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Abstract. Fungi and bacteria are the two dominant groups of soil microbial communities worldwide. By controlling the turnover 

of soil organic matter, these organisms directly regulate the exchange of carbon between the soil and the atmosphere. Fundamental 

differences in the physiology and life history of bacteria and fungi suggest that variation in the biogeography of soil fungal and 

bacterial relative abundance could drive striking differences in carbon decomposition and soil organic matter formation across 

different biomes. However, a lack of global and predictive information on the distribution of these organisms in terrestrial 45 

ecosystems has prevented the inclusion of soil fungal and bacterial relative abundance and the associated processes into global 

biogeochemical models. Here, we used a global scale dataset in the top soil surface (>3000 distinct observations of soil fungal and 

bacterial abundance) to generate the first quantitative and spatially high resolution (1km) explicit map of soil fungal proportion, 

defined as fungi/fungi + bacteria, across terrestrial ecosystems. We reveal striking latitudinal trends where fungal dominance 

increases in cold and high latitude environments with large soil carbon stocks. There was strong non-linear response of fungal 50 

dominance to environmental gradient, i.e., mean annual temperature (MAT) and net primary productivity (NPP). Fungi and 

bacteria dominated in regions with low and high MAT and NPP, respectively, thus representing slow vs. fast soil energy channels, 

a concept with a long history in soil ecology. These high-resolution models provide the first steps towards representing the major 

soil microbial groups and their functional differences in global biogeochemical models to improve predictions of soil organic 

matter turnover under current and future climate scenarios. Raw datasets and global maps generated in this study are available at 55 

https://doi.org/10.6084/m9.figshare.19556419 (Yu, 2022). 

 

1. Introduction 

Fungi and bacteria are the dominant members of soil microbial communities worldwide in terms of diversity, abundance and 

biomass (Bahram et al., 2018). Representing distinct kingdoms of life, bacteria and fungi systematically differ in a multitude of 60 

physiological and life-history traits with direct implications for global soil biogeochemical cycles (Waring et al., 2013; Wieder et 

al., 2015) including the decomposition of organic matter, which contributes to one of the largest fluxes of CO2 on Earth (Glassman 

et al., 2018). Compared to bacteria, fungi generally have slower growth and turnover rates (Rousk and Bååth, 2007), greater carbon 

(C) to nutrient stoichiometry (Waring et al., 2013), greater capacity to degrade a wider and more recalcitrant range of substrates 

(Strickland and Rousk, 2010) and potentially higher C use efficiency (Soares and Rousk, 2019). For these reasons, a new generation 65 

of soil and ecosystem models have begun to explicitly represent these fundamentally distinct fast and slow cycling microbial 

groups, suggesting that spatially-explicit information about the relative abundance of fungal and bacteria in a region can 

dramatically improve the accuracy of global carbon cycling model predictions (Shi et al., 2018; Sulman et al., 2014; Wieder et al., 

2013, 2015). Generating an understanding of the factors affecting the biogeography of the relative abundance of fungal and bacteria 

in soil, and its connection to global carbon cycle, would represent a breakthrough step forward in our general understanding of the 70 

natural history of soil microbial life. 

        Temperature, precipitation, soil pH and soil C:N have all been linked to the balance of fungi vs. bacteria within soil 

communities across different spatial scales (Bahram et al., 2018; Strickland and Rousk, 2010; Tedersoo et al., 2014). Relative to 

fungi, bacteria tend to dominate in locations with high soil nutrient contents or in frequently disturbed soils that limit the growth 

of fungal hyphae or make N more available (Fierer et al., 2009; Van Der Heijden et al., 2008; Strickland and Rousk, 2010). 75 

However, until now, the relative importance of these different environmental drivers remains relatively unclear at global scale, 
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and the biogeography of these major functional groups (fungi vs. bacteria) has only been demonstrated at local and regional 

scales. A recent analysis suggested that the relative soil bacterial abundance is high in tropical latitudes and decreases in 

abundance towards the high-latitude boreal regions, where fungi tend to dominate (Bahram et al., 2018). Translating these broad-

scale trends into quantitative, spatially explicit information will be necessary if we intend to represent regional variations in soil 80 

community functioning (Wieder et al., 2013, 2015), or predict future changes in terrestrial carbon and nutrient cycling.  

       Some progress was made in the quantitative and spatially explicit understanding of global biogeographic patterns of fungal 

and bacterial biomass and their biomass ratio. By synthesizing phospholipid-derived fatty acids data from 1323 locations across 

the globe, and extrapolating linear relationships with environmental factors, a recent study generate the global maps of fungal 

and bacterial biomass and their biomass ratio at the resolution of 0.5 degree for top soil (0-30 cm) (He et al., 2020). This 85 

approach provided the support for the broad-scale latitudinal trends, with high fungal dominance in high-latitude regions. Yet to 

date, there are three crucial knowledge gaps to be addressed. First, we still lack a high resolution evaluation of the spatial 

patterns and regional contingencies in fungal:bacterial ratios, which would allow representation of microbial-mediated 

mechanisms that operate within and/or across ecosystems at fine scales (Frindte et al., 2019; Zhu et al., 2017). Second, the 

response of soil microbial community composition across environmental gradients are expected to be non-linear, with strong 90 

interactive effects of different environmental characteristics that give rise to thresholds that diverge from the global latitudinal 

trends (Sengupta et al., 2021; Wang et al., 2018; Waring et al., 2013). This non-linear linkage of soil microbial communities with 

environmental resource gradient has not been assessed, while it has fundamental implications on ecosystem functions and 

management solutions (Sengupta et al., 2021; Wang et al., 2018). Third, there are distinct difference of soil nutrients, soil 

microbial community and the associated biogeochemical processes across soil depths, i.e., from top surface soil (i.e., 0-10 cm) to 95 

top subsurface soil (i.e., 0-30 cm) (Lavahun et al., 1996; Yue et al., 2015). A continental-scale empirical study further showed 

that strong positive associations among soil microbial community, fertility and plant productivity are limited to the top surface 

soil (Delgado-Baquerizo et al., 2017), thus highlighting its potential dominant role regulated by top surface soil microbial 

communities on ecosystem functions and the research needs of generating a global spatially explicit understanding of soil fungi 

and bacteria in top surface soil. 100 

        Here, we present a global analysis of total and relative abundance of soil fungi and bacteria in soil surfaces (defined as top 

10-15 cm) informed from over 3000 spatially distinct surface soil observations from phospholipid-derived fatty acids (PLFA) 

(Fig. 1a). The use of PLFA data provides an opportunity to provide quantitative insights into the abundances of these major 

functional groups. We conducted the analysis on the abundances in view of the uncertainty in conversion factors used to convert 

abundance derived from PLFA to biomass (Frostegård et al., 2011; Klamer and Bååth, 2004). We used machine learning to link 105 

the variation in soil fungi and bacteria abundances to global variation in 95 climate, vegetation, and soil variables. This allowed 

us to 1) explore the environmental drivers of fungal and bacterial dominance, defined as fungal proportion - fungi/(fungi + 

bacteria), where values closer to 1 indicate a higher fungal dominance and values closer to zero indicate a greater bacterial 

dominance (see Methods); 2) examine the non-linear response or pattern of fungal proportion across environmental gradients, 

i.e., mean annual temperature-MAT and net primary productivity-NPP. Based on the observed relationships (by accounting for 110 

the non-linearity), we generated a quantitative spatially-explicit global map (1 km) of fungal proportion, and assessed how soil 

fungal and bacterial dominance varies with key climate, soil, vegetation and geographic drivers.  
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Figure 1. Map of sample locations and fungal and bacterial abundance and fungal proportion data. a, Sampling sites. A 

total of 3224 samples were collected and aggregated into 943 1-km2 pixels that were used for geospatial modelling. b, The 115 

median and interquartile range of abundance of fungi and bacteria and fungal proportion across vegetation biomes. Tundra and 

boreal forest, Mediterranean and desert have low sample sizes (<25) and thus were combined.  

 

2. Material and methods 

2.1. Data acquisition of soil microbe composition 120 

We compiled data of abundance of soil fungi and bacteria and fungal proportion, defined as fungi/(fungi + bacteria). We focused 

on phospholipid-derived fatty acids (PLFA) and the data derived from PLFA reported the balance between fungal and bacterial 
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PLFAs (Frostegård et al., 2011) can provide a valuable estimation of the comparative dominance of both functional groups. The 

data based on qPCR was not included because of difference in units with PLFA. With non-significant difference using data of 

fungal proportion and fungi : bacteria ratio, we focused on and reported the results on the fungal proportion rather than fungi : 125 

bacteria ratio because 1) The fungal proportion is insensitive to whether fungi or bacteria are the numerator (i.e. bacterial proportion 

= 1 – fungal proportion), and 2) fungal proportion had more spread frequency distribution and thus led to better machine learning 

predictions (Fig. S1). The data was compiled by a primary literature review through Google Scholar, Web of Science 

(http://apps.webofknowledge.com) and China National Knowledge Infrastructure Database (http://cnki.net) till 30 June, 2020 

using the keywords “fungi”, “bacteria”, “abundance”, “PLFA”. To be included in our data analysis, the study had to at least have 130 

the following metadata: longitude and latitude, sampling date, sampling depth, information on land use (agriculture, tree plantations, 

or natural sites), units and the methods used. In total, this led to 319 references. We further used the following criteria to select 

eligible references and datasets: (1) when the studies were manipulative experiments, we only included the data from “control” 

plots (Chen et al., 2016). (2) we standardized our efforts by focusing on all samples that were collected from the top surface soils 

( 0-10/15 cm) because this layer contains greater biomass and has the majority of sample size. (3) we used the datasets based on 135 

reporting abundance with units of nmol, umol, or mol% since the majority (>90%) of datasets reported abundance. Thus, we 

exclude all datasets reporting biomass instead of abundance. (4) we excluded observations located in sea since our study focuses 

on terrestrial ecosystems. (5) we only included the datasets on soil samples derived from field experiments and thus excluded the 

datasets from incubation experiments. (6) some datasets reported in original references as average across sampling sites or sampling 

dates were included.  140 

       The criteria were carefully scrutinized by three independent researchers and this ultimately led to 179 eligible references (see 

Supplementary references for PLFA) used for this study. In total, we compiled a dataset of fungal proportion (n = 3224) at a global 

scale. The subset of data (n = 1795) with only natural ecosystems (Fig. S2a) were used to examine the potential role of land use 

change (see Supplementary Methods). The results showed minimal difference of the two scenarios of including all data and natural 

ecosystems. All data points falling within the same 30 arc-seconds (~1-km2) pixel were aggregated via an average. The aggregated 145 

data of fungal proportion (n = 946 for all data; n = 716 for natural ecosystems) were used to examine its environmental controls 

and geospatial modelling in making the global map (Fig. 1a; Fig. S2a).  

        The spatial variations of fungi and bacteria ratio or fungal proportion across latitude could be influenced by either changes 

(increases or decreases) in abundance of fungi or bacteria or both. Thus, to better understand the biogeographic pattern of fungal 

and bacterial composition, we also analysed the spatial patterns of abundance of fungi and bacteria by using the abundance data 150 

with the same unit (nmol g-1 PLFA). In total, our data compiling led to a final subset of 2753, and 2759 samples which were used 

for further analyses of abundance of fungi and bacteria, respectively (Fig. S3). As compared to the larger sample size of fungal 

proportion (n = 946 for all data), the data of abundance of fungi (n = 646 for all data) and bacteria (n = 647 for all data) aggregated 

within the 30 arc-seconds (~1-km2) pixel via an average were used for the analysis of their spatial trends across vegetation biome, 

vegetation type and latitude (see Supplementary Methods).  155 

2.2. Geospatial modelling  

A stack (n = 95) of ecologically relevant, global map layers including soil physical, chemical and nutrient properties, climate 

conditions, vegetative indices, radiation and topographic variables and anthropogenic covariates (Supplementary Table 1) were 

used to derive the environmental factors which could affect fungal proportion. All of these covariate map layers were standardized 

at 30 arc-seconds resolution (≈1km at the equator) (van den Hoogen et al., 2019). These covariates were then derived based on the 160 

georeferenced coordinates of the soil samples aggregated at 30 arc-seconds resolution.  
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        We used the Random Forest machine learning algorithm (see Supplementary Methods) with the derived 95 covariates to 

extrapolate these relationships between fungal proportion and environmental conditions across the globe and generate the first 

spatially-explicit, quantitative map of fungal proportion at a global scale. The strength of prediction was evaluated using k-fold 

cross validation (with k = 10) and the best model having high coefficient of determination and low standard deviation in the mean 165 

cross-validation were used to generate the global map of fungal proportion. The standard error sharply decreased with increasing 

sample size across all vegetation biomes and the analysis showed that an efficient prediction required a large sample size (n > 500) 

(Fig. S4). To evaluate the sensitivity, we also generate the uncertainty (standard deviation as a fraction of the mean predicted value) 

map of  fungal proportion by using a stratified bootstrapping procedure (van den Hoogen et al., 2019). The stratification category 

was the sampled biomes of each point feature (fungal proportion) with the total number collection of fungal proportion points to 170 

avoid biases. In total, 100 bootstrap iterations were used, thus generating 100 global maps of fungal proportion used to quantify 

statistically robust 95% confidence intervals per pixel.   

2.3. Environmental drivers and statistic analysis 

To examine the environmental controls of soil microbial composition at a global scale, we chose the top drivers (Chen et al., 2016; 

Drenovsky et al., 2010a; de Vries et al., 2012) which include soil properties, climate conditions, vegetation index  and human 175 

activities (see Supplementary Methods). These variables were examined to avoid multicollinearity using a matrix of pairwise 

correlations to remove any variable with high correlations (R>0.7) with other predictor variables (Anderegg et al., 2013). Random 

Forest machine learning algorithm was then used to determine variable importance for each variable(Breiman, 2001). Mean 

decrease in accuracy (%IncMSE) and mean decrease gini (IncNodePurity) were reported and the variables with greater values 

of %IncMSE and IncNodePurity are more important in influencing fungal proportion. Partial functions of most important variables 180 

(MAT and NPP) were plotted using forestFloor package to examine their influences on fungal proportion.  

3. Code and data availability of machine learning 

Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.19556419. 

The code of machine learning is available at https://github.com/KailiangYu/Biogeography-of-soil-microbes.git.  

4. Results and discussion 185 

4.1. Raw data patterns of fungal proportion 

Globally, we observed greater than 10-fold variation in soil fungal proportion across all sites, ranging from 0.01 to 0.6 (Fig. 1b). 

At a global scale, we found clear latitudinal trends, with the abundance of both fungi and bacteria increasing in high-latitude 

regions. Yet, the abundance of fungi increased with latitude at a greater rate than the abundance of bacteria (Fig. S5), resulting in 

a higher proportion of fungi in the cold, high-latitude regions. These latitudinal trends lend support to the general global patterns 190 

detected in a previous broad-scale analysis (Bahram et al., 2018) and in a recent meta-data analysis (He et al., 2020). As such, the 

highest fungal dominance was observed in tundra and boreal forest ecosystems (mean  1SE: 0.23  0.02; Fig. 1b). In addition, 

high elevation and cold grasslands (i.e., Montane grasslands) with large soil organic C (SOC) content generally harbor higher 

proportion of fungi, relative to bacteria (Fig. 1b).  

              Within similar climates, soil fungal and bacterial abundance as well as fungal proportion was greatest in ecosystems 195 

harboring woody vegetation compared to grassland and managed (agricultural) ecosystems (Fig. S6). This finding is consistent 
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with the idea that ecosystems dominated by woody plants generate lignified, more recalcitrant and nutrient poor soil C inputs that 

characteristically favor fungal dominance (Fierer et al., 2009; Strickland and Rousk, 2010), and have a biomass stoichiometry 

better suited to low nutrient environments (Waring et al., 2013). But we stress that this link of belowground soil microbial 

composition (fungi vs bacteria) with aboveground plant community composition (woody plants vs grasses) can be complex, non-200 

linear and even divergent, as demonstrated by the non-existence of woody plants in grasslands and scarcity of grasses in forests 

but with well mixed fungi vs bacteria abundances. This raises the curiosity whether the interactions, associations or couplings of 

belowground soil microbial composition vs aboveground plant community composition are stronger in ecosystems where woody 

plants and grasses interact or coexist (i.e., savannas) (Yu and D’Odorico, 2015). It also remains unclear how this coupling could 

improve our understanding of ecosystem carbon cycling and other services.  205 

               Management of agricultural ecosystems often disrupts soil fungal networks (i.e. tillage, frequent dry/wet cycles due to 

irrigation, machine operations, etc.), which decreases the abundance of fungi relative to bacteria in agricultural soils (Fig. S6) 

(Drenovsky et al., 2010b; Jangid et al., 2011; Waldrop et al., 2017). A central concern in agricultural ecosystems is the tradeoff of 

increased food production to feed the increasing population vs the decreased soil carbon storage to accelerate the global climate 

change (Sanderman et al., 2017). This study showed the higher bacterial abundance relative to fungal abundance in soils of 210 

agricultural lands where soil carbon storge is low; this corresponds with the global trends of bacterial dominance in low latitude 

where soil carbon storage is low. These results suggest the potential strong but complex interactions and feedbacks of soil microbial 

composition and soil functions (i.e., soil carbon storge) (Bardgett et al., 2008), while the mechanistic links need further studies.  

4.2. Drivers of fungal proportion 

Globally, the fungal proportion in soil can be predicted by few primary environmental drivers (Fig. 2; Fig. S7). Specifically, mean 215 

annual temperature (MAT) and primary productivity (NPP) were strong determinants of fungal dominance. The responses of fungal 

proportion to both MAT and NPP were strongly non-linear, with warmer, more productive regions of the world (i.e. tropical forest 

biomes) showing lower dominance of fungi compared to colder, less productive ecosystems (i.e. boreal forest and tundra biomes, 

Fig. 3; Fig. S8). This pattern is consistent with the idea that fungi and bacteria represent slow vs. fast soil energy channels, 

respectively (Crowther et al., 2019; Malik et al., 2016), a concept with a long history in soil ecology (Moore et al., 2003; Moore 220 

and William Hunt, 1988). This finding is important because it could potentially link the belowground slow – fungi vs fast – bacteria 

energy channels with aboveground plant slow growth rates – woody plants vs fast growth rates – grasses, while the linkage could 

be complex, non-linear or even divergent. The fast vs slow concept or spectrum have fundamentally improved the understandings 

and predictions of land carbon storage across resource gradient or under global change. The faster growth could be typically trade 

off with higher mortality or heterotrophic respiration with resource enriched conditions (Jiang et al., 2020; Terrer et al., 2021; Yu 225 

et al., 2019), thus constraining land carbon storage. This raises the question of how the belowground fast vs slow energy channels 

and the aboveground fast vs slow growth spectrum could be potentially linked or integrated to assess land carbon storage.  
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Figure 2. Mean decrease in accuracy (%IncMSE, mean and SD, a) and mean decrease gini (IncNodePurity, mean and 

SD, b) estimated from 1000 simulations of random forests. This is used to evaluate the importance of top environmental 230 

drivers on proportion of fungi derived from ‘all’ dataset. 

 

             Temperature can affect soil microbial composition in complex ways, via directly physiology or via indirectly soil substrate 

(Romero-Olivares et al., 2017). Previous studies have shown the non-linear response of soil fungal and bacterial ratio to soil 

substrate (Waring et al., 2013). The non-linear trends of the temperature sensitivity (Q10) of soil organic C decomposition, as 235 

regulated by soil fungal and bacterial ratio, were also found along latitude (Wang et al., 2018). Other environmental variables such 

as soil C to nitrogen ratio (C:N) have previously been found to be important drivers in influencing fungal proportion within local 

and regional scale analyses (Fierer et al., 2009; Waring et al., 2013). Our results suggest a more complicated relationship between 

fungal proportion and the soil C:N. In the low range of soil C:N values, fungal proportion decreased with soil C:N (Fig. S9a), 

suggesting the likely role of site-specific differences (i.e., climate or plant community) in out-weighting the influence of N 240 

availability (Soares and Rousk, 2019). Aside from these ecosystems, we observed a positive relationship between fungal proportion 

and soil C:N at a global scale, consistent with previous work at local and regional scales (Strickland and Rousk, 2010; Waring et 

al., 2013). Additionally, pH has been thought as a critical driver of microbial diversity and biomass in soils. At local scales, previous 

studies reported either no relationship, a negative correlation or convex curve between fungal and bacterial ratio and soil pH (Rousk 

a 

b 
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et al., 2009, 2010; de Vries et al., 2012). Our global scale analysis suggests a convex relationship between fungal proportion and 245 

soil pH, with fungi dominating only within a narrow pH range (<5-6) (Fig. S9b).  

 

 

Figure 3. Fungal proportion is primarily associated with climate- mean annual temperature (MAT) and net primary 

productivity (NPP). a–b, Partial feature contributions of primary environmental variables (a, MAT; b, NPP) to fungal 250 

proportion. c, Partial feature contributions of primary environmental variable interactions (MAT vs NPP) to fungal proportion.  
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4.3. Biogeographic pattern from the machine learning model 

Across all samples, the machine learning model was able to predict the variation in fungal and bacterial dominance with high 255 

predictive accuracy (R2 = 0.43/0.35 in 10-fold cross validation; R2 = 0.92/0.91 in final model; Fig. S10a-b). By extrapolating these 

relationships across terrestrial ecosystems, we could identify clear global trends in fungal dominance. Despite these general global 

scale patterns of increase in fungi dominance with latitude, our models also revealed regional contingencies that diverge from the 

global trends (Fig. 4a; Fig. S11a). For instance, Northeastern Europe is dominated by woody vegetation and exhibits high fungal 

proportion, while the United Kingdom and northern Kazakhstan have much lower fungal proportion despite being at comparable 260 

latitude, likely because these areas are dominated by herbaceous vegetation with lower lignin content than in woody tissues. Tibetan 

alpine grasslands are at comparatively much lower latitude but have high values of fungal proportion in part due to very high SOC 

stocks and cold temperatures. Model predictions of  fungal proportion had high uncertainty in dry regions (i.e., Northern and 

Southern Africa, Australia, Western USA, eastern Mongolia) (Fig. 4b; Fig. S11b), presumably because of the low sample size in 

drylands and/or complex response of fungi and bacteria to water availability (Fierer et al., 2009; Strickland and Rousk, 2010). 265 

Because of the unbalanced sample distribution, we also used a bootstrapping strategy (100 iterations) by randomly sampling 90% 

data with replacement. The results showed the similar spatial patterns of fungal proportion (Fig. S12a) and uncertainty (Fig. S12b) 

as the scenario of using full dataset without bootstrapping.  

            Our study differs from a previous study (He et al., 2020) in several aspects including sample size (n > 3000), spatial 

resolution (1km), consideration of non-linearity (through random forest analysis), soil depth (soil surface 0-10/15 cm). We also 270 

note that our analysis sticks to the original data of abundance derived from PLFA instead of converting abundance to biomass. 

Conversion of abundance to biomass needs the conversion factor, which has large uncertainty (Frostegård et al., 2011; Klamer 

and Bååth, 2004). Our high resolution map would allow representation of microbial-mediated mechanisms at fine scales to link 

with ecosystem functions. For instance, the significant functional differences between fungi and bacterial mean that the relative 

dominance of fungi vs. bacteria is likely to influence a wide range of ecosystem functions such as C use efficiency (CUE) of the 275 

decomposer community (Six et al., 2006; Soares and Rousk, 2019) and enzymatic activity in soil N vs P acquisition (Caldwell, 

2005; Crowther et al., 2019).  At fine, local or even regional scales, these relationships between soil microbial composition and 

ecosystem functions could only be well identified using fine scale maps of soil microbial composition.  
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Figure 4. Global map of fungal proportion (a) and bootstrapped (100 iterations) coefficient of variation (b) at the 30 arcsec 280 

(approximately 1 km) pixel scale. Bootstrapped coefficient of variation is standard deviation divided by the mean predicted value 

as a measure of prediction accuracy. Sampling was stratified by biome. 

 

4.4. Implications and limitations of this study 

It is generally accepted that the soil microbiome exerts major control over soil processes, and in turn ecosystem functioning, and 285 

by extension the global biogeochemical cycles (Bahram et al., 2018; Crowther et al., 2019; Van Der Heijden et al., 2008; Jenny, 

1941). Fungi and bacteria represent most of the diversity of life on Earth (Bardgett and van der Putten, 2014; Locey and Lennon, 

2016). Yet, inclusion of fungal and bacterial abundance into quantitative ecosystem and Earth system models has been hindered 

by the paucity of information about organisms at appropriate spatial scales. Here, we impose a global top-down constraint on the 

broad composition of soil microbial life. By doing so, we hope to empower microbial, ecosystem and Earth-system scientists to 290 

consider how this broad constraint on the soil biodiversity may inform and transform how we understand terrestrial ecosystem 

functioning. As we develop a spatially-explicit understanding of the global soil community, we will be able to better parameterize 

and benchmark our predictions about the rate and efficiency of carbon turnover in soil and the feedbacks to ongoing climate change.  

          Despite of the progress made in this study, here we clarify two limitations on this study. First, our study highlights the data 

gaps in fungal proportion prediction in low latitude – tropical biome. Tropical vs boreal biomes are hotpots or debated regions 295 

with their relative capacity and capability to sequestrate atmospheric CO2 and mitigate climate change in an increasingly 

changing climate (Schimel et al., 2015; Tagesson et al., 2020); they are also regions with striking differences of soil microbial 

composition (fungal proportion), plant communities and soil carbon storge, thus suggesting their potential strong interactions and 

a 

b 
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feedbacks in these regions (Bardgett et al., 2008). Second, microbial biomass (C) is more relevant to be linked with soil carbon 

cycling and carbon stock in term of their own contribution by living carbon pools and the impacts of its microbial necromass 300 

(Liang et al., 2019), while the conversion factor of converting abundance into biomass across space is currently not available. To 

mechanistically and explicitly incorporate soil microbial composition into biogeochemical models, the biogeographic patterns of 

abundance or biomass of each major group (fungi vs bacteria), the relative ratio within fungi (i.e., saprotrophic fungi, arbuscular 

mycorrhiza fungi vs ectomycorrhizal fungi) and/or bacteria (i.e., gram positive bacteria vs gram negative bacteria) would also be 

critical in view of their striking functional difference (Averill et al., 2014; Crowther et al., 2019). These knowledge gaps 305 

highlight the urgent research needs in these new research endeavors with the increasing availability of datasets.  

5. Conclusions 

This study used a global scale dataset in the top soil surface (>3000 distinct observations of soil fungal and bacterial abundance) 

to generate the first quantitative and spatially high resolution (1 km) explicit maps of soil fungal and bacterial relative abundance 

across global terrestrial ecosystems. Our machine learning approach (random forest) enabled us to link the variation in fungal 310 

proportion to global variation in climate, soil, vegetation and other environmental drivers, whilst accounting for the interactions 

and non-linearities among them. We found the striking latitudinal trends where fungal dominance increases in cold and high latitude 

environments with large soil carbon stocks. The fungal proportion in soil can be predicted by few primary environmental drivers 

– temperature and NPP with strong non-linear effects of temperature and NPP. We demonstrated that fungi and bacteria represent 

slow vs fast energy channels, whereby they dominate in regions of low MAT and NPP vs high MAT and NPP, respectively. Overall, 315 

our spatially-explicit model would enable us to explicitly represent the different contributions of fast - bacterial vs. slow – fungal 

energy channels in spatially-explicit biogeochemical models, with the potential to enhance the accuracy of soil carbon turnover 

and carbon storge predictions. We further highlight the data gaps in tropical regions and needs of future research endeavors in 

generating high resolution biogeographic patterns of biomass of each major microbial group, the relative biomass ratios across and 

within major microbial groups.  320 
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