
Dear Editor and Referees:  

We are particularly grateful for your careful reading, and for giving us many 

constructive comments on this work. According to the comments and suggestions, we 

have tried our best to improve the previous manuscript ESSD-2022-142 (An improved 

global land cover mapping in 2015 with 30 m resolution (GLC-2015) based on a multi-

source product fusion approach). We believe the revised manuscript accounts for all 

reviewers’ comments, and it was significantly improved as a result. The modified words 

or sentences are marked as blue color in the revised manuscript. We are providing an 

item-by-item response to all questions and recommendations. 

Thanks very much for your time.  

Best regards,  

Xiaoping Liu and all co-authors  



Reviewer #1: 

General comment: 

The authors seek to generate a new global LC map by fusing the existing ones using Dempster 

Shafer theory of evidence. The manuscript is easy to follow and language is always understandable. 

The technique is routine and lack of innovations. By examining their result, I accidently found an 

error which suggests the data and method they used may not robust (see my comments below). The 

new map achieves higher accuracy but also shares the common problems in the existing data, such 

as unstable performance for specific LCs or in certain areas. As such, I am not convinced that this 

dataset and manuscript could be candidates for ESSD. 

Response: Thanks for the comment. These comments are very helpful for revising and improving our 

paper. The manuscript has been improved according to your and another reviewer’s comments. The 

point-by-point responses are listed below in blue. The changes in our manuscript are marked with red. 

Although some studies have adopted the Dempster-Shafer theory of evidence to create a hybrid map 

(Ran et al., 2012; Huang et al., 2022), they focused only on the regional scale. There are a lot of 

challenges to overcome when applying DSET to land cover mapping at the global scale. First, large and 

reliable samples are required to evaluate the reliability of the input GLC maps. Visual interpretation of a 

large number of samples over the globe is labor-intensive and time-consuming. Second, the application 

of the DSET on a global scale is restricted. Given that the characterization of the land cover landscape 

varies around the world, the study area must be split into sub-regions so that the quality of the existing 

GLC maps can be more accurately assessed for different regions. Compared to a single fusion model for 

regional land cover mapping, a local adaptive fusion model is demanded for global land cover mapping. 

Third, the traditional local computer processing method is not effective in global land cover mapping 

due to the lack of high computation resource and the difficulties in preparing image mosaics (Zhang et 

al., 2021). 

To deal with the above problems, we implemented the GLC mapping using following strategies: (1) We 

used the interpretation-based method to generate a total of 200,000 point-based samples over the world’s 

terrestrial area and used 80% of the samples to evaluate the reliability of each candidate map; (2) The 

global land was divided into 1507 4º×4° geographical grids, and the accuracy assessment on each product 

was performed in each grid using local samples. Meanwhile, the corresponding local adaptive fusion 

method based on the DSET was applied; (3) We implemented the whole LC mapping task on Google 

Earth Engine platform. With the help of GEE, the computer memory and image processing problems can 

be solved. In general, our GLC-2015 map is the first 30m-resolution land cover map that successfully 

overcomes the aforementioned issues in applying the DSET method on a global scale. 

Based on the DSET method, the GLC-2015 map obtained better performance than any of the existing 

ones with an OA improvement of 12.5%-14.7% based on point-based samples and 10.9%-18.5% based 

on patch-based samples. Especially, our map showed the most substantial outperformance in the areas of 

high inconsistency, with an accuracy improvement of 21.0%-25.2% compared to 0.2%-1% for areas of 

low inconsistency and 17.6%-23.2% for areas of moderate inconsistency. In other words, the superiority 

of our map over other products is more evident in areas with more disagreements (the details can be 

found in our response to Comment #1-6 and Comment #1-8).  

Although the GLC-2015 map provided relatively lower accuracy for grassland, shrubland, and wetland, 



its accuracy for these LC classes was higher than the existing products with the PA and OA ranking first 

or second (the details can be found in our response for Comment #1-8). 

Therefore, although there are some classification errors for some specific LC classes and regions, the 

GLC-2015 product can still provide a more accurate characterization of land cover than the current 

products and is a good complement to the existing GLC data. 
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Comment #1-1. The GlobeLand30 in 2010 has a 5-year temporal gap between the other datasets. 

The LC changes in this 5 five years will bias you result. How did you deal with it? Please clarify 

this in the manuscript. 

Response: Thanks for the comment. In the process of fusing the Globeland30, FROM_GLC and 

GLC_FCS30 for a new map, we just neglected the 5-year interval between the input products. The 

reasons why we used the Globeland30 and regarded it as reasonable are as follows: 

(1) In many existing studies focusing on generating a hybrid map, multisource land cover products with 

different data times were used (Jung et al., 2006; Xu et al., 2014; See et al., 2015; Song et al., 2017; 

Tsendbazar et al., 2017). As demonstrated in previous work, the uncertainties from land cover changes 

are relatively more minor than that from inaccurate classification (Xu et al., 2014). In addition, the LC 

changes caused by the five-year gap is tiny when it comes to the LC mapping at the global scale. Thus, 

most spatial disagreements between the existing maps are not about LC changes over the time interval 

but about classification error and the integration of the maps is aimed at finding the most representative 

LC class (McCallum et al., 2006; See et al., 2015).  

(2) When we implemented the multi-source product fusion based on the DSET method, we used a global 

point-based sample set verified by manual interpretation for the year 2015 to evaluate the reliability of 

each GLC product for each LC class in a 4° × 4° grid. If there are land cover changes in some areas from 

a candidate map due to the time interval from 2015, the reliability of this map is lower based on the 

assessment with the point-based samples. Thus, the LC classes assigned to the output map will be more 

likely to come from other input maps. 

(3) To improve the performance of a synergetic land cover map, it is better to employ more available 

products with high quality (Zhong et al., 2019). The Globeland30 product has great popularity due to its 

good accuracy and worldwide coverage. Also, its classification scheme is almost the same as our target 

map (GLC-2015). 

Given the considerations above, it is reasonable to use the Globeland30 product as one of the input maps 

though there is a 5-year temporal gap between GlobeLand30 and the two other GLC products 

https://10.0.13.62/rs14040972


(FROM_GLC and GLC_FCS30).  

The content on how we dealt with a 5-year temporal gap between Gloeland30 and other products had 

been added in our manuscript. 

“Although the data time of GlobeLand30 is 2010, which has a five-year gap with other products, it was 

used in our project for the following reasons: (1) The changed areas of LC caused by the time interval 

are tiny compared to the global land area. In addition, there is relatively less uncertainty due to LC 

changes than due to inaccurate classification (Xu et al., 2014). Most spatial disagreements between the 

existing maps are about classification errors rather than LC changes over the time interval (McCallum et 

al., 2006; See et al., 2015); (2) We used a global point-based sample set for the year 2015 to evaluate the 

reliability of the input products in all 4° × 4° grids. At locations where land cover changed between 2010 

and 2015, the Globeland30 was more likely to have low accuracy based on the validation and less likely 

to contribute to the fusion using the DSET approach. In this way, the errors due to land cover changes 

can be largely avoided; (3) The GlobeLand30 has great popularity due to its good accuracy. The 

classification system of the GlobeLand30 is almost the same as that in our study.” (Revised manuscript, 

Line 150-160) 

Furthermore, we have added the discussion about uncertainties brought by the GlobeLand30: 

“Second, the date time of the GlobeLand30 is different from that of other maps. Because of the five-year 

time interval, there are changes in land cover, which inevitably distort the fusion results. However, the 

changed areas are tiny compared to the world’s terrestrial area. The uncertainties caused by the LC 

changes are minor than those from classification errors. In addition, the global point-based samples were 

used to evaluate the reliability of each product. The accuracy of GlobeLand30 was lower than the other 

products for areas with LC changes. In this case, the fusion depended more on other maps to avoid the 

errors caused by LC changes.” (Revised manuscript, Line 744-750) 
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Comment #1-2. To my knowledge, the GSW data has multiply layers and its historical data is 

provided monthly. Therefore, how did you derive the water bodies from GSW for 2015. This should 

be explicitly clarified in the manuscript. 

Response: Thanks for the comment. On the GEE platform, the JRC GSW datasets are available with 

multi subsets as ‘Surface Water Mapping Layers’, ‘Monthly Water History’, ‘Monthly Water Recurrence’, 

and ‘Yearly Water Classification History’, so that users can choose them appropriately. For our purpose, 

we used the GSW Yearly Water Classification History v1.1 in the GEE catalog, which provides the annual 

dynamics of water presence for the period of 1984 to 2019 at a 30m pixel basis. Each image of this data 

has a single ‘waterClass’ band which describes the seasonality of water throughout the year by four 

different types: no data, no water, seasonal water, and permanent water. Given that the seasonal water in 

the GSW data is not as reliable as the permanent water (Meyer et al., 2020) and might contain wetland 

around rivers, lakes, and ponds, we selected GSW data for the year 2015 and the permanent water was 

regarded as water bodies, while the seasonal water was excluded.  

Correspondingly, we have added the clarification of the use of GSW in our manuscript. 

“We used the GSW Yearly Water Classification History v1.1 in the GEE catalog. A single 'waterClass' 

band is present in each image that provides the water’s seasonality throughout the year with four types: 

no data, no water, seasonal water, and permanent water. Since the seasonal water in GSW data is not as 

reliable as the permanent water (Meyer et al., 2020), we selected permanent water bodies and excluded 

seasonal water bodies.” (Revised manuscript, Line 190-194) 
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Comment #1-3. For single-class datasets (e.g., GSW), how did you deal with the background? Did 

you just ignore it or treat it as non-water? I think the latter is more useful. 

Response: Thanks for the comment. For those single-class datasets, we treated it as another land cover 

type. If the background information is regarded as a land cover type, these products provide the presence 

of land cover with two types. For example, the GSW contains “water” and “non-water”. In this way, the 

quality of the GSW can be comprehensively estimated since we can provide the PA and UA for both 

water and non-water. In our study, “non-water” can be any of other nine class except “water”. The PA 

and UA for the “non-water” were defaulted to 0 since the GSW did not provide information about the 

other nine LC classes.  

https://doi.org/10.3390/rs6065589
https://doi:10.3390/rs11091065


In addition, the part has been added as: 

“The background information of these single-class products was considered as another land cover class 

(e.g., non-water) participating in the fusion. The accuracy of the background information was defaulted 

to 0 since it did not provide information about any of the other nine categories in our classification 

system.” (Revised manuscript, Line 170-173) 

 

Comment #1-4. Why different number of blocks were chosen for patch-based samples while the 

number of pixel-based samples seems to follow an equal allocation? Grids with more blocks will 

have more weights in the validation. 

Response: Thanks for the comment. In our study, the patch-based samples focused more on assessing the 

mapping performance of our GLC-2015 map in heterogenous landscape, such as fragmented areas and 

transition zones. So, we used random sampling because this method is easy to perform and capable to 

increase the sample size from targeted areas (Pengra et al., 2020). In our study, we randomly selected 5 

km × 5km patch-based samples over the globe and across different ecoregions. Subsequently, a manual 

adjustment was applied to slightly increased the sample size for areas with disagreement which exists in 

the previous GLC maps. In this way, the sample set is more capable to verify whether the GLC-2015 

makes the improvement in regions where land cover is poorly mapped by pervious maps.  

As the manual interpretation of large number of 5 km × 5 km blocks is time-consuming and labor-

intensive, we generated 144 samples in the previous manuscript. Based on the suggestion, we have added 

another 57 5km× 5km samples to make the distribution more equal. In this way, the validation of our 

GLC-2015 map via patch-based samples will be more reliable.  

We have updated the description of patch-based samples in our manuscript.  

“Simple random sampling was used to derive 5 km × 5 km blocks over the world's terrestrial area and 

across different ecoregions because it is easy to perform and capable to augment the sample size from 

target areas (Pengra et al., 2020). Since inconsistency between current GLC maps tends to appear in those 

heterogeneous areas, such as fragmented regions and transition zones, we slightly increased the sample 

size for areas with the heterogeneous landscape to better evaluate our mapping results. In total, there 

were 201 blocks selected as the global patch-based samples, as displayed in Figure. 3a. Then, for each 

block in the patch-based samples, we used ArcGIS 10.5 software to derive polygons (patches) of various 

sizes which captured the real landscape on the high-resolution images. Meanwhile, each polygon was 

manually labeled with a LC class. Four examples of producing patch-based samples are shown in Figure. 

3b-c. 



 

Figure 3. Spatial distribution and selected examples of the global patch-based samples. The 

locations of 5 km × 5 km patch-based samples are shown as panel (a), the locations of four selected 

samples are remarked by red dash circles. Panels (b) and (c) illustrate the production of global 

patch-based samples on manual interpretation. The red lines in high-resolution images circa 2015 

are results after vectorization using ArcGIS 10.5 software. Four corresponding patch-based 

samples are shown as (c).” (Revised manuscript, Line 237-252) 

In addition, all related validation results based on the global patch-based samples have been updated, 

including Table 4 and 6, Figure 9 and 10.  

Table 4. Mapping accuracy via the global patch-based samples for the GLC-2015 map 

 Cropland Forest Grassland shrubland Wetland Water bodies Tundra Impervious surfaces Bare land Permanent snow and ice 

PA 0.862 0.899 0.626 0.583 0.232 0.939 0.701 0.742 0.757 0.820 

UA 0.917 0.814 0.634 0.687 0.647 0.916 0.872 0.722 0.617 0.751 

OA 0.844 

Kappa 0.564 

 Table 6. Mapping accuracy of the GLC products with the global patch-based samples 

  Cropland Forest Grassland Shrubland Wetland 
Water 

bodies 
Tundra 

Impervious 

surfaces 

Bare 

land 

Permanent 

snow and ice 

OA 

(Kappa coefficient) 

GLC-2015 
PA 0.862 0.899 0.626 0.583 0.232 0.939 0.701 0.742 0.757 0.820 0.844 

(0.564) UA 0.917 0.814 0.634 0.687 0.647 0.916 0.872 0.722 0.617 0.751 

Globeland30 PA 0.896 0.698 0.765 0.539 0.455 0.824 0.752 0.643 0.492 0.831 0.735 



UA 0.891 0.906 0.444 0.527 0.157 0.893 0.500 0.703 0.829 0.705 (0.434) 

FROM_GLC 
PA 0.485 0.714 0.640 0.254 0.032 0.904 0.760 0.506 0.681 0.501 0.659 

(0.353) UA 0.872 0.809 0.193 0.139 0.186 0.884 0.696 0.808 0.496 0.703 

GLC_FCS30 
PA 0.865 0.779 0.398 0.565 0.363 0.869 0.051 0.648 0.658 0.742 0.712 

(0.414) UA 0.857 0.832 0.509 0.330 0.132 0.942 0.573 0.643 0.462 0.752 

 

 

Figure 9. The box-plot of the accuracy for different continents. (a) overall accuracy, (b)kappa 

coefficient. 

 
Figure 10. Scatter plots between the GLC-2015 map and other products obtained using the global 

patch-based samples. 

References: 

Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., 

Healey, S. P., and Loveland, T. R.: Quality control and assessment of interpreter consistency of annual 

land cover reference data in an operational national monitoring program, Remote Sens. Environ., 238, 

111261, https://doi.org/10.1016/j.rse.2019.111261, 2020. 

 

Comment #1-5. When I try to download your result, I found it was labeled by grid id. It would be 

better to label it with latitude and longitude (e.g., upper left corner), which is a straightforward 

and common way. 

https://doi.org/10.1016/j.rse.2019.111261


Response: Thanks for the suggestion. We have named the mapping result in each grid with latitude and 

longitude of its lower left corner and re-uploaded our results. Correspondingly, we have changed the 

description of our data as well as the access.  

“The improved global land cover map in 2015 with 30 m resolution is available at 

https://doi.org/10.6084/m9.figshare.21371304.v1 (Li et al., 2022). The GLC-2015 product is organized 

by a total of 1507 4° × 4° geographical grids in GeoTIFF format across the world’s terrestrial area. Each 

image of the GLC-2015 product is named as “GLC-2015_lon_lat” (lon and lat represent the longitude 

and latitude and of the grid’s lower left corner, respectively).” (Revised manuscript, Line 764-768) 

 

Comment #1-6. Echo to my comment above, I download a small file and load the smallest tile into 

my computer. I found a volcano (5.048 S, 151.330 E) in the Papua New Guinea was misclassified 

into water bodies. So, I further check the datasets you used. It turns out the error comes from the 

GLC_FCS30 and FROM-GLC (check the figure below). It indicates that your approach, despite 

the additional training samples, failed to correct such error. This may be a small problem when it 

comes to global mapping, and accidently found by me. But it's also a reminder for the authors to 

check their data and methods. 

 

Response: Thanks for pointing out the error. Since the accuracy of our data reached 76.4% assessed with 

the global point-based samples and 84.4% with the global patch-based samples, it is inevitable that 

inaccurate classification exists, especially for small land cover. Although the GLC-2015 map was not 

capable of avoiding all the wrong mapping results, it proved to be superior to the existing products from 

the aspects of mapping accuracy for the easily misclassified classes and areas with great inconsistency. 

As advocated by previous work, the accuracy of the integrated map is expected to be improved with more 

high-quality data adopted (Fritz et al., 2011; Huang et al., 2022). To our knowledge, there are several LC 

products with 30m resolution at the national scale, such as the National Land Cover Database (NLCD) 

(Yang et al., 2018) and China’s land-use/cover datasets (CLUDs) (Liu et al., 2014). These national LC 

maps are more likely to offer higher accuracy because they were produced by experts who have good 

knowledge of land cover classes nationally. Future work with these reliable products employed will help 

to avoid inaccurate classification of the fused product. 

https://doi.org/10.6084/m9.figshare.21371304.v1


We have added the discussion about the uncertainties caused by the source data and the further work to 

improve the quality of our map. The detailed revision can be seen below. 

“Although the GLC-2015 map can evidently improve mapping accuracy in inconsistent areas, there are 

still some problems. First, we used three multiple-class GLC maps and four single-class GLC maps as 

the source data for integration. Since those products provide information of land cover at the global scale, 

classification errors inevitably exist in some specific regions. The multisource product fusion method 

based on DEST depends highly on the quality of those candidate maps such that the inconsistency 

between those source maps might lead to incorrect classification.” (Revised manuscript, Line 739-744) 

“As advocated by researchers that the accuracy of the integrated map is expected to be improved with 

more high-quality data adopted in the mapping task (Fritz et al., 2011; Huang et al., 2022). Several land 

cover products which focus on a national scale are more likely to offer higher accuracy because they are 

produced by experts who have good knowledge of land cover classes nationally. Thus, more reliable 

national land cover products, such as the National Land Cover Database for the year 2016 (NLCD2016) 

(Yang et al., 2018) and China’s land-use/cover datasets (CLUDs) in 2015 (Liu et al., 2014), can further 

be integrated by our proposed method to develop a more accurate GLC map.” (Revised manuscript, Line 

756-762) 
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Comment #1-7. GLC_FCS30 adopted a detailed classification system (level-2) only in some places 

(seems to inherit from the ESA CCI_LC). Therefore, I think this may lead to geographical accuracy 

biases even after you remap the level-2 LCs to yours. How did you deal with it, could you clarify? 

Response: Thanks for the comment. We agree that there may be geographical accuracy biases from 

GLC_FCS30. We are sorry that we just remapped level-2 classes to match the land cover classes in our 

classification system without dealing with the biases because we have no effective strategy to address 

this problem. In our study, we collected a total number of 20,000 point-based samples over the globe and 
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used 80% of the samples to evaluate the accuracy of each GLC product. If the GLC_FCS30 has lower 

quality than other products in some regions, the LC classes from it will not be assigned to the output map. 

In this way, the uncertainties brought by the geographical accuracy biases of the GLC_FCS30 can be 

decreased. In the future, efforts will be made to solve this problem. 

We have discussed this issue in the manuscript as follows:  

“Third, there might be geographical accuracy biases from the GLC_FCS30 since it adopted a detailed 

level-2 classification system only for some areas. In this study, we used sufficient point-based samples 

to assess the accuracy of different GLC products. Based on the evaluation, LC classes could be selected 

from other more reliable candidate maps if the GLC_FCS30 provided low accuracy. In this way, the 

uncertainty brought by GLC_FCS30 could be reduced to some extent.”  (Revised manuscript, Line 751-

755) 

 

Comment #1-8. The accuracy assessment of your results shows the same pattern with the existing 

ones, where some LCs (e.g., shrub and wetland) always possess lower accuracies. Geographically, 

both your results and existing ones exhibit poor performance in areas with more disagreements 

(Table 7). I don't see much contribution and improvements in this dataset. 

Response: Thanks for the comment. Our map showed relatively low accuracy for some land cover classes, 

such as shrubland, grassland, and wetland. However, it still provided more accurate information than the 

current 30m-resolution GLC maps with the PA and OA ranking first or second for those LC classes (see 

Table 5 and Table 6, the accuracy of the GLC-2015 ranks first is underlined with purple and the second 

with green).  

The grassland is easy to be misclassified with cropland in some specific regions due to the high 

phenological similarity between them. Shrubland is mainly confused with forest due to similar spectral 

information and ambiguous definition. As for wetland, it is often mixed with vegetation and water bodies 

due to their complex spectral characteristics. It is a great challenge to accurately map those LC classes 

when generating a multiple-class GLC product (Liu et al., 2021; Zhang et al.,2021). With more reliable 

products for these three LC classes available, we can improve the mapping performance for them using 

our multi-source product fusion method. 

Table 5. Mapping accuracy of the GLC products with the global point-based samples. 

  Cropland Forest Grassland Shrubland Wetland 
Water 

bodies 
Tundra 

Impervious 

surfaces 

Bare 

land 

Permanent 

snow and ice 

OA 

(Kappa coefficient) 

GLC-2015 
PA 0.741 0.917 0.658 0.358 0.399 0.856 0.667 0.857 0.857 0.881 0.760 

(0.715) UA 0.854 0.783 0.440 0.762 0.673 0.839 0.832 0.780 0.772 0.932 

Globeland30 
PA 0.749 0.712 0.651 0.208 0.508 0.681 0.770 0.681 0.591 0.806 0.635 

(0.576) UA 0.770 0.805 0.220 0.386 0.521 0.870 0.575 0.790 0.864 0.907 

FROM_GLC 
PA 0.385 0.694 0.705 0.389 0.347 0.592 0.705 0.751 0.723 0.875 0.613 

(0.554) UA 0.647 0.862 0.269 0.418 0.282 0.753 0.687 0.646 0.774 0.763 

GLC_FCS30 

PA 0.744 0.764 0.389 0.354 0.439 0.600 0.227 0.777 0.783 0.712 0.635 

(0.568) UA 0.596 0.798 0.314 0.385 0.471 0.804 0.688 0.758 0.637 0.948 

Table 6. Mapping accuracy of the GLC products with the global patch-based samples 

javascript:;


  Cropland Forest Grassland Shrubland Wetland 
Water 

bodies 
Tundra 

Impervious 

surfaces 

Bare 

land 

Permanent 

snow and ice 

OA 

(Kappa coefficient) 

GLC-2015 
PA 0.862 0.899 0.626 0.583 0.232 0.939 0.701 0.742 0.757 0.820 0.844 

(0.564) UA 0.917 0.814 0.634 0.687 0.647 0.916 0.872 0.722 0.617 0.751 

Globeland30 
PA 0.896 0.698 0.765 0.539 0.455 0.824 0.752 0.643 0.492 0.831 0.735 

(0.434) UA 0.891 0.906 0.444 0.527 0.157 0.893 0.500 0.703 0.829 0.705 

FROM_GLC 
PA 0.485 0.714 0.640 0.254 0.032 0.904 0.760 0.506 0.681 0.501 0.659 

(0.353) UA 0.872 0.809 0.193 0.139 0.186 0.884 0.696 0.808 0.496 0.703 

GLC_FCS30 
PA 0.865 0.779 0.398 0.565 0.363 0.869 0.051 0.648 0.658 0.742 0.712 

(0.414) UA 0.857 0.832 0.509 0.330 0.132 0.942 0.573 0.643 0.462 0.752 

 

When it comes to the mapping performance of our GLC-2015 map in areas with different-level 

disagreements, our map had worse performance in areas with more disagreements, as shown in Table 7. 

However, our map outperformed the other three in both areas of low inconsistency, moderate 

inconsistency, and high inconsistency. Especially, the accuracy gain of our map against other products 

was 21.0%-25.2% for areas of high inconsistency, which was larger compared to 17.6%-23.2% for areas 

of moderate inconsistency and 0.2%-1% for areas of low inconsistency. That is to say, the superiority of 

our map over others is more evident in areas with more disagreements. So, we can conclude that the 

GLC-2015 map obtains great improvement and provides a more accurate characterization of land cover 

in poorly-mapped areas.  

Table 7. Accuracy assessments of the GLC products in three areas. 

 GLC-2015 Globeland30 FROM_GLC GLC_FCS30 

OA Kappa OA Kappa OA Kappa OA Kappa 

Areas of low inconsistency 0.939 0.922 0.931 0.912 0.929 0.909 0.937 0.919 

Areas of moderate inconsistency 0.717 0.671 0.534 0.467 0.485 0.416 0.541 0.464 

Areas of high inconsistency 0.509 0.430 0.285 0.196 0.299 0.212 0.257 0.144 

 

In addition, based on the suggestion of another reviewer, we have added the comparison of the accuracy 

of the GLC-2015 map and mapping results from other data fusion methods and RF classifier. The details 

can be found in the Comment #2-1 and Comment #2-2. 

  

  



Reviewer #2: 

This paper developed an improved global land cover map at 30m resolution in 2015 by fusing 

multi-source products of land covers and other thematic mappers. Two sets of global samples with 

points and patches have been developed and used to evaluate the performance of derived GLC-

2015. This work is high-intensive in terms of the labor involved, and the evaluation is sound with 

clear logic. Before recommending it for publication, I raised several concerns below, which might 

be helpful to improve this paper. 

Response: We thank the reviewer for the comments. These comments are very helpful for revising and 

improving our paper. The manuscript has been improved according to your and another reviewer’s 

comments. The point-by-point responses are listed below in blue. The changes in our manuscript are 

marked with red. 

 

Comment #2-1. Although the authors adopted the DSET approach to generate the GLC-2015 

product and compared it with similar products such as FROM-GLC and GLC_FCS30, the 

improvements gained from the DSET approach should be highlighted in those common approaches 

such as major voting and other common approaches. Otherwise, the highlights of the DSET in the 

manuscript should be reconsidered. 

Response: Thanks for the comment. Based on the suggestion, we have highlighted the advantage of the 

DSET as follows: (1) The DSET method can discount evidence form inaccurate information with a 

probability mass that reflects the degree of belief rather than a binary decision (Razi et al., 2019); (2) The 

DSET can integrate evidence from a variety of sources without the requirement of prior knowledge (Chen 

and Venkataramanan, 2005); (3) The DSET method can provide a total degree of belief to reflect the 

reliability of the final fused results. 

Correspondingly, we have added this part in Introduction Section: 

“Several attempts have been made to produce an accurate and consistent LC map using various methods, 

such as majority voting (MV), fuzzy agreement and Bayesian theory. Iwao et al. (2011) created a GLC 

map based on a simple majority voting method. Jung et al. (2006) generated a 1km GLC map by 

combination of MODIS, GLC2000 and GLCC data based on fuzzy agreement scoring. Subsequently, 

Fritz et al. (2011) extended the synergy method of Jung et al. (2006) by ranking LC maps and mapped 

the cropland extent in Sub‐Saharan Africa. See et al. (2015) generated two GLC products by integrating 

medium resolution LC products with geographically weighted regression (GWR). Gengler and Bogaert 

(2018) proposed a Bayesian data fusion method and applied it to the LC mapping for a specific region in 

Belgium. All these researches have demonstrated that fusion method can create an integrated LC product 

where the mapping accuracy is greatly improved by combing the best of candidate maps. However, the 

MV method is sensitive to the quality of the candidate maps and has significant uncertainties when the 

input products exhibit great disagreement(Chen and Venkataramanan, 2005). The fuzzy agreement is 

highly subjective since it depends on expert assessment, while the Bayesian theory requires a prior 

knowledge or conditional probabilities and fails to handle the states of ignorance(Liu and Xu, 2021). 

The Dempster-Shafer theory of evidence (DSET) is an evidence-based approach to reason with 

uncertainties. Unlike the majority voting, the DSET method can discount evidence form inaccurate 

information with a probability mass that reflects the degree of belief rather than a binary decision (Razi 



et al., 2019). In contrast to the Bayesian theory, the DSET can integrate evidence from a variety of sources 

without the requirement of prior knowledge (Chen and Venkataramanan, 2005). Moreover, the reliability 

of the final fused results is measured by the DSET method with a total degree of belief. Although previous 

literature focused on the application of the DSET method in multisource data aggregation, very little 

research has been conducted at a global scale due to the lack of accurate and sufficient samples and the 

demand for adequate computing resources.” (Revised manuscript, Line 93-115) 

 

Furthermore, we have compared the DSET and other data fusion methods in our revised manuscript. 

Comparison shows the superiority of the DSET over other methods. First, we added how we conducted 

the comparison in Section 3 as follows: 

“3.5 Assessment on mapping performance of DSET and other methods 

In addition to inter-comparison between the GLC-2015 map and three existing GLC products, we 

compared the DSET method with two existing commonly used fusion methods, including the majority 

voting (MV) and spatial correspondence (SC) based on two global validation sets including 20% of the 

global point-based samples and the whole global patch-based samples. MV is a fusion approach that 

combines input maps and adopts the LC class favored by the majority of the candidate maps. In the MV 

method, we compared the GlobeLand30, FROM_GLC, and GLC_FCS30 at each pixel and chose the 

class that two or three LC products agreed for. For pixels where three LC products were different, the 

LC class of the product with the highest accuracy was adopted. SC method produces an integrated land 

cover map by selecting the LC class of the input map that has the highest spatial correspondence with 

the reference data. In this study, 80% of the global point-based samples were used as the reference data 

to obtain the SC map of each global LC product. If the class of a product agreed with that of the point-

based sample, a value equal to 1 was assigned to that sample. On the contrary, a value equal to 0 was 

assigned to the sample if the class of the product differed from that of the sample. In each 4° × 4° grid, 

we used the Kriging method to obtain spatial correspondence maps which have the correspondence value 

ranging from 0 to 1 for three products. Then, the class of the product with the highest spatial 

correspondence was chosen for each pixel.” (Revised manuscript, Line 400-416) 

Then we have added the assessment on the DSET and other two methods in Section 4 as well as 

supplementary material.    

“4.5.1 Inter-comparison with other data fusion methods 

The accuracy assessments on GLC-2015 obtained by DSET and global mapping results from two other 

data fusion methods were conducted based on two global validation sample sets. The error matrices with 

the global point-based samples are shown in Table S3 and S4. The OA of the global land cover 

classification obtained by the MV and SC was 69.9% and 71.9%, respectively. As shown in Table 3, the 

OA of the GLC-2015 map obtained by the DSET method was 76.0%, which had an improvement of 6.1% 

and 4.1% compared to mapping results from the MV and SC. In addition, the GLC-2015 map obtained 

higher PA and UA for most LC classes.” (Revised manuscript, Line 664-671) 

 “Table S3. The error metric for the land cover classification obtained by MV method based on the 

global point-based samples. 

 Cropland Forest Grassland Shrubland Wetland Water bodies Tundra Impervious Bare land Permanent Total PA 



surfaces snow and ice 

Cropland 3491 200 572 169 29 23 6 80 80 0 4650 0.751 

Forest 541 7642 357 568 279 24 37 78 119 2 9847 0.792 

Grassland 173 206 1634 176 57 10 16 45 134 1 2452 0.666 

Shrubland 426 469 937 1184 82 10 38 45 431 0 3622 0.327 

Wetland 113 296 88 81 809 70 32 10 143 3 1645 0.492 

Water bodies 140 123 38 56 131 1501 65 17 176 4 2251 0.667 

Tundra 0 134 173 115 10 17 1300 1 331 3 2084 0.624 

Impervious surfaces 123 12 24 19 5 3 3 1264 42 0 1495 0.854 

Bare land 163 26 486 210 61 48 67 88 4476 9 5634 0.794 

Permanent snow and ice 3 8 27 10 9 37 17 2 121 902 1136 0.794 

Total 5173 9116 4336 2588 1472 1743 1581 1630 6053 924 34616  

UA 0.675 0.838 0.377 0457 0.550 0.861 0.822 0.775 0.739 0.976   

OA 0.699 

Kappa 0.646 

 

Table S4. The error metric for the land cover classification obtained by SC method based on the 

global point-based samples. 

 Cropland Forest Grassland Shrubland Wetland Water bodies Tundra 

Impervious 

surfaces 

Bare land 

Permanent 

snow and ice 

Total PA 

Cropland 3144 133 869 243 69 24 10 67 91 2 4652 0.676 

Forest 285 7524 628 737 155 19 149 80 47 23 9647 0.780 

Grassland 99 84 1864 150 43 14 70 40 78 12 2454 0.760 

Shrubland 216 181 1043 1603 66 30 86 74 318 11 3628 0.442 

Wetland 41 252 383 117 703 38 58 16 32 5 1645 0.427 

Water bodies 64 95 75 36 249 1556 47 33 83 8 2246 0.693 

Tundra 9 46 102 55 53 13 1711 2 80 14 2085 0.821 

Impervious surfaces 66 6 44 13 9 7 5 1261 80 5 1496 0.843 

Bare land 51 30 447 131 132 104 91 66 4544 42 5638 0.806 

Permanent snow and ice 1 4 17 1 11 18 26 0 46 1008 1132 0.890 

Total 3976 8355 5472 3086 1490 1823 2253 1639 5399 1130 34623  

UA 0.791 0.901 0.341 0.519 0.472 0.854 0.759 0.769 0.842 0.892   

OA 0.719 

Kappa 0.674 

” (Supplementary material with change) 

“When evaluating GLC maps obtained by different data fusion approaches using the global patch-based 

samples, the DSET method obtained the highest OA of 84.4% and kappa coefficient of 0.564, compared 

with 80.1% and 0.497 for MV, and 71.8% and 0.391 for SC (Table S5). Here, the DSET method achieved 

an accuracy improvement of 4.3% and 12.6%. Compared to the two other methods, the DSET improved 

the accuracy for nearly all the LC classes, especially for grassland, shrubland, and wetland. We also 

compared the overall accuracy relationship between the DSET and other methods. From the scatter plots 

(Figure 15), we found that the majority of points were above the 1:1 line, implying DSET had better 

mapping performance than others in most regions across the globe. 



 

Figure 15. Scatter plots between the DSET and other data fusion methods based on the global 

patch-based samples.” (Revised manuscript, Line 672-682) 

“Table S5. Mapping accuracy of different data fusion methods with the global patch-based samples 

  Cropland Forest Grassland Shrubland Wetland 

Water 

bodies 

Tundra 

Impervious 

surfaces 

Bare 

land 

Permanent 

snow and ice 

OA 

(Kappa coefficient) 

DSET 

PA 0.862 0.899 0.626 0.583 0.232 0.939 0.701 0.742 0.757 0.820 0.844 

(0.564) UA 0.917 0.814 0.634 0.687 0.647 0.916 0.872 0.722 0.617 0.751 

MV 

PA 0.891 0.872 0.580 0.452 0.172 0.930 0.831 0.709 0.620 0.779 0.801 

(0.497) UA 0.890 0.882 0.569 0.448 0.166 0.944 0.827 0.717 0.612 0.779 

SC 

PA 0.877 0.856 0.276 0.177 0.178 0.870 0.803 0.690 0.472 0.675 0.718 

(0.391) UA 0.885 0.869 0.268 0.171 0.180 0.883 0.769 0.707 0.473 0.675 

” (Supplementary material with change) 

“Land cover mapping results from the DSET and other methods were also visually illustrated in six tiles 

with size of the 0.25° covering different continents, as displayed in Figure S4. Despite that mapping 

results from the DSET and MV depicted similar spatial distribution of LC classes in all tiles except the 

tile in North America, the DSET more accurately delineated the impervious surfaces of small size which 

scattered in cropland-dominated (Figure S4a) or arid areas (Figure S4c). Notably, the mapping results 

from the SC method presented significant differences from that obtained by the DSET and MV. For 

example, the SC method failed to capture scattered rural residential areas (Figure S4b) and misclassified 

grassland as cropland (Figure S4d). Overall, the DSET method possessed better recognition performance 

in various LC classes than the other two methods.” (Revised manuscript, Line 683-691) 

 “ 



 

Figure S4. Visual comparison between mapping results from DSET and other data fusion methods 

for different continents. (a) to (f) are examples for Europe, Asia, Africa, North America, South 

America, and Oceania, respectively.” (Supplementary material with change) 

“In summary, from the respective of both two global validation sets, the LC map from DSET (GLC-2015) 

obtained higher OA and performed better in identifying different classes related to those from two others, 

which demonstrated that the DSET method we adopted is robust to generate a new LC map from the 

existing products. Especially, the OA of the MV and SC was also higher than the Globeland30, 

FROM_GLC, and GLC_FCS30, confirming that higher accuracy could be achieved by integrating 

various LC maps.” (Revised manuscript, Line 692-697) 

Third, we emphasized the superiority of the DSET over other methods in the Section 6. 

“In addition, the mapping results obtained by the DSET surpassed other data fusion methods with OA 



improvement of 4.1%-6.1% via the global point-based samples and 4.3%-12.6% via the global patch-

based samples. Therefore, it can be concluded that the GLC-2015 map is a robust and reliable map that 

can significantly improve mapping accuracy compared to previous GLC products and mapping results 

from other common data fusion methods.” (Revised manuscript, Line 789-794) 
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Comment #2-2. How about the mapping performance if using these samples (80%) do the 

classification directly? Because these samples have been manually visualized and are qualified for 

the classification task. Please add some test results or discuss this issue in the manuscript. 

Response: Thanks for the comment. Based on the suggestion, we have added the test results of the 

classification using the Random Forest classifier trained on the 80% of the global point-based samples 

in our revised manuscript. The detailed revision can be seen below. 

“In addition to the comparison between DSET and two other fusion methods, we compared the mapping 

performance of DSET with Random Forest (RF) which is considered one of the most popular algorithms 

for land cover mapping. In the land cover classification using the FR classifier, all available Level-2 Tier 

1surface reflectance (SR) data of Landsat 8 OLI (Operational Land Imager) sensors from the year 2015 

and two adjacent years on GEE was employed. All Landsat images have been atmospherically corrected. 
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The following six bands were used as input features: blue, green, red, NIR, SWIR1, and SWIR2. To 

improve the mapping performance, several important spectral indices, including DNVI, NDWI, and 

NDBI were also used as auxiliary data to the RF classifier. The RF classifier was trained on 80% of the 

global point-based samples since those samples were of high quality after manual visual interpretation 

of high-resolution images. As the global land cover mapping based on the RF classifier is a tough task, 

we randomly selected a total of 300 grids with the size of 4° (Figure S1) and used corresponding local 

classifiers to these grids. Then, the mapping results were validated by the remaining 20% of the global-

point samples.” (Revised manuscript, Line 417-429) 

 “ 

 

Figure S1. The spatial distribution of the selected 4° × 4° grids where the comparison between 

DSET and RF classifier was implemented.” (Supplementary material with change) 

“4.5.2 Inter-comparison with the Random Forest   

Based on the validation data from 20% of the global point-based samples, we evaluated the quality of 

the GLC-2015 map obtained by the DSET method and mapping results classified by the RF classifier for 

a total of 300 grids. The DSET method obtained an average OA of 77.7% across six continents, while 

the RF achieved a lower accuracy of 69.8%. From the scatter plots which compared the OA and kappa 

coefficient between the DSET and RF grid by grid, we can see that the DSET possessed higher accuracy 

in most grids (Figure S5). Especially, the points were clustered in the upper right corner of the plot 

(Figure S5a), which indicated that the RF classifier trained with the global point-based samples 

performed well in those selected grids though it was inferior to the DSET method. Figure S6 shows the 

OA of the DSET and RF across six continents. We found that the DSET method outperformed RF 

classifier for each continent. Additionally, the DSET was similar to the RF in terms of the ranking of 

accuracy over the continents. Especially, the mapping results of both two methods presented the lowest 

accuracy in Oceania. It may be because the selected grids were located in regions with heterogeneous 

landscape. As for the box plot for the RF classifier, the low hinge exceeded 60.00% in all continents 

except Oceania, demonstrating the reliability of the RF classifier trained by the global point-based 

samples. Nevertheless, the performance of the RF classifier was worse than the DSET method. This 

highlights the feasibility of the DSET method in integrating the existing maps for a better one.” (Revised 

manuscript, Line 698-714) 

 “ 



 

Figure S5. Scatter plots between the DSET and RF based on the global point-based samples. 

 

Figure S6. The box plot of the overall accuracy comparison between the DSET and RF for different 

continents.” (Supplementary material with change) 

 

Comment #2-3. The proposed work can also be applied in regions with adequate and high-quality 

data, such as NLCD in the US and China. This can be improved or discussed in the revised 

manuscript. 

Response: Thanks for the suggestion. We have added the section 4.6 “Advancement and Limitations” in 

our manuscript and discussed future work based on more high-quality data. 

“Although the GLC-2015 map can evidently improve mapping accuracy in inconsistent areas, there are 

still some uncertainties. First, we used three multiple-class GLC maps and four single-class GLC maps 

as the source data for integration. Since those products are created for providing information of land 

cover at the global scale, classification errors will inevitably exist in some specific regions. The 

multisource product fusion method based on DEST depends highly on the quality of those candidate 

maps such that the inconsistency between those source maps might lead to incorrect classification.” 

(Revised manuscript, Line 739-744) 

“As advocated by researchers that the accuracy of the integrated map is expected to be improved with 

more high-quality data adopted in the mapping task (Fritz et al., 2011; Huang et al., 2022). Several land 

cover products which focus on a national scale are more likely to offer higher accuracy because they are 

produced by experts who have good knowledge of land cover classes nationally. Thus, more reliable 



national land cover products, such as the National Land Cover Database for the year 2016 (NLCD2016) 

(Yang et al., 2018) and China’s land-use/cover datasets (CLUDs) in 2015 (Liu et al., 2014), can further 

be integrated by our proposed method to develop a more accurate GLC map.” (Revised manuscript, Line 

756-762) 

 

References: 

Fritz, S., You, L., Bun, A., See, L., McCallum, I., Schill, C., Perger, C., Liu, J., Hansen, M., and 

Obersteiner, M.: Cropland for sub‐Saharan Africa: A synergistic approach using five land cover data 

sets, Geophys. Res. Lett., 38, L04404, https://doi.org/10.1029/2010GL046213, 2011. 

Huang, A., Shen, R., Li, Y., Han, H., Di, W., and Hagan, D. F.: A methodology to generate integrated 

land cover data for land surface model by improving Dempster-Shafer theory, Remote Sen., 14, 972, 

https://doi.org/10.3390/rs14040972, 2022. 

Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang, S., Li, R., Yan, C., Wu, S., Shi, 

X., Jiang, N., Yu, D., Pan, X., and Chi, W.: Spatiotemporal characteristics, patterns and causes of land 

use changes in China since the late 1980s, Dili Xuebao/Acta Geogr. Sin., 69, 3-14, 

https://doi.org/10.11821/dlxb201401001, 2014. 

Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., 

Fry, J., Funk, M., Granneman, B., Liknes, G. C., Rigge, M., and Xian, G.: A new generation of the 

United States National Land Cover Database: Requirements, research priorities, design, and 

implementation strategies, ISPRS J. Photogramm. Remote Sens., 146, 108-123, 

https://doi.org/10.1016/j.isprsjprs.2018.09.006, 2018. 

 

 

Minor Comments: 

Comment #2-4. Page 108: BPA function. This term should be fully spelled when it first appears in 

the main text. 

Response: Thanks for the comment. The full name of the term has been added at the place it first appears 

in the revised manuscript. 

“To fulfill the purpose, we first performed reliability evaluation, where the accuracy of each GLC 

product for each LC class in each 4° × 4° geographical grid is regarded as the evidential probability to 

create the basic probability assignment (BPA) function.” (Revised manuscript, Line121-123) 

 

Comment #2-5. Page 172: The selection of 4°×4° should be discussed. 

Response: Thanks for the comment. For large-scale or global land cover mapping, previous researchers 

divided the study area into a lot of sub-regions (Gong et al., 2020; Huang et al.,2021; Jin et al., 2022; Liu 

et al., 2020; Zhang et al., 2020,2021; Zhao et al.,2021). When applying the DSET method to generate a 

global hybrid map, it is more useful to use the local adaptive fusion model for each sub-regions rather 

than a single model for the whole globe. We divided the global land into 4º×4° sub-regions with the 

following two considerations: 

(1) Sufficiency of samples for land cover classes. If we generate the samples in a small spatial grid such 

as a Landsat scene, the size of samples might be insufficient and it was also difficult to obtain samples 
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for the rare land cover classes. 

(2) Computation capacity and memory of the GEE platform. The GEE platform provides unprecedented 

opportunities for global land cover classification tasks due to the access to numerous analysis-ready earth 

observations datasets and high-performance, intrinsically parallel computation (Gorelick et al., 2017). 

However, GEE has computation capacity limitations. It is impossible to implement mapping work at a 

sub-region as large as we want because of the issue of running out of memory.  

In our study, to balance the mapping efficiency on the GEE platform and the sufficiency for land cover 

classes in sub-regions, we split the globe into 1507 4º×4° geographical grids and then conducted land 

cover mapping at the regional scale.  

Correspondingly, we have added the explanation for dividing the world’s terrestrial area into 4º×4° grids. 

“For large-scale or global land cover mapping, previous researchers divided the study area into a lot of 

sub-regions and conducted classification in each sub-region on GEE (Gong et al., 2020; Liu et al., 2020; 

Huang et al., 2021; Jin et al., 2022; Zhang et al., 2021; Zhao et al., 2021). The shape and size of sub-

region vary in previous work, such as hexagons with a side length of 2°, geographical grids with a size 

of 1°×1°, 3.5º×3.5°, 5º×5°, or 10º×10°. When deciding on the size of sub-regions, two important factors 

should be considered. The size of samples in each sub-region should be sufficient so that the rare land 

cover classes will not be missed. On the other hand, it is impossible to implement mapping work at a 

sub-region as large as we want due to memory constraints. To balance the mapping efficiency on the 

GEE platform and the sufficiency for land cover classes, we split the world’s terrestrial area into 1507 

4º×4° geographical grids.” (Revised manuscript, Line 262-271) 
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Comment #2-6. Page 178-179: I wonder why the initial samples generated from the FROM_GLC 

were used in this study, not other land cover products. Explanations about this topic should be 

discussed in the manuscript. 

Response: Thanks for the comment. Collecting global point-based samples is a key step in our study. We 

employed stratified random sampling which generates samples for land cover classes based on area 

proportion from reference land cover product. In this method, a classification map served as prior 

knowledge. This map was only used to derive proper size for each class. The reasons why we chose the 

FROM_GLC as the reference map other than Globeland30 and GLC_FCS30 are as follows: 

(1) From the respective of time, the data time of Globeland30 product is 2010 which has a 5-year interval 

from our samples. If we used Globeland30, there would be some land cover change between 2010 and 

2015 and the size of samples for each class would be affected.  

(2) For the three existing 30m global land cover products (Globeland30, FROM_GLC, and GLC_FCS30), 

the classification system used for FROM_GLC level-1 has the same land cover classes used in the 

Globeland30, while the GLC_FCS30 has differences with others in the classification scheme and 

definition of land cover classes due to the inheritance from the CCI-LC classification system(Gao et al., 

2020; Liu et al., 2021). As we adopted the same classification scheme as Globeland30, it was reasonable 

to choose the FROM_GLC rather than GLC_FCS30. 

Considering both the data time and classification system, the FROM_GLC was used in our study. Given 

that there are inevitably errors in samples generated from the FROM_GLC, the class label from the 

FROM_GLC was not assigned to our samples. Instead, we checked all the points according to Google 

Earth high-resolution images and labeled them. Through the manual interpretation, we can guarantee the 

global samples are accurate. 

Correspondingly, the related description of generating the global point-based samples has been updated 

in our revised manuscript. 

“The stratified random sampling depends on area ratio of LC classes from a LC product. We used the 

FROM_GLC as prior knowledge rather than the Globeland30 and GLC_FCS30 with two considerations: 

(1) the FROM_GLC has the same data time as our target map (GLC-2015) while the Globeland30 has a 

5-year interval from our samples, which affects the size of samples for each LC class; (2)the 10 level-1 

land cover classes of the FROM_GLC is similar to that in the classification system of the GLC-2015, 

while the GLC_FCS30 has differences with the GLC-2015 in the classification scheme and definition of 

land cover classes.” (Revised manuscript, Line 210-217) 

“The FROM_GLC shows low accuracy for some LC classes, especially for cropland and forest (Gao et 

al., 2020; Liu et al., 2021b; Zhang et al., 2021; Zhang et al., 2022). If the global samples were extracted 

with LC class label from the FROM_GLC, there would be inevitable errors. Therefore, the FROM_GLC 

was only used to determine the size and location of samples for each LC class. Instead, all the points 

were manually labeled according to Google Earth high-resolution images.” (Revised manuscript, Line 

222-226) 
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Comment #2-7. Page 198: Why select these 1507 samples randomly? Can they be determined 

according to their ecoregions or cover types? It is better to explain it here clearly. 

Response: Thanks for the comment. It is a widely-used strategy to divide the study area into sub-regions 

for the large-scale or global land cover mapping. In previous work, the size of a sub-region ranged from 

1°×1° to 10º×10° (Gong et al., 2020; Liu et al., 2020; Huang et al., 2021; Jin et al., 2022; Zhang et al., 

2021; Zhao et al., 2021). Considering the limited memory resource on GEE and the sufficiency for land 

cover classes, the global land was split to 4°×4° grids. In total, there were 1507 grids across the globe.  

We suspect that the reviewer is asking why we select 93 grids from a total of 1507 grids. Deriving samples 

according to ecoregions or cover types is suitable to increase the size of rare classes (Olofsson et al., 

2014). While simple random sampling is easy to perform and capable to increase the sample size from 

targeted areas (Pengra et al., 2020). In our study, the patch-based samples focused more on assessing the 

mapping performance of our GLC-2015 map in the heterogenous landscape, such as fragmented areas 

and transition zones. In our previous manuscript, we just used simple random sampling to selected 93 

grids and derive 5 km × 5 km patch-based samples from those grids. Then, a manual adjustment was 

applied to slightly increased the sample size for areas with disagreement which exists in the previous 

GLC maps. In this way, the sample set was more capable to verify whether the GLC-2015 improved in 

regions where land cover was poorly mapped by previous maps. Considering that the previous 144 patch-

based samples may not enough for each ecoregion, we have added another 57 samples in the revised 

manuscript. 

We have updated the description of collecting global path-based samples in the manuscript as follows: 

“Simple random sampling was used to derive 5 km × 5 km blocks over the world's terrestrial areas 

because it is easy to perform and capable to augment the sample size from target areas (Pengra et al., 

2020). Since inconsistency between current GLC maps tends to appear in those heterogeneous areas, 

such as fragmented regions and transition zones, we slightly increased the sample size for areas with the 

heterogeneous landscape to better evaluate our mapping results. In total, there were 201 blocks selected 

as the global patch-based samples, as displayed in Figure. 3a. 
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Figure 3. Spatial distribution and selected examples of the global patch-based samples. The 

locations of 5 km × 5 km patch-based samples are shown as panel (a), the locations of four selected 

samples are remarked by red dash circles. Panels (b) and (c) illustrate the production of global 

patch-based samples on manual interpretation. The red lines in high-resolution images circa 2015 

are results after vectorization using ArcGIS 10.5 software. Four corresponding patch-based 

samples are shown as (c).” (Revised manuscript, Line 237-252) 
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Comment #2-8. Figure. 3 and Figure.4 can be combined.  

Response: Thanks for the suggestion. Figure. 3 and Figure.4 have been combined as suggested in the 

revised manuscript. Moreover, we added 57 patch-based samples over the globe and three examples of 

the production of patch-based samples on manual interpretation. The improved figure is shown as below. 
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Figure 3. Spatial distribution and selected examples of the global patch-based samples. The 

locations of 5 km × 5 km patch-based samples are shown as panel (a), the locations of four selected 

samples are remarked by red dash circles. Panels (b) and (c) illustrate the production of global 

patch-based samples on manual interpretation. The red lines in high-resolution images circa 2015 

are results after vectorization using ArcGIS 10.5 software. Four corresponding patch-based 

samples are shown as (c).” (Revised manuscript, Line 247-252) 

 

Also, the main text uses “Figure” whereas the figure caption uses “Figure”. Please make them 

consistent. 

Response: Thanks for the suggestion. We have changed the “Fig” in main text as “Figure”. 

 

Comment #2-9. Page 281: how to determine these two thresholds: 25% and 75% in Eq. (4). Please 

explain. 

Response: Thanks for the comment. We used the local adaptive fusion model to combine the existing 

products for each grid. To avoid the inequacy in the size of local samples for rare land cover classes, we 

also used global samples to evaluate products’ reliability. Since the local samples plays a more critical 

role in the local accuracy assessment, higher weight should be assigned to the local samples in the 

construction of the BPA for each grid. Through the tests in several girds, it was found that when the local 

javascript:;


samples counted for 75% of the whole sample set and the global samples counts for 25%, the fusion 

method exhibited robust performance and achieved relatively high accuracy. We have explained why we 

used 75% and 25% as two thresholds in our manuscript. 

“Given that the local accuracy for a 4º×4° grid was not able to adequately reflect the actual land cover 

landscape, especially for the rare LC classes, global accuracy was incorporated into the construction of 

the BPA to avoid uncertainties from a local point of view. Since assessment based on local samples plays 

a more critical role in BPA construction for a local grid, higher weight should be assigned to local 

accuracy. In this case, we chose 75% as the weight for local accuracy and 25% for global accuracy as 

this ratio could achieve robust performance for different regions.” (Revised manuscript, Line 330-336) 

 


