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Abstract. Snow cover plays an essential role in climate change and the hydrological cycle of the Tibetan Plateau. The
widely used Moderate Resolution Imaging Spectroradiometer (MODIS) snow products have two major issues: massive data
gaps due to frequent clouds and relatively low estimate accuracy of snow cover due to complex terrain in this region. Here
we generate long-term daily gap-free snow cover products over the Tibetan Plateau at 500 m resolution by applying a
Hidden Markov Random Field (HMRF) technique to the original MODIS snow products over the past two decades. The data
gaps of the original MODIS snow products were fully filled by optimally integrating spectral, spatiotemporal, and
environmental information within HMRF framework. The snow cover estimate accuracy was greatly increased by
incorporating the spatiotemporal variations of solar radiation due to surface topography and sun elevation angle as the
environmental contextual information in HMRF-based snow cover estimation. We evaluated our snow products, and the
accuracy is 98.29% in comparison with in situ observations and 91.36% in comparison with high-resolution snow maps
derived from Landsat images. Our evaluation also suggests that the incorporation of spatiotemporal solar radiation as the
environmental contextual information in HMRF modelling, instead of the simple use of surface elevation as the
environmental contextual information, results in the accuracy of the snow products increase by 2.71% and the omission error
decrease by 3.59%. The accuracy of our snow products is especially improved during snow transitional period and over
complex terrains with high elevation as well as sunny slopes. The new products can provide long-term and spatiotemporally
continuous information of snow cover distribution, which is critical for understanding the processes of snow accumulation
and melting, analysing its impact on climate change, and facilitating water resource management in Tibetan Plateau. This
dataset can be freely accessed from the National Tibetan Plateau Data Center at https://doi.org/10.11888/Cryos.tpdc.272204
(Huang and Xu, 2022).
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1 Introduction

Snow cover has the characteristics of low thermal diffusivity, high reflectivity, and strong water storage capacity, which has
a profound effect on climate change (Gao et al., 2012), radiation budget (Yang et al., 2014; Huang et al., 2019), hydrological
cycle (Dong, 2018), and human activities (Cereceda-Balic et al., 2020). The Tibetan Plateau (TP) has abundant snow cover,
with highest elevation and largest snow cover area in the middle latitudes of Northern Hemisphere (Qiu, 2008; Yao et al.,
2019). Snow is highly sensitive to climate change (Chen et al., 2018a), and snowmelt water quantity is closely connected to
the supply of soil moisture on the plateau (Wang et al., 2018) and the runoff of numerous rivers such as the Yangtze and
Yellow rivers (Immerzeel et al., 2010). Long-term and detailed snow cover information is fundamental to investigating
climate change and hydrological cycle of the TP.

Remote sensing has allowed extraction of historical and near-real-time snow cover extent over inaccessible areas (Yang et al.,
2015; Li et al., 2018). Snow products could be acquired via remote sensing satellites, such as the Landsat and Sentinel-2
series. Although these satellites have a high spatial resolution, they have a relatively coarse (10 or 16 days) temporal
resolution, thereby rendering them insufficient to monitor the temporal variations in snow cover (Huang et al., 2022).
Moderate Resolution Imaging Spectroradiometer (MODIS) has commenced producing snow products at 500 m resolution
from 2000, which have been widely utilized as the primary datasets for monitoring snow cover (Muhammad and Thapa,
2020; Kilpys et al., 2020). The accuracy of MODIS snow products is greater than 85% at the global scale under clear sky
(e.g., Parajka et al., 2012; Yang et al., 2015). However, these products have many data gaps due to frequent clouds, causing
discontinuity in the time and space of the products (Liu et al., 2020b). In addition, the complex terrain of the TP makes it
more challenging for accurate snow cover detection. Previous studies (Dong and Menzel, 2016; Dariane et al., 2017) have
suggested the low accuracy of MODIS show products for mountainous areas.

Various data-gap-filling techniques have been proposed to produce seamless MODIS snow cover products including multi-
source combination, temporal, spatial, and spatiotemporal filters (Xiao et al., 2021; Hussainzada et al., 2021; Richiardi et al.,
2021). The multi-source combination method combines MODIS with passive microwave sensor data (Li et al., 2019b; Li et
al., 2020). Although this method can be used to fill most data gaps, the accuracy of the combined product depends more on
the accuracy of the microwave sensor data, and the spatial resolution (>1 km) is not sufficient to meet the demands for
accurately assessing the snow cover variability (Wang et al., 2009). Many attempts have been directed toward filling the
gaps in MODIS optical remote sensing data based on spatial and temporal information. Temporal methods are used to
reclassify the data-gap pixels by inferring the land cover types of the current pixels under clear sky within a few days before
or after (e.g., the previous or next day) (Li et al., 2019a; Tran et al., 2019). Spatial methods estimate data-gap pixels based on
gap-free pixels in the spatial neighborhood (Hou et al., 2019). Relevant environmental information (e.g., snow lines and
topography) has been introduced into spatial methods (Wang et al., 2019; Kilpys et al., 2020). Spatiotemporal methods have
been integrated to fill as many data gaps as possible (Parajka and Bl&chl, 2008; Kilpys et al., 2020). These studies

integrated all information (i.e., spatiotemporal, and environmental information) according to heuristic rules instead of
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rigorous quantitative model. Huang et al. (2018) developed a Hidden Markov Random Field (HMRF) framework to
optimally combine all information. This technique not only fills data gaps but also provides fine improvement in accuracy
compared to the original MODIS snow products.

The long-term series and high-precision products are the basis for snow cover research on the TP, which enable the
monitoring and analysis of snow cover phenology and more comprehensive understanding of the snow cover trend. However,
the existing daily products for the TP have an earlier end date (the latest version at 500 m resolution product ended in 2015),
and some products still have a small number of data gaps (Yu et al., 2016; Qiu et al., 2017; Xu et al., 2017; Zheng and Cao,
2019). Thus, long-term and high-precision daily snow cover products for the TP should be generated using reliable data-gap-
filling methods.

Here we generate long-term daily snow cover products over the TP by applying a HMRF technique (Huang et al., 2018) to
the original MODIS snow products from 2002 to 2021. In the previous HMRF modelling technique (Huang et al., 2018),
surface elevation was considered as a surrogate for environmental information in mountainous regions. However, according
to in situ photos from field survey in the TP, we found that the distribution of snow cover differed from the model results,
even at the same elevation level (Figs. 1b and 1c). The snow on the TP is strongly infected by complex topography (e.g.,
slope, aspect, sunlight duration, and solar incidence angle). Thus, while generating our new snow cover product, we
incorporated solar radiation as a comprehensive indicator of topographical effects to correct the snow identification errors
caused by the complex terrain of the TP.

Our study is outlined as follows: first, we present our study area and datasets. Then, we present the HMRF framework and
data-processing flowchart. By employing this modelling technique to the TP, we produced daily gap-free snow cover
products for the TP from 2002 to 2021. We also validated our new snow products against in situ observations, snow cover
mapped from Landsat series data, and snow cover data estimated from the initial MODIS and original HMRF modelling

technique.

2 Study area and data
2.1 Study area

The TP is situated in western China, spanning 26°00’-39°46'N and 73°18’-104°46'E (Fig. 1). It encompasses approximately
2.56 x10° km?, with an average altitude exceeding 4000 m, and is one of the most susceptible regions to climate change
(Jing et al., 2019). The air temperature in the TP increased from the northwest to southeast, with more precipitation in the
southeast and less in the northwest (Wang et al., 2018). Generally, the TP has comparatively low temperatures and has
largest distribution of glaciers and snow in China (Liang et al., 2017). Seasonal snow cover on the TP has a great potential to
influence the hydrological cycle and heat wave frequency in northern China (Wu et al., 2012). In addition, seasonal snow

accumulation on the TP is an important part of surface water accumulation in southwestern China and surrounding countries.



Several major rivers in China and surrounding Asian countries, such as the Yangtze, Yellow, Mekong, Salween,
Brahmaputra, Ganges, and Indus Rivers, all originate from the TP.

100 The status of the snow in the TP changes rapidly as a result of multiple factors, such as temperature, precipitation, synoptic
forcing, and large-scale ocean-atmosphere oscillations (You et al., 2020), which may lead to sublimation and snowfall (Li et
al., 2020). Affected by the Indian Ocean monsoon and East Asian summer monsoon, the southeast TP has plenty water vapor,

which results in a large amount of cloud, particularly in spring and summer (Yang et al., 2015).
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105 Figure 1: Topography, meteorological stations, and survey photos of the TP. (a) Surface elevation and distribution of
meteorological stations in the TP. Landsat images utilized for validation and sample area are also shown. (b) and (c) in situ photos
from field survey in the TP.
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2.2 Datasets
2.2.1 Daily MODIS snow cover products

We used version 6 MODIS daily snow products on Terra (MOD10AL1 v6) and Aqua (MYD10A1 v6) from May 15, 2002, to
December 31, 2021 (Hall and Riggs, 2016a; Hall and Riggs, 2016b). Google Earth Engine (GEE)
(https://earthengine.google.com) platform was used for pre-processing the MODIS snow product. We used
MODIS/006/MOD10A1 and MODIS/006/MYD10A1 datasets and NDSI_Snow Cover and NDSI_Snow_Cover Class
bands. NDSI_Snow_Cover represents the value of the Normalized Difference Snow Index (NDSI), ranging 0-100. The
values in the NDSI_Snow_Cover_Class band include 200, 201, 211, 237, 239, 250, 254, and 255, which represent "missing
data", "no decision", "night time", "inland water", "ocean", "
(Riggs et al., 2019).

The original NDSI data were reclassified as snow, non-snow, and data-gaps classes (Chen et al., 2020; Huang et al., 2018;

clouds", "detector saturated", and "filled data", respectively

Huang et al., 2022). The pixels with an NDSI value of 40-100 in the NDSI_Snow_Cover band were reclassified as snow
(Riggs et al., 2017). The pixels with an NDSI value of 0-40 in the NDSI_Snow_Cover band and with corresponding values
of 237 and 239 in the NDSI_Snow_Cover_Class band were reclassified as non-snow. The remaining pixels were reclassified
as data-gaps. Then, we combined the MOD10A1 and MYD10AL reclassification results of the same day according to the
following rules: when a pixel included gap-free data in both MOD10A1 and MYD10A1 products, value in the MOD10A1
product was used; when a pixel included gap-free only in the one product, the gap-free data value was used. Finally, the
combined Terra and Aqua results were re-projected onto Universal Transverse Mercator (UTM zone 45) at 500 m resolution,
which was used as the initial snow cover products for filling data gaps in this research.

We identified the data gaps in original composite MODIS products, and found the annual average data gap proportion of the
TP was 33.63%-38.75%, with an average of 36.12% (Fig. 2). The monthly average data gaps are also shown in Fig. 2, and
found that the data gaps of the TP were the largest in summer (June to August), with an average of 45.20%. The data gaps
declined rapidly starting from September and were the smallest in November (with an average of 28.00%), and gradually

increased in winter and spring.
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Figure 2: Annual and monthly average proportion of data gaps of original composite MODIS snow products.
2.2.2 Digital Elevation Models (DEMs)

135 We used the Shuttle Radar Topography Mission (SRTM) DEMs to calculate the topographical parameters (e.g., elevation,
slope, and aspect). The SRTM DEM is at 90 m resolution in GeoTIFF format was from the United States Geological Survey
(USGS). We then pre-processed the DEM data, including mosaicking, reprojection, resampling, and clipping.

2.2.3 In situ observations

We used snow depths from 137 in situ stations in the TP (Fig. 1a) obtained from October 1, 2002, to March 31, 2021, which
140 were provided by the National Meteorological Centre of China. Fig. 1a shows all stations over the TP, which record
coordinates, observation time, snow depth, and snow pressure. The surface elevation of these stations ranges from 1187 m to
5310 m, with an average of 3240 m. Overall, 72% stations are situated in the east (>95<E), and only 22% are situated in
high-altitude areas (>4000 m). A 3 cm threshold was utilized to evaluate the snow classes using in situ snow depth (Huang et

al., 2022). The snow depth was reclassified as no-snow if it was less than 3 cm; if not, it was considered as snow.

145 2.2.4 Landsat images

The snow cover mapped from Landsat images were used to validate and evaluate our snow cover product. Using the GEE
cloud platform, we selected 81 Landsat series images with less than 2% cloud coverage under clear sky for verification,
including Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI images. The detailed Landsat images information is shown in
the supplementary material (Table Al). The selected images were distributed throughout the study area from November 22,

150 2002, to December 16, 2021. We used the C topographic correction model to correct for the terrain effect on Landsat series

6
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data (Teilet et al., 1982). Then, using the SNOWMAP method proposed by Hall et al. (1995), we generated a snow cover
map using Landsat images for the TP. The SNOWMAP algorithm classified the pixels with NDSI values > 0.4, green band >
0.10, and SWIR1 band > 0.11 as snow (Huang et al., 2011). To improve the accuracy of resampling 30 to 500 m resolution,
we adopted the following steps for resampling: first, for each MODIS pixel, we calculated the amount of Landsat snow-
covered pixels in the current MODIS pixel. Second, we divided the snow-covered Landsat pixels by sum of the Landsat
pixels contained in each MODIS pixel (a 500 m MODIS pixel is close to 277 Landsat pixels) (Crawford, 2015; Liu et al.,
2020a). Finally, we reclassified pixels whose results in the previous step were less than 0.5 as no-snow; otherwise, they were

reclassified as snow. Hence, we obtained resampled 500 m resolution Landsat images for further verification.

3 HMRF modelling technique

The HMRF framework optimally combines MODIS spectral, spatiotemporal, and environmental information to fill data gaps,
thereby increasing snow estimate accuracy (Huang et al., 2018). This framework is expressed as a linear energy function in
which the total energy is modelled as the combination of all information (Eq. (1)). Thus, the HMRF framework requires to

specify energy function for each information and to determine the optimal parameters that minimize the total energy.

UT(ﬁn:xi: Nspr thr Iev) = Ainxi(ﬁn' xi) + AstUst(ﬁn' Nsp' th) + AevUev(Bn' Iev) 1)
where 1,;,4;, and A,,, are the spectral, spatiotemporal, and environmental parameters, respectively; and U,;, U, and U,,, are
the spectral, spatiotemporal, and environmental energy functions, respectively.

In the original HMRF modelling technique, Huang et al. (2018) used surface elevation to represent the environmental
association in mountainous areas (hereafter referred to as HMRF,,;,). However, because of the spatial heterogeneity of the TP,
using only relative elevation cannot reflect the influence of complex terrain on snow cover (Figs. 1b and 1c). Therefore, the
influence of additional topographic factors (e.g., slope, aspect, sunlight duration, and solar incidence angle) on snow cover
must be considered. Based on the above reasons, we incorporated solar radiation as a surrogate for environmental
information in HMRF framework (hereafter referred to as HMRF,,,,,-). Further details are provided in Section 3.3.

The overall flowchart of the HMRF;,,;,,- modeling technique is shown in Fig. 3. We used daily composite MODIS snow
cover products as initial dataset. First, we calculated the optimal parameters of each information using the Ho-Kashyap and
DFBETAS algorithms (Bormann et al., 2012), based on randomly divided training samples on the initial snow cover product.
Second, we determined the snow and non-snow classes of each pixel in the initial snow cover products using the optimal
parameters and HMRFq,,,, algorithm. In the first round of the HMRF,,,, algorithm, we employed a 3x3x3
spatiotemporal cubic neighborhood to model spatiotemporal energy. If data gaps remained, we further expanded the cubic
neighborhood of these pixels. Finally, we validated and evaluated our HMRF,;,, -based products against the in situ
observations, snow mapped from Landsat images, and snow cover data from the initial MODIS and original HMRF,,,

modelling technique.
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Figure 3: Overall flowchart of the HMRF,,,,--based framework. (SCP stands for snow cover products)
3.1 Spectral information

The spectral energy is considered as the possibility of the pixel pertaining to non-snow or snow according to its spectral
information. Fractional Snow Cover (FSC) represents the proportion of snow in a pixel, which can be calculated using the
NDSI value provided by the MODIS snow product (Salomonson and Appel, 2004). The general linear relationship between
FSC and NDSI was derived over other regions, which has limited accuracy in the TP. Therefore, we re-fitted that empirical
relationship of Terra and Aqua satellites in the TP using Landsat data over 20 years with 972884, and 952221 sample points,
respectively. The spectral probability P(x;|B,) of snow class was re-fitted as follows:

P(x;:18) rerra = (1.222 X NDSI + 0.038)/100 @)
P(x:181) aqua = (1.164 X NDSI + 0.058)/100 ®3)

The correlation coefficients of the re-fitted equation of Terra and Aqua satellites were 0.86 and 0.89, respectively. The
spectral energy U,.;(B,, x;) can be calculated as follows:

—[P(xilB] ifn =1
Usi (B, x1) {_[1 —[P(x;18))],if n =2 *

where if pixel i is classified as no-snow class, then n = 2; if pixel i is the snow class, n = 1.
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3.2 Spatiotemporal information

To fully take advantage of spatiotemporal information, we combined the temporal and spatial information to form a
spatiotemporal cubic neighborhood N, (Huang et al., 2018). In modeling, initial snow products are updated iteratively using
classification results from the previous iteration. Convergence ends when the proportion of pixels whose type changes
between two subsequent iterations is less than 0.1%, in which case the data gaps need to be calculate. If the data gaps still
exist, the cubic neighborhood is temporally and spatially expanded next round.

We primarily set a 3 x 3 x 3 cubic neighborhood; that is, the current pixel and its neighboring pixels formed a cube on day ¢,
the day before (t — 1), and the day after (¢t + 1). In this condition, the energy equation of the current pixel is expressed as the
weight of the proportion of snow and non-snow in the spatiotemporal neighborhood of the current pixel. The weight is

reversely proportional to the distance from the neighboring pixel to the center pixel:

Sxy.t)
(Cxi oz wi, Pod o=
Us: (ﬁn' Ngp, N, tp) = [;\;Zt(gcx;t? ®)
~ Tk X1 Bl vy ifn = 2
Dist(x,y,t)

where (x,y,t) is the relative coordinates of the pixel in the spatiotemporal cube; S(x,y,t), NS(x,y,t), V(x,y,t),

and Dist(x, y, t) are defined respectively as follows:

_ 1,if (x,y,t) pertains to snow
Stuy,t) = {0, if (x,y, t) pertains to non — snow ©)
_ (1,if (x,y, t)pertains to non — snow
NSy, t) = { 0,if (x,y, t)pertains to snow 7
_ (1,if(x,y,t) pertains to valid class
Veey.t) = {0, if (x,y,t) pertains to data gaps ®)

Dist(x,y,t) = /x? + y? + wt? 9)

where Dist(x, y, t) is the distance from each neighborhood pixel to the center pixel, which determines the weight of each
area pixel; w denotes the weight of the temporal distance related to the spatial distance. This value was calculated via semi-
variogram analysis and was determined as 3 in this study.

If data gaps still remain in 3 x 3 x 3 spatiotemporal cubic neighborhood, we further expanded spatiotemporal neighborhood
to 5 x 5 x 5. In this study, when we used a5 X 5 x 5 cubic neighborhood, the data gaps were reduced to 0.0173%, which
had little effect on snow cover estimate accuracy. Hence, the temporal neighborhood remained at 5, whereas the spatial
neighborhood continued to expand. Finally, all data gaps could all be filled by continuously expanding the spatial

neighborhood, which remarkably improved the MODIS estimate accuracy.

3.3 Environmental contextual information

The geographic location and seasons can determine the total solar radiation received on the TP, and the complex topography

of the TP determines the availability of solar radiation at specific locations in the region, which further affects accumulation
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and melting of snow cover and determines its distribution (You et al., 2020). Here we use solar radiation to include the
influence of environmental factors on snow cover, such as slope, aspect, sunlight duration, and solar incidence angle.

Kumar et al. (1997) originally proposed the solar radiation model, SHORTWAVE, to calculate the direct, reflected, and
diffuse solar energy received by the ground. Huang et al. (2015) used a Graphics Processing Unit (GPU) methodology to
improve the speed and effectiveness for modelling. In our study, we used the GPU-accelerated SHORTWAVE model as the
environmental parameter in the HMRFq,,;,,,- model to calculate the daily solar radiation of the TP.

A general-purpose desktop computer was used to test the parallel computational efficiency. The computer has an Intel
Core™ i7-10700 CPU (16 cores and max clock rate is at 2.90 GHz), an NVIDIA GeForce RTX 2070 SUPER Card with
2560 cores and 16240 MB global memory, and Windows 11 Ultimate 64-bit Operation System. The GPU-accelerated
SHORTWAVE model uses latitude, slope, aspect, date, and interval time as inputs. To calculate the overall solar radiation in
a day, we subdivided the day into subsequent time intervals, and set 15 min as the suitable interval time in this paper (Kumar
etal., 1997; Antonic, 1998). The overall solar radiation I, at time t can be calculated using Eq. (10):

Iy=I+I;+1, (10)
where I, 15, and L. are the direct, diffuse, and reflected solar radiation, respectively, and can be estimated using the

following equations:

L, =1y 1, cosf (11)
_ Igtg-cos?p

Id - 2sina (12)

I = r-lg-Ty-sin®p (13)

2sina

where I, is the extra-atmospheric solar flux; t;, denotes the atmospheric transmittance; ¢, denotes the diffuse skylight
transmittance; t,. is the reflectance transmissivity (Gul et al., 1998); r is set to 0.2 in the current paper(Kumar et al., 1997); a
is the solar elevation angle, which varies in terms of the latitude, season and time; 6 is the solar incidence angle, which is
determined by solar elevation angle a, the solar azimuth angle, surface slope (8) and aspect (Huang et al., 2015). The effect
of the geographic location and seasons on the total solar radiation are represented by solar elevation angle variable «, and the
effect of the complex topography on the total solar radiation is represented by surface slope (8) and aspect variables.

We repeated the calculation for each time interval. Last, we accumulated the solar radiation from sunrise to sunset to acquire
the daily values.

Avreas that receive more solar radiation generally experience later snow accumulation and earlier snowmelt than areas that
receive less solar radiation. Therefore, if pixels in a spatial neighborhood have higher solar radiation and the classification

result is snow, the probability that the center pixel is also snow increases. The environmental energy equation is defined as

follows:
_y1 1 SEOY) ey o
N;y,, Ny, ) = Yx=-12y=-1 SE(x.y)+NSE(x'Y)’lfn -1 .
Uev(ﬂn’ tp sp) - _21 Zl L(x‘y) f = 2 ( )
=1 2y =—1 Sp ) iNSEGey)

10
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where (x,y) are coordinates of the pixel in the spatial neighborhood Ny,,; SE (x,y) and NSE (x, y) are defined as follows:

o

_(1,if (x, ¥) belongs to snow and solar(x,y) = solar(i)
SE(xy) = { 0, others (15)
1,if (x, y) belongs to non — snow and solar(x,y) < solar(i

where solar(x,y) and solar (i) represent the solar radiation received by the neighboring pixels and the central pixel,

respectively.

4 Results
4.1 Accuracy assessment based on in situ observations

Using HMRF,,,,--based method, we produced gap-free snow cover products over the TP with a daily 500 m resolution from
May 15, 2002, to December 31, 2021. We applied the validation indices based on the confusion matrix (Table 1), which is
widely recommended by previous studies (Li et al., 2020).

Table 1. Confusion matrix comparing snow cover products with observation value

. Snow cover products
Observation value

Snow Non-snow
Snow a b
Non-snow c d
The three validation indices are defined as follows:
0A = (=22) x 100% (17)
OE = (ﬁ) x 100% (18)
(o}
CE = (m) x 100% (19)

Overall accuracy (OA) is the probability a pixel that is correctly classified; Omission error (OE) and Commission error (CE)
represent the underestimated and overestimated snow pixels, respectively. We first compared our daily HMRFy,,;,,--based
and original MODIS snow products with snow depth observed from 137 in situ stations from 2002-2021 (Table 2). The OA
of all gap-free pixels in original MODIS products was 97.96%. After employing the HMRF,,,,,.-based method, the OA of
these gap-free pixels was increased to 98.29%. The OE was reduced by 0.57%. Since the in situ stations in the TP are
primarily distributed in low-altitude areas (Fig. 1a), only using in situ observations may not be representative and lead to
biases in the accuracy assessment. Therefore, we also conducted evaluation in comparison with snow cover mapped from

Landsat data obtained from 2002-2021, and regarded it as the true verification value in the following accuracy evaluation.

11
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Table 2. Confusion matrices between HMRF,,,,,-based, original MODIS snow products, and in situ observation for gap-

free pixels in original MODIS snow products during 2002—2021.
In situ observation HMRF,,,,--based snow products Original MODIS snow products
Snow Non-snow Total Snow Non-snow Total
4782 2373 4725 2430
Snow (66.61%) (33.39%) 7155 (66.04%) (33.96%) 7155
3420 328040 4493 326927
Non-snow (1.01%) (98.99%) 331460 (1.36%) (98.64%) 331460
Total 8202 330413 338615 9218 329397 338615
Overall accuracy 98.29% 97.96%

4.2 Accuracy assessment based on Landsat data

A total of 81 Landsat-8 images (Fig. 1a, Table Al) with less than 2% cloud coverage were selected for this accuracy
assessment. We constructed the confusion matrices for the HMRF,,,,,-based snow cover products, HMRF,.-based snow
products, and original MODIS snow cover products against snow cover mapped from Landsat series data products (Table 3).
The OA for gap-free pixels in original MODIS products was 89.31%. When we used surface elevation to represent the
environmental association in HMRF modelling technique, the OA of these gap-free pixels was increased to 90.47%. Since
using surface elevation only cannot well represent the influence of complex topography on snow cover distribution over the
TP, this improvement is still limited. After incorporating the solar radiation to model the comprehensive influence of
multiple topographic factors on snow cover, the OA of our HMRF,,,,,.-based snow products was increased by 2.06%
compared with the OA of original MODIS products. Liu et al. (2020a) indicated that the classification errors in original
MODIS snow products were strongly affected by OE. Our snow cover product provided a considerable improvement in this
respect. The OE of our HMRF,,,,,--based snow products was 3.24% lower than that of original MODIS products (Table 3).

Particularly, our HMRF method is able to fill data gaps in original MODIS products in which spectral information is
unavailable caused by cloud by integrating spatiotemporal and environmental information together. Table 4 shows that the
OA of the HMRF,;,,- and HMRF,,,- based snow cover products for those data-gap pixels in original MODIS products was
83.86% and 81.15%, which is 7.50% and 9.32% lower than that of gap-free pixels. It is also showed that the OA of
HMRF,,,,--based snow cover product is 2.71% higher than that of HMRF,,;,-based snow cover product. Both Table 3 and
Table 4 confirmed that using solar radiation as the environmental information in the HMRF framework can develop more

reliable snow cover products.

4.3 Accuracy improvement in different times of a snow season

To explore the details of snow cover variation, we define the snow season from September of previous year to August of the

following year, for example, the time range of the 2002 snow season is 2002.9.1-2003.8.31 (Chen et al., 2018b). Previous
12
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315

320

studies (Huang et al., 2018; Klein, 2003; Li et al., 2019a) have suggested that the snow cover estimation accuracy was
generally low during snow transitional period (i.e., the beginning and end of a snow season). We plotted the temporal
variations in the OA, OE, and CE of the HMRF,,,,,-- and HMRF,,;.-based snow cover products (Fig. 4). Except November,
December, and February, the OAs of the new snow products were more than 90% in all months. The accuracy was relatively
low during snow transitional period (November, December, and February to April), whereas the accuracy was higher in
snow stable period. The trend of the CE was almost the same as that of snow cover; that is, the months with more snow
cover had a larger CE. However, the CE was generally low in all months. By comparison with the HMRF ,;,.-based products,
the accuracy of our new products was higher in almost all months. In addition to the stable snow period, the improvement for
transition period was also notable, which increased by an average of 2.18%. In transition period, with rapid temperature
changes, the snow status changed rapidly, and the snow mapped by MODZ10A1 (crossing at 10:30) and MYD10A1 (crossing
at 13:30) were different because of the different temperatures and solar radiation. The original MODIS snow cover products
have relatively high error during snow transitional period (Li et al., 2019). After incorporating solar radiation as an

environmental contextual information in HMRF, the accuracy of snow cover products has been improved effectively.
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Table 4. Confusion matrices between HMRF,,,,,.- based snow cover products, HMRF,,.-based snow cover products, and

snow cover mapped from Landsat series data products for data-gap pixels during 2002-2021.

. HMRFq,,;,,--based snow cover product HMREF,,;.-based snow cover product
Landsat series data
Snow Non-snow Total Snow Non-snow Total
Snow 87921 25093 113014 83868 29146 113014
(77.80%) (22.20%) (74.21%) (25.79%)
Non-snow 13795 114148 127943 16269 111674 127943
(10.78%) (89.22%) (12.72%) (87.28%)
Total 101716 139241 240957 100137 140820 240957
Overall accuracy 83.86% 81.15%
-# HMRFele —# HMRFsolar ¥ Snow cover
100 15 30 15 15 15
(a) -
S g <
< v & @z @»
P 10 é 5 20 10 32 £ 10 0 2
H 2 E 25 b
g : £ g
= s 2 g3 g
g 5 3 g 10 5 gé 5 5 3
g e £ S
(=} (=} o
Q
0 T T T T T T T T T T T T 0 ) T T T T T T T T T T T T 0
: o ot & et o~ .‘Q( RORCS & _?o‘f o ™ - PURCPT R ,!.Q‘ .y*- & & ?:,%
Month | OA-HMRFele | OA-HMRFsolar | OE-HMRFele | OE-HMRFsolar | CE-HMRFele | CE-HMRFsolar |  Snow cover
Sep | 87.62% | 90.02% (+2.40%) 19.21% | 13.92%(-5.29%) | 4.37% 3.09% (-1.28%) | 5.23%
Oct | 88.61% | 91.87% (+3.26%) | 20.76% | 14.53% (-6.23%) | 6.13% | 4.98% (-1.15%) | 7.75%
Nov | 87.26% | 90.03% (+1.91%) | 21.59% | 16.01% (-5.58%) | 4.09% 3.19% (-0.90%) | 7.03%
Dec 82.14% | 86.72% (+4.58%) 21.84% | 18.37%(-3.47%) 6.98% | 5.27%(-1.71%) 10.30%
Jan 90.29% 92.17% (+1.88%) 13.11% 10.36% (-2.75%) | 6.15% 3.59% (-2.56%) 10.10%
Feb |  82.24% | 84.22% (+1.98%) |  2549% | 21.29%(-4.20%) | 10.23% | 8.94%(-1.29%) | 13.32%
Mar 89.03% | 90.78% (+1.75%) 14.17% | 10.49% (-3.68%) 12.82% | 10.17% (-2.65%) 8.51%
Apr | 92.64% 93.22% (+0.70%) | 17.64% 14.72% (-2.92%) | 11.31% 9.46% (-1.85%) | 6.49%
May 92.32% | 94.40% (+2.08%) | 15.76% | 13.36% (-2.40%) | 10.31% | 8.29% (-2.02%) 3.25%
Jun | 92.37% | 93.86% (+1.22%) 12.38% | 10.39% (-1.99%) | 8.46% | 7.21% (-1.25%) 1.30%
[ Jul | 90.53% | 91.07% (+2.69%) 10.01% | 831%(-1.70%) | 2.33% 2.14% (-0.19%) | 1.42%
325 Aug 88.86% 90.73% (+1.87%) 14.15% | 12.82% (-1.33%) 2.16% 1.88% (-0.28%) 2.13%

Figure 4: Temporal variations in OA (a), OE (b), and CE (c) of HMRF,,.- and HMRF,,,,,--based snow products from 2002-2021.
4.4 Accuracy improvement for different surface topography

We divided the elevation of the study area into four categories: <3000, 3000-4000, 4001-5000, and >5000 m, to explore the
effect of elevation on snow cover. We then calculated the snow cover products accuracy in each category. Fig. 5 indicates
330 that the OA of the products decreased with increasing elevation. The accuracy of our products was highest in the <3000 m
category (94.26%). With increasing elevation, the OE first decreased and then increased; that is, the OE value was the lowest
in the 4001-5000 m category, whereas the CE was the highest in the 4001-5000 m category. Li et al. (2020) established
effect of elevation on snow cover and also demonstrated the accuracy of original MODIS snow products generally decreased
with increasing elevation. Areas at higher elevation generally receive more solar radiation; hence, the snow status changes

335 more rapidly at higher elevations, resulting in decreased snow cover estimation accuracy.
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355

By comparison with the HMRF,,.-based products, the accuracy of our new products was higher in almost all elevation
categories, and as the elevation increased, the accuracy improvement was more remarkable (reaching an improvement of
3.16% in the >5000 m category). The improvements in OE first decreased and then increased; that is, the accuracy
improvement of the OE value was the smallest in the 4001-5000 m category, with an improvement of 3.47%. The CE
exhibited the opposite trend; that is, the accuracy improvement in the CE value was the largest in the 4001-5000 m category,
at 2.33%. The accuracy improvement provided by our new snow cover product was substantially increased with the increase

in elevation, indicating its effectiveness in high-altitude areas.

HMRFele HMRFsolar
100 30 104
- (a (b) = | (c)
< 95+ S =
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§ 90 s s
= 2 7 4=
_: 2 104 ‘g
£ 185 & E 5
80 T T T T 0 . I 1 T 0 T T T T
<3000m  3000-4000m 4001-5000m  >5000m <3000m  3000-4000m 4001-5000m  >5000m <3000m  3000-4000m 4001-5000m  >5000m
Elevation group (m) Elevation group (m) Elevation group (m)
Elevation (m) | OA-HMRFele OA-HMRFsolar OE-HMRFele OE-HMRFsolar CE-HMRFele CE-HMRFsolar
<3000m 92.96% 94.26% (+1.30%) 27.31% 20.98% (-6.33%) 2.16% 1.98% (-0.18%)
3000-4000m 89.15% 91.33% (+2.18%) 19.84% 14.69% (-5.15%) 7.23% 5.91% (-1.32%)
4001-5000m 87.12% 89.60% (+2.48%) 13.24% 9.77% (-3.47%) 9.12% 6.79% (-2.33%)
>5000m 85.09% 88.25% (+3.16%) 20.37% 16.12% (-4.25%) 6.36% 5.16% (-1.20%)

Figure 5: Effect of elevation on OA (a), OE (b), and CE (c) of HMRF,.- and HMRF,;,,.-based snow products from 2002-2021.

To explore the effect of slope on snow cover, we divided the slope of the study area into five categories: <10< 10=-20< 21<=
30< 31240< and >40< The OA of the snow cover products decreased with increasing slope, which is consistent with the
trend of the changes in accuracy with increasing elevation (Fig. 6). The accuracy of our new products was highest in the 0 —
10<category, with a value of 93.78%. The OE was high for relatively low-slope areas (<309, and the CE was high for high-
slope areas (>30°).

By comparison with the HMRF ;. -based products, the accuracy of our new products was higher in almost all slope categories,
and the accuracy improvement was remarkable in the 10=-20category (reaching an improvement of 2.90%). This means
topography of 10=20<°slopes had the strongest impact on snow cover on the TP. The accuracy improvements in OE
decreased with increasing slope, whereas the accuracy improvements in CE increased with increasing slope. In the <10°
category, the improvement in CE was the smallest, at 0.56%, whereas the improvement in OE was the largest, at 6.83%. In
the >40<category, the improvement in CE was the largest, at 2.20%, whereas the improvement in OE was the smallest, at
0.81%.
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Slope group (°) Slope group (°) Slope group (°)
Slope (°) OA-HMRFele OA-HMRFsolar OE-HMRFele OE-HMRFsolar CE-HMRFele CE-HMRFsolar
<10° 91.84% 93.78% (+1.94%) 26.94% 20.11% (-6.83%) 3.31% 2.75% (-0.56%)
10-20° 88.52% 91.42% (+2.90%) 21.06% 16.74% (-4.32%) 7.54% 6.31% (-1.23%)
21-30° 87.32% 90.03% (+2.71%) 17.23% 14.36% (-2.87%) 11.42% 9.73% (-1.69%)
31-40° 86.07% 87.76% (+1.69%) 13.35% 10.91% (-2.44%) 13.72% 11.97% (-1.75%)
>40° 84.39% 85.62% (+1.23%) 7.54% 6.73% (-0.81%) 17.97% 15.77% (-2.20%)

Figure 6: Effect of slope on OA (a), OE (b), and CE (c) of HMRF,;.- and HMRF,,,,.-based snow products from 2002—
2021.

360 Finally, we explored the effect of aspect on snow cover (Fig. 7). The OA of the snow cover products was higher on shaded
slopes than on sunny slopes. The OAs of our new products on sunny and shaded slopes were 88.37% and 90.07%,
respectively. By comparison with the HMRF;.-based products, the accuracy improvement provided by our new products
was remarkable on sunny slopes (improvement of 3.16%) than on shaded slopes (improvement of 1.75%), corresponding
with the actual situation. The improvement in the OE on sunny slopes was also remarkable (improvement of 3.63%).
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sunny slope shaded slope sunny slope shaded slope sunny slope shaded slope
Aspect OA-HMRFele OA-HMRFsolar OE-HMRFele OE-HMRFsolar CE-HMRFele CE-HMRFsolar
Sunny slope 85.21% 88.37% (+3.16%) 22.96% 19.33% (-3.63%) 7.91% 6.63% (-1.28%)
365 Shaded slope 88.32% 90.07% (+1.75%) 18.47% 17.10% (-1.37%) 8.85% 8.26% (-0.59%)

Figure 7: Effect of aspect on OA (a), OE (b), and CE (c) of HMRF,;.- and HMRF,,;,,.-based snow products from
2002-2021.
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5 Discussion
5.1 Effect of the HMRF,,,,,.-based snow cover products over complex terrain

Long-term and high-precision snow cover products are key to the snow hydrology research in the TP. Compared to the
heterogeneous land cover, complex terrain has more severe effects on MODIS snow products in the TP (Liu et al., 2020a;
Azizi and Akhtar, 2021). To enhance snow detection accuracy in mountainous areas, we used solar radiation as the
environmental contextual information rather than surface elevation used in the original HMRF,,, modelling technique
(Huang et al., 2018). The calculated optimal parameters used in Eq. (1) could reflect the importance of each energy to a
certain extent. The optimal parameters of the HMRF,,,,,-based products for spectral, spatial-temporal, and environmental
information were 0.117, 1.294, and 0.532, respectively, while that of the original HMRF,,,-based products were 0.338, 1.419,
and 0.576, respectively. The proportion of environmental information of HMRFy,,,,-based products (27.37%) were higher
than that of HMRF,;.-based products (24.70%), which shows the improvement of HMRF,,,,,--based products over complex
terrain. Moreover, Fig. 8a shows a true-color Sentinel-2B image. Figs. 8b, 8c, and 8d show the original MODIS, HMRF -
and HMRF,;,, -based snow cover products, respectively, on October 31, 2018. The examples in Fig. 8 (where the
topography has a dominant effect on snow cover) show that the original HMRF,,;,-based snow cover products mapped all
data gaps in the shaded and sunny slopes at the same elevation as snow-covered pixels; however, after incorporating solar
radiation, our new products accurately identified them as non-snow-covered pixels. In general, since sunny slopes receive
relatively more solar radiation, the area of snow cover on sunny slopes is smaller than that on shaded slopes. The new
HMRF,,,,--based snow products more effectively filled the data gaps on sunny slopes, producing more realistic results.
Solar radiation was particularly effective as an environmental contextual factor to correct the snow detection errors in

mountainous areas.
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Figure 8: Comparison between true-color Sentinel-2B imagery and(a), original MODIS snow products (b), HMRF,,,-
based snow products (c) HMRF;,,,,--based snow products.

5.2 Potential applications of the HMRF,,,,,.-based snow cover products

Compared with in situ observations, the overall accuracy of snow cover products on the TP reported by other studies is in the
range of 90.74%-96.6%, and the OE is greater than the CE (Yu et al., 2016; Qiu et al., 2017; Xu et al., 2017; Zheng and Cao,
2019). The overall accuracy of our new snow products is 98.29% in comparison with in situ observations, and the new
product has a considerable improvement in OE. The new snow cover products provide spatiotemporally continuous snow
cover distribution at 500 m resolution over the past two decades, thus having a great application potential for analyzing the
processes of snow accumulation and melting. Figure 9 shows the snow cover trends over a sample area (location shown in
Fig.1) from our daily gap-free snow products and 8-day composite MODIS snow products on Terra (MOD10A2 v6.1) (Hall
et al., 2021) during the 2017 snow season. We chose this sample region because it covers more mountainous areas including
Hengduan Mountain and Bayankala Mountain, and has seasonal snow for multiple years. The MOD10A2 v6.1 products
composite 8-days MODIS data to reduce the data gaps in the original daily MODIS snow products, and represent the
maximum snow cover extent in 8 days, which means once snow is identified on any day in the 8-day time window, the pixel

is mapped as snow. Although the overall variation trends of snow cover are similar between these two products, the snow
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cover percentage obtained from the MOD10A2 v6.1 data was 19.60% higher than that of daily products during 2017 snow
season. The status of the snow in the TP changes rapidly. Compared with the 8-day composite MODIS snow products
(MOD10A2 v6.1), the HMRF,,,,--based snow cover products can get more detailed and accurate information on snow
accumulation and melting processes, particularly during the snow transitional periods (February to April, and November to
December) when short-term snowfall events occur frequently (Fig.9). In addition, owing to its high temporal resolution
(daily) and long-term spatiotemporal continuity, the generated snow cover products also provide important baseline

information for monitoring climate change, calibrating hydrological models, and simulating snowmelt runoff in the TP.
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Figure 9: Snow cover percentage for daily HMRF,,,,,.-based snow cover products and 8-day composite MODIS snow
products in a sample area during the 2017 snow season of the TP. (SCP stands for snow cover products.)

5.3 Limitations of the HMRF,,,,,.-based snow cover products

The accuracy evaluation for the new snow cover products had some limitations. The majority of in situ observations in the
TP are distributed in the low-altitude areas in the east, with only 22% located in high-altitude areas (Fig. 1a). The number of
in situ observations in the snow category was considerably smaller than that in the non-snow category, which created
challenges in verifying snow category classification (Zhang et al., 2021). Liu et al. (2020a) demonstrated that compared to in
situ observations, snow cover mapped from Landsat series images is more related to MODIS snow cover products owing to
the closer spatial match. Therefore, the conclusions about the new snow products were based on the accuracy evaluation
against Landsat images, which may still contain some bias. Additionally, the solar radiation indicated used only imitates the
solar radiation under clear-sky conditions. In a follow-up study, we will simulate the solar radiation throughout the year
according to the weather conditions (e.g., the effect of cloud cover) and use parallel calculations to enhance calculation

efficiency and further improve the snow cover product accuracy.
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6 Data availability

The long-term daily snow cover products produced here are gap-free at 500 m resolution under the Universal Transverse
Mercator (UTM zone 45) projection, and can be freely accessed from the National Tibetan Plateau Data Center at
https://doi.org/10.11888/Cryos.tpdc.272204 (Huang and Xu, 2022), which is stored as a zip file (~ 1.61 GB) for each year.
By uncompressing the zip file, the daily snow cover data is provided in GeoTIFF format, and the values in the snow cover
products are classified as snow (1) and non-snow (2). The name of each file is "HMRFSTP_yyyyddd.tif", in which
HMRFSTP is the abbreviation of "Hidden Markov Radom Field -based snow cover products for Tibetan Plateau”, yyyy
stands for year and DDD stands for Julian day, such as 2002135.tif describes the snow cover on Tibet Plateau on the 135th
day of 2002.

7 Conclusions

In this study, we generated long-term daily gap-free snow cover products at 500 m resolution from original MODIS snow
products in the TP over the past two decades. The snow cover estimate accuracy was greatly improved by incorporating solar
radiation as a surrogate for environmental contextual information in HMRF framework in mountainous areas. We validated
and evaluated our snow cover products through comparison with in situ observations and high-resolution snow cover
mapped from Landsat images, with accuracy estimate of 98.29% and 91.36%, respectively. Our evaluation also suggests that
incorporating solar radiation, instead of the simple use of surface elevation as the environmental contextual information in
HMRF framework, results in the accuracy of the snow products increase by 2.71% and the OE decrease by 3.59%.
Specifically, the accuracy of the new snow products is particularly improved during snow transitional period and over
complex terrains with high elevation as well as sunny slopes.

We believe that the long-term and spatiotemporally continuous snow cover products generated in this study have great
potential to analyse the processes of snow accumulation and melting, to monitor the climate change, and to understand the

hydrological cycling in the TP.
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465  Appendix

Table Al. Landsat series images used for assessment of the HMRF-based snow cover products in this study.

Image pair No. Sensor Tile path/row Date of acquisition Cloud cover (%)
1 ETM+ 131/38 2002-11-22 1%
2 ETM+ 136/38 2003-1-28 0%
3 ETM+ 132/41 2003-2-17 1%
4 ™ 136/33 2003-8-16 0%
5 ™ 141/35 2003-9-20 0%
6 ™ 135/33 2004-8-27 0%
7 ™ 137/39 2004-12-15 1%
8 ™ 132/38 2005-1-13 1%
9 ™ 136/39 2005-3-14 1%
10 ™ 132/34 2005-4-3 1%
11 ™ 142/34 2005-6-28 0%
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2005-10-24
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2007-9-17
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2008-8-7
2008-10-2
2008-11-7
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51 oLl 144/35 2014-8-22 1%

52 OLlI 139/38 2015-1-10 1%
53 oLl 143/39 2015-3-11 1%
54 oLl 151/33 2015-10-13 1%
55 oLl 136/38 2015-12-23 1%
56 oLl 132/34 2016-5-3 2%
57 oLl 151/33 2016-6-25 2%
58 oLl 143/34 2016-9-21 1%
59 oLl 133/37 2016-11-18 2%
60 oLl 146/38 2017-2-1 1%
61 oLl 151/33 2017-4-9 0%
62 oLl 144/35 2017-7-29 1%
63 OLlI 133/37 2017-11-5 1%
64 oLl 131/36 2018-4-16 1%
65 OLlI 133/38 2018-11-8 0%
66 oLl 137/40 2018-12-22 0%
67 OLlI 131/38 2019-3-18 1%
68 oLl 136/33 2019-8-28 0%
69 OLlI 151/33 2019-9-22 0%
70 oLl 134/36 2019-11-2 1%
71 OLlI 132/38 2019-12-6 1%
72 oLl 135/39 2020-1-12 1%
73 OLlI 136/38 2020-2-4 1%
74 oLl 151/33 2020-8-23 1%
75 OLlI 149/35 2020-12-31 1%
76 oLl 132/34 2021-1-25 1%
77 OLlI 143/34 2021-7-17 1%
78 oLl 151/33 2021-9-27 0%
79 OLlI 135/36 2021-10-29 1%
80 oLl 143/36 2021-11-22 0%
81 OLlI 151/33 2021-12-16 1%
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