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Abstract. The maximum rate of Rubisco carboxylation (Vcmax) determines leaf photosynthetic capacity and is a key parameter 20 

for estimating the terrestrial carbon cycle, but its spatial information is lacking, hindering global ecological research. Here, we 

convert leaf chlorophyll content (LCC) retrieved from satellite data to Vcmax, based on plants’ optimal distribution of nitrogen 

between light harvesting and carboxylation pathways. We also derive Vcmax from satellite (GOME-2) observations of sun-

induced chlorophyll fluorescence (SIF) as a proxy of leaf photosynthesis using a data assimilation technique. These two 

independent global Vcmax products agree well (r2=0.79, RMSE=15.46 μmol m-2s-1, P<0.001) and compare well with 3672 25 

ground-based measurements (r2=0.69, RMSE=13.8 μmol m-2s-1 and P<0.001 for SIF; r2=0.55, RMSE=18.28 μmol m-2s-1 and 

P<0.001 for LCC). The LCC-derived Vcmax product is also used to constrain the retrieval of Vcmax from TROPOMI SIF data to 

produce an optimized Vcmax product using both SIF and LCC information. The global distributions of these products are 

compatible with Vcmax computed from an ecological optimality theory using meteorological variables, but importantly reveal 

additional information on the influence of land cover, irrigation, soil pH and leaf nitrogen on leaf photosynthetic capacity. 30 

These satellite-based approaches and spatial Vcmax products are primed to play a major role in global ecosystem research. The 

three remote sensing Vcmax products based on SIF, LCC and SIF+LCC are available at https://doi.org/10.5281/zenodo.6466968 

(Chen et al., 2020) and the code for implementing  the ecological optimality theory is available at 

https://github.com/SmithEcophysLab/optimal_vcmax_R (Smith, 2020). 

mailto:jing.chen@utoronto.ca
https://can01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.5281%2Fzenodo.6466968&data=05%7C01%7Cjing.chen%40utoronto.ca%7Cf8e262449cc2438f16d008da26cee9f7%7C78aac2262f034b4d9037b46d56c55210%7C0%7C0%7C637864967943277042%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=c0mN3nzhEwUX1eb%2B3K3ULgIFpmA%2FBGtfDB9ATTRcmpM%3D&reserved=0
https://github.com/SmithEcophysLab/optimal_vcmax_R
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1 Introduction 35 

The Farquhar-von Caemmerer-Berry (FvCB) leaf photochemistry model (Farquhar et al., 1980) is widely used for simulating 

vegetation photosynthesis in ecological studies. The maximum carboxylation rate (Vcmax) that determines leaf photosynthetic 

capacity is an essential parameter in the FvCB model. The current state of the art (Rogers 2014, Rogers et al., 2017) in regional 

and global ecosystem modeling is to assign Vcmax at 25˚C (Vcmax25) as a fixed parameter that varies by plant functional type 

(PFT), and is typically estimated from a ground-based database (Kattge et al., 2009 and 2020), even though observations show 40 

2-3-fold variation in Vcmax25 for the same PFT. As the total simulated photosynthesis of a canopy is highly sensitive to Vcmax, 

this simple approach causes considerable distortion in modelled spatial distributions of the terrestrial carbon cycle (Bonan et 

al., 2011; Walker et al., 2017; Luo et al., 2017; Chen et al., 2019), hindering advancement in global ecological and Earth 

system research.        

 45 

In recent studies, two independent satellite remote sensing approaches have been developed to estimate Vcmax at the global 

scale. Since the first demonstration of sun-induced chlorophyll fluorescence (SIF) as a proxy of gross primary productivity 

(GPP) at the global scale (Frankenberg et al., 2011), the use of SIF for global carbon cycle estimation has been a highly active 

research field (Mohammed et al., 2019). He et al. (2019) attempted the first global mapping of Vcmax from SIF after converting 

SIF observations into GPP that is related to Vcmax. A time series of daily Vcmax maps was derived using SIF measured by the 50 

Global Ozone Monitoring Experiment-2 (GOME-2) sensor from 2007 to 2017 at 36 km resolution (see Methods). The second 

space-based approach to deriving Vcmax is via leaf chlorophyll content (LCC). Chlorophyll harvests light that provides energy 

for the reactions in the Calvin–Benson–Bassham (CBB) cycle of photosynthesis, and therefore is likely coordinated with leaf 

carboxylation capacity (Vcmax) as plants optimize their photosynthetic nitrogen resources (Croft et al., 2017). The retrieval of 

LCC from satellite imagery offers the means of reliable and accurate LCC estimation over different spatiotemporal scales. 55 

Data from the MEdium Resolution Imaging Spectrometer (MERIS) in red, near infrared, and red-edge bands at 300 m 

resolution at 7-day intervals have been used to produce a global LCC map series from 2003 to 2012 (Croft et al., 2020). In a 

temperate broadleaf forest, it was found that LCC is better correlated with Vcmax than leaf nitrogen content (LNC) over a 

growing season (Croft et al., 2017), and similar correlations between Vcmax and LCC were established from empirical data for 

various PFTs (Luo et al., 2020; Lu et al., 2020). In this study, we use this new LCC time series with existing empirical LCC-60 

Vcmax relationshipes to derive another independent source of information for global Vcmax assessment.  

 

The Vcmax products derived from SIF and LCC have different strengths and weaknesses. SIF contains strong signals for Vcmax 

because it is directly related to the vegetation photosynthesis rate, but the spatial and temporal resolutions of existing satellite 

SIF observations are low. LCC can be derived reliably from multispectral satellite data at much higher spatial and temporal 65 

resolutions than those of SIF. Chlorophyll pigments have broad absorption features in the visible range and also affect the fine 

positioning of red-edge wavelengths. However, the derivation of LCC from remote sensing data is influenced by errors in 
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vegetation structural parameters used in the derivation. The conversion from LCC to Vcmax depends on empirical relationships 

for different PFTs, which have considerable uncertainties (Luo et al., 2019). In order to make the best use of available satellite 

data for mapping Vcmax, we combined SIF and LCC data to produce a single global Vcmax time series. We derived a global Vcmax 70 

time series using SIF data from the TROPical Ozone Mission (TROPOMI) at 0.1˚ resolution in daily intervals for 2019 with 

LCC-derived Vcmax as a constraint in the derivation using a parameter optimization technique (He et al., 2019; see also 

Methods). The constraint is made with LCC-derived Vcmax aggregated to each 0.1˚ grid every 7 days as the initial value, which 

is then replaced when good quality TROPOMI SIF data are available. In this way the best information on Vcmax from both SIF 

and LCC is combined. The combined global Vcmax product is highly correlated with that produced from LCC (r2=0.87, 75 

RMSE=12.04 μmol m-2s-1, P<0.001), suggesting that much of the LCC information is transferred to this product by filling in 

its data gaps.  

 

The global distribution of Vcmax has also been derived theoretically. Based on a new ecological optimality theory (Wang et al., 

2017), Smith et al. (2019) calculated a global Vcmax map from meteorological variables of radiation, air temperature and vapor 80 

pressure deficit using a monthly climate dataset (Harris et al., 2014). The theory proposes that leaves optimize the use of 

available resources so that the photosynthetic rate limited by Vcmax equals that limited by the electron transport to generate 

ribulose-1,5,-bisphosphate (RuBP) needed in photosynthesis under average daytime conditions. In this theory, the electron 

transport rate is computed from meteorological conditions, and is independent of soil nutrient and water conditions. Evaluation 

against 3672 ground observations shows that the model can capture about 2/3 of the variance in the observed Vcmax (r2=0.66, 85 

RMSE=13.37 μmol m-2s-1, P<0.001), while the model bias is most significantly correlated to leaf nitrogen content among 

several leaf and soil parameters (Smith et al., 2019). The validity and reliability of Vcmax information derived from the theory 

are yet to be evaluated outside of the limited amount of ground data.   

 

Here we provide assessment of the reliability of these products for global ecological and Earth system studies. The specific 90 

objectives of this study are: (1) to derive new global Vcmax products using satellite data; (2) to assess the accuracy of these 

products against a ground-based dataset; (3) to mutually assess these products; and (4) to evaluate the Vcmax product derived 

ecological optimality theory using satellite-derived Vcmax products, as the theory would be useful for estimating Vcmax in 

prognostic terrestrial ecosystem models (TEMs) which are often used in Earth system models.    

2. Methods 95 

2.1. Deriving Vcmax from SIF 

During photosynthesis, plant leaves dissipate part of the excess light energy that is not used in photochemistry in the form of 

chlorophyll fluorescence (Porcar-Castell et al., 2014). Under conditions without strong moisture and/or thermal stress, the SIF 

emission from a leaf increases with its instantaneous photosynthetic rate (Frankenberg et al., 2011; Guanter et al., 2014; Sun 
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et al., 2014; Li et al., 2018; Wang et al., 2020), although SIF signals are small (1-5% of reflected radiation at near infrared 100 

wavelengths, Colombo et al., 2016) and contain noise from various sources including the variations in solar illumination angle 

and senor view angle (Dechant et al., 2020). In a plant canopy, sunlit leaves are the predominant sources of SIF (Pinto et al., 

2016). For the purpose of deriving leaf-level information, the total SIF measured from a canopy was first separated into sunlit 

and shaded leaf components according to sun-target-sensor observation geometry and canopy architectural parameters. The 

observation geometry was determined by satellite and solar zenith and azimuthal angles. The main canopy architectural 105 

parameters were leaf area index (LAI), which quantifies the amount of leaf area in the canopy per unit ground surface area, 

and the clumping index (CI), which characterizes the non-random spatial distribution of leaves in the canopy. Both LAI and 

CI were used to separate sunlit and shaded leaf fractions in the canopy, and the observation geometry determined the proportion 

of sunlit leaves observed by a satellite sensor (Chen et al., 1999). Leaf reflectance at the SIF wavelength was used to estimate 

the strength of multiple scattering of emitted SIF in the canopy that enhances SIF observed from sunlit leaves (He et al., 2019). 110 

The sunlit SIF component derived in this way was then converted into the average sunlit leaf photosynthetic rate, from which 

Vcmax is derived using a data assimilation technique (He et al., 2019). An ensemble Kalman filer (EnKF) was developed using 

an ecosystem model (Chen et al., 2012) and used in the data assimilation technique to optimize Vcmax based on the difference 

between SIF-derived and modeled average sunlit leaf photosynthetic rates. In the optimization, it was assumed that the error 

in modelling the photosynthetic rate was caused by both inaccuracy in the initial Vcmax input (constants by PFT or estimated 115 

based on LCC) and the collective errors in other parameters including environmental conditions (meteorology and soil) used 

in the model. An error matrix was therefore developed to determine the amount of adjustment to the initial Vcmax value (He et 

al., 2019). Optimized Vcmax values often differed considerably from the initialized values beyond their error ranges, suggesting 

that SIF observations provided reliable and strong signals for its optimization, even though other model errors are also present.  

 120 

The data assimilation methodology was first applied to GOME-2 SIF data and generated a global daily Vcmax map series from 

2007 to 2017 at 36 km resolution (He et al., 2019). In this study, this methodology was refined and applied to TROPOMI SIF 

data to produce global daily Vcmax maps in 2019 at 0.1˚ resolution (approximately 10 km). The refinements included the 

conversion from SIF to GPP using non-linear relationships (Liu et al., 2022) rather than linear relationships used in He et al. 

(2019) and the initialization of Vcmax using the LCC product (Croft et al., 2020) rather than constant Vcmax by PFT. Although 125 

the Vcmax map series produced using TROPOMI SIF + LCC data is available for only one year, it has a much higher spatial 

resolution than that produced from GOME-2, and therefore has broader applications in global ecological research.  

     

2.2. Deriving Vcmax from LCC 

LCC is responsible for light harvesting and providing excitation energy to drive photosynthesis in leaves, while Vcmax defines 130 

the capacity of leaves to utilize the excitation energy for photosynthesis. These two leaf traits are dynamically optimized to 

local environmental conditions to achieve an optimal use of nitrogen resources (Xu et al., 2012). LCC is a relatively stable 

trait without much day-to-day and diurnal variations, while Vcmax is sensitive to temperature. Empirical data show close 
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relationships between LCC and Vcmax25 (Houburg et al., 2013; Croft et al., 2017; Lu et a., 2020), which is Vcmax normalized to 

its value at 25˚C using a temperature function (Smith et al., 2019, see also Section 2.4 below). A two-step radiative transfer 135 

model inversion method was developed for retrieving LCC from multispectral satellite data (Zhang et al., 2008; Croft et al., 

2020). In step 1, the canopy-level reflectance was inverted to leaf-level reflectance with a look-up-table (LUT) constructed 

using canopy radiative transfer model for canopies with turbid media (Verhoef, 1984) and a geometrical optical model for 

clumped canopies (Chen and Leblanc, 1997 and 2001) that computed observed sunlit leaf fraction according to canopy 

structure and sun-target-view geometry. In step 2, the leaf-level PROSPECT model (Feret et al., 2008) was inverted to obtain 140 

LCC from the inverted multi-spectral leaf reflectance. This two-step model inversion algorithm avoids issues with empirical 

methods that directly link LCC to canopy-level remote sensing data, which lack generality because of variable canopy structure 

and sun-target-view geometry. The first time-series of global LCC maps were retrieved using MERIS data from 2003 to 2011 

at 300 m resolution and 7-day intervals (Croft et al., 2020). A validation using 248 ground sites in 5 PFTs suggests that this 

product is reliable (r2=0.5, p<0.01, RMSE=10.79 μg cm-2 or mean error 23%). Using empirical relationships between LCC 145 

and Vcmax25 for various PFTs (Luo et al., 2019), this global LCC time series was converted into Vcmax25.  

 

2.3. Ground-based Vcmax dataset 

In this study, we use the same ground-based Vcmax dataset as that used by Smith et al. (2019). It consisted of 3672 entries for 

1474 plant species that are grouped into 7 PFTs in this study. Each entry consisted of Vcmax measured from one or more leaves 150 

with companion data of air temperature, humidity, incoming PAR, longitude and latitude. Vcmax was derived from several pairs 

of photosynthesis (A) and intercellular CO2 concentration (Ci) (to construct an A/Ci curve) (56%) or from a single pair of A 

and Ci using the method of De Kauwe et al. (2016) (44%). 

 

To match with Vcmax maps derived from SIF, LCC and EOT, the ground-based data were aggregated in two ways: (1) the data 155 

points of the same PFT as that in the PFT map (Figure 4b) used for LCC and SIF processing were grouped to form an average 

Vcmax for a grid, while mismatched datapoints within the grid were ignored, and (2) all existing data points within each grid 

were averaged and labelled as the dominant PFT. We found that second way resulted in better correlation with all three types 

of Vcmax maps. After the aggregation to 0.5˚ resolution, there were 180 data points for all PFTs used in the final analysis of all 

Vcmax products.  160 

 

2.4. Temperature normalization 

For the same leaf, Vcmax varies exponentially with leaf temperature, and hence it is more meaningful to compare Vcmax25 between 

leaves or different estimates. In this study, all global Vcmax products are derived at the growth temperature. To facilitate their 

comparisons with ground databases and their future use in models, Vcmax is converted to Vcmax25 using a common temperature 165 

function (Eq. 22 in Smith et al., 2019).  
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3. Results 

3.1. Evaluation of Four Global Vcmax Products 

The global distributions of the growing season mean Vcmax obtained from GOME-2 SIF, MERIS LCC and TROPOMI SIF are 

shown in Figure 1 in comparison with Vcmax calculated from the ecological optimality theory (EOT) at the growing season 170 

mean temperature. For this comparison, Vcmax25 derived from LCC is converted to Vcmax at the mean growing temperature. The 

growing season is defined as the period when monthly mean air temperature is above 0°C. These four global Vcmax distributions 

derived at different spatial resolutions at 36 km, 300 m, 0.1˚ and 0.5˚ from GOME-2 SIF, LCC, TROPOMI SIF and EOT, 

respectively, and aggregated to 0.5˚ resolution in Figure 1, are highly correlated spatially, although their details differ to some 

extent. The distribution derived from the optimality theory appears to be spatially smooth, reflecting the fact that 175 

meteorological variables used for Vcmax prediction do not vary abruptly in space. The three remote sensing products show 

mutually-consistent patchy patterns, suggesting that they have all captured some realistic variability on the ground associated 

with PFT distribution patterns. However, all four products show remarkable similarities in the overall geographic patterns and 

mutually well correlated with each other (R2=0.76-0.90, p<0.001). Among three remote sensing products, SIF-derived products 

correlate best with the product based on the ecological optimality theory (EOT) (r2=0.85, RMSE=11.69 μmol m-2s-1, P<0.001 180 

for GOME-2; r2=0.76, RMSE=15.77 μmol m-2s-1, P<0.001 for TROPOMI). We further evaluate these products below.  

  

All four Vcmax products compare well with ground-based measurements (Figure 2) after they are aggregated to the 

corresponding 0.5º grids (see Methods). The correlation of optimality-based Vcmax with the ground measurements is similar to 

that shown in Smith et al. (2019) (r2=0.66, RMSE=13.37μmol m-2s-1, P<0.001), and correlations of other three Vcmax products 185 

with the same ground measurements are similar (r2=0.69, RMSE=13.80 μmol m-2s-1, P<0.001 for GOME-2; r2=0.80, 

RMSE=8.99 μmol m-2s-1, P<0.001 for TROPOMI; r2=0.55, RMSE=18.28 μmol m-2s-1, P<0.001 for LCC). It is encouraging 

to see that three of the four products captured about 2/3 of the variance in the ground data, despite the large-scale mismatch 

between the grids of these products and the ground data points. Some errors would also be expected from temporal mismatches 

as the differences in the years of ground and remote sensing data acquisitions are not considered (in order to have as many 190 

data points as possible in the comparisons), although data outside of the growing season are excluded. While Vcmax for 

individual leaves may vary greatly among plant species within the same functional type and with environmental conditions 

over the landscape, their locally averaged values would be expected to display a consistent spatial pattern at large scales that 

are determined more or less by meteorological conditions – permitting the success of the optimality theory for predicting Vcmax 

based on meteorological variables alone. Coarse-resolution remote sensing data, such as GOME-2 SIF data at 36 km resolution 195 

and TROPOMI at 0.1º resolution, can also capture the spatial variability in Vcmax at large scales.  
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The correlation statistics of the four products shown in Figure 2 with the ground database by plant function type are given in 

Table 1. Forest PFTs of ENF, DNF and DBF are combined in order to have a sufficient number of data points for the statistical 

analysis. Correlations for most PFTs are highly significant for all products (p<0.001), but for forest PFTs and SHR the 200 

correlations are weak for most products except for TROPOMI. The TROPOMI Vcmax product 

(https://doi.org/10.5281/zenodo.6466968) compares best with the ground database in terms of the Pearson correlation 

coefficient (r2), RMSE and the p value from two-tailed paired T tests, suggesting that the combination of SIF and LCC 

information is effective in capturing the spatial variability of Vcmax for the various PFTs. It is therefore most ready for global 

ecological studies among the four products.  205 

 

The Vcmax values derived independently from GOME-2 SIF and MERIS LCC at the mean growing season temperature are well 

correlated overall (r2=0.79) and for individual PFTs (r2=0.77-0.88) except for EBF (r2=0.26) (Figure 3). These high correlations 

suggest that the signals contained in both SIF and multi-spectral reflectance data used for LCC retrieval are strong and useful 

for deriving Vcmax. This is particularly encouraging because both types of remote sensing data are increasingly available with 210 

existing and forthcoming satellite sensors providing improved SIF (Muhammed et al., 2019) and multi-spectral data (such as 

the Sentinel sensor series, https://sentinel.esa.int/web/). The differences between these two independent retrievals of Vcmax are 

still considerable, especially for EBF in the tropics due to frequent cloud cover, and there is room for improvement not only 

in the retrieval algorithms but also in providing improved SIF and spectral data at higher spatial and temporal resolutions. 

Much more ground-based data of Vcmax, LCC and associated structural parameters (leaf area index and clumping index) are 215 

still needed for refining and validating the retrieved Vcmax. However, these existing products are already a large step forward 

from the current state of the art and can be employed immediately for parameterizing and benchmarking TEMs. In other words, 

these products may have already overcome the Vcmax bottleneck in accurate modeling of the spatio-temporal patterns of the 

terrestrial productivity and carbon cycle. 

 220 

3.2. Influence of Environmental Factors on Vcmax 

Vcmax values derived from all three remote sensing products shown in Figure 1 are most obviously larger than those produced 

by EOT over croplands and grasslands in Americas, India and China. Cropland and grassland management, including 

fertilization and irrigation, may explain part of this divergence. To explore the possible influences of cropland and grassland 

irrigation on Vcmax, we used a global irrigation map (http://www.fao/nr/water/aquastat/irrigationmap/index.stm) at 0.5˚ 225 

resolution to compare with the relative difference (ΔVcmax) between TROPOMI SIF+LCC Vcmax and EOT-based Vcmax, i.e. 

(TROPOMI-EOT)/EOT (Figure 4). Globally, ΔVcmax increases with irrigated area percentage. The regression coefficient (R) 

between the actual values of percent irrigated area and ΔVcmax for the areas of irrigation greater than 5% at the global scale is 

+0.32 (p<0.01) and +0.3 (p<0.01) for croplands and grasslands, respectively. In some regions, including China, India and the 

Middle East, the correlation coefficient is considerably higher (0.25-0.5, p<0.001). Irrigation in cropland and grassland would 230 

https://sentinel.esa.int/web/


8 

 

reduce water stress and increase leaf photosynthetic capacity (Reed and Loik, 2016; Chen et al., 2019; Song et al., 2021), 

giving rise to the positive correlation between ΔVcmax and percent of irrigation area in a pixel. For crops, fertilization would 

generally co-occur with irrigation (Sela, 2021), so this positive correlation could also include the effect of fertilization on 

Vcmax.  

 235 

Soil properties may also influence Vcmax (Reich et al., 2007, Maire et al., 2015; Ali et al., 2015, Smith and Dukes, 2018). 

Among soil properties available in the global SoilGrids database (Hengl et al., 2017), we found that soil pH best correlates 

with ΔVcmax. Soil pH is spatially variable (Figure 5a), and we found that ΔVcmax is positively and significantly correlated to soil 

pH in most regions, with 40.3% (11163 out of 27681 pixels) of cropland and grassland areas having R>0.1 and p<0.1 (Figure 

5). Similar statistics are found for other PFTs, suggesting that soil pH has similar effects on Vcmax across PFTs. However, 240 

ΔVcmax is not significantly correlated with other soil properties, including soil carbon content, nitrogen content and cation 

exchange capacity. Soil pH is a key control on soil biochemical reactions affecting nutrient uptake (Hall et al., 1998) and has 

an optimum range for plant growth from 5.5 to 7.5 (Islam 1980). As soil pH varies in a wide range (4 to 8, Figure 5), its effect 

on Vcmax is therefore detectable from remote sensing signals. Plants on acidic soils tend to have higher ratios of leaf-internal to 

ambient CO2 (Wang et al., 2017; Dong et al., 2020; Pailassa et al. 2020) and therefore would be expected to have lower Vcmax. 245 

These results suggest that Vcmax derived from SIF has captured much of the spatial variability in Vcmax due to irrigation and soil 

properties that are not captured by optimality theory. Remote sensing products can therefore provide more nuanced information 

on plant responses to non-meteorological environmental drivers and can therefore provide more accurate Vcmax estimates and 

additional information on its spatial variability.   

 250 

In addition to soil properties, leaf traits are expected to be more directly related to Vcmax. We use LCC, which contains part of 

the leaf photosynthetic nitrogen pool (Xu et al., 2012), as an indicator of the effect of leaf traits on Vcmax. We found that ΔVcmax 

is significantly and positively correlated to LCC for individual PFTs (r2=0.0004-0.35, P<0.001 for TROPOMI) and for all 

PFTs combined (r2=0.25, P<0.001) (Figure 6). Similarly, the relative difference in EOT-derived Vcmax and ground 

measurements is also significantly correlated with leaf nitrogen content (r2=0.21, P<0.001, Figure 7), in agreement with the 255 

finding of Smith et al. (2019). These positive relationships suggest that LCC as a proxy of the photosynthetic nitrogen content 

in leaves can explain part of the spatial variability in Vcmax due to the variations in environmental conditions that are not 

captured by the optimality theory. The added information from LCC due to plants’ optimal allocation of nutrient resources 

would be useful to improve optimality-based modeling of Vcmax.  

 260 

The global distribution patterns of growing season Vcmax shown by the four products (Figure 1) have common latitudinal 

gradients, i.e. Vcmax is generally largest near the equator and decreases away from the equator. This latitudinal dependence 

is simulated in EOT through considering radiation, i.e. stronger radiation leading to larger Vcmax. This influence of radiation 

on Vcmax is well captured by the three remote sensing products. According to analyses of the leaf economics spectrum (Wright 
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et al., 2004; Sack et al., 2013; Osnas et al., 2013; Reich 2014), leaf photosynthetic capacity increases with mean annual rainfall, 265 

and therefore Vcmax in dry areas is expected to be smaller than that in wet areas. However, several semi-arid regions, such as 

India, middle East, southeast Brazil, and areas near the southern border of the Sahara desert, have large Vcmax values. We 

found that these are mostly irrigated agricultural areas (Figure 4) and the high Vcmax values there are due to crop management 

and are not in contradiction to existing leaf economics spectrum data. The Vcmax distribution pattern in Australia is compatible 

with the rainfall distribution, i.e. the lowest Vcmax is found in central Australia where rainfall is lowest and the highest Vcmax 270 

is located in northern Australia where rainfall is largest. The EOT product can also capture this pattern to some extent through 

meteorological variables (e.g. radiation and temperature). There are many spatial details in these Vcmax products that are of 

great interest to leaf economic studies.   

 

3.3. Global Mean Values of  Vcmax for Different Biomes  275 

We compared the mean Vcmax values of the TROPOMI SIF+LCC product, denoted by VcmaxTg, representing the three remote 

sensing products, and the EOT product over the growing season grouped by PFT with ground-based datasets at the mean 

growth temperature and at 25 ºC after temperature normalization using the same scheme of Smith et al. (2019) (Table 2). The 

agreement between TROPOMI and EOT is best for EBF, DBF, SHR and GRS, for which the difference between the two 

products is smaller than their mean standard deviation. For ENF, DNF and CRP, the difference between the two products 280 

exceeded their mean standard deviation. TROPOMI VcmaxTg is also considerably smaller than the ground datasets because of 

the large contributions of high latitude conifer forests with low VcmaxTg that are underrepresented in the ground datasets (Figure 

8). Since the TROPOMI VcmaxTg product compares well with the ground database (Figure 1 and Table 1) and has complete 

coverage for each PFT, it provides more reliable global averages than the ground database shown in Table 2. Ground data for 

DNF are too few (Figure 8) to make sound evaluation for this PFT. TROPOMI VcmaxTg is considerably larger than EOT VcmaxTg 285 

for CRP, as well as GRS to a less extent, mostly because of the positive impact of irrigation on VcmaxTg as demonstrated in 

Figure 4. Although the same temperature function is used in the normalization for all products, the relative changes from 

VcmaxTg to Vcmax25 for the various PFTs differed slightly among the four global products (Table 2) as the differences in VcmaxTg 

among the products vary spatially with different growth temperatures, creating different weights in the calculation of the global 

averages of Vcmax25. 290 

 

In addition to the TROPOMI Vcmax product, the other two remote sensing products are also compared in Figure 9. The 

magnitude of Vcmax25 in the TROPOMI product is generally in between those from GOME-2 SIF and LCC for the various PFTs 

(Figure 9a) because it uses information of LCC which tends to be converted to lower values of Vcmax using existing empirical 

relationships. For forest PFTs, both Vcmax25 and VcmaxTg of the EOT product is generally larger than those of remote sensing 295 

products. This is likely due to the fact that EOT considers only meteorological variables while soil nutrients and other variables 

could impose limitations on plant growth and hence leaf traits while remote sensing techniques could be responsive to these 

soil effects on plants. For the same reason, Vcmax25 and VcmaxTg values of the EOT product for CRP is smaller than those of 
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remote sensing products because crop irrigation and soil pH could have positive effects on leaf Vcmax that are captured by the 

remote sensing products but not by EOT (Figures 3 and 4). The mean values of Vcmax25 and VcmaxTg from the ground databases 300 

(Smith et al., 1999; Kattge et al., 2009) are given in Figure 9 for comparison purposes, but they don’t represent the true global 

averages for the various PFTs because of their limited spatial distributions (Figure 8 for Smith et al., 2019). We therefore don’t 

yet have true ground averages to determine which product provides the most reliable global averages for the various PFTs. 

However, based on the point-to-point comparisons (Figure 1 and Table 1), we believe that the TROPOMI product is most 

reliable in providing the global averages of Vcmax25 and VcmaxTg for the various PFTs.  305 

4. Discussion 

The Vcmax datasets derived from SIF and LCC represent the in situ leaf-level Vcmax that is the collective outcome of 

meteorological conditions and other environmental properties. These datasets can therefore be used directly in TEMs without 

further adjustment. The TRY database (Kattge et al., 2009) contains both Vcmax normalized to 25ºC (Vcmax25) and total LNC, 

and they are well correlated. Empirical studies have also shown this correlation (Ryan, 1995; Medlyn et al., 1999; Walker et 310 

al., 2014; Prentice et al., 2014). LNC has therefore been used to adjust Vcmax25 within the same PFT in some TEMs. However, 

such an adjustment can only recover part of the spatio-temporal variability in Vcmax25 because only a small part of LNC is 

closely linked to carboxylation capacity. LNC can be separated into four components: photosynthetic, structural, storage and 

respiratory nitrogen pools (Xu et al., 2012; Ali et al., 2016). The photosynthetic nitrogen pool can be further divided into sub-

pools for light harvesting, electronic transport and carboxylation, and its fraction to the total LNC is variable depending on 315 

meteorological and soil conditions and possibly also atmospheric CO2 concentration (Ali et al., 2016). For fully grown leaves 

in balance with environmental conditions, these sub-pools are naturally optimized so that the investment of resources in light-

harvesting optimally satisfies the need for electron transport or carboxylation (Xu et al., 2012). In other words, photosynthetic 

subpools are highly correlated, giving rise to the experimental evidence that LCC containing the light-harvesting nitrogen is 

highly correlated to Vcmax and Jmax (Croft et al., 2017). The daunting and complex task of mapping the spatio-temporal 320 

distributions of leaf photosynthetic capacity could therefore be accomplished by mapping LCC that contains nitrogen in 

balance with carboxylation nitrogen in Rubisco, and multispectral or hyperspectral remote sensing data that are highly sensitive 

to light absorption by the chlorophyll pigments would be a reliable way to obtain such highly desirable information. The LCC 

product shown in this study could therefore be used in conjunction with Vcmax products derived from SIF and optimality theory 

to parameterize Vcmax models with consideration of the nitrogen cycle.  325 

 

Our remote sensing algorithms derive Vcmax from SIF and LCC from multi-spectral data from sunlit leaves after considering 

the Sun-target-view geometry (He et al., 2019; Croft et al., 2020), and hence the remote sensing Vcmax products represent 

sunlit leaves observed by the sensors. The observed sunlit leaves are mostly located near the top of the canopy, and hence these 

Vcmax products could be considered to represent the average condition of leaves near the top of the canopy. In applying a 330 

Vcmax value to a canopy, it would be necessary to consider the vertical variation of Vcmax in the canopy. A mathematical 
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scheme to integrate the vertical variation for average sunlit and shaded leaves at different LAI values and solar zenith angles 

is available from Chen et al. (2012).   

 

The growing season mean Vcmax products are available at https://doi.org/10.5281/zenodo.6466968, but seasonal variation of 335 

Vcmax is not yet ready for distribution. Reliable seasonal variation of Vcmax is not yet produced at the global scale due to 

several reasons: (1) SIF data are often not reliable over non-growing seasons and near the beginning and end of the growing 

season; (2) LCC derivation is considerably affected by the inaccuracy in the input LAI data outside of the growing season, and 

near the beginning and end of the growing season the separation of LCC and LAI signals in remote sensing data is still an 

issue; (3) the ecological optimality theory that provides the basis for evaluating remote sensing Vcmax products can so far be 340 

used for calculating growing season mean Vcmax and is not yet ready for calculating its seasonal variation; and (4) few ground-

based data with seasonal variation of Vcmax are available for validation. While efforts are being made to overcome these 

issues, it will take a while to accumulate sufficient ground-based datasets and to improve remote sensing algorithms and the 

optimality theory before reliable seasonal variation of Vcmax can be derived at the global scale.   

 345 

5. Conclusion 

The two RS Vcmax products used in this research were derived independently from separate satellite observations of SIF and 

LCC, and yet show close agreement in their magnitudes and spatial patterns of modelled Vcmax. These remotely sensed Vcmax 

products (https://doi.org/10.5281/zenodo.6466968) also closely agree in large-scale spatial patterns with those calculated from 

the ecological optimality theory using meteorological variables, providing support for the use the theory for prognostic 350 

modeling of terrestrial ecosystem function under future climate scenarios. However, the optimality-based Vcmax product does 

not show the local-scale spatial distribution patterns that are consistently found in all three remote sensing products because 

of patchy land cover distributions, implying that meteorological variables alone do not capture all spatial variability. 

Importantly, the relative difference in Vcmax (ΔVcmax) between SIF and optimality-based products is found to be significantly 

correlated to the fraction of irrigation area in a pixel, soil pH and leaf nitrogen content; highlighting the impacts of 355 

environmental conditions on Vcmax that are not captured within optimality theory. From these results, we conclude: (1) the 

remote sensing products shown in this study have reliably captured the spatial variability in Vcmax and therefore are directly 

useful for diagnostic ecological modeling at the global scale, and (2) in comparison to the optimality-based product, the remote 

sensing products provide additional information on how Vcmax varies according to local environmental conditions, which is 

useful for prognostic modeling purposes. Furthermore, understanding the dynamic in situ response of plant photosynthetic 360 

capacity to soil water and nutrient availability, independent of meteorological drivers, is important to monitoring plant 

photosynthetic potential. The LCC product shown in this study could be used in conjunction with Vcmax products derived from 

SIF and optimality theory to parameterize Vcmax models with consideration of the nitrogen cycle. This work demonstrates the 

https://can01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.5281%2Fzenodo.6466968&data=05%7C01%7Cjing.chen%40utoronto.ca%7Cf8e262449cc2438f16d008da26cee9f7%7C78aac2262f034b4d9037b46d56c55210%7C0%7C0%7C637864967943277042%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=c0mN3nzhEwUX1eb%2B3K3ULgIFpmA%2FBGtfDB9ATTRcmpM%3D&reserved=0
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power of global-scale satellite-based and ecological optimality approaches to reveal crucial spatial information on Vcmax; 

thereby removing a barrier in global ecological and Earth system research. 365 
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Table 1. Correlations by plant function type between Vcmax at growing season mean temperature (Tg) in four products (GOME-2 535 

SIF, TROPOMI SIF, LCC and EOT) and a ground database with 3672 individual data points aggregated to 180 grids of 0.5º 

resolution.  

Product r2, p and 

RMSE 

(μmol m-

2s-1) 

ENF, 

DNF, DBF 

(n=44) 

EBF 

 

 

(n=58) 

GRS 

 

 

(n=40) 

CRP 

 

 

(n=39) 

SHR 

 

 

(n=6) 

ALL 

 

 

(n=187) 

 

GOME-2 

r2 0.15 0.35 0.83 0.27 0.32 0.69 

RMSE 8.26 15.73 17.37 11.41 13.58 13.80 

p <0.01 <0.001 <0.001 <0.001 0.25 <0.001 

 

TROPOMI 

r2 0.31 0.66 0.85 0.65 0.90 0.80 

RMSE 5.57 9.55 13.32 5.50 5.55 8.99 

p <0.001 <0.001 <0.001 <0.001 <0.01 <0.001 

 

LCC 

r2 0.01 0.18 0.77 0.30 0.76 0.55 

RMSE 8.4 25.47 21.06 9.14 11.35 18.28 

p 0.54 <0.001 <0.001 <0.001 <0.05 <0.001 

 

EOT 

r2 0.10 0.34 0.85 0.38 0.22 0.66 

RMSE 7.70 19.57 11.78 7.42 12.42 13.37 

p 0.042 <0.001 <0.001 <0.001 0.35 0.001 
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Table 2 Mean and standard deviation (SD) of Vcmax at the growing temperature (VcmaxTg) and normalized to 25 ºC (Vcmax25) for 

different plant functional types (PFT) calculated from the TROPOMI and ecological optimality theory (EOT) products in 550 

comparison with two ground-based databases (Smith et al., 2019 and Kattge et al., 2009). 

 

 

 

 555 

 

 

 

 

 560 

 

 

 

 

 565 

 

 

 

 

 570 

 

 

 

 

  TROPOMI EOT Smith 2019 Kattge 2009 

PFT (μmol m-2s-1) Mean SD Mean SD Mean SD Mean SD 

 

ENF 

Vcmax25 32.36 12.51 60.66 7.19 53.70 26.95 62.50 24.70 

VcmaxTg  7.31 3.62 13.68 2.97 17.43 11.13   

 

EBF 

Vcmax25 46.89 13.02 54.55 6.79 45.83 23.27 43.80 16.83 

VcmaxTg  44.22 15.98 50.88 12.19 37.12 23.59   

 

DNF 

Vcmax25 44.38 8.93 60.50 5.05 44.82 23.34 39.10 11.70 

VcmaxTg  10.95 2.58 14.93 2.09 11.59 6.28   

 

DBF 

Vcmax25 44.42 16.42 59.60 6.31 51.31 25.06 57.70 21.20 

VcmaxTg  18.12 17.07 22.68 15.68 24.31 20.72   

 

SHR 

Vcmax25 53.30 13.60 61.37 7.55 50.63 27.75 57.85 19.55 

VcmaxTg  13.21 11.24 15.76 14.54 31.88 27.80   

 

GRS 

Vcmax25 74.74 22.76 69.45 12.37 82.70 47.86 78.20 31.10 

VcmaxTg  49.30 40.10 41.42 27.85 21.65 18.25   

 

CRP 

Vcmax25 87.57 17.42 62.12 9.59 90.21 32.13 100.70 36.60 

VcmaxTg  54.83 37.14 39.63 26.72 42.11 22.64   
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 585 

 

Figure 1. Global distributions of VcmaxTg at the mean growing season temperature derived using (a) GOME-2 SIF (2007-

2011), (b) TROPOMI SIF+LCC (2019) constrained by leaf chlorophyll content (LCC), (c) LCC (2017), and (d) ecological 

optimality theory (1901-2015). White areas are missing data  
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Figure 2. Comparisons of Vcmax at growing season mean temperature (Tg) derived from GOME-2 SIF, TROPOMI SIF+LCC, LCC 

and optimality theory (EOT) against a ground database with 3672 individual data points aggregated to 180 grids of 0.5º resolution. 

The root mean square error (RMSE) is in unit of μmol m-2s-1. 590 
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Figure 3. Comparisons of SIF-derived and LCC-derived Vcmax values for a group of three PFTs and four individual PFTs as well as 

all PFTs combined. These two sets of Vcmax derived independently using two different remote sensing techniques are very well 595 

correlated for all PFTs except for the evergreen broadleaf forests (EBF) in tropical areas where frequent clouds degrade the 

quality of both SIF and LCC datasets.  
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 600 

Figure 4. The influence of irrigation on Vcmax over cropland and grassland, detected by TROPOMI SIF+LCC at 0.5˚ resolution, 

where (a) is the actual area irrigated in percent of cell area (aai pct cell area) in recent decades, (b) the relative difference in Vcmax 

(ΔVcmax) between TROPOMI and ecological optimality theory (EOT), i.e. ΔVcmax=(TROPOMI-EOT)/EOT, (c) the correlation 

coefficient (R) between actual irrigated area percentage and ΔVcmax within sliding windows of 10 x10 pixels, and (d) the histograms 

of R and R2 values in (c) for cropland and grassland. ΔVcmax is significantly correlated with percent area irrigated in both cropland 605 

(R=0.32, p<0.001) and grassland (R=0.30, p<0.001) at the global scale.  
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 610 

Figure 5. Soil pH has significant influence on Vcmax detected by TROPOMI SIF+LCC at 0.5˚ resolution. (a) soil pH in the top 0-5 

cm layer, (b) relative difference in Vcmax (ΔVcmax) between TROPOMI and ecological optimality theory (EOT), i.e. 

ΔVcmax=(TROPOMI-EOT)/EOT, (c) correlation coefficient (R) between soil pH and ΔVcmax within sliding windows of 10 x10 pixels, 

(d) PFT distribution, (e) summary of mean correlation coefficient R and R2 values in (c) by PFTs, and (f) histograms of R and R2 

values in (c) for grassland (GRS) and cropland (CRP). In 40.3% of GRS and CRP pixels, ΔVcmax is positively and significantly 615 

(p<0.1) correlated with soil pH.  
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 620 

Figure 6. The relative difference in VcmaxTg (ΔVcmax) between TROPOMI and ecological optimality theory (EOT), i.e. 

ΔVcmax=(TROPOMI-EOT)/EOT, is significantly correlated to leaf chlorophyll content (LCC) as a proxy of the leaf nutrient 

condition. All PFTs are included. The correlation is statistically highly significant with p<0.001 for individual PFTs and for all 

PFTs combined.  

 625 
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 630 

Figure 7. Influence of leaf nitrogen content on the relative difference between VcmaxTg values measured at ground sites and derived 

from an ecological optimality theory (EOT) using the available database (Smith et al., 2019). The influence is highly significant for 

all plant functional types (i.e. p<0.001). The slopes of the regressions of the relative difference in Vcmax against LCC or ground leaf 

nitrogen data are similar, in agreement with the global modeling results that levels of nutrient limitation to plant growth are 

similar among different PFTs (Fisher et al., 2012).   635 

 

 

 

 

 640 
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Figure 8. Distribution of ground sites of the database of Smith et al. (2019) after aggregation to 0.5 grids for the different plant 

functional types. 645 
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 650 

Figure 9. Mean and standard deviation of VcmaxTg at growth temperature and Vcmax25 (normalized to 25 ºC) derived from GOME-

2 SIF, TROPOMI SIF+LCC, LCC and ecological optimality theory (EOT) in comparison with two ground databases (Smith 2019 

and Kattge 2009) for the main PFTs at growth temperature. Kattge 2009 contains more Vcmax25 than VcmaxTg so only Vcmax25 is included 

in (a). The EOT product has considerably smaller VcmaxTg in grassland (GRS) and crops (CRP) than the three remote sensing 

products. All four products have considerably higher VcmaxTg than the ground site measurements in grassland mostly because the 655 
number of site measurements are too small to be representative of the global average. After the temperature normalization, the 

differences among the products become much smaller.  
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Code/Data Availability 660 

The Vcmax datasets presented in this paper are available at https://doi.org/10.5281/zenodo.6466968 (Chen et al., 2022).  It 

includes the following three global 0.5 degree Vcmax datasets at growth temperature: 

1) Vcmax from GOME-2 SIF: GOME2_Vcmax_Tg_05deg.tif 

2)Vcmax from TROPOMI SIF+LCC: TROPOMI_Vmax_Tg_mean.mat 

3) Vcmax from global leaf chlorophyll content map (Croft et al., 2020, RSE): LCC_Vcmax_Tg_mean.mat 665 

The geographic reference are the same for all three datasets, conforming to that in the geotiff file.  

Any questions on the dataset, please contact: Dr. Jing M. Chen, jing.chen@utoronto.ca. 

 

The functions written in R for calculating Vcmax using the ecological optimality theory are available at 

https://github.com/SmithEcophysLab/optimal_vcmax_R (Smith et al., 2022). 670 
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