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Abstract.

Terrestrial water budget (TWB) data over large domains are of high interest for various hydrological applications. Spatiotem-

porally continuous and physically consistent estimations of TWB rely on land surface models (LSMs). As an augmentation of

the operational North American Land Data Assimilation System Phase 2 (NLDAS-2) four-LSM ensemble, this paper describes

a dataset simulated from an ensemble of 48 physics configurations of the Noah LSM with multi-physics options (Noah-MP).5

The 48 Noah-MP physics configurations are selected to give a representative cross-section of commonly used LSMs for param-

eterizing runoff, atmospheric surface layer turbulence, soil moisture limitation on photosynthesis, and stomatal conductance.

The dataset spans from 1980 to 2015 over the conterminous United States (CONUS) at a monthly temporal resolution and

a 1/8◦ spatial resolution. The dataset variables include total evapotranspiration and its constituents (canopy evaporation, soil

evaporation, and transpiration), runoff (the surface and subsurface components), as well as terrestrial water storage (snow water10

equivalent, four-layer soil water content from the surface down to 2 m, and the groundwater storage anomaly). The dataset is

available at https://doi.org/10.5281/zenodo.7109816 (Zheng et al., 2022). Evaluations carried out in this study and previous

investigations show that the ensemble performs well in reproducing the observed terrestrial water storage, snow water equiva-

lent, soil moisture, and runoff. Noah-MP complements the NLDAS models well, and adding Noah-MP consistently improves

the NLDAS estimations of the above variables in most areas of CONUS. Besides, the perturbed-physics ensemble facilities15

the identification of model deficiencies. The parameterizations of shallow snow, spatially varying groundwater dynamics, and

near-surface atmospheric turbulence should be improved in future model versions.
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1 Introduction

Estimates of the terrestrial water budgets (TWBs)—evapotranspiration, runoff, terrestrial water storage, and their constituents

—over continental domains are of high interest for a broad range of hydrological applications. Publicly available data have20

been applied to investigate the state of the terrestrial water cycle (Trenberth and Fasullo, 2013a; Rodell et al., 2015; Scanlon

et al., 2018; Yin and Roderick, 2020); to understand the interactions among hydrological processes, vegetation, climate, and

human activities (Trenberth and Fasullo, 2013b; LaFontaine et al., 2015; Ward et al., 2014; Levia et al., 2020); to examine

the availability and variability of water resources and use (Wu et al., 2021; Hejazi et al., 2014; Scanlon et al., 2012; Voss

et al., 2013; Lv et al., 2019; Le et al., 2011; Rodell et al., 2009); and to assess the risk of extreme events such as droughts25

(Peters-Lidard et al., 2021; Prudhomme et al., 2014; Dai, 2013; Su et al., 2021) and floods (Emerton et al., 2017; Lin et al.,

2018).

As the applications have expanded, the availability of TWB estimates has increased rapidly (Peters-Lidard et al., 2018;

Saxe et al., 2021; Zhang et al., 2018). Commonly used estimation methods include remote sensing, in-situ observations, and

model simulations (Saxe et al., 2021; McCabe et al., 2017; Pan et al., 2012; Gao et al., 2010; Trenberth et al., 2007). Among30

these methods, land surface models (LSMs) are apt for continuously producing physically consistent TWBs over a large

domain and long period, and their characteristics are particularly favorable for certain circumstances. For instance, LSMs can

estimate various TWB components simultaneously; whereas, for some components, such as runoff (Lin et al., 2019; Beck

et al., 2017), root-zone soil moisture (Xia et al., 2015b, a), and transpiration (Lian et al., 2018), direct remote sensing is either

unavailable or highly uncertain. Additionally, LSMs are valuable in remote or topographically complex regions because of35

the sparseness of in-situ observations (Kim et al., 2021). Estimations based on remote sensing and in-situ observations are

often impeded by scale mismatches and observation gaps, whereas these issues are rarely an impairment for LSM simulations.

Besides, LSM simulations can complement remote sensing and in-situ observations well. Combinations of estimates from

different techniques can improve the estimation accuracy (Zhang et al., 2018; Pan et al., 2012; Zhao and Yang, 2018), while

comparisons between model-simulated estimates and observations can reveal the impacts of human activities (Zaussinger et al.,40

2019) and underground processes (Zheng et al., 2020).

Several operational LSM simulation systems have been set up over different regions of the globe (Xia et al., 2019; Shi

et al., 2011; Carrera et al., 2015; Rodell et al., 2004). The systems combine an ensemble of LSMs to utilize the competitive

strengths of different LSMs and eliminate the weakness associated with individual ones. Among them, the North American

Land Data Assimilation System (NLDAS) (Xia et al., 2012a, b; Mitchell et al., 2004) stands as a pioneering and successful45

one. The NLDAS phase 2 (NLDAS-2) operates over the conterminous United States (CONUS) from 1979 to near real-time at

a spatial resolution of 1/8◦. The system generates a set of multi-source synthesized data of surface meteorology, vegetation,

and soils, and uses them to drive an ensemble of four different LSMs. The four LSMs—namely Noah version 2.8 (Ek et al.,

2003; Chen and Dudhia, 2001a, b; Chen et al., 1997), Variable Infiltration Capacity (VIC) version 4.0.3 (Liang et al., 1994),

Mosaic (Koster and Suarez, 1992), and Sacramento Soil Moisture Accounting (SAC) model (Burnash et al., 1973), were50

selected to give a good cross-section of the diverse range of LSMs (Mitchell et al., 2004). The models have varying strengths
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and weaknesses in process parameterizations and modeling skills (Kumar et al., 2017). A combination of multiple models

can produce an aggregated estimate that outperforms most of the individual constituents (Fei et al., 2021; Beck et al., 2017;

Guo et al., 2007; Ajami et al., 2007). An ensemble can also quantify the estimation uncertainty resulting from different model

formulations (Troin et al., 2021; Cloke and Pappenberger, 2009). Evaluations of the NLDAS-2 four-LSM ensemble estimates55

have shown satisfactory performance in matching the observed evapotranspiration (ET) (Zhang et al., 2020; Xia et al., 2012b;

Kumar et al., 2018), runoff (Xia et al., 2012a), and soil moisture (Xia et al., 2015b, a).

We have enriched the NLDAS-2 four-model ensemble with 48 perturbed-physics configurations of the Noah LSM with

multi-physics options (Noah-MP) (Fei et al., 2021; Zheng et al., 2020, 2019). Noah-MP has more physically realistic represen-

tations of vertical stratification than the NLDAS-2 models have. A column of land in Noah-MP consists of a vegetation canopy60

layer, three snowpack layers, four soil layers, and a groundwater component (Niu et al., 2011; Yang et al., 2011). Conceptual

(e.g., the five water tanks of SAC) and lumped (e.g., the combined vegetation-soil surface layer of Noah) representations of

the stratification of vegetation and soil, as used in the NLDAS-2 models, are minimized. Moreover, Noah-MP has a more

comprehensive representation of various land surface processes that are evident at different depths. The modeled processes

include snow accumulation and ablation, infiltration, percolation, retention, freeze-thaw of snow or soil water, groundwater65

recharge/discharge, and energy constraints (Niu et al., 2011). These improvements in vertical stratification and process param-

eterizations are expected to better estimate TWBs. Indeed, previous comparisons between Noah-MP and the four NLDAS-2

LSMs have shown that Noah-MP is comparable or better when it comes to estimating soil moisture (Cai et al., 2014b), runoff

(Cai et al., 2014a; Fei et al., 2021), and ET (Zhang et al., 2020).

Our enrichment also features a single-model perturbed-physics ensemble, which is different from the widely used multi-70

model ensemble approach. The Noah-MP ensemble is constructed by shuffling the available parameterization options of several

selected processes. The ensemble size grows exponentially as a multiplication of the available parameterization options of

different processes (Yang et al., 2011; Zhang et al., 2016; Gan et al., 2019). A large ensemble should give a broad cross-section

of feasible model formulations to account for the model uncertainty in TWB estimation (Telteu et al., 2021; Mitchell et al.,

2004) and is critical for a statistically reliable estimation of the probability of hydrological events such as floods and droughts75

(Troin et al., 2021). The single-model perturbed-physics ensemble also facilitates uncertainty attribution and reduction. The

ensemble consists of pairs that are different in the parameterization of one process and the same for another. Variance analysis

of the ensemble can quantify the contribution of the parameterization of a process and compare the relative importance of two

processes (Zheng et al., 2019; Clark et al., 2011). Such quantification could inform further model development to reduce the

model uncertainty. However, there are also pitfalls unique to the single-model perturbed-physics ensemble. Fei et al. (2021)80

found that the ensemble members generated by naive perturbation of the Noah-MP physics are not independent enough from

each other. The low independence hinders the skill gained from the ensembling method. The finding suggests that advanced

techniques of physics perturbations should be developed to maximize the ensemble skill and minimize the ensemble size. An

open-accessible dataset should facilitate the research that leverages the advantages and addresses the issues of the peturbed-

physics ensemble.85
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Table 1. The dataset variables.

Symbol Units Description

surface water budget

E kgm−2 s−1 total evapotranspiration

Ecan kgm−2 s−1 evaporation of canopy interception

Egnd kgm−2 s−1 direct evaporation from the ground

Etran kgm−2 s−1 transpiration

R kgm−2 s−1 total runoff

Rsrf kgm−2 s−1 surface runoff

Rund kgm−2 s−1 subsurface runoff

W kgm−2 terrestrial water storage

Wsnow kgm−2 snow water equivalent

Wgw kgm−2 groundwater storage

wsoil,i m3m−3 volumetric soil water content

zsnow m snow depth

auxiliary variables

X - land-water mask

We have previously evaluated the runoff and compared it with NLDAS-2 (Fei et al., 2021). This paper describes the estima-

tion of all the TWB variables, along with the description of the spread among the ensemble members, the difference with the

NLDAS models, and the performance with reference to various observations are presented. The paper is organized as follows.

Section 2 presents the information necessary for using the dataset, including the dataset variables, file organization, and the

source data and models used for data generation. Section 3 describes the intercomparison methods, evaluation metrics, and ref-90

erence datasets. Section 4 presents the results and discussion. Finally, after stating the data availability in Section 5, Section 6

draws conclusions.

2 Data description

The dataset contains gridded water budget variables over CONUS. Section 2.1 describes the dataset variables and their physical

relationships. The 48 Noah-MP physics configurations used to create the dataset are detailed in Section 2.2. Section 2.3 brief95

the atmospheric forcing, static parameters of vegetation and soil, and simulation settings.

2.1 Dataset variables

Table 1 lists the dataset variables. The variables are available at each 1/8◦ grid point in NLDAS-2, indicated by a land-water

mask (X). The surface water budgets of each grid cell are represented as follows:
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Neglecting horizontal water exchange between adjacent grids, the water budget closure can be obtained among the precipi-100

tation (P , kgm−2 s−1), ET (E), runoff (R), and terrestrial water storage change (W ′ = dW
dt , kgm−2 s−1) (Zheng et al., 2020):

P = E+R+W ′, (1)

where precipitation (P ) is from NLDAS-2 (described in Section 1) and used as the model input.

Noah-MP resolves the components of the water budget closure equation (1). ET (E) consists of canopy evaporation (Ecan),105

ground evaporation (Egnd), and transpiration (Etran):

E = Ecan +Egnd +Etran. (2)

Runoff (R) has a surface (Rsrf ) and subsurface (Rsub) component:

R=Rsrf +Rsub. (3)

Terrestrial water storage (TWS, W ) is the sum of snow water equivalent (SWE, Wsnow), groundwater storage in unconfined110

aquifers (Wgw), and soil water content in the four model layers (Wsoil,i):

W =Wsnow +Wgw +

Nsoil∑
i=1

Wsoil,i, (4)

where Nsoil = 4 is the number of soil layers. Soil water storage (Wsoil,i) is not included in the dataset but can be calculated

from the volumetric water content (wsoil,i) as follows:

Wsoil,i = ρwatwsoil,i∆zsoil,i for i= 1, · · · ,Nsoil, (5)115

where ρwat = 1000kgm−3 is the water density; and ∆zsoil,1 = 0.1m, ∆zsoil,2 = 0.3m, ∆zsoil,3 = 0.6m, and ∆zsoil,4 = 1m

are the thicknesses of the four soil layers.

2.2 The 48 Noah-MP physics configurations

The Noah-MP LSM version 3.6 is used. We perturbed the parameterization of runoff, stomatal conductance, soil moisture

stress factor, and near-surface atmospheric turbulence. The processes are selected as they directly control runoff generation120

and evapotranspiration. Their importance has been shown in global simulations (Yang et al., 2011). The perturbation creates

an ensemble of 48 members (48 = 4 runoff × 2 stomatal conductance × 3 soil moisture stress × 2 turbulence). Limited by

computational resources, we did not perturb the parameterization of the cryosphere hydrological processes such as snow albedo

(Chen et al., 2014; He et al., 2019) and rain-snow partitioning (Wang et al., 2019), which may limit the usage of the dataset in

cryosphere hydrology. Appendix A details the formulation of and parameters in the selected parameterization. The parameters125

use the Noah-MP default values.
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2.3 Domain, temporal span, atmospheric forcings, and static parameters

The simulation domain covers the CONUS (25◦–53◦N, 125◦–67◦W) at a spatial resolution of 0.125◦.

The hourly NLDAS-2 atmospheric forcings were used to drive the 48 Noah-MP configurations. This study used seven forc-

ing variables: downward solar radiation, downward longwave radiation, air temperature, surface pressure, specific humidity,130

wind speed, and precipitation rate. The static datasets, including topography (https://ldas.gsfc.nasa.gov/nldas/elevation), pre-

dominant vegetation class (https://ldas.gsfc.nasa.gov/nldas/vegetation-class), and soil texture type (https://ldas.gsfc.nasa.gov/

nldas/soils), are also the same as those in NLDAS-2. We used the default Noah-MP lookup tables to convert the input vegetation

and soil types to parameter values.

The simulation spans 36 years from January 1980 to December 2015 at a time step of 15 minutes. The initial states on 1135

January 1980 were obtained by cycling the year 1979 one hundred times.

3 Intercomparison and evaluation methods

The evaluations and intercomparisons in this paper are performed for twelve River Forecast Centers (RFCs): Northeast (NE),

Mid-Atlantic (MA), Ohio (OH), Lower Mississippi (LM), Southeast (SE), North Central (NC), Northwest (NW), Arkansas

(AB), Missouri (MB), West Gulf (WG), California-Nevada (CN), and Colorado (CB). Figure S1 displays the geographical140

delineation of the RFCs. More details on the RFCs, such as their multi-year average precipitation, potential evaporation, and

topography, can be found in Fei et al. (2021, Figure 1).

The intercomparison and evaluations were conducted at different time scales—the long-term climatological mean, annual

cycle, and interannual anomaly. Section 3.1 details how the temporal variations and ensemble spread are derived for the time

scales. We utilized the Taylor diagram and Taylor Skill Score (TSS) to measure the performance of Noah-MP against various145

reference datasets. The evaluation methods are shown in Section 3.2, and the reference datasets are described in Section 3.4. In

addition to the inter-comparisons and evaluations, Section 3.3 introduces the Sobol’ sensitivity index for the process sensitivity

analysis.

3.1 Temporal variability and ensemble spread

We calculated the total temporal variability (σtotal), the variability of the annual cycle (σancy), and the interannual variability150

(σanom) for each ensemble member and the ensemble arithmetic mean following Dirmeyer et al. (2006):

σtotal =

√
1

12Y

∑
y,m

(xy,m −xclim)2, (6)

σancy =

√
1

12

∑
m

(xancy,m −xclim)2, (7)

σanom =

√
1

12Y

∑
y,m

(xy,m −xancy,m)2, (8)
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where xclim, xancy , and xanom are the climatology, annual cycle, and interannual anomaly of the monthly time series xy,m155

(month m of the year y; m= 1, · · · ,12; y = 1, · · · ,Y ).

The ensemble spread for the total time series (σ̌total), annual cycle (σ̌ancy), and interannual anomaly (σ̌anom) are derived

also following Dirmeyer et al. (2006):

σ̌total =
1

T

T∑
t=1

σ(xy,m), (9)

σ̌ancy =
1

12

12∑
m=1

σ(xancy), (10)160

σ̌anom =
1

12Y

Y∑
y=1

12∑
m=1

σ(xanom), (11)

where σ(x) =
√
[
∑N

n=1(x− x̌)2]/N denotes the standard deviation across the ensemble members at each time step. x̌ denotes

the arithmetic ensemble mean.

We calculated the ratio (r = σ̌/σ) of ensemble spread σ̌ to temporal variability σ for the total monthly time series (with a

subscript of “total”), annual cycle (“ancy”), and interannual anomaly (“anom”). The ratio enables the intercomparison of the165

ensemble spread among the selected time scales. A grade is assigned according to the ratio following Dirmeyer et al. (2006):

a grade “A” for r < 0.316; “B” for 0.316≤ r < 1; “C” for 1≤ r < 3.16; “D” for 3.16≤ r < 10; and “E” for r > 10. A lower

(higher) r or a higher (lower) grade denotes a lower (higher) ensemble spread.

3.2 Taylor diagram and skill score

The Taylor diagram (Taylor, 2001) is a graphical representation of how closely a model simulation matches observations in170

terms of correlation coefficient (R), normalized unbiased root-mean-square error (nuRMSE), and normalized standard devi-

ation (σ̂f ). The TSS is an index that measures the distance between a model simulation and the observations in the Taylor

diagram. The TSS is defined as follows:

TSS =
4(1+R)

(σ̂f +
1
σ̂f

)2(1+R0)
(12)

σ̂f =
σf
σo

(13)175

where σf and σo are the standard deviations of the model simulation and the observation, and R0 is the maximum correlation

coefficient attainable (in this study, R0 = 1). The value range of TSS is from 0 to 1. A higher TSS indicates a higher overall

performance of model prediction with reference to the observations.

3.3 Sobol’s total sensitivity index

The sensitivity of the Noah-MP ensemble to a physical process can be quantified by the Sobol’ total sensitivity index (Sobol′,180

1993; Zheng et al., 2019). The Sobol’ total sensitivity index measures the proportion of the variance of different processes to
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the total variance, which is defined as follows:

SΛ =
E∼Λ(VarΛ(Y | ∼ Λ))

Var(Y )
, (14)

where SΛ is the Sobol’ total sensitivity index for one process Λ; ∼ Λ represents the other processes except for Λ; Y repre-

sents the 48 Noah-MP ensemble members; Var(Y ) is the variance of Y ; VarΛ(Y | ∼ Λ) denotes the variance among different185

parameterization schemes of the process Λ, and E(∼ Λ) denotes the arithmetic average across all combinations of the other

processes except for Λ. Detailed calculations and examples can be found in Zheng et al. (2019, Appendix A).

3.4 Reference data

3.4.1 Terrestrial water storage

We used the 1◦×1◦ monthly Gravity Recovery and Climate Experiment (GRACE) land water-equivalent-thickness surface190

mass anomaly, level-3, Release 6.0, version 04, as the reference of TWS (W in Table 1). The GRACE products from different

processing centers are slightly different. To reduce the noise of the estimates (Sakumura et al., 2014), we used the arith-

metic average of the products from three centers: (1) GeoForschungsZentrum Potsdam (or the German Research Center for

Geosciences) (https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC_L3_GFZ_RL06_LND_v04), (2) the Center for Space Re-

search at the University of Texas, Austin (https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC_L3_CSR_RL06_LND_v04),195

and (3) NASA’s Jet Propulsion Laboratory (https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC_L3_JPL_RL06_LND_v04).

The GRACE satellites began orbiting Earth on 17 March 2002. We selected the period from 2003 to 2015 for the evaluation.

There are fourteen missing values during the period, which were filled with a simple linear interpolation.

The GRACE products experience signal leakages between land and water (Save et al., 2016). Such signal leakage could

impact the estimation in the RFCs that are adjacent to the Great Lakes (Ma et al., 2017) and oceans. To alleviate the impacts200

of the Great Lakes, we corrected the GRACE TWS estimates in the NC, OH, and NE RFCs using the water level variations

observed by the National Oceanic and Atmospheric Administration (NOAA). Appendix B details the algorithm.

3.4.2 Soil moisture

We used the daily North American Soil Moisture Database (NASMD, http://soilmoisture.tamu.edu) (Quiring et al., 2016) as

the reference for the simulated soil moisture (Wsoil,i in Table 1), similar to previous NLDAS evaluations (Xia et al., 2015b, a).205

NASMD assembles the soil moisture time series at multiple depths of more than 2200 stations of 24 networks with quality

control. The observation depth varies with the network. We interpolated the observations to the centers of the Noah-MP soil

layers, which are 0.05m, 0.25m, 0.7m, and 1.5m, respectively. The interpolation is performed only when a valid observation

is exactly at, or two valid observations exist above and below, the given depth; otherwise, a missing value is given. We excluded

the soil layers with more than 50% missing values to minimize the impacts of missing values on the evaluation, after which 264210

wsoil,1, 214 wsoil,2, 95 wsoil,3, and 23 wsoil,4 valid time series remained. Daily data from 1996 to 2013 were then aggregated

into monthly values. For any month, if less than 10 days of valid data is available, a missing value is assigned.
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3.4.3 Snow water equivalent

We used the daily Snow Data Assimilation System (SNODAS, https://nsidc.org/data/G02158/versions/1) as the reference of

SWE (Wsnow in Table 1). SNODAS is a data assimilation system developed by the NOAA National Weather Service’s National215

Operational Hydrologic Remote Sensing Center. This system aims to provide a physically consistent framework to combine

snow modeling and observations from satellites, airborne platforms, and ground stations (National Operational Hydrologic

Remote Sensing Center, 2004). The original spatial resolution is 1 km×1 km, and we aggregated the data to the 0.125◦ NLDAS

grids. SNODAS began on 2003-09-28, and we selected the period from September 2004 to August 2015 that spans eleven

whole snow seasons. Clow et al. (2012) showed that the SNODAS SWE performs well in the forest areas of the Colorado220

Rocky Mountains, but performs poorly in the alpine areas.

3.4.4 Evapotranspiration

We used plot-scale AmeriFlux observations and two gridded products as the reference ET (E in Table1). The two gridded

products are derived from different methods, and a common evaluation period from 1982 to 2015 is selected for this study. The

gridded products have different spatial resolutions. We downscaled the data to the NLDAS grids and then aggregated them to225

the 12 RFCs.

We selected 25 AmeriFlux sites (https://ameriflux.lbl.gov). The 25 selected sites were selected because they have the longest

observation periods for seven major land cover types (i.e., evergreen forest, deciduous forest, mixed forest, shrubland, savanna,

grassland, and cropland). Figure S1 and Table S1 detail the selected sites. The data have been widely used in LSM evaluations

(Cai et al., 2014a; Zhang et al., 2020). AmeriFlux provides hourly or half-hourly latent heat measurements. We converted the230

measurement to ET by dividing the latent heat of water vaporization (2.5104× 106 Jkg−1). The hourly or half-hourly ET is

then aggregated into monthly values. In the process of aggregation, if there were less than eight valid hours in a day, a missing

day was marked; if there were fewer than ten valid days in a month, a missing month was assigned; if there was less than 50%

valid months, the time series was dropped. In this study, the data serve as the ground truth for the gridded ET products and

model estimation.235

The first gridded ET product is FLUXNET Multi-Tree Ensemble (MTE) (Jung et al., 2009) (https://www.bgc-jena.mpg.

de/geodb/projects/Home.php). FLUXNET MTE ET is a monthly data produced from the FLUXNET eddy covariance mea-

surements, remote sensing, and meteorological data using the multi-tree ensemble statistical method (Jung et al., 2009). The

product is widely used in LSM evaluations (Cai et al., 2014a; Ma et al., 2017; Xia et al., 2016; Jung et al., 2019; Fang et al.,

2020; Zhang et al., 2020; Pan et al., 2020). FLUXNET MTE ET has a spatial resolution of 0.5◦×0.5◦. We remap the data to240

the 0.125◦×0.125◦ NLDAS grids with a first-order conservative method. We use the FLUXNET ET as the reference for the

annual cycle since it replicates the AmeriFlux observations best among the two gridded products (Table S2–S4).

The second gridded ET product is the Global Land Evaporation Amsterdam Model (GLEAM), version 3.3a (https://www.

gleam.eu), which is another widely used ET product (Xu et al., 2019). GLEAM estimates transpiration, canopy evaporation,

soil evaporation, open-water evaporation, and sublimation separately, and then sums them as ET. The method aims to maximize245
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the utilization of satellite information. The product estimates monthly ET at a spatial resolution of 0.25◦×0.25◦. We bilinearly

interpolated the data to the NLDAS grids. The GLEAM ET is used as the reference for the interannual anomaly as it better

replicates the AmeriFlux-observed anomaly than FLUXNET (Table S2–S4).

3.5 NLDAS ensemble

We used three NLDAS-2 models—namely Noah-2.8, VIC-4.0.3, and Mosaic, as the benchmark of the Noah-MP ensemble.250

Their outputs can be publicly downloaded from the NASA Goddard Earth Sciences Data and Information Services Center

(https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS). More information on the NLDAS-2 models, the forcing and static

datasets, and simulation settings can be found in Xia et al. (2012b, a). The NLDAS-2 datasets have been proven to perform

soundly for regional hydrological simulations (Xia et al., 2012b, a, 2016, 2015b, a) and are widely used as a benchmark for

LSM evaluations (Cai et al., 2014b; Fei et al., 2021).255

4 Results and discussions

In this section, we begin by intercomparing the ensemble spread of the dataset variables (Section 4.1). Then, Sections 4.2–4.5

examine the performance and ensemble spread of the TWS anomaly (TWSA), SWE, soil moisture, and ET, in comparison with

the NLDAS ensemble. The performance of runoff can be found in our previous paper Fei et al. (2021) and Zheng et al. (2020).

4.1 Comparison of the ensemble spread260

We aggregated the dataset variables across CONUS. Table 2 summarizes the ensemble spread and temporal variability of the

ensemble mean for all the dataset variables. Among the variables, runoff (including surface and subsurface components) shows

the largest spread, accounting for one-fifth to one-third of the climatological mean. The ensemble spread is comparable to

or larger than the temporal variability. The magnitude is similar to that estimated in GSWP-2. The spread of ET and TWS is

significantly smaller than those observed in GSWP-2. The high consistency among the Noah-MP configurations could be a sign265

of the limited sampling of available process parameterizations but also could be a result of continuous model improvements. ET

might be the former case since the ensemble does not perturb several important processes such as roughness sublayer (Abolafia-

Rosenzweig et al., 2021) and plant hydraulics (Li et al., 2021). TWS is likely the latter case since the parameters of different

groundwater schemes are calibrated using GRACE (Niu et al., 2007). The spread of snow water equivalent depicts the smallest

spread, which is 2.5% of the climatological mean. The small spread reflects a limited sampling of the cryosphere processes as270

discussed in Section 2.2. For soil moisture, the ensemble spread is marginal at the surface and increases significantly in the

deep layers. The difference hints that the controlling processes vary with depth. The surface soil moisture is tightly controlled

by the atmospheric forcings, whereas the spread of the sub-surface soil moisture hints at the complex interplay among various

land surface processes (e.g., root water uptake and subsurface runoff) (Koster, 2015).

Table 2 also shows the comparison between the annual cycle and interannual anomaly for different variables. For runoff275

and soil moisture, the ensemble spread in the annual cycle is larger (i.e., σ̌ancy ≥ σanom). Whereas for transpiration (Etran),
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Table 2. The climatological mean, ensemble spread, and temporal variability of different dataset variables. ¯̌x denotes the climatological

average of the ensemble mean. σ̌ancy , σ̌anom, and σ̌total denote the spread of the 48 Noah-MP configurations in simulating the multi-

year averaged annual cycle, interannual anomaly, and total 36-year monthly time series, respectively. σancy , σanom, and σtotal denote the

temporal variability of the annual cycle, interannual anomaly, and the total time series, respectively. The rating of the ratio σ̌/σ is defined

in Section 3.1. The units of the variables are presented in Table 1. W̃ (W̃gw) denotes the terrestrial water storage (groundwater) anomaly

(kgm−2), whereas W ′ (W ′
gw) denotes the monthly terrestrial water storage (groundwater) change (kgm−2 s−1).

Variables σ̌ancy σ̌anom σ̌total ¯̌x σ̌total
¯̌x

(%) σancy σanom σtotal r ∼ σ̌ancy

σancy
r ∼ σ̌anom

σanom
r ∼ σ̌total

σtotal

E (×10−6) 1.19 0.266 1.22 17.5 7.0 11.8 1.18 11.8 A~0.102 A~0.225 A~0.103

Ecan (×10−6) 0.207 0.0417 0.207 1.52 14 1.11 0.308 1.15 A~0.187 A~0.136 A~0.180

Egnd (×10−6) 0.733 0.143 0.743 7.96 9.3 3.64 0.778 3.72 A~0.201 A~0.185 A~0.200

Etran (×10−6) 1.33 0.206 1.35 7.99 17 7.87 0.666 7.90 A~0.170 A~0.310 A~0.171

R (×10−6) 1.22 0.369 1.26 6.73 19 3.13 0.369 1.26 B~0.390 A~0.206 B~0.349

Rsrf (×10−6) 0.682 0.225 0.701 2.09 34 0.690 0.578 0.900 B~0.988 B~0.389 B~0.778

Rsub (×10−6) 1.00 0.343 1.04 4.64 22 2.47 1.31 2.80 B~0.406 A~0.261 B~0.371

W ′ (×10−6) 1.10 0.347 1.14 −0.0331 / 8.71 2.29 9.00 A~0.126 A~0.152 A~0.127

W ′
gw (×10−6) 0.144 0.116 0.186 −0.00571 / 1.59 0.630 1.71 A~0.091 A~0.184 A~0.109

W̃ 5.57 3.43 6.48 0 / 45.0 18.1 48.4 A~0.124 A~0.190 A~0.134

W̃gw 0.671 0.855 1.09 0 / 8.18 6.11 10.2 A~0.082 A~0.140 A~0.106

Wsnow 0.125 0.127 0.173 6.84 2.5 7.56 3.80 8.47 A~0.017 A~0.033 A~0.020

wsoil,1 (×10−3) 6.66 0.947 6.65 227 2.9 24.2 10.2 26.2 A~0.273 A~0.093 A~0.254

wsoil,2 (×10−3) 8.40 1.24 8.48 239 3.5 19.4 8.14 21.0 B~0.434 A~0.152 B~0.404

wsoil,3 (×10−3) 11.9 1.83 12.1 233 5.2 22.7 8.78 24.4 B~0.525 A~0.208 B~0.496

wsoil,4 (×10−3) 14.6 1.84 14.7 250 5.9 16.0 7.09 17.5 B~0.911 A~0.259 B~0.839

groundwater storage (Ŵgw and W ′
gw), and snow water equivalent (Wsnow), the spread is larger for the interannual anomaly

(i.e., σ̌ancy ≤ σanom). The dynamics at different times are modulated by different processes (Dickinson et al., 2003). Since

the time scale of the interannual anomaly is smaller than that of the annual cycle, the land surface memory and the associated

land model parameterizations may contribute a larger part to the annual cycle, whereas the interannual anomaly is more tightly280

controlled by atmospheric forcing. The smaller ensemble spread in the annual cycle than in the interannual anomaly is a sign

of insufficient representation of the physics uncertainty.

4.2 Terrestrial water storage anomaly

Figure 1 shows the annual cycle of the TWSA estimated from GRACE, Noah-MP, and NLDAS. Figure 2 presents the TSS. In

the 12 RFCs over CONUS, the TWSA peaks in spring, declines rapidly in summer, reaches a minimum in autumn, and recovers285

in winter. In terms of the timing of the peak and trough, Noah-MP and the NLDAS models perform similarly. In terms of the
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Figure 1. Annual cycle of TWSA from the model estimates and GRACE in the 12 RFCs for the period 2003–2015. The TWSA is calculated

from the monthly TWS by subtracting the 13-year average (2003 to 2015). Black dots denote the GRACE observations, and error bars show

the standard deviation of the year-to-year differences. The shaded areas denote the range between the maxima and minima of the 48 Noah-

MP estimates. The solid red line denotes the Noah-MP multi-physics ensemble mean. The three NLDAS models (Noah, Mosaic, VIC) and

their ensemble mean are denoted by the blue, green, cyan, and dark golden lines, respectively. The twelve RFCs are sorted based on climatic

aridity, i.e., the most humid RFC in the top left and the driest RFC in the bottom right.
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Figure 2. Taylor diagram of TWSA’s annual cycle for the 48 Noah-MP configurations (red dots) and three NLDAS models (blue dots for

Noah, green stars for VIC, and cyan square for Mosaic) at the twelve RFCs. Black stars denote the observations. The ensemble mean of

Noah-MP and NLDAS is presented by purple and dark golden diamonds, respectively. The distance between the model and observation

presents the nuRMSE. The radial lines show the correlation coefficient, while the distance to the origin along the line denotes the normalized

variability.
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Figure 3. As in Figure 2, but for the interannual anomaly of TWSA.

amplitude of variation, Noah-MP generally produces higher values in all RFCs. Previous studies have attributed this difference

to the inclusion of a bucket groundwater component in Noah-MP (Cai et al., 2014b; Ma et al., 2017). However, we found the

Noah-MP configurations without a groundwater component can still produce a higher amplitude, especially considering the

structural similarity between Noah-MP and Noah. Further investigation of the model difference is necessary.290

Figure 2 shows the Taylor diagram for the annual cycle of TWSA. The Noah-MP configurations generally outperform the

NLDAS models in most of the RFCs, which results in the superior performance of the ensemble mean (shown in Table S5).

Detailed examination of the TSS reveals that Noah-MP and NLDAS have similar correlation coefficients. Their difference

is manifested in the modeled standard deviation (i.e., the amplitude of variation). In NE, MA, NW, and CN, Noah-MP un-

derperforms compared with NLDAS, mainly due to overestimating the standard deviation. However, the interpretation of the295

overestimation is multifaceted. First, Noah-MP could overestimate the variability due to unsuitable parameters. For instance,

specific yield is an important parameter for the simulation of groundwater storage and water level (Lv et al., 2021). The pa-

rameter is calibrated as 0.2 by global simulations (Niu et al., 2007). The globally calibrated value may be overestimated in the

RFCs, leading to an overestimation in TWSA. Second, the GRACE data could underestimate the temporal variability at these

coastal RFCs due to signal leakage from the ocean (Cai et al., 2014b). In AB and MB, Noah-MP performs slightly better than300

the NLDAS models, but both underestimate the standard deviation. The Ogallala Aquifer encompasses the two RFCs. Noah-

MP can better present the groundwater changes than the NLDAS models due to an unconfined aquifer module. But Noah-MP

does not include the confined aquifers, leading to an underestimation of the groundwater storage variability.

Figure 3 shows the Taylor diagram for the interannual anomaly of TWSA. Compared with the annual cycle (Figure 2), both

the Noah-MP configurations and the NLDAS models degrade significantly. Noah-MP still performs better than NLDAS in305

most RFCs. However, the superiority is marginal. In three RFCs—namely NE, MA, and OH, Noah-MP notably underperforms

NLDAS. The underperformance is mainly due to a higher variability than GRACE. Similar to the annual cycle, possible reasons
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Figure 4. Monthly surface (0–0.1 m) and root-zone (0–1 m) soil moisture (left column) and the annual cycle (right column) from the Noah-

MP ensemble, the NLDAS models, and the NASMD observations for the period 1996–2013. Only the RFCs with more than ten observational

sites are considered. Black dots denote the arithmetic average of the valid NASMD observations. Error bars in the right columns denote the

standard deviation of the year-to-year differences. The shaded areas denote the range between the maxima and minima of the 48 Noah-MP

estimates. The solid red line denotes the Noah-MP multi-physics ensemble mean. The three NLDAS models (Noah, Mosaic, VIC) and their

ensemble mean are denoted by the blue, green, cyan, and dark golden lines, respectively. The five RFCs are sorted based on climatic aridity.

include: (1) Noah-MP overestimated the variability due to unsuitable parameter values and (2) GRACE underestimated the

variability due to the signal leaked from oceans.

4.3 Soil moisture310

Figure 4 presents the time series of the surface (0–0.1m) and root-zone (0–1.0m) soil moisture in NC, NW, AB, WG, and

CB. These RFCs were selected as they have more than ten valid sites. Table S6 presents the corresponding TSSs. The Noah-

MP configurations are consistent in estimating the surface soil moisture, having a spread remarkably smaller than that among
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Figure 5. The first column shows the TSS of the NLDAS ensemble mean in simulating the annual cycle of soil moisture at different depths

(0–0.1 m, 0.1–0.4 m, 0.4–1 m, 1–2 m). The second column presents the difference in TSS between the Noah-MP ensemble mean and the

NLDAS ensemble mean. The third column depicts the TSS difference between the arithmetic average of the Noah-MP ensemble mean and

the NLDAS models to the NLDAS three-model mean. P is the percentage of sites at which a higher TSS appears relative to the NLDAS

ensemble mean. P1 (P2) is the percentage of sites at which a higher TSS appear given that the Noah-MP ensemble mean outperforms

(underperforms) the NLDAS ensemble mean. The evaluation period is 1996–2013.

the three NLDAS models. The NLDAS models have more diverse representations of soil moisture. Noah is the same as

Noah-MP. Both solve Richards’ equation to present the soil moisture dynamics in four layers (Niu et al., 2011). Mosaic315

also solves Richards’ equation but at three soil layers. The top layer is further divided into tiles to better represent spatial

heterogeneity(Koster and Suarez, 1992). VIC is different from them, utilizing a conceptual soil water tank (Liang et al., 1994).

It could be that Noah-MP underestimated the ensemble spread, especially when considering its inability to represent the subgrid

heterogeneity. The NLDAS models could also overestimate the spread when considering the conceptual representation of VIC.

The spread among the Noah-MP configurations increases significantly from the surface (Figure 4e) to the root zone (Figure 4k).320

The ensemble spread in the root-zone soil moisture reflects the difference in modeling root-water uptake for plant transpiration

and soil-bottom drainage as described in Appendix A. Further investigation (Figures S2–S5) shows that, in the deep layers (the

third and fourth layers), Noah-MP has a comparable or greater spread than NLDAS.

Comparison between Noah-MP and Noah shows that they perform similarly in AB (Figures 4e and 4f) and WG (Figures 4g

and 4h) but are different in NC (Figures 4a and 4b), NW (Figures 4c and 4d), and CB (Figures 4i and 4j). The similarity in AB325

and WG is reasonable since the two models have similar soil layer structures and parameterizations. The dissimilarity in NC,
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Figure 6. As in Figure 5, but for interannual anomaly.

NW, and CB is most pronounced in winter. It could result from the different snow parameterizations in Noah-MP and Noah,

which is investigated in Section 4.4.

In the RFCs and soil layers examined in Figure 4, the Noah-MP ensemble mean performs similarly or better than the NLDAS

ensemble mean except in AB and CB. The superiority of the Noah-MP in simulating soil moisture is also reported in previous330

evaluations (Cai et al., 2014b). In AB and CB, individual NLDAS models do not show a consistent superiority over Noah-MP.

In AB, the best NLDAS model is VIC in winter and Noah in summer. The performance of VIC in winter corresponds to

the best-performing snow estimation (Figure 8h). In CB, the best NLDAS model is Noah in winter and Mosaic in summer.

Mosaic carefully considers the subgrid variability of soil moisture, which could lead to better skill in RFCs with complex

topography such as CB and NW. The NLDAS ensemble mean takes the advantage of wintertime soil moisture from VIC in335

AB and summertime soil moisture from Mosaic in CB. Both the advantage of VIC and Mosaic come from the representation

of subgrid heterogeneity.

Figures 5 and 6 compare the TSS between the NLDAS and Noah-MP ensemble mean at each NAMSD site for the annual

cycle and interannual anomaly, respectively. The comparison varies significantly with site and soil layer depth, revealing two

major patterns. First, similar to Figure 4, NLDAS tends to outperform Noah-MP in AB and CB. The high skill of the NLDAS340

ensemble mean is likely a result of a high ensemble skill gain (Fei et al., 2021) related to the diversity among the NLDAS

models. Noah-MP has both a low ensemble spread and an inadequate representation of subgrid heterogeneity in the two RFCs.

Second, Noah-MP outperforms NLDAS in other RFCs. In NC, OH, and MA, the low performance of NLDAS is related to the

anomaly in winter-time soil moisture (Figure S2). The anomaly suggests that the NLDAS models generally have difficulty in
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modeling snow and snow-soil moisture interactions (refer to Section 4.4 for more information). On the other hand, Noah-MP345

has a better snow module, leading to a higher soil moisture estimation skill.

To maximize the utilization of the NLDAS model diversity and Noah-MP physics improvements, we combine the Noah-

MP ensemble mean and the three NLDAS models. The right-hand columns of Figures 5 and 6 show that the four estimates’

arithmetic average outperforms the three-model NLDAS ensemble mean at most NASMD sites. The outperformance suggests

an added value of the Noah-MP data. If the Noah-MP ensemble mean already outperforms the NLDAS ensemble mean, the350

added value appears in almost every site. If the Noah-MP ensemble mean underperforms the NLDAS ensemble mean, the

added value can still show up at approximately one-third (one-fourth) of the sites for the annual cycle (interannual anomaly).

4.4 Snow water equivalent

Figure 7a presents the spatial patterns of the multi-year-averaged SWE (Wsnow) from SNODAS. Snow is mainly distributed

in the northeast (NE, NC, OH, and MA) and in the mountains of the West (the Cascade Mountains, Rocky Mountains, Sierra355

Nevada in NW, AB, MB, WG, CN, and CB). Figure 7b (7c) shows the geographical difference between the Noah-MP (NLDAS)

ensemble mean and SNODAS. Both Noah-MP and NLDAS exhibit a considerable underestimation in most areas of CONUS.

However, the underestimation of Noah-MP is generally smaller. Figure 7d confirms that both Noah-MP and the NLDAS models

tend to underestimate SWE in most areas but exhibit an overestimation when snow is extremely thick (SWE is greater than

400mm). Noah-MP performs better than the NLDAS models in most cases. The superiority of Noah-MP is likely attributable360

to the three-layer snowpack module, which can represent snow dynamics better in a wide range of snow depth than the single-

layer Noah and Mosaic snow module and the quasi-two-layer VIC snow module. A careful consideration of the surface energy

balance can also contribute to Noah-MP’s superiority over VIC and Mosaic. Consequently, Noah-MP captures the spatial

patterns better than NLDAS, with a spatial correlation of 0.87 versus 0.43. Further examination reveals that the superiority of

Noah-MP appears in all elevation bands and is the most significant between 1000 to 2000 m with a spatial correlation of 0.85365

versus 0.38 (0.77 versus 0.76 below 1000 m, and 0.89 versus 0.75 above 2000 m).

Figure 8 compares the annual cycle estimated from SNODAS, NLDAS, and Noah-MP. The annual cycle in the twelve RFCs

exhibits a similar pattern: it accumulates in winter, peaks in spring, and melts from late spring to summer. The snow season in

the northeastern RFCs (i.e., NE, MA, OH, and NC) spans from October to May, whereas the snow season is longer in the moun-

tainous RFCs of the West (i.e., NW, AB, MB, WG, CN, and CB), lasting to June. From the comparison between Noah-MP and370

NLDAS, we make three observations. First, consistent with Figure 7, the NLDAS models underestimate the SWE in all RFCs.

Among the three NLDAS models, Noah performs the best in the northeast (e.g., NE, MA, and OH), whereas VIC shows some

advantages in the western mountainous RFCs (e.g., NW, CN, and CB). Possible reasons for the Noah superiority in the north-

east include the careful consideration of the surface energy balance, whereas, in the western mountains, the elevation bands

of VIC can better capture the spatial heterogeneity. Second, Noah-MP outperforms the NLDAS models in almost all RFCs,375

except for showing a marginal degradation in AB and MB. In these two RFCs, VIC outperforms not only the NLDAS models

but also Noah-MP. The terrain is hilly, and the elevation-banded parameterization enables a better representation of subgrid

snow variability. Another reason is related to the shallow snow in these two RFCs. Noah-MP has known been experiencing
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Figure 7. (a) Spatial distribution of the 11-year-averaged (September 2004 to August 2015) SWE from SNODAS. (b) Difference between

the NLDAS ensemble mean and SNODAS. (c) Difference between the Noah-MP ensemble mean and SNODAS. The spatial correlation

coefficients between the NLDAS/Noah-MP ensemble mean and SNODAS are also presented.

negative biases with shallow snow (i.e., AB, MB, and WG). The bias is attributable to the shallow snow albedo as discussed

in Dang et al. (2019) and Wang et al. (2020). Third, the ensemble spread among the Noah-MP configurations is small. The380

estimates of SWE and its uncertainty should be improved in the future by considering processes such as rain-snow partitioning

Wang et al. (2019), snow albedo (Wang et al., 2020; Dang et al., 2019), roughness length (He et al., 2019).
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Figure 8. As in Figure 1, but for SWE between September 2004 and August 2015.

Figure 9. TSS of the ensemble means in simulating the annual cycle (left column) and interannual anomaly (right column) of SWE. (a) and

(b) TSS of the NLDAS ensemble mean. (c) and (d) the difference in TSS between the Noah-MP ensemble mean and the NLDAS ensemble

mean. (e) and (f) the difference between the arithmetic average of the Noah-MP ensemble mean and three NLDAS models to the NLDAS

ensemble mean. The evaluation period is 2004–2015.

Figure 9 shows the TSS of the NLDAS and Noah-MP ensembles in estimating the annual cycle and interannual anomaly

of SWE. Table S7 summarizes the skill scores for the twelve RFCs. The annual cycle and interannual anomaly exhibit similar

spatial patterns. NLDAS performs well in most parts of the CONUS, with TSSs higher than 0.75. In MB, TSS reaches a385
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Figure 10. As in Figure 1, but for ET in the period of 1982–2011.

minimum of 0.60. In comparison with NLDAS, Noah-MP performs notably better in the east and west but marginally worse

in parts of the central CONUS. The location of Noah-MP’s underperformance coincides well with shallow snow and relatively

flat terrain. The coincidence hints at the weakness of Noah-MP in simulating shallow snow and the advantage of VIC in

representing subgrid snow variability as discussed previously.

We further averaged the 48 Noah-MP configurations and added their average to the three-model NLDAS ensemble. Fig-390

ures 9e and 9f show that the four-estimate ensemble mean outperforms the three-model NLDAS ensemble mean in nearly all

areas of CONUS, again proving the added value of the data provided in this paper.

4.5 Evapotranspiration

Figure 10 compares the annual cycle estimated from FLUXNET MTE, NLDAS, and Noah-MP in the twelve RFCs. We choose

FLUXNET MTE as the reference here since its performance is superior when compared to AmeriFlux (Tables S2–S4). In all395

the twelve RFCs, ET peaks during summer and is lowest during winter. Noah-MP successfully captures the timing of the peak

in humid RFCs (i.e., NE, MA, OH, LM, SE, NC, and NW) but shows a one-month lead in a few semi-arid and arid RFCs

(i.e., MB, WG, and CN). The average of the three NLDAS models better reproduces the timing of the peak, but the models

differ from each other significantly. Among the Noah-MP and NLDAS ensembles, VIC and Mosaic are notably different. VIC

exhibits a systematic underestimation, while Mosaic shows an overall overestimation. The 48 Noah-MP configurations and400

Noah perform closely during autumn and winter, whereas their differences are pronounced during spring and summer. During

spring and summer, Noah is the closest to FLUXNET MTE in most RFCs except NE and MA, whereas Noah-MP constantly

overestimates the ET in all RFCs.

The overestimation of Noah-MP was investigated by separately comparing the three components of ET (i.e., transpiration,

canopy evaporation, and ground evaporation) with GLEAM (Figure S6). Figure 11 shows the overestimation of total ET is405

closely linked to the overestimation of ground evaporation, which could be partially attributable to the overly high roughness
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Figure 11. Differences between the Noah-MP ensemble mean and GLEAM in total ET (E), canopy evaporation (Ecan), ground evaporation

(Egnd), and transpiration (Etran). The units are mmday−1.

length for heat and water, as described in Appendix A8 and A9. Besides, the lack of a litter layer (Decker et al., 2017) in

Noah-MP could also play a part.

Figure 12 evaluates Noah-MP and NLDAS using the 25 AmeriFlux sites. The NLDAS ensemble mean outperforms the

Noah-MP ensemble mean for the annual cycle, and this outperformance results from two causes. First, an NLDAS member,410

Noah, performs the closest to the observations, as shown in Figures 12b and 10. Second, the three NLDAS models are re-

markably different from each other. The diversity of the ensemble gives a higher skill gain by combining them, as shown

by the difference between the ensemble mean skill (Figures 12a) and the median TSS (Figures 12b). On the other hand, the

Noah-MP configurations are too similar to each other, and all have a positive bias (Figure 10). However, for the interannual

anomaly, the Noah-MP ensemble mean slightly outperforms the NLDAS ensemble mean (Figure 12c). Figure 12d shows that415

the Noah-MP configurations marginally outperform the NLDAS models. Among the NLDAS models, VIC performs the best,

and Noah does not exhibit the same superiority shown in the annual cycle. The difference between the NLDAS ensemble mean

performance (Figure 12c) and median performance (Figure 12d) is marginal, suggesting that the NLDAS ensemble skill gains

are not notable for the interannual anomaly.

Figure 13 examines the ensemble spread of Noah-MP and NLDAS. The ensemble spread is normalized by the temporal420

variability calculated using the FLUXNET MTE ET. NLDAS has a significant spread in the southeast and west in all seasons,

while spring shows the largest value. As seen in Figure 10, the NLDAS ensemble spread mainly reflects the differences

between VIC and Mosaic. The Noah-MP ensemble has a notably smaller spread than NLDAS. The Noah-MP ensemble spread

is manifested in spring and summer in the southeastern (SE, LM, and WG) and western (CN, CB, and NW) RFCs.
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Performance (TSS) probability distribution for annual ET cycle

Performance (TSS) probability distribution for interannual ET anomaly
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Figure 12. Probability distribution of ET’s TSS for the annual cycle (a, b) and interannual anomaly (c, d). The left column compares

the Noah-MP (orange) and NLDAS (cyan) ensemble means. The right column reveals the Noah-MP (magenta) and NLDAS (dark blue)

ensembles. The upper, middle, and lower quantile lines of the magenta boxes show the 75th, 50th, and 25th percentile values of the Noah-MP

ensemble. The upper, middle, and lower lines of the dark blue boxes show the three NLDAS models. The blue, green, and cyan dots denote

Noah, VIC, and Mosaic, respectively. The evaluation period can be found in Table S1.

We can decompose the Noah-MP ensemble spread and pinpoint the dominant process using Sobol’ sensitivity analysis425

(Zheng et al., 2019). Figure 14 delineates the Sobol’ total sensitivity index of total ET to the four processes described in

Appendix A. In spring and summer, for the regions where the Noah-MP configurations show significant spread (SE, LM, WG,

CB, CN, and NW) (Figure 13), ET is most sensitive to the parameterization of stomatal conductance (Figures 14e and 14i) and

then to the β-factor (Figures 14f and 14j). However, for regions with positive biases (NC, OH, and LM, as shown in Figures 11b

and 11c), the Noah-MP estimation is more sensitive to the turbulence parameterizations (Figures 14c and 14g). During autumn430

and winter, the parameterizations of stomatal conductance (Figures 14m and 14q) and β-factor (Figures 14n and 14r) still have

significant impacts on the estimation of ET, and these impacts could be a result of the “memory” of TWS (Zheng et al., 2019).

Besides these two processes, the runoff parameterization is dominant during autumn in the east (Figure 14p), and the turbulence

parameterization is dominant during winter (Figure 14s).
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Figure 13. Normalized ensemble spread of the multi-year averaged annual (first row) and seasonal (second–fifth rows) ET from NLDAS

(first column) and Noah-MP (second column). The ensemble spread is normalized by the temporal variability of the FLUXNET MTE ET

calculated using equation (6).

5 Code and data availability435

The dataset is freely available for download from the Zenodo online repository at https://doi.org/10.5281/zenodo.7109816

(Zheng et al., 2022). The dataset (along with datasets on which it is based) is subject to a Creative Commons BY (attribution)

license agreement (https://creativecommons.org/licenses, last access: 2021-08-16).

6 Conclusions

This paper describes a 1/8◦ dataset of the TWB over the CONUS from 1980 to 2015 simulated from an ensemble of 48440

perturbed-physics configurations of Noah-MP. This Noah-MP multi-physics ensemble features an enrichment of the NLDAS-2

four-model ensemble and brings convenience for multi-model comparison. The dataset has already been used in the monitoring

of groundwater storage change (Rateb et al., 2020), the analysis of LSM parameterization sensitivity (Zheng et al., 2019), the

development of model evaluation method (Zheng et al., 2020), and hydrological ensemble simulations (Fei et al., 2021). This
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Figure 14. The Sobol’ total sensitivity of the multi-year-averaged and seasonal (spring—MAM, summer—JJA, autumn—SON, winter—

DJF) ET to the four parameterizations: stomatal conductance, soil moisture limitation to transpiration (β-factor), turbulence, and runoff.

Higher values indicate higher sensitivities.

paper details the Noah-MP parameterizations employed and evaluates the estimated TWSA, soil moisture, SWE, and ET in445

comparison with the NLDAS ensemble.

The spread of the ensemble estimation is the largest for the runoff. The spread in surface runoff accounts for 34% of its

climatological mean. The spread is comparable to the previous estimates for multi-model ensembles (Dirmeyer et al., 2006).

The ensemble spread in snow water equivalent is the smallest, 2.5% of its climatological mean. The ensemble has not included

different parameterizations of several snow processes such as rain-snow partitioning, snow albedo, and roughness length, which450

could lead to an underestimation of the ensemble spread. The underestimation of the ensemble spread becomes more apparent

when the Noah-MP ensemble mean is biased (Figure 8). The bias is more pronounced relative to the NLDAS models in parts

of AB and MB where snow is shallow and the terrain is hilly (Figure 9). VIC performs better there, suggesting the importance

of considering subgrid variability.
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Evaluation against various reference data shows that Noah-MP generally performs better than the NLDAS models. The455

augmented three-layer snow module of Noah-MP significantly improves the estimation of snow and also wintertime soil

moisture. On the other hand, the NLDAS models outperform Noah-MP in AB and CB for surface soil moisture (Figures 4 to 6),

in AB and MB for snow (Figures 8 and 9), and in OH, LM, and NC for the annual cycle of ET (Figure 10). The outperformance

of NLDAS is likely attributable to the consideration of subgrid variability in soil moisture with Mosaic and in snow with VIC.

The Noah-MP ensemble could be improved by increasing the spatial resolution or developing parameterizations of subgrid460

heterogeneity. Noah-MP also underestimates the temporal variability of TWS in coastal RFCs (Figures 2 and 3). Correction of

the ocean signal leakage in the GRACE data and representation of spatially varying parameter unconfined aquifer should be

beneficial. For the annual cycle of ET, there is a systematic overestimation in spring and summer. Sobol’ sensitivity analysis

of the Noah-MP ensemble reveals that the bias is mainly related to the parameterization of turbulence. We have examined the

code and found that the implementation is inconsistent with the literature. The parameterization of the roughness length of heat465

and water vapor likely contributes to the ET overestimation.

The Noah-MP ensemble shares the same atmospheric forcing and static parameters with the NLDAS models. The similarity

enables the comparison between the multi-model and perturbed-physics ensembling methods as shown in Fei et al. (2021).

Besides, Noah-MP complements the NLDAS models well. Adding Noah-MP to the NLDAS ensemble can consistently improve

the TWB variables in most areas of CONUS.470

The Noah-MP model has been undergoing rapid development. New components such as plant hydraulics (Li et al., 2021),

roughness sublayer (Abolafia-Rosenzweig et al., 2021), crops (Liu et al., 2016), and dynamic rooting depth (Liu et al., 2020)

have been added. New schemes for the processes such as rain-snow partitioning (Wang et al., 2019) have been included.

Parameterizations of surface roughness length (He et al., 2019; Zhang et al., 2021), snow albedo (Wang et al., 2020), and

vertical soil layers (Zhao et al., 2022; Shellito et al., 2020) have been refined. The dataset can be improved by using the475

updated model and including more perturbations.

Appendix A: Formulation of the used noah-mp parameterization schemes

A1 SIMGM runoff parameterization scheme

SIMGM is a TOPMODEL-based runoff model (Niu et al., 2007). The scheme parameterizes runoff (Rsrf and Rsub) as an

exponential function of groundwater table depth (zwt, m, positive down) as follows.480

Rsrf =Qsoil,srf [(1− ffrz,1)fsat + ffrz,1], (A1)

fsat = fsat,max exp[−0.5f(zwt − zbot)], (A2)

Rsub = [1− max
i=1,...,Nsoil

(ffrz,i)]Rsub,max exp[−Λ− f(zwt − zbot)], (A3)485
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whereQsoil,srf is the water incident on the soil surface (the sum of precipitation throughfall, snowmelt, and dewfall; kgm−2 s−1),

ffrz,i is the fractional frozen area of the i-th soil layer (m2m−2), which is parameterized using the frozen water content of the

soil layer following Niu and Yang (2006), fsat is the saturation fraction of the grid cell (m2m−2), and zbot is the depth of the

soil column bottom (2 m in this study), and zwt is the groundwater table depth (m), which is converted from the groundwater

storage by a specific-yield parameter. The groundwater storage is predicted using a dynamic groundwater model interacting490

with the soil column bottom (Niu et al., 2007).

The scheme has four calibratable parameters: (1) fsat,max, the maximum saturation area fraction (m2m−2), which is defined

as the cumulative distribution function of topographic index when the grid-cell-mean water table depth is zero; (2) f , a runoff

decay factor (unitless); (3) Rsub,max, the maximum subsurface runoff when the grid-cell-mean water table depth is zero

(kgm−2 s−1); and (4) Λ, the grid-cell-mean topographic index (unitless). In this study, the parameters have the following495

values: fsat,max = 0.38m2m−2, f = 6, Rsub,max = 5kgm−2 s−1, and Λ = 10.5.

A2 SIMTOP runoff parameterization scheme

SIMTOP is also a TOPMODEL-based runoff parameterization scheme, the same as SIMGM (equations (A1)–(A3)). The

major difference between SIMTOP and SIMGM is that SIMTOP parameterizes the groundwater table depth (zwt) using the

soil liquid water content by assuming the water head is at equilibrium throughout the soil column down to the water table500

(Niu et al., 2005). Although SIMTOP and SIMGM share the same conceptual model of runoff generation, implementation

differences exist. First, in contrast to equations (A2) and (A3), SIMTOP does not use the soil column bottom depth (zbot) in

calculating the saturation area fraction (fsat) and subsurface runoff:

fsat =fsat,max exp(−0.5fzwt), (A4)

Rsub =[1− max
i=1,··· ,Nsoil

(ffrz,i)]Rsub,max exp(−Λ− fzwt). (A5)505

Second, parameter values are slightly different for the runoff decay factor and maximum subsurface runoff: f = 2, and

Rsub,max = 4kgm−2 s−1.

A3 NOAHR runoff parameterization scheme

NOAHR parameterizes surface runoff (Rsrf ) as infiltration excess:

Rsrf =Qsoil,srf −Qsoil,in, (A6)510

where Qsoil,i is the infiltration into the soil (kgm−2 s−1). The infiltration is derived from the approximate solution to the

Richards equation following Philip (1969) with additional considerations of the spatial variability of precipitation and infiltra-

tion capacity. By assuming exponential and independent distributions of precipitation and infiltration capacity within a model
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grid cell, NOAHR formulates the soil infiltration as follows:

Qsoil,in =Qsoil,srf
Ic

Qsoil,srf∆t+ Ic
, (A7)515

Ic =wd[1− exp(−K∆t∆t)], (A8)

wd =

Nsoil∑
i=1

ρwat(wsat,i −wsoil,i)∆zsoil,i, (A9)

where Ic is the soil infiltration capacity of the model grid cell (kgm−2),wd is the water deficit of the soil column (kgm−2), and

∆t is the model time step (s). Following (Chen and Dudhia, 2001a), the parameter is assumed as propositional to the saturated

hydraulic conductivity of the first soil layer (Ksat,1, kgm−2 s−1):520

K∆t =
K∆t,ref

kref
Ksat,1, (A10)

where K∆t,ref and kref are two parameters. In Noah-MP (and Noah), K∆t,ref = 3
86400 s

−1, and kref = 2×10−3 kgm−2 s−1.

Ksat,1 is assigned using a soil parameter lookup table according to the soil texture type.

NOAHR assumes free drainage at the soil column bottom. The subsurface runoff is calculated as

Rsub = αslopeKsoil,Nsoil
, (A11)525

where αslope is the terrain slope index, which is arbitrarily given as 0.1 in the adopted version of Noah-MP. Ksoil,Nsoil
is the

hydraulic conductivity of the bottom soil layer, which is parameterized following Clapp and Hornberger (1978).

A4 BATS runoff parameterization scheme

The BATS scheme parameterizes surface runoff (Rsrf ) as a funciton of soil wetness (Yang and Dickinson, 1996):

Rsrf =Qsoil,srf [(1− ffrz,1)fsat + ffrz,1] , (A12)530

fsat =θ
4, (A13)

θ =

∑Nsoil

i=1
wsoil,i

wsat,i
∆zsoil,i∑Nsoil

i=1 ∆zsoil,i
, (A14)

where θ is the averaged wetness throughout the soil column (m3m−3).

Similar to NOAHR, the BATS scheme also assumes a free drainage boundary condition at the soil column bottom. Subsur-

face runoff (Rsub) is parameterized as follows:535

Rsub =

(
1− max

i=1,··· ,Nsoil

(ffrz,i)

)
Ksoil,Nsoil

. (A15)

A5 Ball–Berry scheme of stomatal resistance

Leaf stomata are the small pores typically found on the underside of leaves. They control the gas exchange of CO2, H2O,

and O2 between the internal leaf structure and the external atmosphere. In LSMs, the opening and closing of the stomata are

characterized by stomatal conductance.540
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The Ball–Berry scheme for parameterizing the stomatal conductance (gs) for H2O is as follows:

gs =m
A

cs

es
ei
Patm + b, (A16)

where gs is the leaf stomatal conductance (µmolm−2 s−1), m is a vegetation-type dependent parameter (unitless), A is the leaf

photosynthesis rate, cs is the CO2 partial pressure at the leaf surface (Pa), es is the water vapor pressure at the leaf surface (Pa),

ei is the saturated water vapor at the stomata (Pa), Patm is the ambient air pressure (Pa), and b is the stomatal conductance at545

zero photosynthesis (µmolm−2 s−1). The parameters m and b are assigned from a lookup table using the vegetation type.

A6 Jarvis scheme of stomatal resistance

The Jarvis scheme for parameterizing the canopy resistance (Rc) based on the product of four stress factors (sm−1) is calculated

as follows (Chen et al., 1996; Sellers et al., 1996; Jacquemin and Noilhan, 1990; Jarvis, 1976):

Rc =Rc,min
1

f1f2f3β
, (A17)550

f1 =

Rc,min

Rc,max
+ f

1+ f
, (A18)

f =0.55
2Rg

Rgl
, (A19)

f2 =
1

1+hs[qsat(Tl)− qa]
, (A20)

f3 =1− 0.0016(Tref −Tl)
2, (A21)

where f1, f2 and f3 are the stress factors of solar radiation, vapor pressure deficit, and air temperature, respectively (unitless),555

which are unitless and range from 0 to 1; β is the soil moisture stress factor, which is detailed in Section A7;Rg is the incoming

solar radiation (Wm−2) for unit leaf area index; Tl is leaf temperature (K). qsat(Tl) (kgkg−1) and qa are the saturated humidity

at the temperature of Tl (kgkg−1) and ambient humidity, respectively. In literature (Chen et al., 1996; Jacquemin and Noilhan,

1990), qsatTl and qa are specific humidity, whereas in Noah-MP v3.6, they are implemented as mixing ratio.

The scheme has five parameters:Rc,min the minimum stomatal resistance (sm−1) per unit leaf area index;Rc,max the maxi-560

mum resistance;Rgl a radiation scaling factor (unitless); hs a humidity scaling factor (unitless); Tref the optimum temperature

(K). Among these parameters, Rc,min, Rgl, and hs are assigned using a vegetation-parameter lookup table, while Rc,max and

Tref are preassembly-assigned to 5000 sm−1 and 298K, respectively.

A7 Three soil moisture stress factor schemes

The NOAHB scheme parameterizes the soil moisture stress factor controlling transpiration (β-factor) as a function of soil565

moisture, which is calculated as follows:

β =

Nroot∑
i=1

∆zsoil,i
zroot

min(1,
θi − θwilt

θref − θwilt
), (A22)
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where Nroot is the total number of soil layers that contain roots, zroot is the total depth of the root zone layer (m), and θi is the

volumetric soil moisture of the i-th soil layer (m3m−3). NOAHB has two parameters: θref the field capacity (m3m−3); and

θwilt, the wilting volumetric soil moisture (m3m−3).570

The CLM scheme (Oleson et al., 2004) parameterizes β as a function of soil matric potential, which is calculated as follows:

β =

Nroot∑
i=1

∆zsoil,i
zroot

min(1,
ψwilt −ψi

ψwilt −ψsat
), (A23)

where ψi is the water pressure head of the i-th soil layer (m), and ψi is converted from θi using the formula of Clapp and

Hornberger (1978). CLM has two parameters: ψsat, the saturated water pressure head (m), and ψwilt, the wilting pressure head575

(m).

The SSiB scheme Xue et al. (1991) also parameterizes the β-factor as a function of the soil pressure head, similar to CLM.

However, the formula is different, as follows:

β =

Nroot∑
i=1

∆zsoil,i
zroot

min

[
1,1− exp

(
−c2 ln(

ψwilt

ψi
)

)]
, (A24)

SSiB has two parameters: ψwilt, the wilting pressure head (m); and c2, a unitless coefficient.580

In Noah-MP version 3.6, the parameters θsat, θwilt, and ψsat are assigned using a soil parameter lookup table (Chen and

Dudhia, 2001a, Table 2); ψwilt is −10m, independent of vegetation and soil types (Niu et al., 2011); c2 is assumed constant at

5.8, whereas in SSiB, this parameter varies with vegetation type (Xue et al., 1991, Table 2).

A8 Chen97 near-surface turbulence scheme

The Chen97 scheme (Chen et al., 1997) parameterizes the surface exchange coefficient for heat (Ch) as follows:585

Ch = κ2
[
ln(

z

z0m
)−Ψm(

z

L
)+Ψm(

z0m
L

)

]−1 [
ln(

z

z0h
)−Ψh(

z

L
)+Ψh(

z0h
L

)

]−1

, (A25)

where κ= 0.4 is the von Kármán constant; L is the Monin–Obukhov (M–O) length (m); z is the reference height (m); Ψm

and Ψh are the similarity theory-based stability functions for momentum and heat, respectively; z0m the roughness length

for momentum (m), depends on the land cover/land-use type; and z0h is the roughness length for heat (m). Niu et al. (2011)

parameterized z0h = z0m exp(−κC
√
Re∗), where C = 0.1 and Re∗ is the roughness Reynolds number. However, in the code590

of Noah-MP version 3.6, z0h = z0m.

A9 M–O near-surface turbulence scheme

The M–O scheme is based on the M–O similarity theory (Brutsaert, 1982), which parameterizes Ch as follows:

Ch = κ2
[
ln(

z− d0
z0m

)−Ψm(
z− d0
L

)

]−1 [
ln(

z− d0
z0h

)−Ψh(
z− d0
L

)

]−1

(A26)
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where z0h = z0m, and d0 is the zero-displacement height (m),595

d0 = 0.64zct, (A27)

where zct is the canopy top height (m).

Appendix B: Estimation of the terrestrial water storage for the RFCs neighboring the Great Lakes

The TWS estimation for the NC, OH, and NE RFCs is performed in two steps: (1) aggregate the GRACE TWS over both the

RFC land area and neighboring lakes (lakes Superior, Michigan, and Huron for NC; Erie for OH, and Ontario for NE); and (2)600

subtract the lake water storage anomaly from the aggregated TWS. The lake water storage in the second step is calculated as

the product of the observed water level and the lake area.

The lake water level is an arithmetic average of selected NOAA in-situ observations (https://tidesandcurrents.noaa.gov/

stations.html?type=Water+Levels). For Lake Superior, five observation stations were selected: Point Iroquois, Marquette C.G.,

Ontonagon, Duluth, and Grand Marais. For Lake Michigan, seven stations were selected: Ludington, Holland, Calumet Harbor,605

Milwaukee, Kewaunee, Sturgeon Bay Canal, and Port Inland. For Lake Huron, five stations were selected: Lakeport, Harbor

Beach, Essexville, Mackinaw City, and De Tour Village. For Lake Erie, eight stations were selected: Buffalo, Sturgeon Point,

Erie, Fairport, Cleveland, Marblehead, Toledo, and Fermi Power Plant. And for Lake Ontario, four stations were selected: Cape

Vincent, Oswego, Rochester, and Olcott.

The lake area is estimated from the lake boundary data provided by the United States Geological Survey (https://www.610

sciencebase.gov/catalog/item/530f8a0ee4b0e7e46bd300dd). Only the area within the United States is considered, which is

within a 150 km radius from the studied RFCs. The lake areas are calculated as follows: 52441 km2 for Lake Superior within

the USA; 57509 km2 for Lake Michigan; 23185 km2 for Lake Huron within the USA; 25494 km2 for Lake Erie; and 18871 km2

for Lake Ontario. Month-to-month variations in lake area are neglected in this study for simplicity.
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