
We thank all reviewers for their thorough reviews. We carefully modified the paper according to their suggestions. Below,
we provide a detailed list of our responses and the changes undertaken to the manuscript.

Reviewer 1 - Major Concerns:

1.1 Compared with previous studies, this manuscript has room to improve regarding innovation. The previous study has used
deep learning to extract the glacier termini from multiple remote sensing datasets. If combining multi-sensor and long-
term images brings innovations, the author needs to justify the reason (where are the challenges and how do you solve
them).

Thank you for raising this point. This study does not focus on innovative deep learning techniques. Instead, the focus of this
manuscript is to present a novel dataset that can be used to train and evaluate deep learning techniques. Training and testing
on a common dataset ensures comparability between studies. Different models trained and evaluated on different datasets
will get different error rates. It is, however, not clear if this performance difference results from the models or the dataset.
It may well be that one of the used datasets is not representative, or that the test dataset is simpler (e. g., glaciers such as
Mapple, where there is only one calving front with little curvature and variability). Therefore, a challenging benchmark
data set is highly needed. We now emphasize this aim more clearly in change 1, change 2, deletion 1, change 3, addition 1,
change 4, change 5, addition 4, addition 9, addition 10, and addition 11. Moreover, time series from multiple missions
introduce new challenges for calving front segmentation, such as different spatial resolutions, different penetration depths
or sensitivity to surface changes, different signal-to-noise ratios, and different geometries, topographic effects, shading,
and overlay effects. We inserted this statement in addition 2.

1.2 The second concern is about the data quality and quantity. The uncertainty is high for one of the two test glaciers, and
the terminus results are not usable for further analysis. Also, deep learning aims to produce a large number of termini
by automating terminus delineation. But the number of terminus traces derived from this study is limited. Considering the
ESSD is a journal focusing on data, I think the manuscript needs to improve in this regard.

The reviewer raises an important point. The dataset presented is not intended to be used directly for further analysis.
Rather, it is intended to provide a basis for training and evaluating new deep-learning pipelines that can then be used
to delineate calving fronts in new satellite imagery. As the reviewer correctly notes, the baseline model predictions for
Columbia Glacier are not accurate enough to be used for further analysis. We make no claim that this is the case. With
the base models, we aim to provide a foundation for future models and show how the dataset can be used in deep learning
pipelines. We want to encourage further research to improve upon challenging samples (such as the Columbia Glacier) in
the test set, as this is the only way to evaluate and thus ensure the generalizability of future models to difficult glaciers.

The quality of our annotated dataset has been verified by two additional persons. If there exist concerns about the
annotations, please indicate the specific annotations that need to be revised. Concerning the quantity of data, a total of 681
annotated images with a mean size of 2182×2010 is a reasonable size for a dataset designated for training deep learning
segmentation techniques. For comparison, the EuroSat benchmark dataset (https://github.com/phelber/eurosat) has 27 000
images of size 64×64. If we would divide our dataset into patches of 64×64, this would result in approximately 728 670
patches of this size making our dataset 27 times large than the EuroSat benchmark. Therefore, we think that the manuscript
is a good fit for the special issue “Benchmark datasets and machine learning algorithms for Earth system science data”.
To enhance the comprehensibility of the manuscript, we highlight our intentions more clearly in change 1, change 2,
deletion 1, change 3, addition 1, change 4, change 5, addition 4, addition 9, addition 10, and addition 11.

Reviewer 1 - Specific Comments:

2.1 Page 2 Line 58: It would be nice if the author could explain more about why the dataset from this study is beneficial for
bridging the gap regarding the evaluation among different studies.

Thank you for this comment. With this dataset, different approaches for the detection of glacier calving fronts can be
implemented, tested, and their performance fairly compared so that the most effective approach can be determined. Models
trained and tested on different datasets are not comparable without re-training and testing on a common dataset. To clarify
this, we added some explanations. Please see addition 3, change 1, and addition 9.
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2.2 Page 10 Line 212: Please explain more about re-mapping.

Thank you for your request. By re-mapping, we just meant that we manually redrew all the front lines because we couldn’t
make the ones from Zhang et al. (2019) fit. We have clarified this in addition 5.

2.3 Page 10 Line 222: What is the rationale behind identifying four zones since this study will only pick the boundary between
glacier and ocean.

Thank you for this question. There are two reasons why we decided to designate four zones instead of just two. First, if we
were to divide the scene into ocean and non-ocean, the boundary between the two zones would be the entire coastline, not
just the calving front. Therefore, it is important to include the rock outcrop as one zone. Second, SAR shadows, overlay
regions, and areas outside the swath are shown as zero values in the satellite imagery. Labelling the same pattern (patches
of zero values) once as ‘ocean’ and once as ‘non-ocean’ can confuse neural networks and affect their learning ability. In
the early stages of creating the dataset, we saw evidence that there was indeed an advantage to including multiple zones
instead of just two. To clarify this in the manuscript, we included addition 6.

2.4 Page 11 Line 246: Morphological dilation can resolve the imbalance to some degree but will also cause uncertainty in
terminus delineation. The more balanced between positive and negative pixels, the larger uncertainties the terminus will
have.

This raises an interesting point. We adopted this technique to cope with the class imbalance from Davari et al. (2022, 2021)
and Periyasamy et al. (2022). Our baselines’ mean distance error rates are significantly higher than structuring element size−1

2 ·
max(pixel resolution) = 2 · 20 = 40. Therefore, we hypothesize that the dilation is not the main factor for the deviations
to the ground truth front. Still, this is a great suggestion to improve over the baseline models. We will take it into account
in our future work.

2.5 Page 13 Line 277: I like the idea of applying Gaussian importance weighting before taking the average. It would be nice
if the author could provide more details.

Thank you! Gaussian importance weighting is done by element-wise multiplying each patch prediction with a Gaussian
kernel of similar size. During patch merging, the sum of the respective pixel values is normalized by the sum of the
corresponding Gaussian kernel’s elements. We added this information in addition 7.

2.6 Page 15 Line 298: Is this a universal threshold? Please explain more about setting this threshold and what will happen
if the threshold is too large. Usually, the threshold would be 0.5. The threshold can indeed be different as long as it is
justified.

Thank you for pointing this out. The threshold was treated as a hyperparameter that we optimized on the validation set.
We added this explanation to the manuscript in addition 8.

2.7 Page 21 Line 436: the uncertainty value might be wrong (150 m?). I couldn’t find this value in Table 7.

We apologize, there was a mistake in the numbers! It should be 134 meters instead of 143 meters. The 134 meters are the
difference between the front network’s MDE over the complete test set and the zone network’s MDE over the complete
test set (887 – 753 = 134). We corrected this in the manuscript (see change 8) and thank the reviewer for pointing this out!

2.8 Page 22, Line 461: Maybe consider including such post-processing in this study. Using the bedrock mask can eliminate
the fjord boundaries.

Thank you for this comment. We actually have considered this before submitting the paper but decided against it. This
post-processing technique covers errors that the neural network makes (the coastline would not be detected as calving front
if the rock would have been correctly recognized). If our models were used directly to produce new terminus delineations
for further analysis, this post-processing would of course make sense and be highly beneficial. However, our models shall
serve as baselines for future deep learning techniques and if a new model would enhance the recognition of rocks, this
would not lead to an adequate decrease in the mean distance error compared to the baseline that uses this post-processing.

2



2.9 Table 8, Table 9, and Figure 9: The predicted terminus position for the Columbia glacier deviates from its true position,
and the uncertainty for the Columbia glacier is too large.

Thank you again for this important point. As outlined before, the aim of this paper is not to provide a perfectly working
deep learning model for calving front segmentation but to present the benchmark dataset for training and testing deep
learning models as well as to provide baseline models to this dataset. Please refer to comment 1.1 and comment 1.2.
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Reviewer 2 - Major Concerns:

3.1 It would be helpful to include the type of data covered by each study in Table 1, such what types of glacial features are
provided by each dataset. These may include (but are not limited to) one or more of the following: full-line delineation
(ESA), a centerline position (King), or glacial outline (GLIMS).

Thank you very much for the helpful recommendation! We updated Table 1 and its caption accordingly.

3.2 Since the primary data of interest is the training/testing benchmark dataset, it would be beneficial to further emphasize
this in some way throughout the manuscript, such as including the total number of image pairs/metadata in the abstract.
This will enable readers to see the primary contribution more easily, and enhance visibility/usage of this work within the
field.

Thank you for this important suggestion. We revised our manuscript and put more emphasis on the benchmark dataset.
Please see change 1, change 2, deletion 1, change 3, addition 1, change 4, change 5, addition 4, addition 9, addition 10,
addition 11, and addition 3.

Reviewer 2 - Specific Comments:

4.1 P5 L108: “Lansat” -> “Landsat”

Thank you for this correction! You can find it in change 6.

4.2 P19 L364: “So there is a trade-off between patch size and batch size” Rephrase.

Thank you. We reformulated the sentence in change 7.

4.3 P24 L463: “are” -> “is”

Thank you. We integrated this correction in change 9.

4.4 P32 L539: “25rd” -> “25th”

Thank you for pointing out this mistake. We corrected it in the manuscript in change 10.
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Abstract. Exact information on calving front positions of marine- or lake-terminating glaciers is a fundamental glacier

variable for analyzing ongoing glacier change processes and assessing other variables like frontal ablation rates. In recent

years, researchers started implementing algorithms that could automatically detect the calving fronts on satellite imagery.

Most studies use optical images, as in these images, calving fronts are often easy to distinguish due to sufficient spatial

resolution and the presence of different spectral bands, allowing the separation of ice features. However, detecting calving5

fronts on SAR images is highly desirable, as SAR images can also be acquired during the polar night and are independent

of weather conditions, e. g., cloud cover, facilitating all-year monitoring worldwide. In this paper, we present a benchmark

dataset of SAR images from multiple regions of the globe with corresponding manually defined labels to train and test

approaches for the detection of glacier calving fronts.providing information on the position of the calving front. With this

dataset, different approaches for the detection of glacier calving fronts can be implemented, tested, and their performance10

fairly compared so that the most effective approach can be determined. The dataset The dataset consists of 681 samples, C1 (1.1, 1.2, 3.2, 2.1)

making it sufficiently large to train deep learning segmentation models. It is the first dataset to provide long-term glacier C2 (1.1, 1.2, 3.2)

calving front information from multi-mission data. As the dataset includes glaciers from Antarctica, Greenland and Alaska,

the wide applicability of models trained and tested on this dataset is ensured. The test set is independent of the training

set so that the generalization capabilities of the models can be evaluated. We provide two sets of labels: one binary15

segmentation label to discern the calving front from the background and one for multi-class segmentation of different

landscape classes. Unlike other calving front datasets, the presented dataset contains not only the labels but also the

corresponding preprocessed and geo-referenced SAR images as PNG files. The ease of access to the dataset will allow

scientists from other fields, such as data science, to contribute their expertise. With this benchmark dataset, we enable

comparability between different front detection algorithms and improve the reproducibility of front detection studies.20

Moreover, we present one baseline model for each kind of label type. Both models are based on the U-Net, one of the

most popular deep learning segmentation architectures. ///////////////Additionally, ////we////////////introduce/////////Atrous/////////Spatial///////////Pyramid //////////Pooling ///to

///the/////////////bottleneck////////layer. In the following two post-processing procedures, the segmentation results are converted into one- D1 (1.1, 1.2, 3.2)

pixel-wide front delineations. By providing both types of labels, both approaches can be used to address the problem.

To assess the performance of thedifferent models, we suggest to first review the segmentation results using the recall, C3 (1.1, 1.2, 3.2)

A1 (1.1, 1.2, 3.2)

25
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precision, F1-score, and the Jaccard Index. Second, we evaluate the front delineationthe front delineation can be evaluated C4 (1.1, 1.2, 3.2)

by calculating the mean distance error to the labeled front. The presented vanilla models provide a baseline of 150 m± 24 m

mean distance error for the Mapple Glacier in Antarctica and 840 m± 84 m for the Columbia Glacier in Alaska, which has

a more complex calving front, consisting of multiple sections, as compared to a laterally well constrained, single calving

front of Mapple Glacier.30

1 Introduction

Ice mass loss of the ice sheets and glaciers is one of the major contributors to current global sea-level rise (Frederikse

et al., 2020; Zemp et al., 2019; Sheperd et al., 2018; Khan et al., 2015). Alongside surface mass balance, ice losses at the

calving fronts of marine- or lake-terminating glaciers are the major causes for ice depletion (Khan et al., 2015; Sheperd

et al., 2018). Hence, frontal ablation, defined as glacier mass loss due to calving and submarine melt (Dryak and Enderlin,35

2020), is an essential parameter of total glacier mass balances. This is all the more true because ice discharge at the

calving fronts of marine-terminating glaciers is a self-reinforcing system, as calving events lead to an expansion of the

ice-melange triggered by the jamming wave and the break-up and thinning of the melange subsequently weakens the

buttressing forces stabilizing the glacier (Robel, 2017). There exist some estimates of frontal ablation at glaciers outside

the large ice sheets (Burgess et al., 2013; McNabb et al., 2015; Minowa et al., 2021). Neglecting the frontal ablation40

can significantly bias the numerical glacier models. For example Recinos et al. (2019) reported an underestimation of ice

thickness in Alaska in the range of 19 % on regional and up to 30 % on glacier scales when omitting frontal ablation.

A spatio-temporal quantification of frontal ablation can therefore provide much needed reference data for glacier model

parametrization (Recinos et al., 2019, 2021). Frontal ablation has successfully been parametrized for individual glaciers

(Åström et al., 2014; Ultee and Bassis, 2016; Todd and Christoffersen, 2014; Nick et al., 2010). These models, however,45

rely on data that are hard to obtain for entire glaciated regions (Recinos et al., 2019). An automated process to determine

the frontal ablation based on easily accessible data is required. Changes in the position of the glaciers’ calving fronts are

crucial information for estimating frontal ablation. Satellite imagery facilitates the mapping of calving front positions in

remote areas and on large spatial scales. Calving front positions can be acquired from optical as well as synthetic aperture

radar (SAR) satellite imagery. Both imaging modalities have advantages and disadvantages for calving front delineation50

(Baumhoer et al., 2018). Optical satellite imagery has higher spatial accuracy and often higher resolution compared to

SAR imagery. Moreover, different spectral bands allow the separation of ice types in optical images (Tedesco, 2014; Gao

et al., 1998), whereas the backscatter in SAR images might be similar for different ice types. The water–ice boundary in

SAR images has, however, a high contrast (Liu and Jezek, 2004). Additionally, SAR can penetrate clouds and thin snow

cover and is independent of solar illumination, allowing recordings during the night and polar night. This leads to higher55

temporal availability, in particular at polar regions, for SAR images than for optical images. The majority of the calving

glaciers are situated in polar regions (Hugonnet et al., 2021). Consequently, we decided to use SAR imagery for calving

front delineation due to the better temporal coverage. Until recently, ice-shelf fronts and glacier termini in related work
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were usually manually delineated (Baumhoer et al., 2018). However, this approach is no longer feasible with the rapidly

growing satellite image archives, as manual delineation is a highly time-consuming, tedious, and expensive task. Recent60

studies (Baumhoer et al., 2019; Cheng et al., 2021; Davari et al., 2022, 2021; Hartmann et al., 2021; Heidler et al., 2021;

Holzmann et al., 2021; Marochov et al., 2021; Mohajerani et al., 2019; Periyasamy et al., 2022; Zhang et al., 2019, 2021)

focus on deep learning to extract the calving front and show great success. However, the evaluations of these studies were

generally based on different datasets and are therefore not comparable. To bridge this gap, we introduce a benchmark

dataset for calving front delineation of marine-terminating glaciers located in the Arctic, Greenland, and Antarctica. It is65

the first dataset to provide long-term calving front information from multiple missions. Time series from multiple missions

introduce new challenges for calving front segmentation, such as different spatial resolutions, different penetration depths

or sensitivity to surface changes, different signal-to-noise ratios, and different geometries, topographic effects, shading,

and overlay effects. Deep learning models can be trained and tested on this publicly available dataset, and the baseline A2 (1.1)

models also presented in this paper provide an initial reference point for the performance of future models. A3 (2.1, 3.2)70

To automatically delineate the calving front in SAR images, weour baseline models perform a segmentation of the SAR C5 (1.1, 1.2, 3.2)

image. In segmentation, each pixel is assigned to a specific class. In related works, two different segmentation approaches

are used for the delineation. The first approach performs a binary segmentation between land and ocean (including ice-

melange) and extracts the calving front from the boundary between the two classes in a post-processing step. The second

approach directly assigns the pixels of the SAR image to the classes calving front and background. Both segmentation75

approaches are supervised learning tasks. Hence, ground truth segmentation images are needed for the algorithm to learn

to distinguish the classes. As the classes in the two approaches differ (front and background versus land and ocean),

different ground truth masks are needed for the two segmentation tasks. Likewise, our presented benchmark dataset has

two ground truth annotations for each SAR image, one showing the segmentation front versus the background and the other

one showing a segmentation into the classes ocean (including ice-melange), rock, glacier, and “no information available”80

(from now on called “NA”), which consists of SAR shadows, layover regions, and areas outside the swath. The second set

does not represent a binary pixel classification task but a multi-class segmentation task. The calving front delineation is

then carried out during post-processing using the boundary between the classes glacier and ocean.

In this study, we present the first publicly available annotated dataset for quantifying the performance of glacier calving

front delineation algorithms on SAR images. Besides the calving front labels, the dataset also contains the corresponding85

preprocessed and geo-referenced SAR images enabling a direct application of deep learning segmentation models. Our

train and test datasets include both images of where the ocean in front of the glacier front is covered by ice-melange and

images where mainly open water is present. This ensures the generalizability of tested algorithms to all ocean surface

settings. Two vanilla baseline models are presented: one for the multi-class segmentation into glacier, ocean, rock outcrop A4 (1.1, 1.2, 3.2)

and NA areas and one for the binary segmentation into front and background. Future models can use these models as a90

basis and compare against their performance on the presented dataset. For the evaluation of the algorithms, metrics are

introduced that assess the segmentation performance of the presented Convolutional Neural Network (CNN) models and

the result of the front delineation after post-processing.
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The next section of this paper gives an overview of related work, including other datasets and algorithms for front

delineation. In Sect. 3, we explain the details of our own dataset, while Sect. 4 introduces the baseline methods. The95

evaluation of these methods on our dataset is given in Sect. 5 before we draw some conclusions in Sect. 6.

2 Related work

Due to the high demand for information on the position of ice shelf fronts and glacier termini, several related datasets have

been published and studies have been carried out aiming at automatically extracting these positions from satellite imagery.

2.1 Datasets100

Existing datasets can be divided into SAR and optical imagery, as well as datasets that are based on both imaging modali-

ties. Most datasets were constructed using solely optical images (Lippl, 2019; King and Howat, 2020; Fausto et al., 2019;

Schild and Hamilton, 2013; Cheng et al., 2020). Lippl (2019) contains manually delineated calving front locations through-

out the James Ross Island that were extracted using panchromatic Landsat-8 data. The remaining optical datasets feature

delineations of Greenlandic glaciers. Calving front positions of Helheim and Kangerdlugssuaq are given by Schild and105

Hamilton (2013) based on MODIS imagery. Fausto et al. (2019) delineate 47 of the largest outlet glaciers in Greenland an-

nually at the end of the melt season between 1999 and 2018 based on ASTER and Landsat imagery. Front position changes

of an even larger number (234) of Greenlandic glaciers are displayed over more than three decades by King and Howat

(2020). Their delineations are based on ASTER and Landsat 4-8 imagery. Another extensive database (Cheng et al., 2020)

comprises 22,678 calving front lines across Greenlandic marine-terminating glaciers. Parts of the calving fronts were man-110

ually delineated using optical Landsat NIR band imagery while the deep learning algorithm CALFIN (Cheng et al., 2021)

produced the other part of the provided calving fronts. CALFIN was trained and tested on the manually mapped fronts

included in the dataset as well as additional SAR images from Antarctica. Only two datasets were constructed using solely

SAR imagery, which are both located at Jakobshavn Isbræ in Greenland. Zhang (2019a) comprises manually delineated

calving fronts based on TerraSAR-X imagery that Zhang et al. (2019) used to train a neural network to extract calving115

fronts from SAR images automatically, while Zhang (2019b) includes the calving fronts that the trained network extracted

from additional TerraSAR-X images. The ESA Greenland Ice Sheet CCI project team (2019) provides calving front po-

sitions of 28 major outlet glaciers in Greenland. The manual delineation is carried out based on both SAR and optical

imagery taken from ERS-1/2, Envisat, Sentinel-1 and LansatLandsat 5, 7, and 8. The dataset is continuously updated; we C6 (4.1)

refer to version 3 here. Optical and SAR imagery from Landsat-8, Sentinel-2, Envisat, ALOS-1, TerraSAR-X, Sentinel-1,120

and ALOS-2 was also used by Zhang et al. (2020a) to manually delineate Jakobshavn Isbræ, Kangerlussuaq and Helheim

glaciers. This dataset was again used to train and test a deep learning network that was afterwards used to produce a

second dataset (Zhang et al., 2020b). Two massive databases that need to be mentioned for the sake of completeness are

the Global Land Ice Measurements from Space (GLIMS) (Raup et al., 2018) and the SCAR Antarctic Digital Database

(ADD) (Gerrish et al., 2021). ADD includes Antarctica’s coastline south of 60°S including grounding lines and ice shelf125
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fronts. Up to now, GLIMS provides 546,300 glacier outlines from glaciers around the world with an ingest rate of 7529

outlines per month. Their outlines are based on optical imagery.

An overview of all datasets can be seen in Table 1. Every described dataset only provides the glacier outlines or poly-

gons and not the corresponding preprocessed satellite imagery, hence, hindering the direct application of deep learning

algorithms.130

Modality Dataset Type Annotation Area # Glaciers # Mapped Fronts Time Span Res.

Optical

[Lippl] Line Manually Antarc. 26 656 2014 - 2018 15 m

[King] Center Manually Greenland 234 128,442 1985 - 2018 30 m

[Fausto] Line Manually Greenland 47 1180 1999 - 2018 10 - 30 m

[Schild] Poly Manually Greenland 2 1862 2001 - 2010 250 m

[Cheng]
Line Manually

Greenland 66 22,678 1972 - 2019 30 m
& Fjord & Network

[ADD] Coast
Manually

Antarc. Since 1843
& Semi-Auto.

[GLIMS] Glacier
Manually

Global ∼200,000 546,300 Since 1750
& Semi-Auto.

SAR

[Zhang19a] Line Manually Greenland 1 159 2009 - 2015 3 m

[Zhang19b] Line Network Greenland 1 159 2009 - 2015 3 m

Ours
Line

Manually
Alaska, Antarc.

7 681 1996 - 2020 6 - 20 m
& Zones & Greenland

Optical
[Zhang20a] Line Manually Greenland 3 2087 2002 - 2019 3 - 40 m

& SAR
[Zhang20b] Line Network Greenland 3 2087 2002 - 2019 3 - 40 m

[ESA] Line Manually Greenland 28 1089 1990 - 2016 10 - 30 m

Table 1. Overview of publicly available front line datasets. The entry Type indicates what types of glacial features are provided. The

different types are abbreviated as line (full-line delineation), center (centerline delineation), poly (polygon-bounded), fjord (fjord bound-

aries), coast (coastline), glacier (glacial outline), and zones (landscape zones as described in Sect. 3.2). The Annotation entry refers to

how the delineations were produced, i. e., manually, by a network or by a model. The entry # Glaciers gives the number of presented

glaciers and # Mapped Fronts the number of glacier front delineations over all glaciers inherent in a dataset. The Res. indicates the

spatial resolution of images used for the mapping of the glacier fronts. The datasets are: [Lippl] Lippl (2019), [King] King and Howat

(2020), [Fausto] Fausto et al. (2019), [Schild] Schild and Hamilton (2013), [Cheng] Cheng et al. (2020), [ADD] (Gerrish et al., 2021),

[GLIMS] (Raup et al., 2018), [Zhang19a] Zhang (2019a), [Zhang19b] Zhang (2019b), [Zhang20a] Zhang et al. (2020a), [Zhang20b]

Zhang et al. (2020b), [ESA] ESA Greenland Ice Sheet CCI project team (2019), and the dataset presented in this paper (Gourmelon

et al., 2022b) is denoted as Ours.
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2.2 Algorithms

Since 2019, several studies have applied deep learning techniques to delineate the calving front of marine-terminating

glaciers in satellite imagery. The first studies are all based on the U-Net (Ronneberger et al., 2015), which still is the

basis of many state-of-the-art networks in image segmentation. Mohajerani et al. (2019) employs this encoder-decoder

network to segment multispectral Landsat images into calving front and background. Baumhoer et al. (2019) and Zhang135

et al. (2019) performed the first analyzes based on SAR imagery. Zhang et al. (2019) employ Zhang (2019a)’s dataset for

training and testing, while Baumhoer et al. (2019)’s database is not publicly available. In a subsequent study (Baumhoer

et al., 2021), Baumhoer et al. modified their U-Net and used it to delineate the entire Antarctic coastline for 2018.

The U-Net architecture was replaced with DeepLabv3 (Chen et al., 2018b) by both Zhang et al. (2021) and Cheng et al.

(2021). Both studies segment optical and SAR imagery into land and sea, including sea ice. Zhang et al. (2021) performs140

a comparison between the U-Net and DeepLabv3+ with different backbones. They published their manual delineations in

Zhang et al. (2020a). In contrast to Zhang et al. (2019), Cheng et al. (2021) employs the Xception model (Chollet, 2017)

as backbone like in the original DeepLabv3 paper (Chen et al., 2018b). Cheng et al. (2021)’s network, called CALFIN,

outputs two probability masks: land versus sea and coastline versus background. They evaluate CALFIN not only on their

own published dataset (Cheng et al., 2020) but also on images from Mohajerani et al. (2019), Zhang et al. (2019), and145

Baumhoer et al. (2019). Another study that learns two tasks simultaneously is conducted by Heidler et al. (2021). Their

network is based on the U-Net architecture but features two output heads: one for the segmentation into sea and land and

one for delineating the coastline. They compare their model against other deep learning approaches including the U-Net

model from Baumhoer et al. (2019). While their code is open source, their dataset is not publicly available. A completely

different approach to front delineation is taken by Marochov et al. (2021). Instead of directly segmenting the entire images150

into the desired classes, Marochov et al. (2021) use classification networks to determine the class of every single pixel

in each image separately. In their paper, Marochov et al. (2021) compare their model’s results with the results given in

Baumhoer et al. (2019)’s, Cheng et al. (2021)’s, Mohajerani et al. (2019)’s and Zhang et al. (2019)’s studies. However,

this is not a valid comparison because the models were trained and tested on different datasets, so the differences in

performance can not solely be attributed to the models but may be due to the data itself. Five more studies perform their155

experiments on SAR imagery solely. Holzmann et al. (2021) incorporate attention gates in the skip connections of the

U-Net to improve the segmentation performance. Hartmann et al. (2021) implement a Bayesian U-Net to quantify the

uncertainty of the model and use the uncertainty as an additional input to a second U-Net to improve its prediction of the

calving front position. Davari et al. (2021) use a distance map-based loss to train their U-Net. Periyasamy et al. (2022)

further optimize the feature extraction of the U-Net. Lastly, Davari et al. (2022) formulate the front segmentation as a160

regression task, letting a U-Net predict the distance of each pixel to the front. All five studies, use Zhang et al. (2019)’s

U-Net as baseline, but do not publish their dataset.

About half of the presented studies make their code publicly available (Cheng et al., 2021; Davari et al., 2021; Heidler

et al., 2021; Marochov et al., 2021; Mohajerani et al., 2019; Zhang et al., 2021). Only two-thirds of the described studies
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make an effort to compare their method with other existing methods by either testing on the same dataset or by re-training165

and testing the other’s model on the own dataset (Cheng et al., 2021; Davari et al., 2022, 2021; Hartmann et al., 2021;

Heidler et al., 2021; Holzmann et al., 2021; Periyasamy et al., 2022; Zhang et al., 2021). Furthermore, testing on another’s

dataset alone without re-training the own model on the other’s training dataset beforehand is not a strong comparison, as

the own training dataset might form a better learning basis. The low rate of informative comparisons is understandable, as

most datasets and codes are not easily accessible or employable. Satellite imagery is not provided, and preprocessing steps170

like geo-referencing need to be repeated. Therefore, a benchmark dataset and an easily reusable baseline code are highly

needed. The dataset and code will benefit not only the comparability of future studies but also their reproducibility and the

broad applicability of future models.

3 Data set

3.1 Study sites175

Seven tidewater glaciers situated in Greenland, Alaska and on the Antarctic Peninsula (AP) were selected to generate

labels to train and evaluate automated calving front mapping approaches for SAR imagery (see Fig. 1). The glaciers were

selected considering existing data sets of calving fronts, available SAR coverage and reports on calving front variability.

Along the AP, five former ice-shelf tributary glaciers were selected. The AP is a hot spot of global warming, and a

significant temperature increase was observed during the 20th century (Oliva et al., 2017; Turner et al., 2016). As a result,180

Cook and Vaughan (2010) reported rapid retreat and even disintegration of various ice shelves along the AP. In 1995,

the Prince-Gustav-Channel and Larsen-A ice shelves broke up, followed by the disintegration of the Larsen-B Ice Shelf

in 2002 (Cooper, 1997; Scambos et al., 2004; Skvarca et al., 1998). Consequently, the former ice shelf tributary glaciers

reacted with increased ice discharge and further frontal recession due to the loss of buttressing forces by the ice shelves

(e.g., Rott et al., 2014; Seehaus et al., 2015, 2016). For this benchmark database, we selected the Dinsmoore-Bombardier-185

Edgworth (DBE) and Sjögren-Inlet (SI) glacier systems, which were major tributaries of the Larsen-A and Prince-Gustav-

Channel ice shelves, respectively. At the Larsen-B embayment, the former ice shelf tributaries Crane, Mapple and Jorum

were chosen. Similar reaction patterns were observed at these glaciers. A significant rise in ice flux after the ice shelve

break-ups, followed by a long-term decrease, was measured. Concurrently, the glacier fronts retreated strongly after the

disintegration of the ice shelf and partially stabilized or showed a readvance again after a few years (e.g., Rott et al.,190

2014, 2018; Wuite et al., 2015; Seehaus et al., 2015, 2016).

At Greenland, we incorporated Jakobshavn Isbrae (JAC) in our database. It is located on the west coast and drains

the Greenland ice sheet. For the last decades, pronounced ice flow and calving front variabilities were reported (Joughin

et al., 2008, 2012). A frontal retreat of 16 km between 2002 and 2008 was revealed by Rosenau et al. (2013). Correlations

between changes in the calving front positions and variations in ice discharge and the formation of ice melange in the195

glacier fjord were observed by various analyses (Amundson et al., 2010; Joughin et al., 2008, 2012).
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Figure 1. Overview of sampled glaciers in Alaska, Greenland and on the Antarctic Peninsula. Pink polygons highlight the subset areas

used for the data generation. Background: ESRI Satellite ©ESRI
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In Alaska, we selected Columbia Glacier. It is a large marine-terminating glacier and has strongly retreated since the

early 1980s (McNabb et al., 2015; Krimmel, 2001)). It has split into two branches - the main and the west branch in 2010

(Vijay and Braun, 2017). Between 1957 and 2007, an average ice thinning rate of 10 m/a was found (McNabb et al., 2012),

and pronounced seasonal and interannual variability of the ice flow and calving front position was reported by Vijay and200

Braun (2017).

At all selected glaciers, there exists a good temporal coverage by SAR imagery. In particular high temporal coverage by

TerraSAR-X and TanDEM-X strip map imagery exists since most glaciers are part of the so-called TanDEM-X super-test-

sites. For DBE and SI glacier systems, a detailed analysis of the calving front evolution, based on manual picking of the

front positions on multi-mission SAR imagery, exists (Seehaus et al., 2015, 2016) and was incorporated in this benchmark205

database. At the other glaciers, the glacier fronts were as well manually picked on SAR intensity imagery.

3.2 Data set generation

We used SAR imagery from the satellite missions ERS-1/2, Envisat, RADARSAT-1, ALOS PALSAR, TerraSAR-X (TSX),

TanDEM-X (TDX), and Sentinel-1, covering the period 1995-2020. The SAR data was provided by the German Aerospace

Center (DLR), the European Space Agency (ESA) and the Alaska Satellite Facility (ASF). The SAR imagery was provided210

as single-look-complex (SLC) data, except for some RADARSAT-1 imagery on the AP, which was provided in Precision

Image (PRI) format (similar to a multi-looked intensity image). At first, the SAR images were calibrated and multi-looked

to obtain approximately squared pixel sizes and to reduce speckle noise. The applied multi-looking factors are provided

in Table 2. They were selected based on a trade-off between loss of spatial resolution and speckle noise reduction. Sub-

sequently, the SAR intensity imagery was geocoded and orthorectified. On the AP, the enhanced ASTER digital elevation215

model (DEM) of the AP (Cook et al., 2012) was employed, whereas for Columbia Glacier, the Shuttle Radar Topogra-

phy Mission (SRTM) DEM and for Jakobshavn Glacier, the global TanDEM-X DEM were used. The specifications and

parameters of the SAR sensors and imagery are provided in Table 2.

The SAR data processing was done using the GAMMA RS Software. The manually picked glacier front positions

employed for the studies by Seehaus et al. (2015, 2016) were used for DBE and SI glacier systems. Additionally, glacier220

front positions were manually mapped at the Larsen-B embayment and for Columbia Glacier. At Jakobshavn Isbrea, Zhang

et al. provided only spatial lines of their manually picked calving front positions. Thus, we ordered TSX/TDX SLC strip

map imagery at DLR from the same orbits and dates as used by Zhang et al. (2019) and applied the same SAR processing

as mentioned above in order to have the same imagery setting for each satellite at all of our study sites. Since Zhang

et al. applied an additional geo-referencing step using manually defined ground control points by means of Google Earth225

imagery, which we could not completely replicate, there was still a spatial offset between our SAR imagery and their front

positions. Thus, we manually re-mapped, i.e., redrew, all glacier fronts at Jakobshavn Isbrea. A quality factor ranging from A5 (2.2)

1 to 6 was assigned to each calving position. The quality factors are a subjective measure of the reliability of the picked

front position depending on the similarity of the ice melange and the glacier. Table 3 shows the quality factors and the

respective uncertainty values perpendicular to the glacier front.230
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Platform Sensor Mode SAR band
Repetition

Time interval

Multi Approx.
Ground range

cycle [d]
looking slant range ×

res. [m]
factor azimuth res. [m]

ERS-1/2 SAR IM C band 35/1
13. November 1995 -

1×5 8×4 20
02. April 2010

RADARSAT 1 SAR ST C band 24
10. September 2000 -

1×4 12×5 (SLC)
20 (SLC)

20. January 2008 12.5 (PRI)

Envisat SAR IM C band 35
05. December 2003 -

1×5 8×4 20
03. July 2010

ALOS PALSAR FBS L band 46
18. May 2006 -

2×5 5×4 16.7
03. March 2011

TerraSAR-X
SAR SM X band 11

13. October 2008 -
3×3 1.4×2 6.7

TanDEM-X 20. May 2016

Sentinel-1A/B SAR IW C band 6/12
18. December 2015 -

5×1 4×20 20
12. June 2020

Table 2. Summary of the SAR satellites and specifications of the used imagery. All imagery was provided in SLC format; only for

RADARSAT-1, some data takes were provided in PRI format.

Quality factor 1 2 3 4 5 6

[m] 70 130 200 230 450 > 450

Table 3. Quality factors of manual calving front mapping and the related horizontal uncertainty of the mapped glacier front position.

Next, the geo-referenced SAR intensity imagery of all glaciers was cropped to the areas of interest (see Fig. 1) and con-

verted to 16 bit single-channel images. In order to define different surface types in the SAR imagery, the manually mapped

calving fronts (spatial line) were combined with a stable glacier outline data set. At the AP, the “ice feature catchments”

and “rock-outcrop” polygons from ADD were taken. At Jakobshavn Isbrea, we manually generated the relevant layers. At

Columbia Glacier, we relied on the Randolph Glacier Inventory 6.0, which was slightly manually refined since Columbia235

Glacier retreated and thinned strongly and new rock outcrops were formed, which are not included in the inventory. 8 bit

single-channel images identifying four zones – “ocean”, “rock outcrops”, “glacier area” and “no information available”

(SAR shadow, layover regions and areas outside the SAR swath) in the SAR imagery – were generated based on these

spatial features. Additionally, 2-class imagery was generated using the picked calving front locations solely. The catego-

rized images have the same extent, dimensions and spatial resolution as the respective SAR image subsets, allowing the240
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definition of two sets of labels for the SAR image subsets that can be used for machine learning methods: one binary set for

direct front segmentation; and one set, including the 4-class images, for multi-class “zones” segmentation. For the second

set of labels, four zones are chosen instead of only two zones (ocean vs. non-ocean). This has two reasons: First, the rock

outcrop is needed to distinguish between coastline and calving front. Second, SAR shadows, overlay regions, and areas

outside the swath are simply displayed as zero values in the satellite imagery. Labelling the same pattern (patches of zero245

values) once as ‘ocean’ and once as ‘non-ocean’ may hinder the learning ability of the neural networks. To support the A6 (2.3)

post-processing of the calving front detection, we provide additional bounding box information on the maximum glacier

front extents at each glacier for each label (see Sect. 4.3).

The resulting database, comprising the preprocessed SAR image subsets and both label sets, was split into train and test

samples. The samples from DBE, SI, Crane, Jorum glaciers and JAC are used to train the calving front detection algorithms.250

This training data set comprises samples of different glacier geometries (see Fig. 1) and data from all incorporated SAR

sensors. The samples from Mapple and Columbia glaciers are used to evaluate the performance of the neural networks. At

both glaciers, the samples contain imagery with open ocean and ice-covered sea surface next to the calving front. Mapple

Glacier has a relatively simple glacier geometry, comprising a single calving front, well constrained by the fjord valley

walls. The geometry of Columbia Glacier is much more complex. It consists of multiple branches, and the strong glacier255

retreat causes the split of the calving front into various sections. The number of images per glacier, sensor and label set is

summarized in Table 4.

Platform DBE SI Jorum Crane Mapple Columbia Jacobshavn Training Test All

ERS-1/2 16 28 3 5 2 52 2 54

RADARSAT 27 27 54 54

Envisat 26 27 10 9 10 72 10 82

ALOS 20 7 6 7 8 40 8 48

TerraSAR-X TanDEM-X 44 32 43 48 22 47 159 326 69 395

Sentinel-1A/B 15 15 18 15 33 48

Sum 133 121 77 69 57 65 159 559 122 681

Table 4. Summary of labels for each glacier and sensor, as well as for training and test data sets.

4 Baseline methods

Alongside our benchmark dataset, we present two models, one for the direct front segmentation and one for the zone

segmentation, which can serve as baseline methods for future studies. The complete workflow comprises preprocessing,260
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Figure 2. Workflow for both front and zone segmentation. The enhancement of the ocean prediction includes filling gaps in the ocean

zone and selecting only the largest connected ocean component as the ocean region.

processing with the neural network and post-processing, including the front extraction. An overview of this workflow is

given in Fig. 2.

4.1 Preprocessing

Since most of the standard preprocessing has already been done for the benchmark dataset (see Sect. 3), only preprocessing

techniques related to the specific architecture of the neural network need to be applied. In the front segmentation model,265

we thicken the front labels by morphological dilation employing a rectangular structuring element of size 5× 5 pixels.

Thickening the front mitigates the class imbalance inherent in the calving front dataset. A problem due to class imbalance

arises when the class distributions are highly imbalanced, leading to low prediction accuracy for the rare class (Ling and

Sheng, 2010). In our case, the front is only a one-pixel-wide line and therefore has much fewer pixels than the background.

Hence, we use this morphological dilation and a specialized loss function for the training, which is described in Sect. 5.2.270

For the evaluation, the one-pixel-wide fronts are used.

Another preprocessing step that we apply is patch extraction, where each image is divided into tiles of the same size.

Neural networks usually process several images in one forward pass. This group of images is called a batch, and a batch
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Figure 3. Sliding window approach for patch extraction. A window with the desired size of the patches is slid over the image with a

certain stride or step size.

size of more than one allows for faster training (Bengio, 2012). Since the images in our dataset are large and have different

sizes, there are two ways to achieve a sufficient batch size that still fits in the GPU: resizing and patch extraction. We275

choose patch extraction, as during resizing, information is lost, while the downside to patch extraction is the loss of the

global context of the patches. Before the images can be divided into patches, each image must be padded with zeros so

that no remainder is left that is smaller than the size of the patch. Next, a sliding window approach (see Fig. 3) is used to

extract patches of size 256× 256 pixels. The step size for the validation and test images is set to 128 so that the patches

overlap and that stitching artefacts can be reduced when the images are reassembled, cf. Sect. 4.3. For training images, the280

stride is chosen such that the patches do not overlap, as this reduces the computational load considerably, and the network

still sees the complete dataset once.

4.2 Deep learning models

Both our models are based on the U-Net (Ronneberger et al., 2015), an encoder-decoder CNN, which is used in most state-

of-the-art networks for image segmentation. We adapt the standard U-Net architecture to our needs and refine it by inserting285

Atrous Spatial Pyramid Pooling (ASPP) (Chen et al., 2018a) in the bottleneck layer. ASPP applies atrous convolutions with

different dilation rates in parallel, resulting in differently sized fields of view, and then fuses the obtained feature maps,

allowing robust segmentation of objects at multiple scales. Since calving fronts, like any other geologic structure, do not

have a fixed size, this specialized layer is advantageous for our models. Our chosen dilation rates are 1, 2, 4, and 8. Other

changes to the original U-Net architecture are the choice of Leaky ReLU with a negative slope of 0.1 as activation layer,290

32 as the number of start feature layers, and “same” instead of “valid” padding. Our complete architecture can be seen in

Fig. 4. The output of the model depends on the type of segmentation: In direct front segmentation, we receive a probability

map where each pixel value indicates the predicted probability (however not normalized to ∈ [0,1] – the sigmoid function
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Figure 4. The architecture of both presented segmentation models. Different blocks denote the output of the transformations indicated

by the color of each block. Note that the sizes of the blocks are not true to scale. The numbers beneath the blocks indicate the number

of feature maps. The size of the features maps is indicated inside or next to the blocks. The number of classes given by # Classes is one

for front segmentation and four for zone segmentation.

still needs to be applied) that this pixel belongs to the front. In zone segmentation, we get such a probability map for each

zone. For the delineation of the calving front, these probability maps are further processed during post-processing.295

4.3 Post-processing for front delineation

During post-processing, the output probability patches are first merged into complete images. For merging, we do not

simply use the average of the values where the patches overlap but apply Gaussian importance weighting before taking the

average, which reduces stitching artefacts. Gaussian importance weighting gives higher weights to pixels close to the center

of patches and lower weights to pixels near the edge of the patches (Isensee et al., 2021). This is done by element-wise300

multiplying each patch prediction with a Gaussian kernel of similar size. During patch merging, the sum of the respective

pixel values is normalized by the sum of the corresponding Gaussian kernel’s elements. Afterwards, the area padded with A7 (2.5)

zeros during preprocessing in the SAR image is removed from our output.

4.3.1 Zone segmentation

For zone segmentation, we obtain the zone prediction for each pixel by looking at all the probability maps and selecting the305

zone whose probability map has the highest value at the given pixel. To fill gaps in the ocean zone, which is required for

further steps, we do not apply morphological filtering like Baumhoer et al. (2019, 2021). Instead, we perform a Connected

Component Analysis (CCA) on the inverted predicted ocean region to receive all connected non-ocean regions and mark all
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but the largest connected component in the original prediction to belong to the ocean region. In this way, we can guarantee

to fill small (and larger) gaps inside the ocean zone without altering the zone’s outer boundary. This might eliminate islands310

(which were not present in our training data), which is, however, unimportant for the front delineation task. Performing

CCA on the ocean zone and omitting all but the largest connected component leaves us with one ocean area. The boundary

between this ocean area and all adjacent predicted glacier zones yields the one-pixel-wide glacier termini. We mask the

glacier termini with a bounding box specified separately for each glacier to obtain only the calving front of the observed

dynamic glacier. Finally, independent front segments shorter than 750 m are removed because they likely belong to static315

ice-ocean boundaries that are only partially excluded by the bounding box and in which we are not interested in mapping.

The shortest front in our dataset is 1.5 km long. Thus, we choose the minimum reasonable length of a predicted calving

front to be half of this length. However, be aware that this parameter might need to be adjusted for new glaciers.

4.3.2 Front segmentation

To receive the front prediction, we first apply the sigmoid function pixel-wise on the probability map to receive predicted320

probability values between 0 and 1. Next, we use a threshold of 0.12 to binarize the prediction. If the probability value is

higher than the threshold, then the pixel belongs to the front and otherwise to the background. The threshold was empiri-

cally chosen based on results on the validation set. The obtained prediction is not yet a one-pixel-wide line. Therefore, we A8 (2.6)

use skeletonization to extract a network of one-pixel-wide lines from our prediction. As these lines still show branches,

we search for the longest path in each separate skeleton and delete the remaining branches to obtain filaments. We employ325

the method of Koch and Rosolowsky (2015) to receive filaments from skeletons. As with zone segmentation, we use the

specified bounding boxes to hide static ice-ocean interfaces and discard fronts shorter than 750 m.

5 Evaluation

5.1 Evaluation metrics

For different tasks, different evaluation metrics are needed. Therefore, this section presents appropriate evaluation metrics330

for zone and front segmentation and the main objective, front delineation. Segmentation evaluation metrics can only tell

how well the segmentation itself works, not how close the resulting delineated front is to the actual front after post-

processing. Hence, our segmentation metrics only assess how good the intermediate result, i. e., the segmentation, is.

If the intermediate result is not sufficient, post-processing will likely not fix the problem. Therefore, an evaluation of

segmentation performance is also necessary, primarily since it directly evaluates the neural network’s performance and335

can provide insight into whether performance problems lie with the neural network or with the post-processing of its

results.
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Figure 5. A visualization of the Jaccard Index or Intersection over Union (IoU). The two ellipses A and B signify two sets.

5.1.1 Segmentation

Performance metrics for supervised classification and segmentation tasks are calculated using the confusion matrix, which

gives the number of true positives, false positives, true negatives, and false negatives (Fawcett, 2006). In binary segmenta-340

tion, like our front segmentation, the pixels that belong to the desired class are referred to as positive; the remaining pixels

are referred to as negative. The prefixes “true” and “false” indicate whether the division into positive and negative pixels

is consistent with the prediction stated in the label or contradicts the label. In multi-class segmentation, like our zone

segmentation, each class is first evaluated separately by considering the other classes as background and thus negative.

Separately evaluating each class allows multi-class problems to be split into several binary tasks, and a separate confusion345

matrix can be determined for each class. Thus, a value for the metric is obtained for each class. To get a collective value

for the metric, one can average the class-wise metrics. We use both the class-wise and multi-class metrics to evaluate the

zone model because the individual class-wise metrics provide valuable insight into how well the predictions are for each

class. The averaged multi-class metric gives us an overview of how well the segmentation is working in general, but only

the class-wise metrics allow us to analyze individual classes, e. g., that the rock outcrop segmentation is accurate, but the350

glacier segmentation is poor.

We apply four common metrics (Pedregosa et al., 2011): recall, precision, F1-score, and the Jaccard Index (Jaccard,

1912) also called Intersection over Union (IoU). The recall is the percentage of all positive pixels predicted to be positive,

while precision is the percentage of positively predicted pixels among all positive pixels (Lewis, 1990). The F1-score is

the harmonic mean of recall and precision (Fawcett, 2006). As the name says, the IoU divides the intersection of two355

sets by their union, where these two sets are the pixels of the predicted class and the pixels of the actual target for binary

segmentation. A visual interpretation of the IoU is shown in Fig. 5. The equations 1 – 4 provide the calculations of the

four metrics from true positives (TP ), false positives (FP ), true negatives (TN ), and false negatives (FN ). We calculate

all metrics on the binarized predictions.

16



Recall =
TP

TP +FN
(1)360

Precision =
TP

TP +FP
(2)

F1 - Score = 2 · Precision ·Recall
Precision+Recall

(3)

IoU =
TP

TP +FP +FN
(4)

5.1.2 Front delineation

As evaluation metric for the front delineation, we employ the mean distance error (MDE), which is adapted from Baumhoer365

et al. (2019), Cheng et al. (2021), Heidler et al. (2021), Mohajerani et al. (2019, 2021), and Zhang et al. (2019, 2021).

Each predicted front is compared to its ground truth. The Euclidean distance to the closest pixel in the ground truth front

is calculated for each pixel in the predicted front. To make the metric symmetric, the distance to the closest pixel in the

predicted front is also calculated for each pixel of the ground truth front. These distances are stored for all images, and the

average is taken over all images, forming the mean distance error. The analytical formula of the MDE follows as:370

MDE(I) = 1∑
(P,Q)∈I(|P|+ |Q|)

∑
(P, Q)∈I

(∑
p∈P

min
q∈Q

∥p− q∥2 +
∑
q∈Q

min
p∈P

∥p− q∥2
)

(5)

with I being the set of all evaluated images, P the set of ground truth front pixels of one specific image, Q the set of

corresponding predicted front pixels in that image, and |.| denotes the cardinality of a set.

5.2 Experimental protocol

For our experiments, we further split the training dataset presented in Sect. 3 into a part used for training and a part used for375

validation. The ratio is nine to one for training versus validation. All hyperparameter optimizations were done, comparing

the results on the validation set. Using the validation set allows us to frequently check the performance of our model

during implementation while keeping the final evaluation on the test set unbiased. Like the test set, the validation set is

preprocessed with overlapping patch extraction, which increases the amount of validation data relative to the training data.

On-the-fly augmentations are applied to the training set only. These random augmentations include rotations, horizontal380

flips, brightness adjustments, Gaussian noise, and a transform called “wrap” that acts like many simultaneous elastic

transforms with Gaussian sigmas set at various harmonics (Nicolaou et al., 2022). A visualization of these augmentations is

presented in Fig. 6. The probabilities with which these augmentations are applied to the input were determined empirically

and depend on the segmentation task. For front segmentation, all augmentations are applied with a probability of 0.65; for

zone segmentation, brightness adjustment and wrap are applied with a probability of 0.1, Gaussian noise and rotation with385

0.5, and flipping with a probability of 0.3.

Next, all patches (including validation and test set) are z-score normalized using the mean and standard deviation of the

training dataset. The patches are fed into the neural network with a batch size of 16, as this was the maximum amount
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Figure 6. Applied augmentations. From left to right: Original image/label, horizontal flip, rotation (here 180◦), brightness adjustment,

Gaussian noise and wrap. The first row shows the SAR images; the second one gives the label for the front segmentation, and the third

one the label for the zone segmentation. For brightness adjustment, Gaussian noise and “wrap” augmentations, the intensities of the

transforms have been enhanced such that they are better visible.

that could fit into the GPU using a patch size of 256× 256. So there is a trade-off between patch size and batch size.

WeWith a larger batch size, the patches would need to be smaller. However, we choose a patch size of 256× 256 to C7 (4.2)390

ensure a sufficiently large global context and adjust the batch size accordingly. To train the models, we employ a cyclic

learning rate scheduler (Smith, 2017) in combination with the Adam optimizer (Kingma and Ba, 2015) and apply different

loss functions for each segmentation task. For the zone segmentation model, the base learning rate for the scheduler is

chosen to be 4 · 10−5, and the maximum learning rate 2 · 10−4. For the front segmentation model, the base learning rate is

1 ·10−4, and the maximum learning rate is 5 ·10−4. We use the rule of thumb given in (Smith, 2017) to select a proper step395

size for both models. Hence, the step size is set to 30,000, which roughly equals the number of training patches divided

by the batch size times ten. Moreover, we perform gradient clipping to avoid exploding gradients. The global norm of

the gradients, i. e., the norm calculated over all model parameters is truncated to 1.0 for both models. The values for

gradient clipping, base, and maximum learning rates were determined empirically using the hyperparameter optimization

framework optuna (Akiba et al., 2019). The loss function for zone segmentation is a weighted combination of Dice (Sudre400

et al., 2017) and Cross-Entropy loss (Bishop, 1995). With optuna, the weighting was determined to be optimal if both

parts of the combined loss function are weighted equally. For front segmentation, an improved distance map loss (Davari
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Figure 7. Visualization of the improved distance map loss. The left image shows the weights, the middle is the network’s prediction,

and on the right is the front label. ◦ denotes the Hadamard product.

et al., 2021) is employed. Davari et al. (2021)’s improved distance map loss multiplies the network’s prediction by weights

calculated based on the front label before computing the cross-entropy of the prediction and the front label. We replace the

cross-entropy with the Dice loss, as the Dice loss is better suited for class-imbalanced problems, but otherwise, keep Davari405

et al. (2021)’s loss as is. In order to get the weights for the prediction, the front label is first dilated (see Eq. 6, where δw

indicates the morphological dilation with a rectangular structuring element of size w×w). Second, the Euclidean distance

transform (EDT) is applied on the dilated label, which is then divided by a relaxation factor R and fed into a sigmoid

function, which is denoted by σ (see Eq. 7). The final weight map is the sum of the output of the sigmoid function and

the dilated front label, which is first inverted and then scaled by a factor k (see Eq. 8). The improved distance map loss is410

visualized in Fig. 7. The hyperparameters w, R, and k were set to 5, 1 and 0.1 respectively after empirical evaluations.

xdil = δw(x) (6)

xedt = σ

(
EDT(xdil)

R

)
(7)

weights = xedt + k · (1−xdil) (8)

Both models were trained five times for 150 epochs using early stopping with a patience of 30 epochs. For the zones415

model, the early stopping criterion is the mean validation multi-class IoU, while the criterion is the mean validation loss

for the front model. The weights of the best epoch of each training round are used to evaluate the models’ performance on

the test set. The best epoch is determined by the highest mean IoU on the validation set for zone segmentation and by the

lowest validation loss for front segmentation. Finally, the mean and standard deviation of the two models’ performances

over the five training rounds are calculated.420

5.3 Results

In this section, we evaluate the performance of our vanilla models, present the results quantitatively and qualitatively, and

discuss these results objectively. First and foremost, we present our results on the test set. As our test set is out-of-sample,

i. e., the study sites in the test set were not covered in the training set, the test set is entirely independent of the train

set and hence, qualifies for estimating the generalizability of our trained models to new unseen glaciers. Some previous425

calving front delineation studies (Cheng et al., 2021; Davari et al., 2022, 2021; Hartmann et al., 2021; Holzmann et al.,
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Scope Precision ↑ Recall ↑ F1 Score ↑ IoU ↑

NA Area 99.5 ± 0.1 91.2 ± 1.3 94.8 ± 0.8 90.9 ± 1.3

Rock Outcrop 82.0 ± 0.5 59.6 ± 1.3 67.9 ± 0.8 53.5 ± 0.7

Glacier 74.5 ± 0.7 89.5 ± 1.1 80.9 ± 0.3 68.5 ± 0.5

Ocean and Ice Melange 80.9 ± 2.2 78.3 ± 3.1 76.8 ± 1.6 66.0 ± 1.5

All Zones 84.2 ± 0.5 79.6 ± 0.9 80.1 ± 0.5 69.7 ± 0.6

Table 5. Segmentation results on the test set for the zones model in percent. The scope implicates the multi-class or respective class-wise

metric.

2021; Marochov et al., 2021; Periyasamy et al., 2022; Zhang et al., 2019) used in-sample test sets, i. e., the test set includes

images from the same glaciers as covered in the train set but from different time points. Deep learning models will produce

more precise front delineations on in-sample test sets compared to out-of-sample test sets (Marochov et al., 2021), as the

generalization gap between train and test set is smaller for in-sample test sets (Quinonero-Candela et al., 2008). If a model430

is meant only to delineate fronts from glaciers covered in the train set, it is legitimate to evaluate the model on an in-sample

test set. However, if the model shall also be applied to new glaciers, it is crucial to evaluate it on an out-of-sample test set.

To approximate an evaluation on an in-sample test set, we also present our results on the validation set (see Sect. A). Bear

in mind that we used this validation set to optimize our hyper-parameters. Hence, the results on the validation set do not

accurately reflect the performance of our model on in-sample test data but likely lead to somewhat biased results.435

5.3.1 Zone segmentation

We begin our evaluation with the segmentation results of the zones model. Therefore, we calculate the segmentation

metrics presented in Sect. 5.1.1. The resulting values for the test set are given in Table 5. All metrics show the highest

values for the NA area, which was to be expected, as areas outside the swath, lay-over regions, and SAR shadows are

relatively easy to distinguish in the images compared to the other classes. Overall, the precision is higher than the recall440

except for the glacier class. The rock outcrop class has the highest drop between precision and recall implying that a

considerable fraction of the predicted rock pixels is actually rock, but only a smaller fraction of the real rock outcrop was

predicted to be rock. The rock outcrop class also has the lowest F1 score and lowest IoU. The evaluation on the validation

set results in a precision of 94.5 ± 0.2, a recall of 91.8 ±, an F1 score of 92.9 ± 0.3 and an IoU of 88.0 ± 0.3. The complete

evaluation on the validation set is given in Table A1. All metrics are considerably higher for the validation set than for the445

out-of-sample test set.

20



Precision ↑ Recall ↑ F1 Score ↑ IoU ↑

2.4 ± 0.3 57.3 ± 5.4 4.3 ± 0.5 2.2 ± 0.3

Table 6. Segmentation results on the test set for the front model in percent.

5.3.2 Front segmentation

For the evaluation of the front segmentation model, we do not distinguish between multi-class and class-wise metrics, as

the front segmentation is a binary task. Precision, recall, F1 score and IoU on the test set are given in Table 6. The recall

is the highest metric with 57.3 ± 5.4, signifying that more than half of the ground truth front pixels are covered by the450

predicted front. However, all values are considerably lower than for the zone segmentation. The low values are explained

by the composition and structure of the label, as the front label shows a high class imbalance, i. e., the background occupies

significantly more pixels than the front, which is just a one-pixel-wide line. The one-pixel-wide structure of the front also

leads to problems with the segmentation metrics. If, for example, the predicted front lies right next to the ground truth front

separated by only one pixel, the IoU will be zero, as it measures the fraction of overlap between prediction and ground455

truth. Therefore, even though the prediction would be very close to the ground truth, the IoU would not reflect the quality

of this prediction. Hence, these results should not be compared directly to the zone segmentation metrics but only to other

front segmentation results. Instead, the proposed MDE given in Sect. 5.1.2 should be preferred for comparisons between

the different segmentation models. The front segmentation metrics on the validation set are shown in Table A2.

5.3.3 Front delineation460

After post-processing, the MDE can be calculated. Table 7 gives the MDEs for zone and front models and additionally

breaks down the metric by glacier and season. Overall, the zone segmentation model leads to front predictions that are, on

average, by 143134 meters closer to the front than the front segmentation model. Interestingly, however, the latter yields C8 (2.7)

more accurate predictions for the Mapple Glacier than the zone segmentation model. Qualitative results of the front models

are shown in Fig. 8. Figure 8 (a) and (b) are examples of accurate front delineations. Figure 8 (c) shows an inaccurate front465

delineation. Firstly, part of the coastline is confused as calving front, and secondly, only one of the three calving fronts

of the Columbia Glacier is recognized. The two unidentified calving fronts contribute significantly to the MDE. As the

MDE is symmetric, for each pixel in the two unidentified ground truth fronts, the Euclidean distance to the closest pixel

in the predicted front contributes to the MDE, and, obviously, the closest pixels are far away from the closest identified

calving front pixels. Figure 8 (d) gives an example where sea ice was confused with a calving front. In general, predictions470

for images from summer are more accurate than images from winter, as can be seen in Table 7. This seasonal gap can

be explained by sea ice forming in front of the calving front during winter, with similar back-scattering properties as

the glacier. Therefore, sea ice makes an accurate calving front delineation more difficult. Qualitative results of the zone

21



Summer Winter

Network MDE ↓ ∅ ↓ MDE ↓ ∅ ↓ MDE ↓ ∅ ↓

Front

All 887 ± 189 7 ± 3 ∈ 122 738 ± 111 4 ± 1 ∈ 68 1,054 ± 308 4 ± 2 ∈ 54

Columbia 1,032 ± 227 2 ± 1 ∈ 65 907 ± 131 0 ± 0 ∈ 28 1,157 ± 350 2 ± 1 ∈ 37

Mapple 150 ± 24 6 ± 2 ∈ 57 140 ± 26 2 ± 1 ∈ 40 173 ± 33 2 ± 1 ∈ 17

Zones

All 753 ± 76 1 ± 1 ∈ 122 732 ± 93 1 ± 1 ∈ 68 776 ± 65 0 ± 0 ∈ 54

Columbia 840 ± 84 0 ± 0 ∈ 65 854 ± 111 0 ± 0 ∈ 28 826 ± 66 0 ± 0 ∈ 37

Mapple 287 ± 48 0 ± 1 ∈ 57 262 ± 29 0 ± 1 ∈ 40 340 ± 93 0 ± 0 ∈ 17

Table 7. Mean distance errors (MDEs) on the test set in meters, also differentiated by glacier and season. ∅ stands for the number of

images for which no front was predicted. The number after ∈ denotes how many images of the category (given glacier and season) were

present in the test set.

segmentation model are given in Fig. 9. Figure 9 (a) and (b) are examples of accurate front delineations, whereas Fig. 9 (c)

and (d) show confusions with sea ice again.475

Table 8 breaks the MDEs down by glacier and satellite, showing that predictions for Sentinel-1 images are by far the

least accurate over the complete test set. The reason for the high MDEs for Sentinel-1 is that in most images at Columbia

Glacier, only one of the three calving fronts is identified, and as explained earlier, the other two fronts negatively impact

the MDE. Front model predictions for Sentinel-1 images of Mapple Glacier only have a marginally higher MDE than

images from other satellites, while zone model predictions for Sentinel-1 images of Mapple Glacier show the lowest MDE480

across all satellites. In summary, this shows that the sensor influences the quality of the front delineation but that the glacier

geometry has a greater impact.

A breakdown of the MDEs by glaciers and sensor spatial resolution is shown in Table 9. A spatial resolution of 20 m2 is

associated with the highest MDEs. When the images with this resolution are split up into glaciers, it becomes apparent that

the high MDEs result from images of the Columbia Glacier. The lowest average MDEs are observed for a spatial resolution485

of 17 m2. This can be explained by the fact that the test set for a resolution of 17 m2 only includes images of the Mapple

Glacier. Hence, we can conclude that the glacier geometry has a higher impact on the front delineation performance than

the spatial resolution of the image.

The predictions on the validation set receive an average MDE of 391 m± 94 m for the front model and 449 m± 31 m

for the zone model, which is considerably lower than on the test set. The visualizations, Figures A1 and A2, show that the490

front delineation is very accurate, but part of the coastlines areis predicted as calving front. Hence, with a post-processing C9 (4.3)

scheme that can eliminate calving front predictions on the coastline, the MDE would even be smaller. The complete

evaluations on the validation set are given in Tables A3, A4, and A5.
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Network Glacier Sentinel-1 ENVISAT ERS-1/2 PALSAR TSX/TDX

Front

All
MDE ↓ 2,806 ± 300 191 ± 32 127 ± 38 197 ± 41 663 ± 188

∅ ↓ 2 ± 1 ∈ 33 2 ± 2 ∈ 10 0 ± 0 ∈ 2 3 ± 2 ∈ 8 0 ± 0 ∈ 69

Columbia
MDE ↓ 3,537 ± 422 / / / 744 ± 218

∅ ↓ 2 ± 1 ∈ 18 / / / 0 ± 0 ∈ 47

Mapple
MDE ↓ 206 ± 33 191 ± 32 127 ± 38 197 ± 41 129 ± 33

∅ ↓ 0 ± 0 ∈ 15 2 ± 2 ∈ 10 0 ± 0 ∈ 2 3 ± 2 ∈ 8 0 ± 0 ∈ 22

Zones

All
MDE ↓ 2,201 ± 246 493 ± 119 404 ± 172 437 ± 42 547 ± 61

∅ ↓ 0 ± 0 ∈ 33 0 ± 0 ∈ 10 0 ± 0 ∈ 2 0 ± 0 ∈ 8 0 ± 0 ∈ 69

Columbia
MDE ↓ 2,587 ± 299 / / / 587 ± 67

∅ ↓ 0 ± 0 ∈ 18 / / / 0 ± 0 ∈ 47

Mapple
MDE ↓ 141 ± 29 493 ± 119 404 ± 172 437 ± 42 246 ± 57

∅ ↓ 0 ± 0 ∈ 15 0 ± 0 ∈ 10 0 ± 0 ∈ 2 0 ± 0 ∈ 8 0 ± 0 ∈ 22

Table 8. Mean distance errors (MDEs) on the test set in meters, differentiated by glacier and satellite. ∅ stands for the number of

images for which no front was predicted. The number after ∈ denotes how many images of the category (given glacier and satellite)

were present in the test set.

20 17 7

Network MDE ↓ ∅ ↓ MDE ↓ ∅ ↓ MDE ↓ ∅ ↓

Front

All 2,436 ± 289 4 ± 2 ∈ 45 197 ± 41 3 ± 2 ∈ 8 663 ± 188 0 ± 0 ∈ 69

Columbia 3,537 ± 422 2 ± 1 ∈ 18 / / 744 ± 218 0 ± 0 ∈ 47

Mapple 192 ± 26 2 ± 2 ∈ 27 197 ± 41 3 ± 2 ∈ 8 129 ± 33 0 ± 0 ∈ 22

Zones

All 1,939 ± 220 0 ± 0 ∈ 45 437 ± 42 0 ± 0 ∈ 8 547 ± 61 0 ± 0 ∈ 69

Columbia 2,587 ± 299 0 ± 0 ∈ 18 / / 587 ± 67 0 ± 0 ∈ 47

Mapple 323 ± 69 0 ± 0 ∈ 27 437 ± 42 0 ± 0 ∈ 8 246 ± 57 0 ± 0 ∈ 22

Table 9. Mean distance errors (MDEs) on the test set in meters, differentiated by glacier and resolution. ∅ stands for the number of

images for which no front was predicted. The number after ∈ denotes how many images of the category (given glacier and resolution)

were present in the test set.

23



(a) (b)

(c) (d)

1

Figure 8. Visualization of the front segmentation models’ performance on the test set. Blue represents the ground truth, yellow the

prediction, and pink the overlap of ground truth and prediction. The turquoise rectangle is the bounding box explained in Sect. 4.3. (a)

is an image of the Columbia Glacier acquired on the 19th of March 2012 by the TDX satellite. (b) is an image of the Mapple Glacier

acquired on the 2nd of November 2009 by the TSX satellite and (c) is an image of the Columbia Glacier acquired on the 6th of January

2018 by the Sentinel-1 satellite. (d) is an image of the Mapple Glacier acquired on the 30th of June 2013 by the TSX satellite. The front

prediction and ground truth of (a), (b), and (d) are dilated with a 9× 9 kernel and (c) with a 3× 3 kernel to enhance the visibility of the

region of interest. The images of the Columbia Glacier are cropped to the region of interest for visualization purposes.

5.4 Discussion and outlook

In Sect. 5.3, major performance differences between results on different satellites, resolutions, and glaciers became appar-495

ent, which can mostly be attributed to the complexity gap between the Mapple and Columbia glaciers in the test set. The

Columbia Glacier consists of three separate calving fronts in contrast to Mapple, which only features one calving front.

In addition, the Columbia Glacier’s calving fronts exhibit greater variability in their structure and curvature than Mapple’s

calving front. We, therefore, conclude that the complexity of the glacier, including the number and shape of calving fronts,

has a significant impact on the delineation performance of a deep learning model.500

Performance differences between zone and front models are also remarkable. The zone models’ predictions lie mainly

close to the calving front or in the ocean and only rarely far away on the other side of the image between, e. g., rock outcrop

and NA area or rock outcrop and glacier. On the other hand, the front models’ predictions are not that constraint in the

region, but if they hit the correct calving front region, the prediction lies more accurately on the true calving front than the
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1

Figure 9. Visualization of the zone segmentation models’ performance on the test set. Blue represents the ground truth, yellow the

prediction, and pink the overlap of ground truth and prediction. The turquoise rectangle is the bounding box explained in Sect. 4.3. (a)

is an image of the Columbia Glacier acquired on the 19th of March 2012 by the TDX satellite. (b) is an image of the Mapple Glacier

acquired on the fifth of November 2010 by the TSX satellite. (c) is an image of the Columbia Glacier acquired on the 17th of April 2016

by the TDX satellite. (d) is an image of the Mapple Glacier acquired on the 21st of November 2007 by the PALSAR satellite. The front

prediction and ground truth of (a), (b), and (c) are dilated with a 9× 9 kernel and (d) with a 3× 3 kernel to enhance the visibility of the

region of interest. The images of the Columbia Glacier are cropped to the region of interest for visualization purposes.

zone models’ prediction. Therefore, a multi-task learning approach could be beneficial for future work as the two tasks,505

zone segmentation and front segmentation, excel in different aspects and can learn from each other here.

From the class-wise segmentation metrics presented in Sect. 5.3.1, it is notable that the rock outcrop class was the least

accurately predicted. One reason is that the rock outcrop is static for each glacier, i. e., no adjustments were made for the

individual image labels even if part or the whole rock outcrop was covered by snow or new rocks became visible as the

ice receded throughout time. Hence, this drop in performance comes from the labels themselves. We nevertheless decided510

to use static rock outcrops as an accurate rock outcrop prediction is not the aim of our work, but only contributes to an

accurate front delineation, and manually labelling the rock as done for the calving front would have been beyond the scope

of this paper.

Two weaknesses that can be addressed in the future include low performance on images with sea ice and confusion of

the coastline with the calving front. Weak performance on images with sea ice might be compensated for by augmenting515

winter images more frequently than summer images or giving higher weight to the loss of winter images. The confusion of
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the coastline with the calving front could be remedied by improved post-processing such as masking with a rock outcrop,

which of course, would have to be available for each new glacier.

All in all, the vanilla models presented in this paper provide a starting point for accurate segmentation of calving fronts,

and the introduced dataset enables training, testing, and comparison of deep learning calving front delineation models.520

6 Conclusions

In this paper, we introduce a benchmark dataset for calving front delineation of marine-terminating glaciers using SAR

imagery. The dataset is intended to be used for the training, testing, and comparison of deep learning calving front extrac-

tion models. It comprises 681 samples and is the first to provide long-term calving front information from multi-mission A9 (1.1, 1.2, 2.1, 3.2)

A10 (1.1, 1.2, 3.2)data. Furthermore, besides the provided segmentation labels, the dataset contains the corresponding preprocessed and geo-525

referenced SAR images as PNG files. The dataset’s ease of access allows scientists to focus on the deep learning model

and invites researchers from related scientific fields such as data science to contribute to this urgent task. The calving front

position is an indicator of frontal ablation, which is a key parameter of the total glacier mass balance. With this dataset,

we aim to enable the training of deep-learning models capable of accurately delineating calving fronts of glaciers around

the world at any time, permitting a spatio-temporal quantification of calving rates. The dataset includes SAR imagery of530

glaciers from Antarctica, Greenland and Alaska. With its light in-dependency and cloud penetration ability, SAR imagery

permits continuous front tracking across all seasons. The test set includes the Mapple Glacier located in Antarctica and

the Columbia Glacier in Alaska. Glaciers from different regions in the test set guarantee that, during testing, the wide

applicability of the model is verified. Moreover, no images from these two glaciers are included in the train set, making it

an out-of-sample test set. Hence, the models’ generalizability to unseen glaciers and regions also outside Antarctica and535

Greenland can be ensured during testing. Additionally, with the Columbia Glacier, the test set includes challenging sam-

ples, as Columbia Glacier has three calving fronts with highly variable geometry. Therefore, a low MDE on these samples

indicates the robustness of the trained model to variations in the shape and number of calving fronts in the given images.

The two labels in the dataset, zone and front segmentation, supply comprehensive information on the calving front delin-

eation task and allow to approach the task in different ways. The well-documented and easy-to-use code of the two vanilla540

baseline models introduced in this paper ensures the reproducibility of all experiments and provides a starting point for A11 (1.1, 1.2, 3.2)

an accurate front delineation method that can easily be extended. The performance of different models can be quantified

and compared to other models consistently with the presented evaluation metrics. The resulting MDE of 150 m± 24 m for

the Mapple Glacier and 840 m± 84 m for the Columbia Glacier build a sound baseline for future calving front delineation

models.545

Code and data availability. The code is publicly available on GitHub under https://github.com/Nora-Go/Calving_Fronts_and_Where_

to_Find_Them. The exact version of the model used to produce the results presented in this paper is archived on Zenodo (Gourmelon

26

https://github.com/Nora-Go/Calving_Fronts_and_Where_to_Find_Them
https://github.com/Nora-Go/Calving_Fronts_and_Where_to_Find_Them
https://github.com/Nora-Go/Calving_Fronts_and_Where_to_Find_Them


et al., 2022a) (https://zenodo.org/record/6469519). The dataset is publicly available at PANGAEA (Gourmelon et al., 2022b) under

https://doi.pangaea.de/10.1594/PANGAEA.940950 (DOI will be registered upon acceptance of the paper).

Appendix A: Validation results550

This section depicts the vanilla models’ results on the in-sample validation set. The validation set was used to optimize the

models’ hyper-parameters, and, hence, the results are biased.

A1 Zone segmentation

Table A1 presents the evaluation of the zone models’ segmentation results on the validation set. The segmentation metrics

introduced in Sect. 5.1.1 are employed for the evaluation.555

Scope Precision ↑ Recall ↑ F1 Score ↑ IoU ↑

All Zones 94.5 ± 0.2 91.8 ± 0.5 92.9 ± 0.3 88.0 ± 0.3

NA Area 96.0 ± 1.0 91.2 ± 2.3 92.9 ± 1.3 89.3 ± 1.4

Rock Outcrop 89.4 ± 0.8 82.6 ± 1.1 85.7 ± 0.3 75.8 ± 0.4

Glacier 95.6 ± 0.1 97.5 ± 0.2 96.5 ± 0.1 93.3 ± 0.1

Ocean and Ice Melange 97.3 ± 0.3 96.0 ± 0.4 96.5 ± 0.2 93.5 ± 0.3

Table A1. Segmentation results on the validation set for the zones model in percent. The scope implicates the multi-class or respective

class-wise metric.

A2 Front segmentation

Table A2 gives the precision, recall, F1 score and IoU of the front models’ segmentation results on the validation set.

Precision ↑ Recall ↑ F1 Score ↑ IoU ↑

2.3 ± 0.2 67.5 ± 1.4 4.5 ± 0.4 2.3 ± 0.2

Table A2. Segmentation results on the validation set for the front model in percent.
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A3 Front delineation

The MDEs on the post-processed validation set results are given in Table A3, which also differentiates between glaciers and

seasons. Table A4 breaks these results down by glacier and satellite and Table A5 by glacier and resolution. Visualizations560

of the prediction results on the validation set can be seen in Figures A1 and A2.

Summer Winter

Network MDE ↓ ∅ ↓ MDE ↓ ∅ ↓ MDE ↓ ∅ ↓

Front

All 391 ± 94 0 ± 0 ∈ 56 466 ± 89 0 ± 0 ∈ 36 315 ± 106 0 ± 0 ∈ 20

Crane 593 ± 123 0 ± 0 ∈ 8 695 ± 128 0 ± 0 ∈ 6 368 ± 135 0 ± 0 ∈ 2

DBE 561 ± 144 0 ± 0 ∈ 10 717 ± 185 0 ± 0 ∈ 6 225 ± 66 0 ± 0 ∈ 4

JAC 222 ± 21 0 ± 0 ∈ 16 221 ± 16 0 ± 0 ∈ 6 222 ± 25 0 ± 0 ∈ 10

Jorum 276 ± 99 0 ± 0 ∈ 8 276 ± 99 0 ± 0 ∈ 8 / /

SI 741 ± 383 0 ± 0 ∈ 14 730 ± 255 0 ± 0 ∈ 10 774 ± 652 0 ± 0 ∈ 4

Zones

All 449 ± 31 0 ± 0 ∈ 56 563 ± 43 0 ± 0 ∈ 36 318 ± 26 0 ± 0 ∈ 20

Crane 784 ± 79 0 ± 0 ∈ 8 852 ± 106 0 ± 0 ∈ 6 580 ± 170 0 ± 0 ∈ 2

DBE 1,043 ± 85 0 ± 0 ∈ 10 1,095 ± 121 0 ± 0 ∈ 6 907 ± 30 0 ± 0 ∈ 4

JAC 150 ± 16 0 ± 0 ∈ 16 169 ± 25 0 ± 0 ∈ 6 138 ± 12 0 ± 0 ∈ 10

Jorum 402 ± 73 0 ± 0 ∈ 8 402 ± 73 0 ± 0 ∈ 8 / /

SI 737 ± 73 0 ± 0 ∈ 14 777 ± 48 0 ± 0 ∈ 10 669 ± 124 0 ± 0 ∈ 4

Table A3. Mean distance errors (MDEs) on the validation set in meters, also differentiated by glacier and season. ∅ stands for the

number of images for which no front was predicted. The number after ∈ denotes how many images of the category (given glacier and

season) were present in the validation set.
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Network RADARSAT-1 Sentinel-1 ENVISAT ERS-1/2 PALSAR TSX/TDX

Front

All
MDE ↓ 545 ± 142 205 ± 25 539 ± 158 840 ± 134 1,427 ± 239 341 ± 89

∅ ↓ 0 ± 0 ∈ 4 0 ± 0 ∈ 1 0 ± 0 ∈ 9 0 ± 0 ∈ 5 0 ± 0 ∈ 2 0 ± 0 ∈ 35

Crane
MDE ↓ / / 1,147 ± 625 303 ± 81 / 569 ± 109

∅ ↓ / / 0 ± 0 ∈ 1 0 ± 0 ∈ 1 / 0 ± 0 ∈ 6

DBE
MDE ↓ 358 ± 145 / 366 ± 137 / 614 ± 168 663 ± 211

∅ ↓ 0 ± 0 ∈ 1 / 0 ± 0 ∈ 4 / 0 ± 0 ∈ 1 0 ± 0 ∈ 4

JAC
MDE ↓ / / / / / 222 ± 21

∅ ↓ / / / / / 0 ± 0 ∈ 16

Jorum
MDE ↓ / 205 ± 25 442 ± 236 / / 252 ± 91

∅ ↓ / 0 ± 0 ∈ 1 0 ± 0 ∈ 2 / / 0 ± 0 ∈ 5

SI
MDE ↓ 575 ± 153 / 600 ± 261 916 ± 143 1,780 ± 291 725 ± 590

∅ ↓ 0 ± 0 ∈ 3 / 0 ± 0 ∈ 2 0 ± 0 ∈ 4 0 ± 0 ∈ 1 0 ± 0 ∈ 4

Zones

All
MDE ↓ 900 ± 118 164 ± 45 776 ± 136 846 ± 157 1229 ± 215 365 ± 26

∅ ↓ 0 ± 0 ∈ 4 0 ± 0 ∈ 1 0 ± 0 ∈ 9 0 ± 0 ∈ 5 0 ± 0 ∈ 2 0 ± 0 ∈ 35

Crane
MDE ↓ / / 393 ± 356 154 ± 27 / 837 ± 73

∅ ↓ / / 0 ± 0 ∈ 1 0 ± 0 ∈ 1 / 0 ± 0 ∈ 6

DBE
MDE ↓ 812 ± 78 / 938 ± 140 / 1,434 ± 164 1,065 ± 126

∅ ↓ 0 ± 0 ∈ 1 / 0 ± 0 ∈ 4 / 0 ± 0 ∈ 1 0 ± 0 ∈ 4

JAC
MDE ↓ / / / / / 150 ± 16

∅ ↓ / / / / / 0 ± 0 ∈ 16

Jorum
MDE ↓ / 164 ± 45 155 ± 55 / / 441 ± 80

∅ ↓ / 0 ± 0 ∈ 1 0 ± 0 ∈ 2 / / 0 ± 0 ∈ 5

SI
MDE ↓ 912 ± 135 / 801 ± 209 939 ± 186 1,118 ± 331 605 ± 82

∅ ↓ 0 ± 0 ∈ 3 / 0 ± 0 ∈ 2 0 ± 0 ∈ 4 0 ± 0 ∈ 1 0 ± 0 ∈ 4

Table A4. Mean distance errors (MDEs) on the validation set in meters, differentiated by glacier and satellite. ∅ stands for the number

of images for which no front was predicted. The number after ∈ denotes how many images of the category (given glacier and satellite)

were present in the validation set.
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Network Glacier 20 17 12 7 6

Front

All
MDE ↓ 636 ± 130 1,427 ± 239 545 ± 142 605 ± 264 222 ± 21

∅ ↓ 0 ± 0 ∈ 15 0± 0 ∈ 2 0 ± 0 ∈ 4 0 ± 0 ∈ 19 0 ± 0 ∈ 16

Crane
MDE ↓ 754 ± 337 / / 569 ± 109 /

∅ ↓ 0 ± 0 ∈ 2 / / 0 ± 0 ∈ 6 /

DBE
MDE ↓ 366 ± 137 614 ± 168 358 ± 145 663 ± 211 /

∅ ↓ 0 ± 0 ∈ 4 0 ± 0 ∈ 1 0 ± 0 ∈ 1 0 ± 0 ∈ 4 /

JAC
MDE ↓ / / / / 222 ± 21

∅ ↓ / / / / 0 ± 0 ∈ 16

Jorum
MDE ↓ 369 ± 165 / / 252 ± 91 /

∅ ↓ 0 ± 0 ∈ 3 / / 0 ± 0 ∈ 5 /

SI
MDE ↓ 774 ± 185 1,780 ± 291 575 ± 153 725 ± 590 /

∅ ↓ 0 ± 0 ∈ 6 0 ± 0 ∈ 1 0 ± 0 ∈ 3 0 ± 0 ∈ 4 /

Zones

All
MDE ↓ 782 ± 134 1,229 ± 215 900 ± 118 718 ± 62 718 ± 62

∅ ↓ 0 ± 0 ∈ 15 0± 0 ∈ 2 0 ± 0 ∈ 4 0 ± 0 ∈ 19 0 ± 0 ∈ 16

Crane
MDE ↓ 270 ± 179 / / 837 ± 73 /

∅ ↓ 0 ± 0 ∈ 2 / / 0 ± 0 ∈ 6 /

DBE
MDE ↓ 938 ± 140 1,434 ± 164 812 ± 78 1,065 ± 126 /

∅ ↓ 0 ± 0 ∈ 4 0 ± 0 ∈ 1 0 ± 0 ∈ 1 0 ± 0 ∈ 4 /

JAC
MDE ↓ / / / / 150 ± 16

∅ ↓ / / / / 0 ± 0 ∈ 16

Jorum
MDE ↓ 158 ± 46 / / 441 ± 80 /

∅ ↓ 0 ± 0 ∈ 3 / / 0 ± 0 ∈ 5 /

SI
MDE ↓ 874 ± 170 1,118 ± 331 912 ± 135 605 ± 82 /

∅ ↓ 0 ± 0 ∈ 6 0 ± 0 ∈ 1 0 ± 0 ∈ 3 0 ± 0 ∈ 4 /

Table A5. Mean distance errors (MDEs) on the validation set in meters, differentiated by glacier and resolution. ∅ stands for the number

of images for which no front was predicted. The number after ∈ denotes how many images of the category (given glacier and resolution)

were present in the validation set.
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(a) (b) (c) (d) (e)

1

Figure A1. Visualization of the front segmentation models’ performance on the validation set. Blue represents the ground truth, yellow

the prediction, and pink the overlap of ground truth and prediction. The turquoise rectangle is the bounding box explained in Sect. 4.3.

(a) is an image of the Crane Glacier acquired on the eighth of December 2010 by the TSX satellite. (b) is an image of the DBE Glacier

acquired on the 21st of July 2004 by the ENVISAT satellite. (c) is an image of the Jakobshavn glacier acquired on the third of October

2012 by the TSX satellite. (d) is an image of the Jorum Glacier acquired on the 19th of December 2010 by the TSX satellite. (e) is an

image of the SI Glacier acquired on the 19th of October 2013 by the TSX satellite. The images are cropped to the region of interest for

visualization purposes. The front prediction and ground truth of (a), (c), (d), and (e) are dilated with a 9× 9 kernel and (b) with a 3× 3

kernel to enhance the visibility.

(a) (b) (c) (d) (e)

1

Figure A2. Visualization of the zone segmentation models’ performance on the validation set. Blue represents the ground truth, yellow

the prediction, and pink the overlap of ground truth and prediction. The turquoise rectangle is the bounding box explained in Sect. 4.3.

(a) is an image of the Crane Glacier acquired on the eighth of December 2010 by the TSX satellite. (b) is an image of the DBE Glacier

acquired on the eleventh of July 2013 by the TSX satellite. (c) is an image of the Jakobshavn glacier acquired on the 15th of August

2009 by the TSX satellite. (d) is an image of the Jorum Glacier acquired on the first of September 2012 by the TSX satellite. (e) is an

image of the SI Glacier acquired on the 19th of August 2011 by the TSX satellite. The images are cropped to the region of interest for

visualization purposes. The front predictions and ground truths are dilated with a 9× 9 kernel to enhance the visibility.
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