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Abstract. In recent years, large datasets of in situ marine carbonate system parameters (partial pressure of CO2 (pCO2), total 

alkalinity, dissolved inorganic carbon and pH) have been collated, quality controlled and made publicly available. These 

carbonate system datasets have highly variable data density in both space and time, especially in the case of pCO2, which is 

routinely measured at high frequency using underway measuring systems. This variation in data density can create biases when 

the data are used, for example for algorithm assessment, favouring datasets or regions with high data density. A common way 15 

to overcome data density issues is to bin the data into cells of equal latitude and longitude extent. This leads to bins with spatial 

areas that are latitude and projection dependent (e. g. become smaller and more elongated as the poles are approached). 

Additionally, as bin boundaries are defined without reference to the spatial distribution of the data or to geographical features, 

data clusters may be divided sub-optimally (e. g. a bin covering a region with a strong gradient). 

To overcome these problems and to provide a tool for matching surface in situ data with satellite, model and climatological 20 

data, which often have very different spatiotemporal scales both from the in situ data and from each other, a methodology 

has been created to group in situ data into ‘regions of interest’: spatiotemporal cylinders consisting of circles on the Earth’s 

surface extending over a period of time. These regions of interest are optimally adjusted to contain as many in situ 

measurements as possible. All surface in situ measurements of the same parameter contained in a region of interest are 

collated, including estimated uncertainties and regional summary statistics. The same grouping is applied to each of the non-25 

in situ datasets in turn, producing a dataset of coincident matchups that are consistent in space and time. About 35 million in 

situ data points were matched with data from five satellite sources and five model and re-analysis datasets to produce a 

global matchup dataset of carbonate system data, consisting of ~286,000 regions of interest spanning 54 years from 1957 to 

2020. Each region of interest is 100 km in diameter and 10 days in duration. An example application, the reparameterisation 

of a global total alkalinity algorithm, is shown. This matchup dataset can be updated as and when in situ and other datasets 30 

are updated, and similar datasets at finer spatiotemporal scale can be constructed, for example to enable regional studies. The 
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matchup dataset provides users with a large multi-parameter carbonate system dataset containing data from different sources, 

in one consistent, collated and standardised format suitable for model-data intercomparisons and model evaluations. The 

OceanSODA-MDB data can be downloaded from https://doi.org/10.12770/0dc16d62-05f6-4bbe-9dc4-6d47825a5931 (Land 

and Piollé, 2022). 35 

 

1 Introduction 

The ocean absorbs carbon dioxide (CO2) from the atmosphere, which reacts with water to form a weak acid, carbonic acid. 

Through the marine carbonate system, carbonic acid then rapidly dissociates to form bicarbonate and hydrogen ions. The 

marine carbonate system acts to buffer increases in hydrogen ions, in particular by combining with carbonate ions to form 40 

more bicarbonate ions. Over glacial timescales, weathering of carbonate rocks has maintained relatively stable ocean pH levels, 

but since the industrial revolution, the rate of uptake of anthropogenically released CO2 has been too rapid for the natural 

system to keep pace, resulting in the phenomenon of Ocean Acidification (OA) (Doney et al., 2020). OA shifts the balance of 

marine chemistry such that there is increasing CO2, decreasing pH, and decreasing carbonate ions. These shifts have been 

shown to significantly alter many biological processes (Kroeker et al., 2013), with implications for food webs, ecosystem 45 

processes and ultimately ecosystem services on which humans rely (Gattuso et al., 2015; Doney et al., 2020).  

 

Whilst there has been a rapid increase in the number of observations of the marine carbonate system over the past decade (e. 

g. SOCCOM, Rödenbeck et al., 2015; Williams et al., 2017), focusing especially on CO2 uptake and OA, there remain large 

gaps both in space and time, especially in more remote locations such as the Arctic (AMAP, 2018), where we also know there 50 

is significant variability and enhanced acidification in several parts of the Arctic (e. g. Polukhin, 2019). The longest in situ 

time-series stations for seawater pCO2 and other OA-relevant parameters cover a temporal period of about 40 years (Bates et 

al., 2014), and around the globe there are only a handful of such time-series stations. Although more have since been 

established, these time-series stations highlight how different locations experience different drivers and differing levels of 

variability (Bates et al., 2014). More recently, research communities have joined to form networks that increase data sharing, 55 

resulting in large collated datasets such as the Surface Ocean CO2 Atlas (SOCAT, ~28 million surface observations, Lauvset 

et al., 2018; Bakker et al., 2016), the Global Ocean Data Analysis Project (GLODAP, ~79,000 surface observations, Lauvset 

et al., 2021), and most recently the Coastal Ocean Data Analysis Product in North America (CODAP-NA, Jiang et al., 2021). 

 

Several efforts have been made to develop interpolation products that can be used to make global assessments of how the 60 

marine carbonate chemistry is changing in both space and time (e. g. Rödenbeck et al., 2015). These include neural network 

(Landschützer et al., 2016; Denvil-Sommer et al., 2019; Sasse et al., 2013), linear (e. g. Takahashi et al., 2014) and non-linear 
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regression (e. g. Watson et al., 2020) approaches. Similarly, model and interpolated observation-based data are routinely 

assessed against global in situ datasets (e. g. a requirement for inclusion within the observational ocean carbon data presented 

in Friedlingstein et al., 2020). Not only can in situ data and climatologies be used for assessing the marine carbonate system, 65 

but models, reanalyses and satellite Earth Observations (EO) are now frequently utilised either for their direct outputs or as 

inputs to algorithms. The ESA OceanSODA (Satellite Oceanographic Datasets for Acidification) project (https://esa-

oceansoda.org) utilises a range of data sources, including EO, to input into empirical and machine learning algorithms, 

generating synoptic scale outputs of OA-relevant parameters. For example the OceanSODA-ETHZ product (Gregor and 

Gruber, 2021) reproduces the global surface carbonate system from 1985 to 2020. At present there is no one dataset that 70 

matches up these various data in time, treating all data in a consistent manner to minimise biases caused by differences in 

space and time sampling of each dataset. Here we present a new matchups dataset that addresses this need, with a particular 

focus on the surface (less than 10 m) carbonate system. 

 

When attempting to collate large coincident datasets, data are often combined from diverse sources with different data 75 

densities, e. g. combining daily station data from a cruise with high frequency measurements from an underway system, or 

with daily satellite sea surface temperature (SST) at 1 km resolution. The differences in data density between the collated 

datasets can create biases when the data are used, favouring datasets or regions with high data density. This problem is often 

overcome by binning the data in a map projection, most simply into cells of equal latitude and longitude extent, but this can 

also cause biases because, in the example of equal latitude/longitude bins, the bins become smaller and more elongated as the 80 

poles are approached. The bin boundaries are also generally unrelated to the data, which may result in the data being divided 

sub-optimally, for example a bin boundary may pass through a large cluster of data, inappropriately dividing it. 

 

To overcome these problems and to provide a tool for matching in situ data with other datasets such as satellite, model or 

climatological data, which often have very different spatiotemporal scales both from the in situ data and from each other, a 85 

methodology has been developed to group in situ data into ‘regions of interest’ (ROI), spatiotemporal cylinders consisting of 

circles on the Earth’s surface extending over a period of time. These cylinders are positioned such that each contains as many 

in situ measurements as possible, with as little overlap between cylinders as possible. In this way, every in situ measurement 

is uniquely associated with one region of interest. All in situ measurements of the same parameter contained in a region are 

collated, including their estimated uncertainties, and regional summary statistics are calculated. After the ROIs have been 90 

defined using the in situ data, the other datasets are treated in the same way, collating measurements that lie within each in situ 

ROI, with their estimated uncertainties, and generating summary statistics. OceanSODA-MDB, a global matchups database 

(MDB), is presented here, consisting of ROI with a maximum diameter of 100 km and duration of 10 days. An example 

application is shown, reparameterising the global total alkalinity (AT) algorithm of Takahashi et al., (2014) to give a new AT 

algorithm specific to the top 10 m. The MDB can be updated as and when in situ and other datasets are updated, and similar 95 

datasets at different spatiotemporal scales can be constructed, for example for regional studies. 
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This document describes the datasets that are present within the MDB, including some brief information about data collection 

and analysis, followed by a description of the methods used to create the MDB itself. We then provide some summary statistics 

for the in situ and other data held within the MDB and a discussion of the benefits of this method. Finally we present the 100 

reparameterization of the global AT algorithm of Takahashi et al., (2014) as an example application of the MDB. 

2 Input datasets 

In situ carbonate system variables included in the MDB (with which all other datasets are matched) are pH, total dissolved 

inorganic carbon (CT), total alkalinity (AT) and partial pressure of CO2 in water (pCO2w, converted from fugacity and corrected 

for temperature differences if necessary). At least one of these four key variables must be measured for a sampling event to be 105 

included in the MDB. Measurement uncertainties and quality control (QC) flags, where available, are also included. The MDB 

only includes surface measurements, defined as depth less than 10 m. Other in situ measurements which are included if they 

are coincident with a measurement of one or more of the four primary variables (pH, CT, AT and pCO2w) include temperature 

(T), salinity (S), sea-air difference in partial pressure of CO2 and other in situ measurements such as nutrients and chlorophyll-

a concentration (Chl-a). In addition, the following values not directly associated with the sampling event are included: water 110 

depth, distance from the nearest coast and monthly climatological temperature, salinity, dissolved oxygen, nitrate, phosphate 

and silicate, all interpolated from global gridded climatologies to each data point. Where coincident CT and AT are available, 

pCO2w, pH and the saturation states of aragonite (ΩA) and calcite (ΩC) are calculated from CT, AT, T, S and depth. All 

measurements of each of these variables in a ROI are collated and summary statistics generated. Other datasets not associated 

with individual data points (satellite, model and reanalysis data, see Table 1) are collated for each ROI and their summary 115 

statistics are added to the MDB. 

 

Measurement uncertainties are either taken from the source literature or given default values based on GLODAP and SOCAT 

default uncertainties. Default uncertainties for CT and AT are 4 µmol kg-1 (Lauvset et al., 2021). For pCO2w, the default 

uncertainty is 5 µatm unless SOCAT data have been assigned a QC flag of A or B, in which case it is 2 µatm (Lauvset et al., 120 

2018). The default uncertainty for pH is 0.005 (Lauvset et al., 2021). The standard deviation of the measurements used to 

calculate the climatological data is given as a proxy to uncertainty, and the assigned CT and AT measurement uncertainties are 

propagated through the calculations to produce uncertainty estimates for the calculated pCO2w, pH, ΩA and ΩC. 

 

The input data for the MDB primarily come from publicly available online datasets, with exceptions noted below. Details for 125 

these input data are provided in Table 1. Below we briefly summarise the main methods for sample collection, analysis and 

quality control for each of the datasets, with the exception of data input from the World Ocean Atlas (WOA18, Locarnini et 

al., 2018; Zweng et al., 2019; Garcia et al., 2019a; Garcia et al., 2019b; Boyer et al., 2018), the Ocean Carbon and Acidification 
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Data System (OCADS, Jiang et al., 2021), the Global Surface pCO2 Database (LDEO v2018, Takahashi et al., 2020), the 

Global Ocean Data Analysis Project (GLODAPv2.2020, Olsen et al., 2020; Olsen et al., 2016; Key et al., 2015) and the Surface 130 

Ocean CO2 Atlas (SOCATv2020, Lauvset et al., 2018; Bakker et al., 2016) (SOCATv2020; Lauvset et al., 2018; Bakker et al., 

2016), as these have significant detail about data collection and quality control already described in the associated project 

publications. Full details for all methods can be found in the associated references within this text and Table 1. 

 

Biogeochemical-ARGO (Table 1, dataset no. 12) use profiling floats and measure pH using the Deep-Sea DuraFET, a sensor 135 

comprising a Honeywell Ion Sensitive Field Effect Transistor (ISFET) and a chloride-ion-selective electrode as the reference 

electrode, directly exposed to seawater (Claustre et al., 2020). We used delayed mode data where available, otherwise real 

time mode, and used the estimated pH uncertainty given in the original data files. 

 

Data from Plymouth Marine Laboratory (Table 1, datasets no. 6 and 7) were produced using an Apollo SciTech AS-C3 DIC 140 

analyser for CT, and using an Apollo SciTech AS-ALK2 analyser for AT, following (Dickson et al., 2007). CT and AT 

measurements were calibrated using certified reference materials (CRMs) provided by A.G. Dickson from the Scripps Institute 

of Oceanography. The precision and accuracy of replicate CRM analyses were better than ±2 µmol kg-1. pH was determined 

spectrophotometrically onboard the ship using m-cresol-purple dye (Clayton and Byrne, 1993) and again following best 

practise (Dickson et al., 2007). The precision of triplicate pH samples was ±0.001 units or better.  145 

 

Data from Woods Hole Oceanographic Institute (Table 1, dataset no 8) were produced using a Single‐Operator Multimetabolic 

Analyzer coulometer system for CT and using an open cell titration method with 0.1 N HCl for AT (Dickson et al., 2007), both 

calibrated to Dickson CRMs (Scripps Institute of Oceanography). Pooled standard deviations for CT and AT were < 3.04 and 

< 3.87 μmol kg−1, respectively.  150 

 

Data from Dalhousie University (Table 1, dataset no. 9) were produced using a Marianda Versatile Instrument for the 

Determination of Titration Alkalinity (VINDTA) 3C coupled with a coulometer (UIC, Inc.) for AT and CT following standard 

methods (Dickson et al., 2007). The instrument was calibrated against Dickson CRMs (Scripps Institute of Oceanography) and 

the reproducibility of the CT and AT measurements was < 2 and < 3 µmol kg−1, respectively. 155 

 

Data from the Ocean Acidification Research Center at the University of Alaska Fairbanks (Table 1, datasets no 10 – 15) were 

produced using a VINDTA 3C coupled with a coulometer (UIC, Inc.). Samples were standardized using Dickson CRMs 

(Scripps Institute of Oceanography). Uncertainty for cruises ranged from 1 to 4 μmol kg-1 for AT and 4 μmol kg-1 for CT. These 

data are now included in the Coastal Ocean Data Analysis Product in North America (CODAP-NA), and hence have been 160 

subjected to additional quality control (Jiang et al., 2021).  

 

https://doi.org/10.5194/essd-2022-129
Preprint. Discussion started: 27 July 2022
c© Author(s) 2022. CC BY 4.0 License.



6 
 

Data from the Shirshov Institute of Oceanology (Table 1, dataset no 16, not publicly available) were produced from samples 

collected in plastic 0.5 L bottles without preservation and analysed for pH and AT. The pH value was determined on the 

ionomer “Ekoniks Expert 001” with a glass composite pH electrode by CJSC “Akvilon” (Moscow, Russia), calibrated using 165 

buffer solutions ISO 8.135-74 (techniques as per Dickson et al., 2007). Analysis of AT was conducted by direct titration 

(Bruevich, 1944) with a visual determination of the titration end point. This method, developed in the 1930s, shows very good 

correlation (Pavlova et al., 2008) with other methods of AT determination (Dickson et al., 2003; Edmond, 1970; Dickson and 

Goyet, 1994). 

 170 

 Data from the V. I. Il’ichev Pacific Oceanological Institute (Table 1, dataset no. 17, not publicly available) were produced 

using an indicator titration method in which 25 mL of seawater were titrated for AT with 0.02M HCl in an open cell (Bruevich, 

1944; Pavlova et al., 2008), and a potentiometric method was applied to determine pH on the Pitzer pH scale (Pitzer and Press, 

1991) using a closed cell held at constant 20 °C temperature with a sodium and hydrogen glass electrode pair without liquid 

junctions (Tishchenko et al., 2001; Tishchenko et al., 2011). AT measurements were performed with a precision of ~2 μmol 175 

kg-1 with the accuracy set by calibration against Dickson CRMs (Scripps Institution of Oceanography). A TRIS–TRIS–HCl–

NaCl–H2O buffer solution (Tishchenko et al., 2001; Tishchenko et al., 2011) was used for calibrations on the Pitzer pH scale. 

Both the hydrogen glass electrode and the sodium glass electrode were calibrated using this buffer. Together with 

thermodynamic data (Dickson, 1990), the pH values were converted from the Pitzer pH scale to the total hydrogen ion 

concentration scale (pHT) (Tishchenko et al., 2001; Tishchenko et al., 2011; Dickson et al., 2007). The precision of pH 180 

measurements was about 0.004 pH units, with the accuracy set by calibration against buffer solution on the Pitzer pH scale. 

 

Data from the Climate Change Initiative Sea Surface Temperature (CCI SST) Level 4 Analysis Climate Data Record (Table 

1, dataset no. 18), produced by merging observations from satellite instruments NOAA Advanced Very High Resolution 

Radiometer (AVHRR) and ESA Along Track Scanning Radiometer (ATSR) using a data assimilation scheme, provide gap-185 

free global daily fields of sea surface temperature (SST) at 0.2 m depth on a global 0.05° grid (Good et al., 2019; Merchant et 

al., 2019). We used the Version 2.1 dataset produced as part of the European Space Agency (ESA) Climate Change Initiative 

Sea Surface Temperature project from 1981 to 2016 and the complementary Version 2.0 dataset from the Copernicus Climate 

Change Service (C3S) from 2017 to 2020.  

 190 

Data from the Climate Change Initiative Sea Surface Salinity (CCI SSS) Level 4 Analysis (Table 1, dataset no.19), produced 

by merging observations from satellite instruments ESA Soil Moisture and Ocean Salinity (SMOS) (January 2010–November 

2019), NASA Aquarius (August 2011–June 2015) and NASA Soil Moisture Active Passive (SMAP) (April 2015–November 

2019) using optimal interpolation, provide gap-free weekly maps of sea surface salinity (SSS) on a global 25 km EASE grid 

(Boutin et al., 2020; Boutin et al., 2021). We used the Version 2.31 dataset produced as part of the European Space Agency 195 

(ESA) Climate Change Initiative Sea Surface Salinity project from 2011 to 2019. Comparisons of the weekly Level 4 product 
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against Argo floats over the whole period and at global scale show a satellite – in situ bias of 0.0 and an RMSD of 0.28, while 

comparisons against thermosalinograph (TSG) measurements show a bias of -0.01 and an RMSD of 0.49. Under optimal 

conditions (Rain Rate=0 mm h-1, 3 < 10 m wind speed < 12 m s-1, SST > 5°C, > 800 km from coast), the bias and RMSD are 

respectively 0.0 and 0.17 against Argo floats, and 0.0 and 0.18 against TSG (Boutin et al., 2021). 200 

 

Data from the Arctic Sea Surface Salinity Level 3 composites (Table 1, dataset no 20), obtained from the Barcelona Expert 

Center (BEC, http://bec.icm.csic.es/), provide a daily weighted average of SMOS SSS in all overpasses over a 9-day period 

on a 25 km EASE grid centred on the north pole (Bec, 2021). We used the Version 3.1 dataset from 2011 to 2019. Comparisons 

against Argo floats for the complete period show a bias of 0.02 and a RMSD of 0.39 (Olmedo et al., 2018). 205 

 

Data from the SMAP Sea Surface Salinity Level 3 composites (Table 1, dataset no 21), produced by Remote Sensing Systems 

(RSS), provide a daily average of SMAP SSS in all overpasses over an 8-day period on a global 0.25° grid (Remote Sensing 

Systems, 2019; Meissner and Wentz, 2019). We used the Version 4.0 dataset from 2015 to 2021. 

 210 

Data from the Climate Change Initiative Ocean Colour (CCI OC) Level 3 binned (Table 1, dataset no 22), produced by merging 

observations from satellite instruments NASA SeaWiFS (September 1997 to December 2010), ESA MERIS (April 2002 to 

April 2012), NASA MODIS (July 2002 to present), NOAA/NASA VIIRS (2012 to present), and ESA Sentinel 3A OLCI (May 

2016 to present) using a blending method based on optical water type, provide Chl-a on a global 1/24° grid (Sathyendranath 

et al., 2019; Sathyendranath et al., 2021). We used the Version 4.0 (1997-2019) and Version 5.0 (2019-2020) datasets produced 215 

as part of the ESA Climate Change Initiative Ocean Colour project. Comparisons against in situ measurements show a global 

mean bias in log10(Chl-a) of −0.04 and RMSD of 0.34 (Sathyendranath et al., 2019). 

 
Data from the NOAA Level 4 Analysis Climate Data Record (Table 1, dataset no. 23), produced by merging AVHRR satellite 

data with measurements from ships, buoys and Argo floats using an optimal interpolation scheme, provide gap-free global 220 

daily SST on a global 0.25° grid (Huang et al., 2021; Banzon et al., 2016; Reynolds et al., 2007). We used the Version 2.0 

dataset from September 1981 to December 2019, and Version 2.1 for 2020. As the analysis uses both night and day 

observations, it cannot be considered as foundation sea surface temperature and includes some diurnal warming effects. 

 

Data from the Coriolis Ocean Dataset for Reanalysis (CORA) dataset (Table 1, dataset no. 24), produced from the merging of 225 

many different sources collected by Coriolis data centre in collaboration with the In Situ Thematic Centre of the Copernicus 

Marine Service (CMEMS INSTAC), acquired both by autonomous platforms (Argo profilers, fixed moorings , gliders , 

drifters, sea mammals) , research or opportunity vessels (CTDs, XBTs, ferrybox), provide monthly temperature and salinity 

on a global 0.5° grid (Szekely et al., 2019). CORA is a 4-dimensional dataset and we used only the temperature and salinity 

from the first level (1 m depth). We used the Version 5.2 dataset from 1990 to 2019. 230 

https://doi.org/10.5194/essd-2022-129
Preprint. Discussion started: 27 July 2022
c© Author(s) 2022. CC BY 4.0 License.



8 
 

 

Data from the In Situ Analysis System (ISAS) dataset (Table 1, dataset no. 25), produced from the merging of the Argo network 

of profiling floats and other in situ sources using an optimal interpolation scheme, provide monthly temperature and salinity 

on a global 0.5° grid at several standard depth levels (Kolodziejczyk et al., 2021; Gaillard et al., 2016). We used only the 

salinity from the first level (1 meter depth). We used the ISAS15 v7 dataset from 2002 to 2015 and ISAS20_ARGO v7 (Argo 235 

floats only) from 2016 to 2020. 
 

Data from the OceanSODA-ETHZ dataset (Table 1, dataset no. 26), produced by ETH Zurich from surface ocean observations 

(SOCAT, GLODAP), using the newly developed Geospatial Random Cluster Ensemble Regression (GRaCER) method, 

provide monthly CT, AT, pCO2w and pH on a global 1° grid (Gregor and Gruber, 2021). We used the CT, AT, pCO2w, pH, 240 

temperature, salinity variables provided in the v2020b dataset from 1990 to 2018. For the open ocean, the estimated pCO2w 

and AT show global near-zero biases and root mean squared errors of 12 µatm and 13 µmol kg−1, respectively. Taking into 

account also the measurement and representation errors, the total uncertainty increases to 14 µatm and 21 µmol kg−1, 

respectively. Comparisons against direct observations from GLODAP show surface ocean pH and CT global biases of near 

zero and root mean squared errors of 0.023 and 16 µmol kg−1, respectively (Gregor and Gruber, 2021). 245 
 

Data from the Copernicus Marine Service (CMEMS) Global Ocean Surface Carbon dataset (Table 1, dataset no. 27) is a 

reconstruction of monthly surface ocean pCO2w, air-sea fluxes of CO2 and pH with associated uncertainties on a global 1° grid. 

The product is obtained from an ensemble-based forward feed neural network, mapping SOCAT in situ surface ocean fugacity, 

salinity, temperature, sea surface height, Chl-a, mixed layer depth and atmospheric CO2 mole fraction. Surface ocean pH on 250 

the total scale is computed from pCO2w and reconstructed AT using the CO2sys speciation software. We used pCO2w and pH 

from the CMEMS MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008 dataset (Chau et al., 2020), from 1990 to 

2019. Comparisons of pCO2w against SOCATv2021 show an absolute bias of 1.15 Pa and a RMSD of 1.86 Pa in the global 

open ocean. Comparisons of pH against data from GLODAPv2.2021 bottle data show an absolute bias of 0.017 and RMSD of 

0.03 in the global open ocean. 255 

 

3 Methodology 

3.1 Pre-processing 

Before grouping in situ data into ROIs, the different in situ datasets must first be merged into a single collated dataset and 

sorted into date order. The largest in situ dataset (SOCAT) is first divided into yearly subsets. If the number of stations (unique 260 

sampling locations and times) in a year exceeds a threshold of 105, it is subdivided into monthly subsets, and if a month exceeds 

105 stations, it is further subdivided into daily subsets. Each subset is then sorted, first by date and time, then by latitude and 
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finally by longitude. Each station is labelled with its data source and version (in this case SOCATv2020), its estimated 

uncertainty and QC flag, if available. For most datasets the latter is a World Ocean Circulation Experiment (WOCE) flag, but 

in the case of SOCAT this is always 2, so the QC flag is a classification A (the best) to D (the worst included in the final 265 

SOCAT product), see Lauvset et al. (2018) for details. The next dataset (LDEO) is then similarly subdivided, sorted and then 

merged into the first to form a single dataset, continuing to subdivide where a yearly or monthly subset expands beyond 105 

data points. SOCAT and LDEO have many measurements in common, and in case of matching stations (defined by a separation 

< 1 km and < 30 s), the LDEO station is discarded. This completes the main global pCO2w datasets. The next dataset to be 

merged is GLODAP, the main global AT, CT and pH dataset, using only stations with sampling depth less than 10 m. Further 270 

variables from GLODAP that have been included in the MDB are pH at 25°C, dissolved oxygen, apparent oxygen utilization, 

nitrate, nitrite, silicate, phosphate, total and dissolved organic carbon and nitrogen and Chl-a. Again, the WOCE flag is always 

set to 2 in GLODAP, so in this case the QC flag is a classification indicating whether secondary QC has been performed on 

the data (1.0) or not (0.0). All other datasets use the WOCE flag where available, quoted as an integer, so the three types of 

QC flag can be distinguished. All other in situ datasets are then merged in the same way, discarding pCO2w measurements if 275 

they match spatiotemporally with SOCAT or LDEO measurements already in the dataset, and AT, CT or pH measurements if 

they match with GLODAP measurements. 

 

Next, ancillary data are added to each station in the collated dataset. The distance from the nearest coast is spatially interpolated 

from https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/, and where not included in the original data, water depth is spatially 280 

interpolated from https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2019/gebco_2019_info.html. 

Climatological optimally interpolated T, S, nitrate, phosphate, silicate and dissolved oxygen and their standard deviations are 

all interpolated spatially and temporally from https://www.nodc.noaa.gov/OC5/woa18/woa18data.html. Wherever a station 

contains in situ AT, CT, T and S measurements, these are used to solve the carbonate system and provide estimates of pCO2w, 

pH, ΩA and ΩC with Monte Carlo uncertainty estimates. These are estimated as their mean and standard deviation from 100 285 

runs of the SeaCarb package (version 3.2.12) with AT and CT values taken from a Gaussian distribution with mean and standard 

deviation equal to the measured value and its estimated uncertainty. In each run, the following SeaCarb options are also selected 

randomly from those with ranges of validity of temperature and salinity appropriate to the given data point, hence including 

the component of uncertainty arising from these choices: 

k1k2 is selected from ‘m10’, ‘m06’, ‘l’ and ‘r’; 290 

kf is selected from ‘dg’ and ‘pf’; 

ks is selected from ‘d’ and ‘k’; 

b is selected from ‘l10’ and ‘u74’. 

 

3.2 Creating the radial in situ data 295 
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The next step is to group stations into cylindrical spatiotemporal ROIs, each of which consists of a circle on the Earth’s surface 

(all points with a great circle distance from the centre less than a given radius, assuming a spherical Earth) between two dates 

and times. For the global MDB, the ROIs are restricted to a maximum radius of 50 km (diameter 100 km) and a maximum 

temporal extent of 10 days. These limits are adjustable, e. g. smaller values might be more appropriate in a regional dataset 

with high spatiotemporal variability. A ROI is the smallest spatiotemporal cylinder that can contain all of its associated in situ 300 

stations. The procedure is as follows: 

1. Define the first ROI centred on and containing the first station. A ROI containing a single station is infinitesimally 

small. Add the new ROI to a ‘regions’ list. 

2. Select the next station. If any ROIs in the regions list are more than 15 days older than the new station, they cannot 

interact with a ROI to which the new station (or any subsequent station) is added, hence they can be stored and 305 

removed from the regions list. 

3. Try to add the new station to each ROI in the regions list in turn, starting with the most recent. 

3a. If the new station is already within the ROI limits, add the station to the ROI and continue from step 2. 

               3b. If the ROI can be expanded to contain the new station without exceeding the size limits, create a copy of 

the ROI, expand it enough to add the station and add it to a list of ‘found’ ROIs for this station. 310 

4. If the found list is not empty, check whether each found ROI overlaps with others in the regions list. If so, remove it 

from the found list. 

5. If the found list is still not empty, add the new station to the found ROI that moved least relative to the limits, e. g. if 

a ROI moved temporally by 5 days or spatially by 50 km, the relative distance would be 0.5. Replace the original 

ROI in the regions list with the expanded ROI and continue from step 2. 315 

6. Add a new ROI centred on the new station to the regions list and continue from step 2. 

 

When a ROI is stored, the following summary statistics of each value contained in the ROI are calculated: number of 

measurements; minimum; maximum; mean; median; sample standard deviation and interquartile range. This includes 

uncertainty estimates, hence as well as the variability between measurements in a ROI, we also calculate statistics of the 320 

estimated measurement uncertainty associated with each measurement. The mean of pH variables is calculated geometrically, 

i. e. from the mean of [H+], but it should be noted that the standard deviation is that of pH, not of [H+]. In addition to pCO2w 

treated normally, a further dataset is processed consisting of pCO2w corrected at each measurement to the mean SST of the 

ROI using 

pCO2w at SSTROI = (pCO2w at SST) exp[0.0433(SSTROI – SST) – 4.35x10-5(SSTROI2 – SST2)] (Takahashi et al., 2009). All data 325 

sources of each measurement type in the ROI are listed along with the number of measurements contributed by each source, 

e. g. a ROI might contain 10 pCO2w measurements from SOCAT and one from LDEO. ROIs are stored in NetCDF files using 

the trajectory format for ungridded data. 
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Sequential processing of all in situ data is a major task that would take several weeks to complete on a normal personal 330 

computer, a situation that is likely to worsen as data volume continues to increase. To speed up processing, we initiated ROI 

definition from different times. A start year and month is specified, and ROIs are defined using only in situ data starting from 

that time. In this way, the task can be divided into parallel processing streams. Initial ROI definitions in each stream are in 

general different from those that would be generated sequentially from the start, so care must be taken in combining ROIs 

generated from different start times. The approach we have adopted is to allow processing from an earlier start time to continue 335 

past the start time of the next processing stream, creating two concurrent ROI sets covering the same time period. The 

concurrent period is inspected for sequences of ROIs that are identical in the two sets of results. If such a sequence is more 

than 10 days long, ROIs from the earlier stream before the identical sequence cannot overlap with those from the later stream 

after the identical sequence, and so it is safe to merge the streams. If an identical sequence more than 10 days long cannot be 

found, ROIs from the earlier stream before the longest identical sequence can be compared individually with those from the 340 

later stream after the identical sequence to ensure that none overlap. The merged data are stored in yearly netCDF files. 

 

3.3 Creating the OceanSODA-MDB matchup database 

Felyx is a tool created to extract data from along-track, swath or gridded datasets such as Earth Observation (EO) data over 

defined ROIs (https://felyx.gitlab-pages.ifremer.fr/felyx_docs/). Felyx is a free software solution, written in python, the aim of 345 

which is to provide Earth Observation data producers and users with an open-source, flexible and reusable tool to allow 

scientific analysis and performance monitoring of scientific data through subsetting over specific areas or matching up with in 

situ measurements. The development of felyx is supported by Copernicus, the European Union’s Earth observation programme. 

 

Felyx is used in this context to extract EO, model, climatology and re-analysis data within maximum-sized ROIs centred on 350 

the in situ ROIs. Given the time and location of a ROI, felyx is able, for each EO data source, to extract observation subsets 

within a 50 km radius and +/-5 days from the ROI’s centre time and location (Fig. 18). 

Hence matchup data are all extracted over the same size regions centred on matching in situ data. This methodology ensures 

that all data being compared (e. g. satellite and in situ observations) are treated as consistently and equally as possible, allowing 

all uncertainties in all observations to be included within the analysis. The resultant radial matchup data (the output from the 355 

felyx system) are stored in the same NetCDF files used for the in situ data. For each averaged parameter, the mean, median, 

standard deviation, minimum, maximum, interquartile range and sample count of the observations found within the ROI’s 

search area and time frame are calculated and provided. Finally, the output files are enriched with metadata for traceability, 

compliance to the Climate & Forecast Convention and self-description of the content, and the units are harmonized across the 

different in situ and earth observation sources. 360 
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4 Data overview 

The collated input dataset contains 34,912,843 individual stations, of which 34,839,413 (99.8%) contain pCO2w, 24,474 

(0.07%) contain AT, 27,032 (0.08%) contain CT and 21,924 (0.06%) contain pH (note that stations may contain more than one 365 

carbonate system parameter). Based on the ROI definition of 100 km radius and 10 days duration, this collated dataset resulted 

in 285,822 ROIs, of which 272,753 (95.4%) contain pCO2w, 13.595 (4.8%) contain AT, 15,041 (5.3%) contain CT and 19,613 

(6.9%) contain pH. Dates range from 1957 (pCO2w) to December 2020 (pH), with steep increases in the number of 

measurements in the 1990s and further increases in pCO2w measurements in the early 2000s and in pH measurements in the 

2010s, the latter associated with the recent development of autonomous pH sensors such as Bio-ARGO (Fig. 1, note the 370 

logarithmic scale). The recent reduction in AT and CT measurements may be associated with the situation that, unlike pCO2w 

and pH, all AT and CT measurements in the dataset are performed in the laboratory, resulting in a delay in data submission. 

There may also be a reduction in support for core laboratory measurements as new autonomous measurements become 

available, although some will still be necessary for validating and calibrating autonomous sensors. 

 375 

The total number of measurements is not necessarily a good indication of representativity, especially with the advent of flow-

through pCO2w instruments which can collect many measurements spanning a small spatiotemporal range. In this respect, the 

number of ROIs is a better guide. Fig. 2 (note the linear scale) shows the number of ROIs per year and the mean number of 

measurements per ROI, which is typically around 2 except in the case of pCO2w, for which it increases from around 10 in the 

1980s to over 200 in 2019. Since the advent of Bio-ARGO, which typically delivers one surface pH measurement per ROI, 380 

the mean number of pH measurements per ROI has decreased, and this is likely to continue as the number of Bio-ARGO floats 

increases. 

 

Figures 3 to 6 show the mean, standard deviation (where a ROI contains more than one measurement) and number of 

measurements in each ROI over the whole dataset. Note that the standard deviation is only over a 10-day period, and so does 385 

not show variability on longer timescales, such as seasonality or interannual variability. Note also that these plots include 

~270,000 points in the case of pCO2w and more recent measurements overlay older ones, so specific features seen in these 

plots should be checked in more detail. Variability is greatest in coastal regions and in parts of the Arctic, e. g. the Beaufort, 

East Siberian and Laptev seas and between Greenland and Svalbard. 

 390 

Figures 7 to 10 show the mean in each ROI divided into seasons. Strong pCO2w seasonality is evident in the northern 

hemisphere, with high values in the northern Pacific and Atlantic in Jan-Mar and in the subtropics in Jul-Sep. Seasonality is 

less clear in CT and pH, which may be due to the lower data density. This may also be due to the relatively smaller amplitude 

of seasonal changes with respect to the mean, e. g. in (Kitidis et al., 2017) a 6% increase in pCO2w results in a 0.7% increase 
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in CT and 0.3% decrease in pH over 19 years. We would only expect strong seasonality in AT where there are large seasonal 395 

variations in salinity or strong terrestrial influence. 

 

Figures 11 to 14 show the mean in each ROI divided into decades. As well as the increases in data density, the increase in 

pCO2w with time is clearly visible. The recent Bio-ARGO measurements can clearly be seen as a ‘speckle’ pattern in the 

Southern Ocean in 2010-2020 pH. 400 

5 Example application 

To illustrate the use of the MDB , we present a reparameterization of the Takahashi et al., (2014) (T14) global algorithm for 

potential alkalinity (PA), which is equal to AT plus nitrate. For this we use in situ AT and SSS and WOA monthly climatological 

nitrate, since this is what would be needed to produce synoptic maps of AT, e. g. from satellite or model SSS. The T14 algorithm 

is clearly not intended for application to extreme coastal waters, of which there are many in the MDB, and algorithm 405 

uncertainties are expected to increase if we include waters with coastal or benthic influence, but T14 offer no criteria to 

distinguish these. Sasse et al., (2013) presented their own algorithms for AT and CT, and they used the criteria that waters 

should be considered free from coastal influence (‘marine’) if greater than 300 km from the nearest shore with water depth 

greater than 500 m. These thresholds are global and likely to be over-conservative in many regions. Here we adapt these 

criteria, aiming for a marine definition that is as inclusive as possible while not significantly compromising the fit found in 410 

highly marine waters, and providing a separate fit for the remaining coastal waters. 

 

The T14 regions we use are shown in Fig. 15 and mapped on a 1° grid in Supplementary Data. We have eliminated overlaps 

in the original T14 regions, adjusted some boundaries to align more closely with geographical boundaries and added the 

western and eastern basins of the Mediterranean Sea. In each region, we divided the data into marine and coastal domains, 415 

initially defining marine as having distance from the nearest shore greater than D = 300 km and water depth greater than Z = 

500 m. The data in each domain were divided into up to 10 subsets for cross validation using the following methodology. If 

the number of marine data in a region is less than 10, the (up to) 10 points with greatest min(distance from coast / D, water 

depth / Z) are defined as marine, and D and Z decreased by the minimum required to ensure that the new marine data meet the 

marine definition. The data are divided into years, with the time series from HOT and BATS being labelled as ‘year’ 0 and 1, 420 

respectively. If this results in more than 10 subsets, the subsets with lowest occupancy are combined, with the proviso that 

adjacent years cannot share the same subset. This prevents early years, which tend to have lower data density, from all being 

combined into a single subset. This continues until the number of subsets is reduced to 10. If the number of yearly subsets is 

less than 10, each data point is given its own subset unless this results in more than 10 subsets, in which case data are assigned 

randomly to 10 subsets with as equal data numbers as possible. If the final number of subsets is less than five, fitting is not 425 
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attempted. If fitting occurs in one domain but not the other, the fit parameters are applied to the other domain (shown as 

brackets in Table 2). 

 

Error analysis is done using cross validation, training the T14 relationship PA = A SSS + B on all but one of the subsets using 

single value decomposition linear regression, then the error (difference between the resulting fit and the data) at each point of 430 

the remaining validation subset is recorded. This process is repeated using a different validation subset each time, giving an 

error for every data point. These errors are used to calculate the following summary statistics: root mean squared error (RMSE); 

mean absolute error (MAE); median absolute error (MDE); mean and median error (both measures of bias). 

 

To check whether the marine definition was over-conservative, we first defined an acceptable level of degradation in marine 435 

RMSE (RMSEm) in exchange for an expansion of the marine domain, RMSEmax = max(RMSEm + 0.1, RMSEm * 1.01). We 

then repeated the following procedure iteratively. We sorted the coastal data by either distance from coast or water depth, then 

converted the points with maximum distance or depth to marine if their absolute error was not greater than RMSEm, meaning 

that the addition of the points would not increase RMSEm. D and Z were adjusted if necessary to ensure that the new marine 

data obeyed the marine criteria, and marine and coastal fits and statistics were recalculated. If the resulting marine RMSE was 440 

less than the lowest RMSEm found so far, RMSEmax was recalculated. Next, we tried going beyond the coastal data with 

absolute error greater than RMSEm, continuing to lower distance or depth until the absolute error again exceeded RMSEm, but 

with opposite sign. Adjusted fits were calculated separately for adjustments of distance and depth, and for both combined, and 

the new fit with lowest marine RMSE was accepted if the marine RMSE was no more than RMSEmax, again adjusting D and 

Z and recalculating RMSEmax if necessary. This procedure was repeated until it resulted in no change from coastal to marine. 445 

 

Results are shown in Tables 2 and 3. Table 2 shows the region names, the RMSE of the original T14 and reparameterised 

algorithms in the marine and coastal domains, and the root mean squared difference (RMSdif) between the T14 and new 

algorithms, a measure of the extent to which results have changed due to the reparameterization. Note that the RMSE of the 

original algorithm includes data used by T14 in the original fit and so may be an underestimate, while that of the new algorithm 450 

is calculated using cross validation. This can result in the new RMSE being greater than the T14 RMSE despite the refitting. 

Table 3 gives details of the algorithms, including the thresholds of distance from coast and water depth used to define the 

marine domain and the slope and intercept in each region and domain. Globally, the marine RMSE was reduced from 15 µmol 

kg-1 (likely to be an underestimate, see above) using the original T14 algorithm to 12 µmol kg-1, while in coastal waters the 

RMSE was reduced from 32 to 23 µmol kg-1 using only data for which T14 makes a prediction, but reduced further to 22 µmol 455 

kg-1 when using all data. 

 

The greatest marine RMSdif (49 µmol kg-1) occurred in T14 region 3 (High Arctic), and the next greatest (20 and 18 µmol kg-

1) in regions 1 and 4 (West GIN Seas and Beaufort Sea), all other regions having marine RMSdif less than 11 µmol kg-1. Note 
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that in some cases the coastal RMSdif is less than the marine RMSdif, suggesting that the T14 fit was dominated in these 460 

regions by data that we classify as coastal. The fits in regions 1 to 4 are shown in Fig. 16. In region 1 the tightly linear data 

used by T14 are not present in the MDB, and the few data that are consistent with the T14 relationship are all coastal, while 

the rest of the data (marine and coastal) follow similar relationships to those in region 2 (T14 Fig. 3 West and East GIN Sea). 

The data in region 3 are mostly marine, and while the data used by T14 mostly follow a relationship also seen in some of the 

MDB data, most of the MDB data follow another relationship, barely seen in the T14 data and consistent with the relationships 465 

seen in region 2 (T14 Fig. 3 High Arctic and East GIN Sea). In region 4, the T14 and reparameterised relationships are quite 

consistent with each other, the large RMSdif being mainly due to the large variability in this region. T14 also note that some 

of their region 1 data follow the region 2 relationship, which they ascribe to eddies from region 2. One explanation might be 

that these eddies have become more frequent since the data used by T14, another that the water mass corresponding to region 

2 (Atlantic waters flowing north into the Arctic) has expanded west into region 1 and north into region 3. To test this, Fig. 17 470 

shows a map of regions 1, 2 and 3 with data points coloured red, green and blue in proportion to the probability density of a 

Gaussian distribution with mean and standard deviation equal to the T14 prediction and its RMSE in T14 regions 1, 2 and 3, 

respectively. Hence a red point would be consistent with the T14 region 1 prediction and inconsistent with those of regions 2 

and 3, a white point would be consistent with all three predictions and a black point would be inconsistent with all three. This 

map indicates that only a narrow strip close to the Greenland coast follows the T14 region 1 relationship, the rest being more 475 

consistent with region 2, that the region 2 relationship remains more plausible than the region 3 relationship up to about 86° 

N, and that the region 3 relationship performs poorly in the Beaufort Sea sector between 130 and 180° W. 

 

This exercise has shown success in improving the fit of T14, incorporating new data, clarifying the distinction between marine 

and coastal domains and providing an optimal fit in marine areas and a generally poorer fit in coastal areas, with estimated 480 

uncertainties. 

6 Discussion 

In order to stay relevant, the MDB must be regularly updated. Updates to the MDB can be made by adding new data to the 

existing ROIs, only creating new ROIs where necessary. This enables the MDB to be updated much more quickly and easily 

that recalculating all ROIs from the beginning. As well as inclusion of new data, this process allows updating of data already 485 

in the MDB, e. g. if an existing dataset is reprocessed. The scale of the ROIs (100 km diameter, 10 days duration) is adjustable 

and regional MDBs may be created on smaller spatiotemporal scales in regions where this scale is inappropriate. This MDB 

is focused on the surface carbonate system and only ROIs containing carbonate system variables are included, but the same 

methodology can be used to create MDBs for other parameters of interest, such as methane or dimethyl sulphide or an MDB 

based purely on a single parameter like salinity, or SST. 490 
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It should be borne in mind that oceanic processes can have strong effects on smaller scales than the MDB, for instance a 

growing phytoplankton bloom might significantly change surface pCO2w over a 10-day period. These effects are potentially 

detectable in the MDB through e. g. the standard deviation of pCO2w, but in general will be masked by the averaging inherent 

in the MDB method (the same is true for any gridding or averaging approach). Other effects such as surface temperature 495 

gradients affecting pCO2w (Woolf et al., 2016) will be similarly masked by averaging over the top 10 m within the current 

MDB. The MDB approach might be inappropriate if the subject of study is highly dependent on sub-ROI effects, such as a 

study of the depth variation of pCO2w in the surface layer, and in such cases it would be better to use individual measurements. 

It should also be borne in mind that averaging will not remove biases (e. g. regional or seasonal) from the in situ data, though 

it will reduce stochastic noise. 500 

 

The reparameterisation described in Section 5, though successful, could have been done with the original AT measurements 

from the original sources, probably with similar results, because the data density of AT measurements is typically low. Over 

50% of MDB regions with AT contain only one AT measurement, and only 1% contain 10 or more. The real distinction between 

the MDB approach and use of individual data points comes when comparing data with very high and low densities, which are 505 

more likely to be found in parameters that can be measured at high frequency, such as pCO2w. To illustrate, consider the 

hypothetical example of a little-studied sea to which we wish to apply a simple model of constant pCO2w. We have data from 

two cruises, one in winter making a transect of 10 discrete samples and the other in summer with an underway system making 

a transect of 1000 samples. The actual pCO2w has a mean of 400 µatm, but with a seasonal cycle from 375 to 425 µatm not 

accounted for by our simple model. If the 10 winter measurements average to 375 µatm and the 1000 summer measurements 510 

to 425 µatm, simple averaging of all data gives an estimate of just under 425 µatm, while if the 1000 samples are binned into 

10 regions of 100 measurements each, the correct average is found. Although this example is unrealistic, it is representative of 

the problems that can occur when fitting models to unevenly distributed data. The models are more complex and the deviations 

less obvious, but if there are systematic effects not captured by the model and the data density is greater towards one side of 

the distribution of these effects, then the model becomes biased. The best way to overcome this is to identify the biasing effects 515 

and account for them (e. g. a seasonal split in the example), but some will always remain. The MDB approach lessens the 

effect of unaccounted biases by evening out differences in data density as consistently as possible. 

7 Data availability 

All data are freely available on the IFREMER data repository, 

https://data-cersat.ifremer.fr/data/ocean-carbonate/oceansoda-mmdb/ 520 
 
DOI: 10.12770/0dc16d62-05f6-4bbe-9dc4-6d47825a5931 (Land and Piollé, 2022) 
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8 Code availability 

Code will be made available by the authors on reasonable request. 

9 Conclusions 525 

Here we present a global dataset created using a novel methodology for combining different dataset types (e. g. in situ, model, 

satellite) onto the same spatial and temporal scales using ‘regions of interest’ (ROIs). This method gives advantages over 

previous methods, which predominantly grid data by latitude and longitude, as it provides a uniform spatiotemporal resolution 

across the globe and minimises biases created by differences in data density. We have collated a large global dataset comprised 

primarily of publicly available in situ, satellite and climatological data, processed it using this methodology and presented 530 

summary statistics describing the results. The resulting matchup database (OceanSODA-MDB) is suitable for reparameterising 

empirical algorithms, as demonstrated here, but would also enable validation, evaluation and performance assessment of 

satellite data, re-analysis or model datasets, as well as model-data intercomparisons, by simply adding these data into the 

existing MDB. 
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No. Parameters Type Dataset source/ name (version) Time period Region 
(resolution) References 

1 pCO2w, SST, SST In situ data SOCAT (2020)  1957 - 2020 Global (Bakker et al., 2016) 

2 pCO2w, SST, SST In situ data LDEO (2019) 1957-2019 Global (Takahashi et al., 2020) 

3 AT, CT, pH, SSS, SST, 
N, P, Si, DO In situ data GLODAP (2.2020) 1972 - 2019 Global (Olsen et al., 2020; 

Olsen et al., 2016) 

4 pH, SSS, SST In situ data ARGO (downloaded 7th January 
2021) 2012-present Global (Claustre et al., 2020) 

5 AT, CT, SSS, SST In situ data OCADS 2003-2018 Atlantic/Pacific (Jiang et al., 2021) 

6 AT, CT, pH, pCO2w, 
SSS, SST, N, P, Si In situ data AMT 1995-2019 Atlantic (Kitidis et al., 2017) 

7 AT, CT, SSS, SST In situ data Arctic coastal data 2012–2014 Arctic Findlay, pers. comms. 

8 AT, CT, Chl-a, SSS, 
SST, DO, N In situ data 

Beaufort Gyre exploration project 
(Woods Hole Oceanographic 
Institution) 

2003- 2019 Arctic (Zhang et al., 2020) 

9 AT, CT, SSS, SST In situ data Mackenzie Shelf 2014 Arctic (Mol et al., 2018) 

10 AT, CT, SSS, SST In situ data CHO_OC~1 2010-2014 Arctic (Wisdom, 2014) 

11 AT, CT, SSS, SST In situ data EXPOCODE 33HQ20170826 2017 Arctic (Cross et al., 2020) 

12 AT, CT, SSS, SST In situ data HLY1103 2011 Arctic (Mathis et al., 2016a) 

13 AT, CT, SSS, SST In situ data 316n20090614 2009 Arctic (Cross et al., 2019) 

14 AT, CT, SSS, SST In situ data 33HQ20080703 2008 Arctic (Mathis et al., 2016c) 

15 AT, CT, SSS, SST In situ data 33HQ20080329 2008 Arctic (Mathis et al., 2016b) 

16 AT, CT, SSS, SST In situ data Kara Sea dataset  1993- 2004 Arctic (Wallhead et al., 2017) 

17 AT, CT, SSS, SST In situ data Eurasian Arctic Ocean 2006-2009 Arctic (Pipko et al., 2017) 

18 SST Satellite cci_sst (2.1) 1981-2020 Global 
(0.05° daily) 

(Good et al., 2019; 
Merchant et al., 2019) 
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19 SSS Satellite cci_sss (2.31) 2010-2019 Global 
(25km 7 day) 

(Boutin et al., 2021; 
Boutin et al., 2020) 

20 SSS Satellite arctic_sss (3.1) 2011-2019 Arctic 
(25km 9 day) 

(Martínez et al., 2020a; 
Martínez et al., 2020b) 

21 SSS Satellite remss_smap_sss (4.0) 2015-2021 Global 
(25km 8 day) 

(Remote Sensing 
Systems, 2019; 
Meissner and Wentz, 
2019) 

22 Chl-a Satellite cci_oc_chloro-a (5.0) 1997-2020 Global 
(1/24° daily) 

(Sathyendranath et al., 
2019; Sathyendranath 
et al., 2021) 

23 SST Satellite and in 
situ re-analysis noaa_sst (2.1) 1981-2021 Global 

(0.25° daily) (Huang et al., 2021) 

24 SST, SSS In situ re-
analysis 

cora_temperature, cora_salinity 
(5.2) 1950-2020 Global 

(0.5° monthly) (Szekely et al., 2019) 

25 SST, SSS In situ re-
analysis 

isas15_temperature, 
isas15_salinity (15) 2002-2015 Global 

(0.5° monthly) 

(Kolodziejczyk et al., 
2021; Gaillard et al., 
2016) 

26 AT, CT, pCO2w, pH, 
SST, SSS Calculated 

ethz_ta, ethz_dic, ethz_pco2, 
ethz_ph, ethz_temperature, 
ethz_salinity (2020b) 

1985-2020 Global 
(1° monthly) 

(Gregor and Gruber, 
2020; Gregor and 
Gruber, 2021) 

27 pCO2w, pH Calculated cmems_pco2, cmems_ph 
(015_008) 1985-2019 Global 

(1° monthly) (Chau et al., 2020) 

28 SST, SSS, DO, N, P, 
Si Climatology 

woa18_temperature, 
woa18_salinity, 
woa18_oxygen_o, 
woa18_nitrate_n, 
woa18_phosphate_p, 
woa18_silicate_i 

1955 - 2017 Global 
(1° monthly) 

(Locarnini et al., 2018; 
Zweng et al., 2019; 
Garcia et al., 2019a; 
Garcia et al., 2019b; 
Boyer et al., 2018) 

 

Table 1: Input data sources for various parameters (SST = sea surface temperature, SSS = sea surface salinity, 
Chl-a = chlorophyll a, DO = dissolved oxygen, N = nitrate, P = phosphate, Si = Silicate, AT = Total Alkalinity, 780 
CT = total dissolved inorganic carbon). Lines 1 to 17 are in situ datasets which are used to create the regions of 
interest, hence do not have unique dataset names. Lines 18 to 28 are generated using felyx, so each has a unique 
dataset name. 
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Region 

Quoted 
RMSE 

T14 

Marine Coastal 

RMSE T14 RMSE new RMSdif RMSE T14 RMSE new RMSdif 

1 West GIN Seas 6.1 21.0 6.5 20.1 46.6 23.6 40.9 

2 East GIN Seas 12.3 14.7 14.2 6.2 15.6 16.4 4.0 

3 High Arctic 16.8 56.5 30.1 48.6 40.6 32.9 31.9 

4 Beaufort Sea 60.5 34.4 29.9 18.4 69.0 57.0 42.0 

5 Labrador Sea 17.2 11.3 10.5 6.1 39.3 25.2 30.9 

6 Sub-Arctic Atlantic 6.7 6.9 6.4 2.9 53.3 29.2 47.5 

7 N. Atlantic Drift 6.5 7.9 7.8 2.2 48.5 43.5 25.4 

8 Central Atlantic 12.6 11.0 10.4 4.0 22.7 22.6 8.3 

9 S. Transition Zone 7.6 20.6 20.7 1.7 6.4 - 5.5 

10 Sub-Polar Transition - - 14.9 - - 23.9 - 

11 Antarctic (Atlantic) 5.4 9.4 8.8 4.1 8.9 9.4 1.6 

12 Kuroshio-Alaska Gyre 9 13.8 11.8 7.6 33.9 33.6 9.9 

13 N. Central Pacific 14.7 14.8 11.9 9.1 34.6 18.4 30.0 

14 Transition Zone - - 14.0 - - 11.8 - 

15 Okhotsk Sea 8.9 7.6 7.1 5.2 0.0 25.0 12.2 

16 Transition Zone - - 8.9 - - - - 

17 Central Tropical N. Pacific 8.9 8.4 7.6 3.7 9.4 9.8 1.4 

18 Tropical East N. Pacific 9.7 11.7 5.9 10.4 21.4 16.1 15.5 

19 Panama Basin 8.6 44.2 - - 21.4 - - 

20 Equatorial Pacific - - 11.5 - - 14.9 - 

21 Central South Pacific 9.4 12.1 12.5 1.5 7.7 - 3.8 

22 E. Central South Pacific 4 11.2 9.1 9.1 7.2 8.0 1.6 

23 Sub-Polar S. Pacific 7.8 8.3 8.2 3.2 4.1 - 2.1 

24 Sub-Polar Transition - - 12.2 - - - - 

25 Antarctic (Pacific) 6.7 12.8 9.9 10.9 11.9 8.2 10.1 

26 Main North Indian 6.7 13.3 13.7 1.9 16.7 17.6 2.9 

27 Red Sea 6.3 6.1 8.7 2.6 16.7 - 2.9 

28 Bengal Basin 10.7 8.0 7.5 5.4 0.0 14.9 14.5 

29 Main South Indian 7.6 8.0 8.1 1.5 9.5 10.1 2.2 

30 S. Indian Transition 5.5 8.6 8.2 3.7 10.4 10.6 1.2 

31 Sub-Polar Indian - - 7.1 - - 6.7 - 

32 Antarctic (Indian) 6.6 11.0 9.0 6.8 12.1 11.6 4.1 

33 Circumpolar Southern Ocean 9.1 8.2 3.7 7.9 12.1 - 4.1 

34 Western Mediterranean - - 14.6 - - - - 
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35 Eastern Mediterranean - - 8.3 - - 22.8 - 
Table 2: Quoted and calculated RMSE values in each region defined by Takahashi et al. (2014) (T14) 
partitioned into coastal and marine subregions (see Table 3 for definitions). Calculated values are for the 
original T14 coefficients (RMSE T14), the coefficients recalculated using the MDB with cross validation 
(RMSE new) and the RMS difference between the two over the MDB data (RMSdif). 
 790 

T14 T14 Distance Water marine coastal 
region Slope Intercept from coast depth Slope Intercept Slope Intercept 

1 14.12 1796.2 300 500 54.13 418.9 45.61 716.2 
2 59.57 232.0 251 207 58.92 248.5 55.04 390.1 
3 27.30 1340.7 93 0 42.45 838.6 44.17 753.5 
4 61.29 285.8 300 429 52.43 536.2 45.45 739.6 
5 37.27 1016.2 290 0 0.74 2278.1 47.55 649.9 
6 45.37 730.6 290 489 45.47 724.2 17.23 1710.1 
7 45.30 733.0 163 0 44.73 751.0 30.20 1266.9 
8 58.25 270.9 254 0 59.42 224.6 53.40 440.0 
9 30.27 1259.4 0 0 28.58 1315.8 - - 
10 - - 211 383 58.14 343.5 20.32 1622.9 
11 57.78 367.8 248 500 59.36 318.4 60.16 288.5 
12 44.88 724.8 298 0 40.14 891.2 48.16 627.0 
13 79.92 -395.7 263 0 60.61 246.4 54.48 444.9 
14 - - 272 0 29.71 1256.7 19.33 1609.5 
15 59.37 301.4 0 500 76.37 -257.8 (76.37) (-257.8) 
16 - - 0 0 42.05 824.1 - - 
17 65.55 9.4 180 0 63.09 91.4 67.28 -51.7 
18 82.20 -553.2 300 500 54.65 380.4 76.35 -340.9 
19 74.27 -290.5 0 0 - - - - 
20 - - 78 0 60.77 178.0 66.17 -9.7 
21 66.64 -28.4 0 0 64.18 58.9 - - 
22 58.88 268.5 300 500 51.86 519.0 56.23 358.8 
23 45.10 733.6 0 445 38.54 960.3 - - 
24 - - 0 0 -15.02 2812.9 - - 
25 81.69 -450.8 294 293 52.89 525.6 68.13 13.4 
26 57.07 302.3 224 0 56.73 312.4 58.06 269.8 
27 26.27 1417.2 0 0 25.64 1443.0 - - 
28 39.66 894.2 300 0 28.24 1271.4 (28.24) (1271.4) 
29 65.03 20.0 107 184 65.54 3.6 63.22 81.5 
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30 23.76 1486.1 300 0 28.40 1323.5 23.30 1500.7 
31 - - 193 0 5.54 2108.9 0.73 2279.8 
32 62.57 202.0 87 0 37.37 1047.8 62.13 212.8 
33 74.13 -192.3 0 0 63.82 166.2 - - 
34 - - 17 0 86.34 -745.6 - - 
35 - - 238 133 57.67 359.5 33.25 1317.6 

Table 3: Slope and intercept in each region defined by Takahashi et al. (2014) (T14). Original coefficients 
quoted by T14 are labelled T14, and reparametrized coefficients are given for coastal and marine subregions, 
where a point is marine if both distance from coast and water depth are greater than their regional thresholds. 
 

  

  
Year Year 

 795 

Figure 1. Numbers of carbonate system measurements included in the database per year. (a) seawater pCO2, (b) total alkalinity (AT), 
(c) dissolved inorganic carbon (CT), and (d) pH. 

(b) AT (a) pCO2w 

(c) CT (d) pH 
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Year Year 

 

 
Figure 2. Numbers of ROIs per year (bars) included in the database containing measurements of each carbonate system parameter, 800 
and the mean number of measurements per ROI (lines), for (a) pCO2w, (b) total alkalinity (AT), (c) dissolved inorganic carbon (CT), 
and (d) pH. 

 

(a) pCO2w (b) AT 

(d) pH (c) CT 
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(a) pCO2w ROI mean (µatm) (b) pCO2w ROI standard deviation (µatm) 

 

 

 
 

(c) Number of pCO2w measurements in each ROI  

 
Figure 3. Statistics of pCO2w in each ROI over the whole database (272,753 ROIs). (a) ROI mean, (b) ROI Standard deviation, and 805 
(c) number of measurements in each ROI. 
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(a) AT ROI mean (µmol kg-1) (b) AT ROI standard deviation (µmol kg-1) 

 

 

 
 

(c) Number of AT measurements in each ROI  

Figure 4. Statistics of AT in each ROI over the whole database (13,595 ROIs). (a) ROI mean, (b) ROI Standard deviation, and (c) 
number of measurements in each ROI. 

 810 
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(a) CT ROI mean (µmol kg-1) (b) CT ROI standard deviation (µmol kg-1) 

 

 

 
 

(c) Number of CT measurements in each ROI  

Figure 5. Statistics of CT in each ROI over the whole database (15,041 ROIs). (a) ROI mean, (b) ROI Standard deviation, and (c) 
number of measurements in each ROI. 
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(a) pH ROI mean (total scale, p=0, T=25°C) (b) pH ROI standard deviation (total scale, p=0, T=25°C) 

 

 

 
 

(c) Number of pH measurements in each ROI  

Figure 6. Statistics of pH in each ROI over the whole database (19,613 ROIs). (a) ROI mean, (b) ROI Standard deviation, and (c) 
number of measurements in each ROI. 815 
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(a) Jan-Mar (b) Apr-Jun 

 

  

(c) Jul-Sep (d) Oct-Dec 

Figure 7. Mean pCO2w (µatm) divided into seasons. (a) January – March (70,658 ROIs); (b) April – June (67,631 ROIs); (c) July – 
September (69,083 ROIs); (d) October – December (65,381 ROIs). 

  

pCO2w ROI mean (µatm) 
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(a) Jan-Mar (b) Apr-Jun 

 

  

(c) Jul-Sep (d) Oct-Dec 

Figure 8. Mean AT (µmol kg-1) divided into seasons. (a) January – March (3602 ROIs); (b) April – June (3682 ROIs); (c) July – 820 
September (3960 ROIs); (d) October – December (2351 ROIs). 

  

AT ROI mean (µmol kg-1) 
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(a) Jan-Mar (b) Apr-Jun 

 

  

(c) Jul-Sep (d) Oct-Dec 

Figure 9. Mean CT (µmol kg-1) divided into seasons. (a) January – March (4029 ROIs); (b) April – June (4256 ROIs); (c) July – 
September (4197 ROIs); (d) October – December (2559 ROIs). 

  825 

CT ROI mean (µmol kg-1) 
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(a) Jan-Mar (b) Apr-Jun 

 

 

  

(c) Jul-Sep (d) Oct-Dec 

Figure 10. Mean pH (total scale, p=0, 25°C) divided into seasons. (a) January – March (5501 ROIs); (b) April – June (5386 ROIs); 
(c) July – September (4959 ROIs); (d) October – December (3767 ROIs). 

  

pH ROI mean (total scale, p=0, T=25°C) 
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 830 
Figure 11. Mean pCO2w (µatm) divided into decades: 1751 ROIs to 1969; 1636 in the 1970s; 9090 in the 1980s; 42,548 in the 1990s; 
97,313 in the 200s; 120,415 from 2010 to 2020. 
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Figure 12. Mean AT (µmol kg-1) divided into decades: 128 ROIs in the 1970s; 707 in the 1980s; 3923 in the 1990s; 5196 in the 2000s; 835 
3641 from 2010 to 2020. 

AT (µmol kg-1) 
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Figure 13. Mean CT (µmol kg-1) divided into decades: 123 ROIs in the 1970s; 971 in the 1980s; 4613 in the 1990s; 5672 in the 2000s; 
3662 from 2010 to 2020. 840 

CT (µmol kg-1) 
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Figure 14. Mean pH (total scale, p=0, 25°C) divided into decades: 120 ROIs in the 1970s; 672 in the 1980s; 3428 in the 1990s; 4632 
in the 2000s; 10,761 from 2010 to 2020.. 
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 845 
 

 
 
Figure 15. Regions used in reparameterization of Takahashi et al (2014). See Table 2 for region names. 
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(a) (b) 

  
(c) (d) 

Figure 16. PA-SSS relationships in the first four T14 regions, all in the Arctic. Orange data are classified as marine, 
based on the distance from the nearest coast in km and the depth in m both being greater than region-specific 
thresholds. All other data (in blue) are classified as coastal. The thick green line is the T14 relationship and the thin 
green lines show the T14 quoted RMSE. The red and purple lines are the new fits to marine and coastal data. (a) 
Region 1, West GIN Sea; (b) region 2, East GIN Sea; (c) region 3, High Arctic; (d) region 4, Beaufort Sea. 855 
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Figure 17. T14 regions 1 (West GIN Sea, bottom left), 2 (East GIN Sea, bottom right) and 3 (High Arctic, top) with 
corresponding MDB data. Each point is coloured according to the probability density of a Gaussian with mean equal 
to the T14 regression and standard deviation equal to its quoted RMSE, which is a measure of how consistent the 
data are with the T14 fit. The red component is the consistency with the region 1 fit, green with the region 2 fit and 860 
blue with the region 3 fit. 
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Figure 18: spatial colocation principle for Earth Observation data. All gridded observations within or intersecting a 
50 km radius from the ROI centre for all the consecutive files within +/- 5 days around the ROI centre time are 865 
averaged together. The mean and other statistics (median, standard deviation, minimum, maximum and interquartile 
range are also calculated and provided in the output matchup dataset. 
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