

1 **Hyperspectral reflectance dataset of pristine, weathered and biofouled
2 plastics**

3 Giulia Leone^{1,2,4,5,*}, Ana I. Catarino¹, Liesbeth De Keukelaere³, Mattias Bossaer¹, Els Knaeps^{3§} Gert
4 Everaert^{1§}

5
6 ¹Flanders Marine Institute (VLIZ), Oostende, Belgium

7 ²Ghent University, Research Group Aquatic Ecology, Ghent, Belgium

8 ³Flemish Institute for Technological Research (VITO), Belgium

9 ⁴ Research Institute for Nature and Forest, Aquatic Management (INBO), Brussels, Belgium

10 ⁵ Research Foundation – Flanders (FWO), Brussels, Belgium

11 § Shared senior co-authorship

12

13 *Correspondence to: Giulia Leone (giulia.leone@ugent.be)

14 **Abstract**

15 This work presents a hyperspectral reflectance dataset of macroplastic samples acquired using
16 Analytical Spectral Devices (ASD) FieldSpec 4. Samples analysed consisted of pristine, artificially
17 weathered and biofouled plastic items and plastic debris samples collected in the docks of the Port of
18 Antwerp and in the river Scheldt near Temse Bridge (Belgium). The hyperspectral signal of each sample
19 was measured in controlled dry conditions in an optical calibration facility at the Flemish Institute for
20 Technological Research, and, for a subset of plastics, under wet and submerged conditions in a silo tank
21 at Flanders Hydraulics. The wet and submerged hyperspectral signals were measured in a mesocosm
22 setting that mimicked environmentally relevant concentrations of freshwater microalgae and of
23 suspended sediment. The ASD was equipped with an 8° field of view at the calibration facility, and a 1°
24 field of view was used in the mesocosm setting. The dataset obtained complies with the Findability,
25 Accessibility, Interoperability, and Reuse (FAIR) principles and is available in the open-access repository
26 Marine Data Archive (<https://doi.org/10.14284/530>, Leone et al., 2021).

27 **1 Introduction**

28 The spectral reflectance measurements, collected in the framework of the Plastic Flux for Innovation and
29 Business Opportunities in Flanders (PLUXIN) project, contribute to the current knowledge on the
30 detection of plastics using remote sensing techniques.

31 In recent years, focus has been placed on the detection of plastic litter using remote sensing techniques
32 such as optical sensors on satellites, aircrafts, and drones (Garaba and Dierssen, 2018; Martínez-
33 Vicente et al., 2019). With the increasing demand of these technologies, it is crucial to generate
34 knowledge on the diagnostic spectral properties of not only pristine, but also weathered and biofouled
35 plastics (Moshtaghi et al., 2021) that are representative of the variety of environmental plastics.

36 Currently the spectral reflectance of dry plastics is known, and is already applied in the field of material
37 recycling (Moroni et al., 2015), but it is restricted to items assessed for dry measurements. To be able to
38 identify plastic litter in aquatic environments such as rivers, harbours, and oceans, we require the
39 acquisition of the spectral features when plastics are either wet or submerged (Moshtaghi et al., 2021),
40 as water absorbs the light in both the near (NIR) and shortwave infrared (SWIR). In addition, other water
41 constituents such as sediment or algae, could further impact the reflected signal of plastic items
42 (Moshtaghi et al., 2021).

43 To date, only a limited number of high-quality datasets consisting of hyperspectral measurements of wet
44 and submerged plastic litter, have been published in open-access repositories (e.g., Garaba and
45 Dierssen, 2018, Garaba and Dierssen, 2020; Knaeps et al., 2021). As plastics in our environment are so
46 diverse in polymer type, colour, transparency, thickness, state (pristine, bio fouled, weathered, wrinkled)
47 and wetness (dry, wet, submerged), it is critical to generate, within the scientific community,
48 substantiated data sets which represents plastics in many different facets. The collected spectra can
49 serve as reference or endmember spectra in future Remote Sensing plastic detection techniques and
50 help to understand the complexity of plastic detection through spectral analysis. It is recognized that not
51 all possible scenarios can be measured in an experimental way, therefore the dataset can further be
52 used to compare with and complement numerical simulations. The dataset described in the current paper
53 aims at complementing the existing datasets by adding new information about the hyperspectral
54 reflectance of pristine plastic items, harvested plastic litter, and artificially weathered and biofouled plastic

55 samples. In addition, the dataset reports the optical features of plastics acquired in various water turbidity
56 conditions obtained by adding sediment or algae to the water, at selected concentrations.

57 The dry spectral reflectance of plastic specimens, consisting of different polymers, was measured using
58 an Analytical Spectral Device (ASD) FieldSpec 4. For a selection of these samples, the spectral
59 reflectance was also collected in wet and submerged settings.

60 The presented data can be used to generate insights on the spectral properties of plastic litter and how
61 these features change when plastics are exposed to natural agents or different depths. The dataset was
62 compiled following the FAIR (Findable, Accessible, Interoperable, Reusable; go-fair.org) principles and
63 it is publicly available at <https://doi.org/10.14284/530> (Leone et al., 2021).

64

65 **2. Data collection**

66 Data collection consisted of measuring the spectral reflectance of different plastic specimens using the
67 ASD. The measurements were conducted in two different settings: at an optical calibration facility located
68 at the Flemish Institute for Technological Research (Mol, Belgium), and at a silo tank at the Flanders
69 Hydraulics Research facility (Antwerp, Belgium). The spectral reflectance of each plastic specimen was
70 collected at least 5 times ("pseudo-replicates") within 1 minute. These pseudo-replicates are
71 measurements taken by slightly changing the position of the plastic sample. Therefore, very
72 homogeneous plastics will have less variation in the pseudo-replicates' reflectance.

73

74 **2.1 Plastic specimens**

75 We aimed to collect the spectral reflectance of plastic items as representative as possible of commonly
76 found plastics in the environment (LI et al., 2016), and to provide additional information on their
77 reflectance when exposed to natural agents such as sunlight (UV radiation) or biofilm growth. To do so,
78 we have selected and analysed a total of 10 polymer types. The selected polymers were Polyethylene
79 (PE), Polypropylene (PP), Polystyrene (PS), and two types of Polyethylene terephthalate (PET),
80 crystalline and amorphous, Fluorocarbon, Thermoplastic elastomer, Polyvinyl chloride (PVC), Nylon 6
81 (PA6) and Paraffin (Table 1; Table 1S). In addition, we have further artificially weathered and biofouled
82 a selection of 6 plastic polymer types. The polymer discrimination was based on the available information
83 from the supplier or marked on the plastic itself (e.g., plastic bottle or bags with an identifiable polymer
84 tag). In addition, for a set of samples, we confirmed the polymer type using a micro-Fourier Transform

85 Infrared Spectroscopy (μ FTIR, PerkinElmer, FTIR spectrometer Frontier). The percentage of matching
 86 score with a library was recorded and it is reported in the dataset. Table 1 provides an overview of
 87 measured plastic types within this study and compared to existing datasets. This dataset adds additional
 88 information of plastic spectral reflectance of similar polymers to what is already available in the literature,
 89 allowing comparison, but also novel conditions and treatments (Table 1).

90

91 **Table 1.** Comparison of polymers and conditions analyzed in this dataset and in the literature. (D = Dry; W = Wet;
 92 S = Submerged; PE = polyethylene, PP = polypropylene, PS = polystyrene, PET = Polyethylene terephthalate,
 93 PVC = Polyvinyl chloride, PA6, PA 6.6. = Polyamide 6 and 66, LD-PE = low density polyethylene, FEB = fluorinated
 94 ethylene propylene Teflon, ABS = terpolymer Iustran 752, PMMA = polymethyl methacrylate)

Polymer type	This dataset			Knaeps et al., 2022			Garaba and Dierssen, 2018			Garaba and Dierssen, 2020		
	D	W	S	D	W	S	D	W	S	D	W	S
Pristine Sample												
PE	X	X	X									
PP	X	X	X	X	X	X	X			X		
PS	X	X	X				X			X		
PET amorphous	X	X	X									
PET crystalline	X	X	X									
PET unspecified	X			X			X			X		
PVC	X						X			X		
Thermoplastic elastomer	X											
PA6 and PA 6.6	X						X			X		
Paraffin	X											
LD-PE	X			X			X			X		
Polyester				X								
FEB							X			X		
ABS							X			X		
Merlon							X			X		
PMMA							X			X		
Non specified polymers				X	X	X						
Environmentally weathered and biofouled samples												
PE	X	X	X									
PP	X	X	X									
PS	X											
PET unspecified	X	X	X									
Fluorocarbon	X											
Paraffin	X											
Non specified polymers				X			X	X		X	X	

Artificially biofouled samples									
PE	X	X	X						
PP	X	X	X						
PS	X	X	X						
PET amorphous	X	X	X						
PET crystalline	X	X	X						
PVC	X								
Artificially weathered samples									
PE	X	X	X						
PP	X	X	X						
PS	X	X	X						
PET amorphous	X	X	X						
PET crystalline	X	X	X						
PVC	X								

95

96

2.2.1 Pristine plastic specimens

97 To enhance the physio-chemical properties of an end plastic product, plastic manufacturers often
 98 incorporate additive substances into the pristine polymer (Garaba et al., 2021). Additives included in
 99 plastics, such as coloured plastics, may be influencing the spectra (Garaba et al., 2021). Thus, to avoid
 100 confounding measurements, sheets of 6 x 6 cm were obtained from a commercial supplier (Carat,
 101 Germany, <https://www.carat-lab.com>) as pure pristine plastic polymers without any additional additive
 102 for the following polymers: PP, PE, PS, PET amorphous, PET crystalline. In addition, no colour or stains
 103 were added to the commercial plastics, and as such, these selected samples were transparent or white.
 104 The other pristine plastic samples were either purchased from a local shop (Oostende, Belgium), or
 105 obtained from other institutes (Marine Remote Sensing Group, University of the Aegean in Plastic Litter
 106 Projects (2021 and 2022), The Ocean Cleanup).

107

108

2.1.2 Weathered plastics

109 To mimic the effect of solar radiation on plastic items in the environment, pristine plastics without
 110 additives were exposed to UV radiation in an Atlas SunTest CPS+ weathering chamber, simulating one
 111 solar year in central Europe (Gewert et al., 2018) (Table 2). Prior to the treatment, plastic specimens
 112 were cut, using a hot knife, into 2 x 10 cm sheets in order to fit them into closed Quartz cuvettes. Although
 113 UV exposure in a laboratory cannot perfectly mimic environmental conditions, to reproduce them as
 114 accurately as possible we have tested different treatments for weathering conditions: i.e., dry UV

115 exposure, seawater UV exposure (35 psu) and dark controls (dry and wet), and each treatment consisted
116 of a set of three independent replicates for each polymer type (Table 4).
117

118 **Table 2.** Parameters of the UV chamber, used in artificial weathering experiments

UV irradiation W / m ²	Black Stand Temperature (BST) °C	Chamber Temperature (CHT) °C	Test durations h
60	50	30 - 35	917

119

120 **2.1.3 Biofouled plastics**

121 To test the effects of biofilm attached to the surface of plastic items on their spectral reflectance, we
122 induced biofilm growth on the two surfaces of pristine samples. Since surface roughness can affect
123 biofilm growth and its survival (Rodriguez, D., B. Einarsson, 2012), one of the two surfaces of the
124 commercial plastic specimens, was manually treated for approximately 10 seconds with sandpaper
125 (grain size 80) to create a rougher surface compared to the smooth and untouched one. An aquarium
126 was filled with unfiltered seawater collected from the port of Ostend (Belgium), which was renewed every
127 two weeks, kept at 20 °C, and aerated with an air pump. Plastic specimens were suspended in the
128 aquarium with paper clippers and rope (Fig. 1) to allow the biofilm to form on all of the surfaces.

129
130 **Figure 1.** Aquarium set-up for biofilm growth on pristine plastic specimens. Picture taken by Giulia Leone
131

132 **2.1.4 Field plastic items**

133 Plastic specimens were collected from the Port of Antwerp and in the Scheldt River, near Temse Bridge
134 (Belgium) and are naturally exposed to weathering and biofouling and are, compare to pristine polymers,

135 non-homogeneous. The plastic coming from the river Scheldt were collected by a plastic collector
136 installed by the Belgian company Dredging, Environmental and Marine Engineering NV (DEME)
137 Environmental Contractors (DEC) on behalf of Vlaamse Waterweg (the Flemish authority responsible for
138 waterways in Flanders, Belgium).

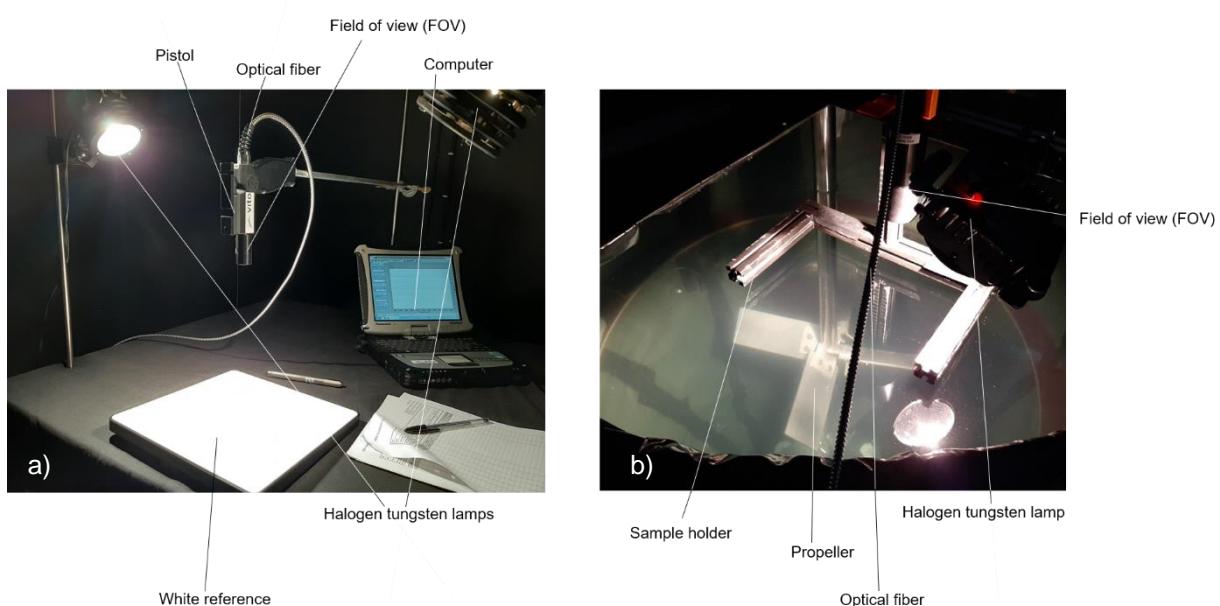
139

140 **2.2 Spectral measurements of plastic items**

141 The spectral reflectance measurements of plastic specimens were performed using an Analytical
142 Spectral Device (ASD) Field-Spec4 (Table 3). The reflectance was automatically derived and normalized
143 to a 99% Labsphere Spectralon® Lambertian panel. In the silo tank, the Spectralon panel was positioned
144 on the holder of the adjustable arm, at the same distance from the ASD field of view as the dry plastic
145 specimen.

146

147 **Table 3.** Hyperspectral-radiometer specifications used in the two locations of the study, calibration facility and water silo tank
148 ASD: Analytical Spectral Device; VNIR: visible-near infrared; SWIR: shortwave infrared


	ASD specifications in the calibration facility	ASD specifications in the tank
Spectral range (nm)	350 - 2500	350 - 2500
Spectral resolution (nm)	VNIR: ca. 3 nm SWIR: 10 - 12 nm	VNIR: ca. 3 nm SWIR: 10 - 12 nm
Scans per measurements	30	10
Replicate measurements	5	5
Foreoptic field of view	8°	1°

150

151 3 Experimental set-ups

152 Following the procedure described by Knaeps et al., 2021, we measured the spectral reflectance of the
153 different plastic samples at two different facilities: 1) Measurements done in dry conditions were
154 performed at the optical calibration laboratory of the Flemish Institute for Technological Research (VITO),
155 Belgium; 2) the series of wet and submerged measurements were acquired in a mesocosm setting, with
156 experiments being performed in a conical shaped silo tank at the Flanders Hydraulics Research facility
157 in Antwerp, Belgium. In both laboratory and silo tank set-ups (Fig. 2), we have attached a laser pen to
158 the ASD pistol grip to ensure that, at all times, the fibre optics of the ASD were pointing at the plastic
159 samples.

160
161 **Figure 2.** Experimental set-up. a) laboratory set-up; b) silo tank set-up. Pictures taken by Giulia Leone

162 3.1 Laboratory set-up

163 All the plastic specimens were measured in the optical calibration facility (VITO, Belgium). This laboratory
164 consisted of a dark room where a desk equipped with two halogen tungsten lamps and a holder for the
165 ASD field of view, allowed us to collect the measurements.

166 **3.1 Silo tank set-up**

167 The water silo tank (Diameter 2m, Depth 3m), at the Flanders Hydraulics Research (Belgium), was
168 equipped with a controlled mixer with a double pitch blade impeller that permitted the mixing of the water
169 to obtain suspensions of sediment or algae. No information about the rpm was available on the metal
170 impeller at the water tank. We attached a tailor-made aluminium frame to the water tank for the mounting
171 of spectroradiometer detector and light, together with a plexiglass sample holder to lower the plastic
172 specimens in the tank and measure their spectral reflectance at different water depths. The plexiglass
173 was cut to fit the plastic samples which were held by black plastic paper clips. In the current study, we
174 acquired data using a single lamp attached to the frame, with an angle of 40 degrees. To reduce
175 undesired stray light, a dark environment was created with black plastic cover around the experimental
176 set-up and in addition black plastic bags were held against the tank by means of wooden rings with
177 weights and waterproof tape. In the tank, samples attached to the plexiglass sample holder were first
178 measured at dry conditions, just above the water level and then carefully lowered in the water at fixed
179 depths. The water level above the sample was measured with a ruler and the chosen depths were: 1
180 cm, 2 cm, 4 cm and 8 cm. After the submersion, the plastic was measured again above the water level
181 as wetted sample. The same steps were performed in clear and turbid water.

182

183 **3.1.1 Water with added sediment**

184 Natural sediment was collected using a manual Van Veen grab by the Flanders Marine Institute (VLIZ)
185 during a sampling campaign as part of the PLUXIN project, in Nieuwpoort (Belgium). The sediment was
186 transported to the laboratory (VLIZ), placed into a metal container, and dried in the oven for 4 days at 60
187 °C, and was afterwards manually crushed using a mortar, and stored in the dark until further use. To add
188 the crushed sediment into the tank, before any measurements, the tank metal impeller was activated for
189 a one and a half minute to allow the sediment to stay in suspension in the water. This action was repeated
190 approximately every 30 minutes to maintain the sediment in suspension. The actual concentration of
191 sediment added in the tank was measured by Flanders Hydraulics. The suspended sediment
192 concentration (SSC) was determined gravimetrically, after filtration of the sample through a filter with a
193 pore size of 0.45 µm and drying at a temperature of 105 °C. The results showed a low concentration of
194 sediment of 4 mg / L and a higher concentration of 16 mg / L.

195

196

3.1.2 Water with added microalgae

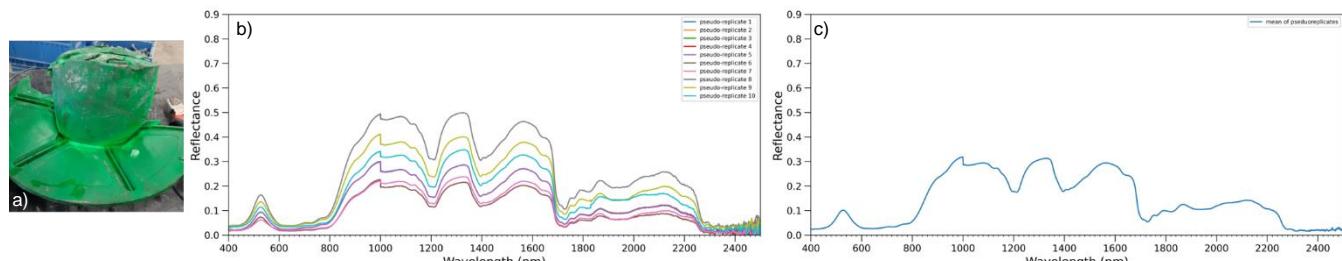
197 To evaluated how the readings of spectral reflectance of plastic specimens can be affected by turbidity
198 in the water due to microalgae suspension, measurements were performed using two concentrations of
199 freshwater *Pseudokirchneriella subcapitata*. The concentrations were selected to mimic the natural
200 conditions of spring and late summer seasonal concentration of green algae for a Western European
201 River (Ibelings et al., 1998). The nominal concentrations of microalgae were 1500 cells / mL and 3000
202 cell / mL. The microalgae *P. subcapitata* was cultured at the Research unit “Health” at VITO, and the
203 stock solution of $8,18 \times 10^6$ algae / mL was kept for 11 days in a cold room and in dark before being used
204 in the experimental set-up. After poring 450 mL of stock solution, before any measurements, the metal
205 impeller was activated for a one and a half minute to allow the algae to suspend into the water. This
206 action was repeated approximately every 30 minutes to maintain the algae in suspension. To obtain a
207 higher concentration of algae that would mimic a nominal concentration of 3000 cells / mL, other 450 mL
208 of stock solution were then added into the tank.

209

210

4. Data description

211


212 In this study we created a dataset with the spectral reflectance of ten plastic polymers undergone to two
213 treatments (i.e., artificial weathering and artificial biofouling) in addition to field collected samples and
214 pristine plastics (Table 4). All data included in the presented dataset were curated before submission
215 and consist of the raw reflectance data of the samples. A metadata section, included in the dataset,
216 explains the data, adding additional and essential information. For instance, information on the polymer
217 type, μ FTIR results with the corresponding library matching score, origin of the sample, date and time of
218 collection. The sample code was created following the naming convention of Knaeps et al., 2021. To
219 ensure that end users can correctly interpret each section of the metadata, a README file is available
220 together with the dataset. From the presented dataset it is possible to visually show the spectral
221 reflectance of different plastic polymer and compare the different conditions experimentally tested (Fig
222 1S; Fig2S). For instance, it is possible to derive the effect of weathering and biofouling on the spectral
223 reflectance of a polymer when compared with the same pristine one.

224 We suggest that users of this dataset perform splice correction on the data using Python or any suitable
 225 software. This processing step will lead to the obtention of spectra that do not present radiometric steps
 226 at the joints of the detectors. In addition, pseudo-replicates of each plastic sample were taken, and
 227 therefore we advise that users calculate the mean of these measurements to obtain a single spectrum
 228 for each observed item (Fig 4).

229 **Table 4.** Overview of the polymer and treatment performed during the study (SSC: suspended sediment concentration)

Treatment	Polymer tested	Origin/Supplier	State of samples	Condition of the water in the tank
• Pristine	• PS	• Carat	• Dry	• Clear water, no turbidity
• Artificially dry weathered	• PE	• The Ocean Cleanup	• Wet	• Algae:
• Artificially seawater weathered	• PP	• Shop	• Submerged	1. Nominal conc. 3000 cells/ml
• Artificially biofouled on pristine surface	• PET amorphous	• Port of Antwerp		2. Nominal conc. 1500 cells/ml
• Artificially biofouled on rough surface	• PET crystalline	• Scheldt		
• Field	• PVC	• VITO		• Sediment:
	• Extruded polystyrene	• Marine Remote Sensing Group		1. SSC 4mg/L
	• Thermoplastic elastomer			2. SSC 16mg/L
	• Fluorocarbon			
	• Paraffin			

230

231 **Figure 4.** Spectra of field sample and figure of the object from which the spectra were obtained (a). Spectrum (b) shows the
 232 pseudo-replicates of the low homogeneous field samples. Spectrum (c) is the mean of all the pseudo-replicates. No splice
 233 correction was applied.

235

236 **5. Data availability**

237 The data are available in the open access repository Marine Data Archive at <https://doi.org/10.14284/530>
 238 (Leone et al., 2021)

239

240 **6. Conclusions**

241 The use of remote sensing technologies can be used in the detection, observation and monitoring of
242 marine plastic pollution. However, due to a lack of knowledge of the optical features of environmental
243 plastics, small steps can be made in designing algorithms to appropriately detecting plastic pollution.
244 The presented hyperspectral dataset is a step forward in the knowledge of the optical features of plastic
245 litter when exposed to natural agents such as UV radiations or the growth of biofilm. In addition, from the
246 data presented it is possible to investigate the effects that biofouling and weathering have on different
247 polymers. Lastly, the conditions in which a plastic polymer is (i.e., dry, wet or submerged with different
248 turbidity) are also described and assessed in the presented dataset. Therefore, we anticipate that this
249 dataset will contribute to the definition of optical spectral bands and assist in the development of
250 algorithms for the observation, monitoring and discrimination of plastics in a (semi-) operational
251 environment.

252

253 **Funding**

254 cSBO Plastic Flux for Innovation and Business Opportunities in Flanders (PLUXIN, HBC.2019.2904)
255 project, financed by Flanders Innovation & Entrepreneurship (VLAIO) and supported by The Blue
256 Cluster, a Flemish members organisation for sustainable entrepreneurship in blue growth (Belgium).
257 Since November 2021, Giulia Leone is supported by the Research Foundation of Flanders (FWO), as a
258 PhD grant strategic basic research, application number 1S13522N (Belgium).

259

260 **Credit author statement**

261 **Giulia Leone:** Conceptualization, Methodology, Writing – original draft, Writing – review & editing,
262 Visualization, Funding acquisition, Data curation, Investigation. **Ana I. Catarino:** Conceptualization,
263 Methodology, Writing – review & editing, Supervision. **Liesbeth De Keukelaere:** Conceptualization,
264 Writing – review & editing. **Mattias Bossaer:** Investigation, Methodology, Writing – review & editing. **Els**
265 **Knaeps:** Conceptualization, Methodology, Writing – review & editing, Supervision, Funding acquisition.
266 **Gert Everaert:** Conceptualization, Methodology, Funding acquisition, Supervision, Writing – review &
267 editing

268

269 **Competing interests**

270 The authors declare that they have no conflict of interest.

271

272

Acknowledgement

273 We would like to thank Flanders Hydraulics for the use of the silo tank and for the sediment concentration
 274 measurements, Hilda Witters and Guy Geukens, of the research Unit Health at VITO (Belgium) for
 275 culturing the freshwater algae. Special thanks to the Marine Remote Sensing Group, University of the
 276 Aegean (Greece) and The Ocean Cleanup (The Netherlands) for sharing plastic specimens with us.

277

278

References

279 Garaba, S. P. and Dierssen, H. M.: An airborne remote sensing case study of synthetic hydrocarbon detection using
 280 short wave infrared absorption features identified from marine-harvested macro- and microplastics, *Remote Sensing of*
 281 *Environment*, 205, 224–235, <https://doi.org/10.1016/j.rse.2017.11.023>, 2018.

282 Garaba, S. P. and Dierssen, H. M.: Hyperspectral ultraviolet to shortwave infrared characteristics of marine-harvested,
 283 washed-ashore and virgin plastics, 10, 2020.

284 Garaba, S. P., Arias, M., Corradi, P., Harmel, T., de Vries, R., and Lebreton, L.: Concentration, anisotropic and
 285 apparent colour effects on optical reflectance properties of virgin and ocean-harvested plastics, *J. Hazard. Mater.*, 406, 124290,
 286 <https://doi.org/10.1016/j.jhazmat.2020.124290>, 2021.

287 Gewert, B., Plassmann, M., Sandblom, O., and Macleod, M.: Identification of Chain Scission Products Released to
 288 Water by Plastic Exposed to Ultraviolet Light, <https://doi.org/10.1021/acs.estlett.8b00119>, 2018.

289 GO FAIR: GO FAIR [website] Available at: <https://www.go-fair.org>.

290 Ibelings, B., Admiraal, W., Bijkerk, R., Ietswaart, T., and Prins, H.: Monitoring of algae in Dutch rivers: does it meet its
 291 goals?, 11, 1998.

292 Knaeps, E., Sterckx, S., Strackx, G., Mijnendonckx, J., Moshtaghi, M., Garaba, S. P., and Meire, D.: Hyperspectral-
 293 reflectance dataset of dry, wet and submerged marine litter, *Earth Syst. Sci. Data*, 13, 713–730, <https://doi.org/10.5194/essd-13-713-2021>, 2021.

295 Leone, G.; Catarino, A.; De Keukelaere, L.; Bossaer, M.; Knaeps, E.; Everaert, G.: Hyperspectral reflectance dataset
 296 for dry, wet and submerged plastics in clear and turbid water. *Marine Data Archive*. <https://doi.org/10.14284/530>, 2021

297 LI, W. C., TSE, H. F., and FOK, L.: Plastic waste in the marine environment: A review of sources, occurrence and
 298 effects, *Science of The Total Environment*, 566–567, 333–349, <https://doi.org/10.1016/j.scitotenv.2016.05.084>, 2016.

299 Martínez-Vicente, V., Clark, J. R., Corradi, P., Aliani, S., Arias, M., Bochow, M., Bonnery, G., Cole, M., Cózar, A.,
 300 Donnelly, R., Echevarría, F., Galgani, F., Garaba, S. P., Goddijn-Murphy, L., Lebreton, L., Leslie, H. A., Lindeque, P. K.,
 301 Maximenko, N., Martin-Lauzer, F.-R., Moller, D., Murphy, P., Palombi, L., Raimondi, V., Reisser, J., Romero, L., Simis, S. G.
 302 H., Sterckx, S., Thompson, R. C., Topouzelis, K. N., van Sebille, E. van, Veiga, J. M., and Vethaak, A. D.: Measuring Marine
 303 Plastic Debris from Space: Initial Assessment of Observation Requirements, *Remote Sensing*, 11, 2443,
 304 <https://doi.org/10.3390/rs11202443>, 2019.

305 Moroni, M., Mei, A., Leonardi, A., Lupo, E., and Marca, F.: PET and PVC Separation with Hyperspectral Imagery,
306 Sensors, 15, 2205–2227, <https://doi.org/10.3390/s150102205>, 2015.

307 Moshtaghi, M., Knaeps, E., Sterckx, S., Garaba, S., and Meire, D.: Spectral reflectance of marine macroplastics in the
308 VNIR and SWIR measured in a controlled environment, Sci Rep, 11, 5436, <https://doi.org/10.1038/s41598-021-84867-6>, 2021.

309 Rodriguez, D., B. Einarsson, and A. C.: Biofilm growth on rugose surfaces, 061914, 1–16,
310 <https://doi.org/10.1103/PhysRevE.86.061914>, 2012.

311