfaces with small size. In addition, the FROM_GLC 661 

misclassified some cropland pixels as grassland (Figure 11a) and had an abnormal “stamp” (Figure 11b). 662 

As for mountain areas (Figure 11c and Figure 11d), the GLC-2015 map uncovered the spatial pattern of 663 

natural and planted forest, cropland, and grassland. There were large confusions between cropland and 664 

grassland in the results of the FROM_GLC and GLC_FCS30, and some impervious surfaces and 665 

cropland areas were wrongly labeled as bare land by the FROM_GLC. The areas (Figure 11c), which 666 

were classified as forest, were misidentified as cropland and grassland in three other products. For the 667 

rainforest areas where a large number of trees were reclaimed for cropland (Figure 11e), the GLC-2015 668 

map, Globeland30, and GLC_FCS30 had similarities in cropland areas; but the FROM_GLC recognized 669 

some reclaimed areas as grassland. Additionally, the GLC-2015 map accurately presented the spatial 670 

distribution of impervious surfaces while other products had omission or commission errors. In the 671 

cropland-dominated areas (Figure 11f), the GLC-2015 map and Globeland30 showed a higher agreement, 672 

and both of them mapped the undulating areas as grassland. Unlike the aforementioned two products, the 673 

FROM_GLC misclassified large tracts of croplands as grasslands, and the GLC_FCS30 did not capture 674 

the grassland in undulating areas. Figure 11 also shows the belief measure of the fused result in different 675 

geographical tiles. Although it does not directly evaluate the mapping accuracy, it serves as a degree of 676 

support for the hypothesis of an accepted LC class being true, it can still reflect the quality of the GLC-677 

2015 map. Overall, Bel of the GLC-2015 map exceeded 80% in most areas of each tile, demonstrating 678 



31 

 

the credibility and high quality of our mapping result. 679 

 680 

Figure 11. Visual comparison between the GLC-2015 map and three other products for different continents. 681 

(a) to (f) are examples for Europe, Asia, Africa, North America, South America, and Oceania, respectively.  682 

4.4 Improvement of the GLC-2015 map compared to other GLC products 683 

The spatial distribution of inconsistency between three GLC products at the global scale is illustrated in 684 

Figure 12. From the inconsistency map, we found that areas of low inconsistency mainly corresponded 685 

to homogeneous regions with simple LC classes. For example, the northern part of Africa was mainly 686 

classified as bare land, the northern part of South America was mainly classified as forest, and the 687 

Greenland was classified as permanent snow and ice. On the contrary, areas of high inconsistency were 688 

located in regions with complicated LC classes, especially in mixed vegetation regions or sparse 689 

vegetation regions, such as northern Asia, South Africa, Sahel region, Australia, northern and southern 690 
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North America, and eastern and southern South America. 691 

 692 

Figure 12. Distribution of inconsistency between the Globeland30, FROM_GLC, and GLC_FCS30.The blue 693 

rectangles are high-inconsistency grids that the area of pixels with value equal to 1 account for more than 20% 694 

of the total area. 695 

Based on the global point-based samples, we assessed the accuracies of the GLC-2015 map, 696 

Globeland30, FROM_GLC, and GLC_FCS30, in the aforementioned areas of low inconsistency, 697 

moderate inconsistency, and high inconsistency, as shown in Table 7. Overall, the GLC-2015 map had 698 

the highest accuracies against the other three ones in three areas. For each product, areas of low 699 

inconsistency obtained the highest accuracies, followed by areas of moderate inconsistency and then high 700 

inconsistency, which demonstrated that inconsistency of the existing products could indicate the quality 701 

of maps. In areas of low inconsistency, the overall accuracy gap between the GLC-2015 map and 702 

previous ones was as small as 0.1%-0.6%. However, for areas of moderate and high inconsistency, the 703 

comparison accuracy gap expanded to 19.3%-28.0% and 27.5%-29.7%, respectively. It proved the 704 

outperformance of the GLC-2015 map over the other three products in the areas of high identification 705 

difficulty.  706 

Table 7. Accuracy assessments of the GLC products in three areas. 707 

 GLC-2015 Globeland30 FROM_GLC GLC_FCS30 

OA Kappa OA Kappa OA Kappa OA Kappa 

Areas of low inconsistency 0.951 0.938 0.945 0.929 0.950 0.936 0.951 0.937 

Areas of moderate inconsistency 0.760 0.723 0.561 0.498 0.480 0.411 0.567 0.495 

Areas of high inconsistency 0.567 0.498 0.292 0.204 0.286 0.198 0.270 0.160 
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We further provided a comparative analysis of three previous GLC products and the GLC-2015 map 708 

in areas of high inconsistency. We calculated the area of pixels with a value equal to 1 in 4° × 4° grids. 709 

The grids that the area of pixels with a value equal to 1 account for more than 20% of the total area was 710 

selected as grids of high inconsistency. Finally, a total number of 147 grids were selected (Figure 13). To 711 

compare the accuracy of the GLC-2015 map and other ones, we utilized scatter plots to represent the 712 

relationship between the overall accuracy of one previous product and the GLC-2015 map in each grid 713 

of high inconsistency based on the global point-based samples (Figure 13). Most of the points were above 714 

the 1:1line, namely the values of y-axes corresponding to those points were larger than the values of x-715 

axes, which demonstrated that the GLC-2015 map performed better than other GLC products in most 716 

grids of high inconsistency. It can be found that the fitting line in each scatter plot had the intercept 717 

exceeding 0.40, the slope less than 0.55, and the R2 less than 0.35, showing that the GLC-2015 map had 718 

a large difference with other ones. 719 

 720 

Figure 13. Overall accuracy relationship between the GLC-2015 map and other products in grids of high 721 

inconsistency. 722 

To intuitively compare the mapping result of the GLC-2015 map and three existing ones in areas of 723 

high inconsistency, we focused on visual inspection in various areas based on four 5 km×5km patch-724 

based samples and conducted accuracy statistics, as shown in Figure 14. In the detailed display, it is 725 

apparent that three previous products had a large difference in four areas. As can be seen from the four 726 

visual cases, the typical confusions between LC classes in areas of high inconsistency were as follows: 727 

(1) shrubland was easily misclassified as forest and grassland; (2) cropland, grassland, and shrubland 728 

were heavily confused with each other; (3) bare land was likely to be mixed with shrubland and grassland. 729 

Overall, the GLC-2015 map surpassed other products in the local accuracy assessment. In Western 730 

Australian mulga shrublands (Figure 14a), the GLC-2015 map and GLC_FCS30 showed similar spatial 731 

distribution and shape of bare land and forest, which was consistent with the real landscape. While the 732 
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Globeland30 classified bare land as grassland and the FROM_GLC under-classified bare land. As for 733 

Zambezian and mopane woodlands (Figure 14b), the GLC-2015 map performed best with OA reaching 734 

82.6%, followed by the FROM_GLC. In contrast, other products mixed shrubland with forest or 735 

grassland. In agricultural land of Western United States (Figure 14c), the GLC-2015 and Globeland30 736 

exhibited similar mapping results with the ground truth while the FROM_GLC had large difference with 737 

other products. When it comes to Guinean forest-savanna mosaic (Figure 14d), the GLC-2015 map and 738 

Globeland30 showed high spatial consistency, and both had accurate classification profile for cropland, 739 

forest, and impervious surfaces, while other products misidentified cropland as other LC classes. 740 

 741 

Figure 14. Visual comparison between the GLC-2015 map and three other products based on 5km × 5km 742 

patch-based samples and Google Earth images for four areas of high inconsistency (a-d). The OA for each 743 

product was calculated by the corresponding patch-based sample. 744 

4.5 Comparison between DSET and other methods 745 

4.5.1 Inter-comparison with other data fusion methods 746 

The accuracy assessments on GLC-2015 obtained by DSET and global mapping results from two other 747 

data fusion methods were conducted based on two global validation sample sets. The confusion matrixes 748 
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with the global point-based samples are shown in Table S5 and S6. The OA of the global land cover 749 

classification obtained by the MV and SC was 72.1% and 71.8%, respectively. As shown in Table 3, the 750 

OA of the GLC-2015 map obtained by the DSET method was 79.5%, which had an improvement of 7.4% 751 

and 7.7% compared to mapping results from the MV and SC. In addition, the GLC-2015 map obtained 752 

higher PA and UA for most LC classes. 753 

When evaluating GLC maps obtained by different data fusion approaches using the global patch-754 

based samples, the DSET method obtained the highest OA of 83.6% and kappa coefficient of 0.566, 755 

compared with 80.1% and 0.497 for MV, and 71.8% and 0.391 for SC (Table S7). Here, the DSET method 756 

achieved an accuracy improvement of 3.5% and 11.8%. Compared to the two other methods, the DSET 757 

improved the accuracy for nearly all the LC classes, especially for grassland, shrubland, and wetland. 758 

We also compared the overall accuracy relationship between the DSET and other methods. From the 759 

scatter plots (Figure 15), we found that the majority of points were above the 1:1 line, implying DSET 760 

had better mapping performance than others in most regions across the globe. 761 

 762 
Figure 15. Scatter plots between the DSET and other data fusion methods based on the global patch-based 763 

samples. 764 

Land cover mapping results from the DSET and other methods were also visually illustrated in six 765 

tiles with size of the 0.25° covering different continents, as displayed in Figure S12. Despite that mapping 766 

results from the DSET and MV depicted similar spatial distribution of LC classes in all tiles except the 767 

tile in North America, the DSET more accurately delineated the impervious surfaces of small size which 768 

scattered in cropland-dominated (Figure S12a) or arid areas (Figure S12c). Notably, the mapping results 769 

from the SC method presented significant differences from that obtained by the DSET and MV. For 770 

example, the SC method failed to capture scattered rural residential areas (Figure S12b) and misclassified 771 
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grassland as cropland (Figure S12d). Overall, the DSET method possessed better recognition 772 

performance in various LC classes than the other two methods. 773 

4.5.2 Inter-comparison with the Random Forest   774 

Based on the validation data from 20% of the global point-based samples, we evaluated the quality of 775 

the GLC-2015 map obtained by the DSET method and mapping results classified by the RF classifier for 776 

a total of 300 grids. The DSET method obtained a mean OA of 80.9% across six continents, while the 777 

RF achieved a lower accuracy of 69.9%. From the scatter plots which compared the OA and kappa 778 

coefficient between the DSET and RF grid by grid, it was found that the DSET possessed higher accuracy 779 

in most grids (Figure S13). Especially, the points were clustered in the upper right corner of the plot 780 

(Figure S13a), which indicated that the RF classifier trained with the global point-based samples 781 

performed well in those selected grids though it was inferior to the DSET method. Figure S14 shows the 782 

OA of the DSET and RF across six continents. We found that the DSET method outperformed RF 783 

classifier for each continent. Especially, the mapping results of both two methods presented the lowest 784 

accuracy in Oceania. It may be because the selected grids are located in regions with heterogeneous 785 

landscape. As for the box plot for the RF classifier, the low hinge exceeded 60.00% in all continents 786 

except Oceania, demonstrating the reliability of the RF classifier trained by the global point-based 787 

samples. Nevertheless, the performance of the RF classifier was worse than the DSET method. This 788 

highlights the feasibility of the DSET method in integrating the existing maps for a better one. 789 

4.6 Advancement and Limitations 790 

To address the problem that current 30m GLC products have great inconsistency in heterogeneous 791 

areas and low mapping accuracy for spectral similar LC classes, this study adopted a multi-source 792 

product fusion approach based on DSET to create an improved global land cover map (GLC-2015). The 793 

results show that the GLC-2015 had good mapping performance with OA reaching 79.5% and 83.6% 794 

based on two different validation sets. Compared with those existing products, the GLC-2015 greatly 795 

improved the accuracy across the globe, especially in areas of high inconsistency with a significant 796 

improvement of 27.5%-29.7%. Compared with other commonly used data fusion methods, the adopted 797 

DSET approach provided higher OA and kappa coefficient which showed the benefit of the DEST in 798 

integrating various land cover data. No matter from the respective of the global point-based samples or 799 
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the global patch-based samples, the GLC-2015 showed relatively low accuracy for grassland, shrubland, 800 

and wetland compared to other LC classes. Those LC classes are challenging to map at the global scale 801 

duo to their spectral similarity to other classes, ambiguous definitions, or variety with regions. However, 802 

compared to other existing 30m GLC products, the GLC-2015 map performed better with the PA and OA 803 

ranking first or second for grassland, shrubland, and wetland, which indicated the improvement of the 804 

GLC-2015 in poorly-mapped LC classes. It was found that the GLC-2015 map had worse performance 805 

in areas with more disagreements (Table 7). However, the GLC-2015 map surpassed other products in 806 

the areas with different agree of inconsistency. Moreover, the accuracy gap between the GLC-2015 map 807 

and other ones in areas of high inconsistency was larger than that in areas with fewer disagreements, 808 

implying that the GLC-2015 map provides a more accurate characterization of land cover in poorly-809 

mapped areas. Although the GLC-2015 map was not capable of avoiding all the wrong mapping results 810 

caused by the disagreements from the candidate GLC products, it outperformed the existing products 811 

from the aspects of mapping accuracy for the easily misclassified classes and areas with great 812 

inconsistency.  813 

Although the GLC-2015 map can evidently improve mapping accuracy in inconsistent areas, there 814 

are still some uncertainties. First, we used three multiple-class GLC maps and four single-class GLC 815 

maps as the source data for integration. Since those products provided information of land cover at the 816 

global scale, classification errors inevitably exist in some specific regions. The multisource product 817 

fusion method based on DEST depends highly on the quality of those candidate maps such that the 818 

inconsistency between those source maps might lead to incorrect classification. Second, the date time of 819 

the GlobeLand30 is different from that of other maps. Because of the five-year time interval, there are 820 

changes in land cover, which inevitably distort the fusion results. However, the changed areas are tiny 821 

compared to the world’s terrestrial area. The uncertainties caused by the LC changes are minor than those 822 

from classification errors. In addition, the global point-based samples were used to evaluate the reliability 823 

of each product. The accuracy of GlobeLand30 was lower than the other products for areas with LC 824 

changes. In this case, the fusion depended more on other maps to avoid the errors caused by LC changes. 825 

Third, due to the different LC definitions, uncertainties in classification system conversion are inevitable 826 

(Zhang et al., 2017), which might cause problems for the fusion based on the DSET method. However, 827 

we conducted a reliability evaluation of the candidate maps to reduce the influence of uncertainties in 828 
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classification system conversion on the fusion. The point-based samples used for reliability evaluation 829 

were labeled referring to the LC definitions in our classification system so that all the maps were 830 

evaluated under the criterion of the classification system we used. By the reliability evaluation, the 831 

candidate maps were assessed to have lower accuracy for areas with mismatched information. When 832 

integrating all the maps grid by grid, the mismatched information would contribute less to the fusion. 833 

Lastly, most candidate LC products used a simple classification system without a level-2 classification 834 

system, so they made no contributions to a more detailed classification system when they served as source 835 

data for data fusion. Although some maps provided detailed LC classification results, such as the 836 

GLC_FCS30 and FROM_GLC for 2015, there might be several challenges in the standardization and 837 

uniformity of level-2 classification systems due to the large discrepancies in the definition and criteria. 838 

Therefore, the GLC-2015 adopted a simple classification system containing 10 major LC classes. In 839 

future work, measures will be taken to meet the expectation of a more detailed classification system for 840 

GLC mapping. An improved GLC product with a detailed classification system rather than a simple one-841 

level classification system can be further developed based on the highly applicable and general DSET 842 

method whenever more products with diverse LC classes are available. Additionally, a feasible 843 

framework for the conversion of different level-2 classification systems into a uniform system should be 844 

developed. 845 

5. Data availability 846 

The improved global land cover map in 2015 with 30 m resolution is available at 847 

https://doi.org/10.6084/m9.figshare.22358143.v2 (Li et al., 2022). The GLC-2015 product is organized 848 

by a total of 1507 4° × 4° geographical grids in GeoTIFF format across the world’s terrestrial area. Each 849 

image of the GLC-2015 product is named as “GLC-2015_lon_lat” (lon and lat represent the longitude 850 

and latitude and of the grid’s lower left corner, respectively).  851 

6. Conclusions 852 

GLC information at fine spatial resolution is vital for the global environment and climate studies which 853 

can capture the footprint of human activity. Resulting from the differences in classification scheme, 854 

satellite sensor data, classification algorithms and sampling strategies, the existing GLC products have 855 
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high inconsistency in some parts of the world, especially in fragmented areas and transition zones. More 856 

accurate and reliable data with accuracy improved in areas of high mapping inconsistency is very 857 

desirable. In this study, with the help of the GEE platform, we developed the GLC-2015 map by 858 

integrating multiple existing GLC maps based on the DSET. The GLC-2015 map can significantly 859 

increase the mapping accuracy and possess good recognition performance in various LC classes. 860 

The GLC-2015 map was validated by both the global point-based samples and the global patch-861 

based samples. Accuracy assessments show that the GLC-2015 map achieved an OA of 79.5%, a kappa 862 

coefficient of 0.757 using a total of 34,117 global point-based samples, and an OA of 83.6%, a kappa 863 

coefficient of 0.566 using a total of 201 global patch-based samples. Data inter-comparison indicated 864 

that the GLC-2015 map surpassed other three products both visually and quantitatively, by OA 865 

improvement of 14.0%-17.8% validated with the global point-based samples and 5.9%-24.5% with the 866 

global patch-based samples. Compared to other products, there are fewer misclassifications in the GLC-867 

2015 map for most LC classes, such as forest, cropland, shrubland, and water bodies. Meanwhile, the 868 

GLC-2015 map outperformed others in terms of OA and kappa coefficient across different ecoregions 869 

and different continents. Notably, the GLC-2015 map showed better performance than others by an 870 

increment of 0.1%-0.6%. in overall accuracy for areas of low inconsistency, 19.3%-28.0% for areas of 871 

moderate inconsistency, and 27.5%-29.7% for areas of high inconsistency. In addition, the mapping 872 

results obtained by the DSET surpassed other data fusion methods with OA improvement of 7.4%-7.7% 873 

via the global point-based samples and 3.5%-11.8% via the global patch-based samples. Therefore, it can 874 

be concluded that the GLC-2015 map is a robust and reliable map that can significantly improve mapping 875 

accuracy compared to previous GLC products and mapping results from other common data fusion 876 

methods. 877 

Author contributions 878 

XL and XX conceived the research. BL and XX designed and carried out the experiments. QS and DH 879 

provided data. BL wrote the original manuscript. XX, HZ and YC reviewed the writing. 880 

Competing interests   881 

The authors declare that they have no conflict of interest. 882 



40 

 

Financial support 883 

This research has been supported by the National Key Research & Development Program of China (Grant 884 

No. 2019YFA0607203), the National Natural Science Foundation of China (Grant No. 42001326, 885 

42171409), and the Natural Science Foundation of Guangdong Province of China (Grant No. 886 

2022A1515012207). 887 

References 888 

Ban, Y., Gong, P., and Giri, C.: Global land cover mapping using Earth observation satellite data: 889 

Recent progresses and challenges, ISPRS J. Photogramm., 103, 1-6, 890 

https://doi.org/10.1016/j.isprsjprs.2015.01.001, 2015. 891 

Bartholomé, E. and Belward, A. S.: GLC2000: A new approach to global land cover mapping from 892 

Earth observation data, Int. J. Remote Sens., 26, 1959-1977, 893 

https://doi.org/10.1080/01431160412331291297, 2005. 894 

Bounoua, L., DeFries, R., Collatz, G. J., Sellers, P., and Khan, H.: Effects of land cover conversion on 895 

surface climate, Clim. Change, 52, 29-64, https://doi.org/10.1023/A:1013051420309, 2002. 896 

Bunting, P., Rosenqvist, A., Lucas, R. M., Rebelo, L. M., Hilarides, L., Thomas, N., Hardy, A., Itoh, T., 897 

Shimada, M., and Finlayson, C. M.: The Global Mangrove Watch—A new 2010 global baseline 898 

of mangrove extent, Remote Sens., 10, https://doi.org/10.3390/rs10101669, 2018. 899 

Chapin, F. S. I., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. 900 

U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., and Díaz, S.: Consequences of changing 901 

biodiversity, Nature, 405, 234-242, https://doi.org/10.1038/35012241, 2000. 902 

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., 903 

Tong, X., and Mills, J.: Global land cover mapping at 30m resolution: A POK-based operational 904 

approach, ISPRS J. Photogramm., 103, 7-27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 905 

2015. 906 

Chen, T. M. and Venkataramanan, V.: Dempster-Shafer theory for intrusion detection in ad hoc 907 

networks, IEEE Internet comput., 9, 35-41, https://doi.org/10.1109/MIC.2005.123, 2005. 908 

Clinton, N., Yu, L., and Gong, P.: Geographic stacking: Decision fusion to increase global land cover 909 

map accuracy, ISPRS J. Photogramm., 103, 57-65, 910 

https://doi.org/10.1016/j.isprsjprs.2015.02.010, 2015. 911 

Land Cover CCI: Product User Guide Version 2: https://www.esa-landcover-912 

cci.org/?q=webfm_send/84, last access: 21 January 2022. 913 

DeFries, R. S., Houghton, R. A., Hansen, M. C., Field, C. B., Skole, D., and Townshend, J.: Carbon 914 

emissions from tropical deforestation and regrowth based on satellite observations for the 915 

1980s and 1990s, Proc. Natl. Acad. Sci. U.S.A., 99, 14256, 916 

https://doi.org/10.1073/pnas.182560099, 2002. 917 

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. 918 

T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, 919 

C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global Consequences of Land 920 

Use, Science, 309, 570-574, https://doi.org/10.1126/science.1111772, 2005. 921 

https://doi.org/10.1016/j.isprsjprs.2015.01.001
https://doi.org/10.1080/01431160412331291297
https://doi.org/10.1023/A:1013051420309
https://doi.org/10.3390/rs10101669
https://doi.org/10.1038/35012241
https://doi.org/10.1016/j.isprsjprs.2014.09.002
https://doi.org/10.1109/MIC.2005.123
https://doi.org/10.1016/j.isprsjprs.2015.02.010
https://doi.org/10.1073/pnas.182560099
https://doi.org/10.1126/science.1111772


41 

 

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: 922 

MODIS Collection 5 global land cover: Algorithm refinements and characterization of new 923 

datasets, Remote Sens. Environ., 114, 168-182, https://doi.org/10.1016/j.rse.2009.08.016, 2010. 924 

Fritz, S., You, L., Bun, A., See, L., McCallum, I., Schill, C., Perger, C., Liu, J., Hansen, M., and 925 

Obersteiner, M.: Cropland for sub‐Saharan Africa: A synergistic approach using five land cover 926 

data sets, Geophy.  Res. Lett., 38, L04404, https://doi.org/10.1029/2010GL046213, 2011. 927 

Gao, Y., Liu, L., Zhang, X., Chen, X., Mi, J., and Xie, S.: Consistency analysis and accuracy assessment 928 

of three global 30 m land-cover products over the European Union using the LUCAS dataset, 929 

Remote Sens., 12, 3479, https://doi.org/10.3390/rs12213479, 2020. 930 

Gengler, S. and Bogaert, P.: Combining land cover products using a minimum divergence and a 931 

Bayesian data fusion approach, Int. J. Geogr. Inf. Sci. , 32, 806-826, 932 

https://doi.org/10.1080/13658816.2017.1413577, 2018. 933 

Giri, C., Zhu, Z., and Reed, B.: A comparative analysis of the Global Land Cover 2000 and MODIS 934 

land cover datasets, Remote Sens. Environ., 94, 123-132, 935 

https://doi.org/10.1016/j.rse.2004.09.005, 2005. 936 

Giri, C., Pengra, B., Long, J., and Loveland, T. R.: Next generation of global land cover 937 

characterization, mapping, and monitoring, Int. J. Appl. Earth Observ., 25, 30-37, 938 

https://doi.org/10.1016/j.jag.2013.03.005, 2013. 939 

Gómez, C., White, J. C., and Wulder, M. A.: Optical remotely sensed time series data for land cover 940 

classification: A review, ISPRS J. Photogramm., 116, 55-72, 941 

https://doi.org/10.1016/j.isprsjprs.2016.03.008, 2016. 942 

Gong, P.: Remote sensing of environmental change over China: A review, Sci. Bull., 57, 2793-2801, 943 

https://doi.org/10.1007/s11434-012-5268-y, 2012. 944 

Gong, P., Yu, L., Li, C., Wang, J., Liang, L., Li, X., Ji, L., Bai, Y., Cheng, Y., and Zhu, Z.: A new research 945 

paradigm for global land cover mapping, Ann. GIS, 22, 87-102, 946 

https://doi.org/10.1080/19475683.2016.1164247, 2016. 947 

Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B., Yang, J., Zhang, W., and Zhou, Y.: 948 

Annual maps of global artificial impervious area (GAIA) between 1985 and 2018, Remote Sens. 949 

Environ., 236, 111510, https://doi.org/10.1016/j.rse.2019.111510, 2020. 950 

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., Li, C., Li, X., 951 

Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., Zhang, H., Zhu, P., Zhao, Z., Zhang, 952 

H., Zheng, Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, J., Yu, L., Wang, L., Liu, X., Shi, T., Zhu, M., 953 

Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C., Clinton, N., Zhu, Z., Chen, J., and Chen, J.: Finer 954 

resolution observation and monitoring of global land cover: first mapping results with Landsat 955 

TM and ETM+ data, Int. J. Remote Sens., 34, 2607-2654, 956 

https://doi.org/10.1080/01431161.2012.748992, 2013. 957 

Grekousis, G., Mountrakis, G., and Kavouras, M.: An overview of 21 global and 43 regional land-958 

cover mapping products, Int. J. Remote Sens., 36, 5309-5335, 959 

https://doi.org/10.1080/01431161.2015.1093195, 2015. 960 

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., and Briggs, J. M.: Global 961 

change and the ecology of cities, Science, 319, 756-760, 962 

https://doi.org/10.1126/science.1150195, 2008. 963 

Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg, R.: Global land cover classification 964 

at 1 km spatial resolution using a classification tree approach, Int. J. Remote Sens., 21, 1331-965 

https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1029/2010GL046213
https://doi.org/10.3390/rs12213479
https://doi.org/10.1080/13658816.2017.1413577
https://doi.org/10.1016/j.rse.2004.09.005
https://doi.org/10.1016/j.jag.2013.03.005
https://doi.org/10.1016/j.isprsjprs.2016.03.008
https://doi.org/10.1080/19475683.2016.1164247
https://doi.org/10.1016/j.rse.2019.111510
https://doi.org/10.1080/01431161.2012.748992
https://doi.org/10.1080/01431161.2015.1093195
https://doi.org/10.1126/science.1150195


42 

 

1364, https://doi.org/10.1080/014311600210209, 2000. 966 

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., 967 

Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., 968 

and Townshend, J. R. G.: High-resolution global maps of 21st-century forest cover change, 969 

Science, 342, 850-853, https://doi.org/10.1126/science.1244693, 2013. 970 

Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A., and Schmullius, C.: Some challenges in global 971 

land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets, 972 

Remote Sens. Environ., 112, 2538-2556, https://doi.org/10.1016/j.rse.2007.11.013, 2008. 973 

Hu, L., Chen, Y., Xu, Y., Zhao, Y., Yu, L., Wang, J., and Gong, P.: A 30 meter land cover mapping of 974 

China with an efficient clustering algorithm CBEST, Science China Earth Sciences, 57, 2293-2304, 975 

https://doi.org/10.1007/s11430-014-4917-1, 2014. 976 

Huang, X., Li, J., Yang, J., Zhang, Z., Li, D., and Liu, X.: 30 m global impervious surface area dynamics 977 

and urban expansion pattern observed by Landsat satellites: From 1972 to 2019, Science China 978 

Earth Sciences, 64, 1922-1933, https://10.1007/s11430-020-9797-9, 2021. 979 

Iwao, K., Nasahara, K. N., Kinoshita, T., Yamagata, Y., Patton, D., and Tsuchida, S.: Creation of new 980 

global land cover map with map integration, J. Geogr. Inf. Syst., 3, 160-165, 981 

https://doi.org/10.4236/jgis.2011.32013, 2011. 982 

Jin, Q., Xu, E., and Zhang, X.: A fusion method for multisource land cover products based on 983 

superpixels and statistical extraction for enhancing resolution and improving accuracy, Remote 984 

Sens., 14, 1676, https://doi.org/10.3390/rs14071676, 2022. 985 

Jung, M., Henkel, K., Herold, M., and Churkina, G.: Exploiting synergies of global land cover 986 

products for carbon cycle modeling, Remote Sens. Environ., 101, 534-553, 987 

https://doi.org/10.1016/j.rse.2006.01.020, 2006. 988 

Kang, J., Wang, Z., Sui, L., Yang, X., Ma, Y., and Wang, J.: Consistency analysis of remote sensing 989 

land cover products in the tropical rainforest climate region: A case study of Indonesia, Remote 990 

Sens., 12, 1410, https://doi.org/10.3390/rs12091410, 2020. 991 

Kim, D., Lim, C.-H., Song, C., Lee, W.-K., Piao, D., Heo, S., and Jeon, S.: Estimation of future carbon 992 

budget with climate change and reforestation scenario in North Korea, Adv. Space Res., 58, 993 

1002-1016, https://doi.org/10.1016/j.asr.2016.05.049, 2016. 994 

Li, B., Xu, X., Liu, X., Shi, Q., Zhuang, H., Cai, Y., and He, D.: An improved global land cover mapping 995 

in 2015 with 30 m resolution (GLC-2015) based on a multi-source product fusion approach. 996 

[dataset], https://doi.org/10.6084/m9.figshare.22358143.v2, 2022. 997 

Li, C., Gong, P., Wang, J., Zhu, Z., Biging, G. S., Yuan, C., Hu, T., Zhang, H., Wang, Q., Li, X., Liu, X., 998 

Xu, Y., Guo, J., Liu, C., Hackman, K. O., Zhang, M., Cheng, Y., Yu, L., Yang, J., Huang, H., and 999 

Clinton, N.: The first all-season sample set for mapping global land cover with Landsat-8 data, 1000 

Sci. Bull., 62, 508-515, https://doi.org/10.1016/j.scib.2017.03.011, 2017. 1001 

Liu, H., Gong, P., Wang, J., Clinton, N., Bai, Y., and Liang, S.: Annual dynamics of global land cover 1002 

and its long-term changes from 1982 to 2015, Earth Syst. Sci. Data, 12, 1217-1243, 1003 

https://doi.org/10.5194/essd-12-1217-2020, 2020a. 1004 

Liu, H., Gong, P., Wang, J., Wang, X., Ning, G., and Xu, B.: Production of global daily seamless data 1005 

cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0, 1006 

Remote Sens. Environ., 258, 112364, https://doi.org/10.1016/j.rse.2021.112364, 2021a. 1007 

Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang, S., Li, R., Yan, C., Wu, S., Shi, 1008 

X., Jiang, N., Yu, D., Pan, X., and Chi, W.: Spatiotemporal characteristics, patterns and causes of 1009 

https://doi.org/10.1080/014311600210209
https://doi.org/10.1126/science.1244693
https://doi.org/10.1016/j.rse.2007.11.013
https://doi.org/10.1007/s11430-014-4917-1
https://10.0.3.239/s11430-020-9797-9
https://doi.org/10.4236/jgis.2011.32013
https://doi.org/10.3390/rs14071676
https://doi.org/10.1016/j.rse.2006.01.020
https://doi.org/10.3390/rs12091410
https://doi.org/10.1016/j.asr.2016.05.049
https://doi.org/10.6084/m9.figshare.22358143.v2
https://doi.org/10.1016/j.scib.2017.03.011
https://doi.org/10.5194/essd-12-1217-2020
https://doi.org/10.1016/j.rse.2021.112364


43 

 

land use changes in China since the late 1980s, Dili Xuebao/Acta Geogr. Sin., 69, 3-14, 1010 

https://doi.org/10.11821/dlxb201401001, 2014. 1011 

Liu, K. and Xu, E.: Fusion and correction of multi-source land cover products based on spatial 1012 

detection and uncertainty reasoning methods in Central Asia, Remote Sens., 13, 244, 1013 

https://doi.org/10.3390/rs13020244, 2021. 1014 

Liu, L., Zhang, X., Gao, Y., Chen, X., Shuai, X., and Mi, J.: Finer-resolution mapping of global land 1015 

cover: Recent developments, consistency analysis, and prospects, Journal of Remote Sensing, 1016 

2021, 5289697, https://doi.org/10.34133/2021/5289697, 2021b. 1017 

Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., Lin, P., Gong, K., Ziegler, A. D., Chen, A., Gong, P., 1018 

Chen, J., Hu, G., Chen, Y., Wang, S., Wu, Q., Huang, K., Estes, L., and Zeng, Z.: High-1019 

spatiotemporal-resolution mapping of global urban change from 1985 to 2015, Nature 1020 

Sustainability, 3, 564-570, https://doi.org/10.1038/s41893-020-0521-x, 2020b. 1021 

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.: 1022 

Development of a global land cover characteristics database and IGBP DISCover from 1 km 1023 

AVHRR data, Int. J. Remote Sens., 21, 1303-1330, https://doi.org/10.1080/014311600210191, 1024 

2000. 1025 

Ludwig, C., Walli, A., Schleicher, C., Weichselbaum, J., and Riffler, M.: A highly automated algorithm 1026 

for wetland detection using multi-temporal optical satellite data, Remote Sens. Environ., 224, 1027 

333-351, https://doi.org/10.1016/j.rse.2019.01.017, 2019. 1028 

Mayaux, P., Bartholomé, E., Fritz, S., and Belward, A.: A new land-cover map of Africa for the year 1029 

2000, J. Biogeogr., 31, 861-877, https://doi.org/10.1111/j.1365-2699.2004.01073.x, 2004. 1030 

McCallum, I., Obersteiner, M., Nilsson, S., and Shvidenko, A.: A spatial comparison of four satellite 1031 

derived 1km global land cover datasets, Int. J. Appl. Earth Observ., 8, 246-255, 1032 

https://doi.org/10.1016/j.jag.2005.12.002, 2006. 1033 

Meng, Z., Dong, J., Ellis, E. C., Metternicht, G., Qin, Y., Song, X.-P., Löfqvist, S., Garrett, R. D., Jia, X., 1034 

and Xiao, X.: Post-2020 biodiversity framework challenged by cropland expansion in protected 1035 

areas, Nature Sustainability, https://doi.org/10.1038/s41893-023-01093-w, 2023. 1036 

Meyer, M. F., Labou, S. G., Cramer, A. N., Brousil, M. R., and Luff, B. T.: The global lake area, climate, 1037 

and population dataset, Sci. Data, 7, 174, https://doi.org/10.1038/s41597-020-0517-4, 2020. 1038 

Moody, A. and Woodcock, C.: Scale-dependent errors in the estimation of land-cover proportions: 1039 

Implications for global land-cover datasets, Photogramm. Eng. Remote Sens., 60, 585-594, 1994. 1040 

Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface 1041 

water and its long-term changes, Nature, 540, 418-422, https://doi.org/10.1038/nature20584, 1042 

2016. 1043 

Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., 1044 

Healey, S. P., and Loveland, T. R.: Quality control and assessment of interpreter consistency of 1045 

annual land cover reference data in an operational national monitoring program, Remote Sens. 1046 

Environ., 238, 111261, https://doi.org/10.1016/j.rse.2019.111261, 2020. 1047 

Razi, S., Karami Mollaei, M. R., and Ghasemi, J.: A novel method for classification of BCI multi-class 1048 

motor imagery task based on Dempster–Shafer theory, Inf. Sci., 484, 14-26, 1049 

https://doi.org/10.1016/j.ins.2019.01.053, 2019. 1050 

Rottensteiner, F., Trinder, J. C., Clode, S., and Kubik, K.: Using the Dempster-Shafer method for the 1051 

fusion of LIDAR data and multi-spectral images for building detection, Inform. Fusion., 6, 283-1052 

300, https://doi.org/10.1016/j.inffus.2004.06.004, 2005. 1053 

https://doi.org/10.11821/dlxb201401001
https://doi.org/10.3390/rs13020244
https://doi.org/10.34133/2021/5289697
https://doi.org/10.1038/s41893-020-0521-x
https://doi.org/10.1080/014311600210191
https://doi.org/10.1016/j.rse.2019.01.017
https://doi.org/10.1111/j.1365-2699.2004.01073.x
https://doi.org/10.1016/j.jag.2005.12.002
https://doi.org/10.1038/s41893-023-01093-w
https://doi.org/10.1038/s41597-020-0517-4
https://doi.org/10.1038/nature20584
https://doi.org/10.1016/j.rse.2019.111261
https://doi.org/10.1016/j.ins.2019.01.053
https://doi.org/10.1016/j.inffus.2004.06.004


44 

 

Running, S. W.: Ecosystem disturbance, carbon, and climate, Science, 321, 652-653, 1054 

https://doi.org/10.1126/science.1159607, 2008. 1055 

Schewe, J., Gosling, S. N., Reyer, C., Zhao, F., Ciais, P., Elliott, J., Francois, L., Huber, V., Lotze, H. K., 1056 

Seneviratne, S. I., van Vliet, M. T. H., Vautard, R., Wada, Y., Breuer, L., Büchner, M., Carozza, D. 1057 

A., Chang, J., Coll, M., Deryng, D., de Wit, A., Eddy, T. D., Folberth, C., Frieler, K., Friend, A. D., 1058 

Gerten, D., Gudmundsson, L., Hanasaki, N., Ito, A., Khabarov, N., Kim, H., Lawrence, P., 1059 

Morfopoulos, C., Müller, C., Müller Schmied, H., Orth, R., Ostberg, S., Pokhrel, Y., Pugh, T. A. M., 1060 

Sakurai, G., Satoh, Y., Schmid, E., Stacke, T., Steenbeek, J., Steinkamp, J., Tang, Q., Tian, H., 1061 

Tittensor, D. P., Volkholz, J., Wang, X., and Warszawski, L.: State-of-the-art global models 1062 

underestimate impacts from climate extremes, Nat. Commun., 10, 1005, 1063 

https://doi.org/10.1038/s41467-019-08745-6, 2019. 1064 

See, L., Schepaschenko, D., Lesiv, M., McCallum, I., Fritz, S., Comber, A., Perger, C., Schill, C., Zhao, 1065 

Y., Maus, V., Siraj, M. A., Albrecht, F., Cipriani, A., Vakolyuk, M. y., Garcia, A., Rabia, A. H., Singha, 1066 

K., Marcarini, A. A., Kattenborn, T., Hazarika, R., Schepaschenko, M., van der Velde, M., Kraxner, 1067 

F., and Obersteiner, M.: Building a hybrid land cover map with crowdsourcing and 1068 

geographically weighted regression, ISPRS J. Photogramm., 103, 48-56, 1069 

https://doi.org/10.1016/j.isprsjprs.2014.06.016, 2015. 1070 

Shafizadeh-Moghadam, H., Minaei, M., Feng, Y., and Pontius, R. G.: GlobeLand30 maps show four 1071 

times larger gross than net land change from 2000 to 2010 in Asia, Int. J. Appl. Earth Observ., 1072 

78, 240-248, https://doi.org/10.1016/j.jag.2019.01.003, 2019. 1073 

Song, X., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., and 1074 

Townshend, J. R.: Global land change from 1982 to 2016, Nature, 560, 639-643, 1075 

https://doi.org/10.1038/s41586-018-0411-9, 2018. 1076 

Sun, B., Chen, X., and Zhou, Q.: Uncertainty assessment of GlobeLand30 land cover data set over 1077 

central Asia, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 41, 1313, 1078 

https://doi.org/10.5194/isprs-archives-XLI-B8-1313-2016, 2016. 1079 

Teluguntla, P., Thenkabail, P. S., Oliphant, A., Xiong, J., Gumma, M. K., Congalton, R. G., Yadav, K., 1080 

and Huete, A.: A 30-m landsat-derived cropland extent product of Australia and China using 1081 

random forest machine learning algorithm on Google Earth Engine cloud computing platform, 1082 

ISPRS J. Photogramm., 144, 325-340, https://doi.org/10.1016/j.isprsjprs.2018.07.017, 2018. 1083 

Verburg, P. H., Neumann, K., and Nol, L.: Challenges in using land use and land cover data for 1084 

global change studies, Glob. Change Biol., 17, 974-989, https://doi.org/10.1111/j.1365-1085 

2486.2010.02307.x, 2011. 1086 

Verburg, P. H., Mertz, O., Erb, K.-H., Haberl, H., and Wu, W.: Land system change and food security: 1087 

towards multi-scale land system solutions, Curr. Opin. Environ. Sustain., 5, 494-502, 1088 

https://doi.org/10.1016/j.cosust.2013.07.003, 2013. 1089 

Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L., and Dewitz, J. A.: Thematic accuracy 1090 

assessment of the NLCD 2016 land cover for the conterminous United States, Remote Sens. 1091 

Environ., 257, 112357, https://doi.org/10.1016/j.rse.2021.112357, 2021. 1092 

Wu, J., Wang, X., Zhong, B., Yang, A., Jue, K., Wu, J., Zhang, L., Xu, W., Wu, S., Zhang, N., and Liu, 1093 

Q.: Ecological environment assessment for Greater Mekong Subregion based on Pressure-1094 

State-Response framework by remote sensing, Ecol. Indic., 117, 106521, 1095 

https://doi.org/10.1016/j.ecolind.2020.106521, 2020. 1096 

Wulder, M. A., Li, Z., Campbell, E. M., White, J. C., Hobart, G., Hermosilla, T., and Coops, N. C.: A 1097 

https://doi.org/10.1038/s41467-019-08745-6
https://doi.org/10.1016/j.isprsjprs.2014.06.016
https://doi.org/10.1016/j.jag.2019.01.003
https://doi.org/10.1038/s41586-018-0411-9
https://doi.org/10.5194/isprs-archives-XLI-B8-1313-2016
https://doi.org/10.1016/j.isprsjprs.2018.07.017
https://doi.org/10.1111/j.1365-2486.2010.02307.x
https://doi.org/10.1111/j.1365-2486.2010.02307.x
https://doi.org/10.1016/j.cosust.2013.07.003
https://doi.org/10.1016/j.rse.2021.112357
https://doi.org/10.1016/j.ecolind.2020.106521


45 

 

national assessment of wetland status and trends for Canada’s forested ecosystems using 33 1098 

years of earth observation satellite data, Remote Sens., 10, 1623, 1099 

https://doi.org/10.3390/rs10101623, 2018. 1100 

Xiong, J., Thenkabail, P. S., Tilton, J. C., Gumma, M. K., Teluguntla, P., Oliphant, A., Congalton, R. G., 1101 

Yadav, K., and Gorelick, N.: Nominal 30-m cropland extent map of continental Africa by 1102 

integrating pixel-based and object-based algorithms Using Sentinel-2 and Landsat-8 data on 1103 

Google Earth Engine, Remote Sens., 9, 1065, https://doi.org/10.3390/rs9101065, 2017. 1104 

Xu, G., Zhang, H., Chen, B., Zhang, H., Yan, J., Chen, J., Che, M., Lin, X., and Dou, X.: A Bayesian 1105 

based method to generate a synergetic land-cover map from existing land-cover products., 1106 

Remote Sens., 6, 5589-5613, https://doi.org/10.3390/rs606558910.3390/rs6065589, 2014. 1107 

Xue, J., Wang, Y., Teng, H., Wang, N., Li, D., Peng, J., Biswas, A., and Shi, Z.: Dynamics of vegetation 1108 

greenness and Iits response to climate change in Xinjiang over the past two decades, Remote 1109 

Sens., 13, 4063, https://doi.org/10.3390/rs13204063, 2021. 1110 

Yang, J. and Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 1111 

to 2019, Earth Syst. Sci. Data, 13, 3907-3925, https://doi.org/10.5194/essd-13-3907-2021, 2021. 1112 

Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J., and Dickinson, R.: The role of 1113 

satellite remote sensing in climate change studies, Nat. Clim. Chang., 3, 875-883, 1114 

https://doi.org/10.1038/nclimate1908, 2013. 1115 

Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., 1116 

Fry, J., Funk, M., Granneman, B., Liknes, G. C., Rigge, M., and Xian, G.: A new generation of the 1117 

United States National Land Cover Database: Requirements, research priorities, design, and 1118 

implementation strategies, ISPRS J. Photogramm., 146, 108-123, 1119 

https://doi.org/10.1016/j.isprsjprs.2018.09.006, 2018. 1120 

Yang, Y., Xiao, P., Feng, X., and Li, H.: Accuracy assessment of seven global land cover datasets 1121 

over China, ISPRS J. Photogramm., 125, 156-173, https://doi.org/10.1016/j.isprsjprs.2017.01.016, 1122 

2017. 1123 

Zhang, C., Dong, J., and Ge, Q.: Quantifying the accuracies of six 30-m cropland datasets over 1124 

China: A comparison and evaluation analysis, Comput. Electron. Agric., 197, 106946, 1125 

https://doi.org/10.1016/j.compag.2022.106946, 2022. 1126 

Zhang, M., Ma, M., De Maeyer, P., and Kurban, A.: Uncertainties in classification system conversion 1127 

and an analysis of inconsistencies in global land cover products, ISPRS Int. J. Geo Inf., 6, 112, 1128 

https://doi.org/10.3390/ijgi6040112, 2017. 1129 

Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with 1130 

fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 1131 

2753-2776, https://doi.org/10.5194/essd-13-2753-2021, 2021. 1132 

Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J., and Liu, W.: GWL_FCS30: a global 30 m 1133 

wetland map with a fine classification system using multi-sourced and time-series remote 1134 

sensing imagery in 2020, Earth Syst. Sci. Data, 15, 265-293, https://doi.org/10.5194/essd-15-1135 

265-2023, 2023. 1136 

Zhao, J., Yu, L., Liu, H., Huang, H., Wang, J., and Gong, P.: Towards an open and synergistic 1137 

framework for mapping global land cover, PeerJ, 9, e11877, https://doi.org/10.7717/peerj.11877, 1138 

2021. 1139 

Zheng, W., Liu, Y., Yang, X., and Fan, W.: Spatiotemporal variations of forest vegetation phenology 1140 

and its response to climate change in northeast China, Remote Sens., 14, 2909, 1141 

https://doi.org/10.3390/rs10101623
https://doi.org/10.3390/rs9101065
https://doi.org/10.3390/rs606558910.3390/rs6065589
https://doi.org/10.3390/rs13204063
https://doi.org/10.5194/essd-13-3907-2021
https://doi.org/10.1038/nclimate1908
https://doi.org/10.1016/j.isprsjprs.2018.09.006
https://doi.org/10.1016/j.isprsjprs.2017.01.016
https://doi.org/10.1016/j.compag.2022.106946
https://doi.org/10.3390/ijgi6040112
https://doi.org/10.5194/essd-13-2753-2021
https://doi.org/10.5194/essd-15-265-2023
https://doi.org/10.5194/essd-15-265-2023
https://doi.org/10.7717/peerj.11877


46 

 

https://doi.org/10.3390/rs14122909, 2022. 1142 

 1143 

https://doi.org/10.3390/rs14122909

	An improved global land cover mapping in 2015 with 30 m resolution (GLC-2015) based on a multi-source product fusion approach
	1. Introduction
	2. Datasets
	2.1 Multiple-class GLC products
	2.2 Single-class GLC products
	2.3 Global point-based and patch-based samples

	3. Methods
	3.1 Definition of the classification system
	3.2 A multi-source product fusion for the GLC-2015 mapping
	3.2.1 Dempster-Shafer theory of evidence
	3.2.2 Mapping based on DSET

	3.3 Accuracy assessment
	3.4 Data inter-comparison
	3.5 Assessment on mapping performance of DSET and other methods

	4. Results and discussion
	4.1 Mapping result of the GLC-2015 map
	4.2 Accuracy assessment of the GLC-2015 map
	4.2.1 Accuracy assessment with the global point-based samples
	4.2.2 Accuracy assessment with the global patch-based samples

	4.3 Inter-comparison with other GLC products
	4.3.1 Inter-comparison based on the global point-based samples
	4.3.2 Inter-comparison based on the global patch-based samples
	4.3.3 Areal comparison for individual classes
	4.3.4 Visual inter-comparison for individual classes
	4.3.5 Visual inter-comparison at the local scale

	4.4 Improvement of the GLC-2015 map compared to other GLC products
	4.5 Comparison between DSET and other methods
	4.5.1 Inter-comparison with other data fusion methods
	4.5.2 Inter-comparison with the Random Forest

	4.6 Advancement and Limitations

	5. Data availability
	6. Conclusions
	Author contributions
	Competing interests
	Financial support
	References

