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Abstract. Fungi and bacteria are the two dominant groups of soil microbial communities 47 

worldwide. By controlling the turnover of soil organic matter, these organisms directly regulate 48 

the cycling of carbon between the soil and the atmosphere. Fundamental differences in the 49 

physiology and life history of bacteria and fungi suggest that variation in the biogeography of soil 50 

fungal and bacterial relative abundance could drive striking differences in carbon decomposition 51 

and soil organic matter formation across different biomes. However, a lack of global and predictive 52 

information on the distribution of these organisms in terrestrial ecosystems has prevented the 53 

inclusion of soil fungal and bacterial relative abundance and the associated processes into global 54 

biogeochemical models. Here, we used a global scale dataset (>3000 distinct observations of soil 55 

fungal and bacterial abundance) in the top soil surface (up to 15 cm) to generate the first 56 

quantitative and spatially high resolution (1km2) explicit map of soil fungal proportion, defined as 57 

fungi/fungi + bacteria, across terrestrial ecosystems. We reveal striking latitudinal trends where 58 

fungal dominance increases in cold and high latitude environments with large soil carbon stocks. 59 

There was strong non-linear response of fungal dominance to environmental gradient, i.e., mean 60 

annual temperature (MAT) and net primary productivity (NPP). Fungi and bacteria dominated in 61 

regions with low and high MAT and NPP, respectively, thus representing slow vs. fast soil energy 62 

channels, a concept with a long history in soil ecology. These high-resolution models provide the 63 

first steps towards representing the major soil microbial groups and their functional differences in 64 

global biogeochemical models to improve predictions of soil organic matter turnover under current 65 

and future climate scenarios. 66 

  67 



 4 

1. Introduction 68 

Fungi and bacteria are the dominant members of soil microbial communities worldwide in terms 69 

of diversity, abundance and biomass (Bahram et al., 2018). Representing distinct kingdoms of life, 70 

bacteria and fungi systematically differ in a multitude of physiological and life-history traits with 71 

direct implications for global soil biogeochemical cycles (Waring et al., 2013; Wieder et al., 2015) 72 

including the decomposition of organic matter, which contributes to one of the largest fluxes of 73 

CO2 on Earth (Glassman et al., 2018). Compared to bacteria, fungi generally have slower growth 74 

and turnover rates (Rousk and Bååth, 2007), greater carbon (C) to nutrient stoichiometry (Waring 75 

et al., 2013), greater capacity to degrade a wider and more recalcitrant range of substrates 76 

(Strickland and Rousk, 2010) and potentially higher C use efficiency (Soares and Rousk, 2019). 77 

For these reasons, a new generation of soil and ecosystem models have begun to explicitly 78 

represent these fundamentally distinct fast and slow cycling microbial groups, suggesting that 79 

spatially-explicit information about the relative abundance of fungal and bacteria in a region can 80 

dramatically improve the accuracy of global carbon cycling model predictions (Shi et al., 2018; 81 

Sulman et al., 2014; Wieder et al., 2013, 2015). Generating an understanding of the factors 82 

affecting the biogeography of the relative abundance of fungal and bacteria in soil, and its 83 

connection to global carbon cycle, would represent a breakthrough step forward in our general 84 

understanding of the natural history of soil microbial life. 85 

        Temperature, precipitation, soil pH and soil C:N have all been linked to the balance of fungi 86 

vs. bacteria within soil communities across different spatial scales (Bahram et al., 2018; 87 

Strickland and Rousk, 2010; Tedersoo et al., 2014). Relative to fungi, bacteria tend to dominate 88 

in locations with high soil nutrient contents or in frequently disturbed soils that limit the growth 89 

of fungal hyphae or make N more available (Fierer et al., 2009; Van Der Heijden et al., 2008; 90 
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Strickland and Rousk, 2010). However, until now, the relative importance of these different 91 

environmental drivers remains relatively unclear at global scale, and the biogeography of these 92 

major functional groups (fungi vs. bacteria) has only been demonstrated at local and regional 93 

scales. A recent analysis suggested that the relative soil bacterial abundance is high in tropical 94 

latitudes and decreases in abundance towards the high-latitude boreal regions, where fungi tend 95 

to dominate (Bahram et al., 2018). Translating these broad-scale trends into quantitative, 96 

spatially explicit information will be necessary if we intend to represent regional variations in 97 

soil community functioning (Wieder et al., 2013, 2015), or predict future changes in terrestrial 98 

carbon and nutrient cycling.  99 

       Some progress was made in the quantitative and spatially explicit understanding of global 100 

biogeographic patterns of fungal and bacterial biomass and their biomass ratio. By synthesizing 101 

phospholipid-derived fatty acids data from 1323 locations across the globe, and extrapolating 102 

linear relationships with environmental factors, a recent study generate the global maps of fungal 103 

and bacterial biomass and their biomass ratio at the resolution of 0.5 degree for top soil (0-30 104 

cm) (He et al., 2020). This approach provided the support for the broad-scale latitudinal trends, 105 

with high fungal dominance in high-latitude regions. Yet to date, there are three crucial 106 

knowledge gaps to be addressed. First, we still lack a high resolution evaluation of the spatial 107 

patterns and regional contingencies in fungal:bacterial ratios, which would allow representation 108 

of microbial-mediated mechanisms that operate within and/or across ecosystems at fine scales 109 

(Frindte et al., 2019; Zhu et al., 2017). Second, the response of soil microbial community 110 

composition across environmental gradients are expected to be non-linear, with strong interactive 111 

effects of different environmental characteristics that give rise to thresholds that diverge from the 112 

global latitudinal trends (Sengupta et al., 2021; Wang et al., 2018; Waring et al., 2013). This 113 
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non-linear linkage of soil microbial communities with environmental resource gradient has not 114 

been assessed, while it has fundamental implications on ecosystem functions and management 115 

solutions (Sengupta et al., 2021; Wang et al., 2018). Third, there are distinct difference of soil 116 

nutrients, soil microbial community and the associated biogeochemical processes across soil 117 

depths, i.e., from top surface soil (i.e., 0-10 cm) to top subsurface soil (i.e., 0-30 cm) (Lavahun et 118 

al., 1996; Yue et al., 2015). A continental-scale empirical study further showed that strong 119 

positive associations among soil microbial community, fertility and plant productivity are limited 120 

to the top surface soil (Delgado-Baquerizo et al., 2017), thus highlighting its potential dominant 121 

role regulated by top surface soil microbial communities on ecosystem functions and the 122 

research needs of generating a global spatially explicit understanding of soil fungi and bacteria in 123 

top surface soil. 124 

        Here, we present a global analysis of total and relative abundance of soil fungi and bacteria 125 

in soil surfaces (defined as top 10-15 cm) informed from over 3000 spatially distinct surface soil 126 

observations from phospholipid-derived fatty acids (PLFA) (Fig. 1a). The use of PLFA data 127 

provides an opportunity to provide quantitative insights into the abundances of the major 128 

functional groups. We conducted the analysis on the abundances in view of the uncertainty in 129 

conversion factors used to convert abundance derived from PLFA to biomass (Frostegård et al., 130 

2011; Klamer and Bååth, 2004). We used machine learning to link the variation in soil fungi and 131 

bacteria abundances to global variation in 95 climate, vegetation, and soil variables. This allowed 132 

us to 1) explore the environmental drivers of fungal and bacterial dominance, defined as fungal 133 

proportion - fungi/(fungi + bacteria), where values closer to 1 indicate a higher fungal dominance 134 

and values closer to zero indicate a greater bacterial dominance (see Methods); 2) examine the 135 

non-linear response or pattern of fungal proportion across environmental gradients, i.e., mean 136 



 7 

annual temperature-MAT and net primary productivity-NPP. Based on the observed 137 

relationships (by accounting for the non-linearity), we generated a quantitative spatially-explicit 138 

global map (1 km2) of fungal proportion, and assessed how soil fungal and bacterial dominance 139 

varies with key climate, soil, vegetation and geographic drivers.  140 

2. Material and methods 141 

2.1. Data acquisition of soil microbe composition 142 

We compiled data of abundance of soil fungi and bacteria and fungal proportion, defined as 143 

fungi/(fungi + bacteria). We focused on phospholipid-derived fatty acids (PLFA) and the data 144 

derived from PLFA reported the balance between fungal and bacterial PLFAs (Frostegård et al., 145 

2011) can provide a valuable estimation of the comparative dominance of both functional groups. 146 

The data based on qPCR was not included because of difference in units with PLFA. With non-147 

significant difference using data of fungal proportion and fungi : bacteria ratio, we focused on and 148 

reported the results on the fungal proportion rather than fungi : bacteria ratio because 1) The fungal 149 

proportion is insensitive to whether fungi or bacteria are the numerator (i.e. bacterial proportion = 150 

1 – fungal proportion), and 2) fungal proportion had more spread frequency distribution and thus 151 

led to better machine learning predictions (Fig. S1). The data was compiled by a primary literature 152 

review through Google Scholar, Web of Science (http://apps.webofknowledge.com) and China 153 

National Knowledge Infrastructure Database (http://cnki.net) till 30 June, 2020 using the keywords 154 

“fungi”, “bacteria”, “abundance”, “PLFA”. To be included in our data analysis, the study had to 155 

at least have the following metadata: longitude and latitude, sampling date, sampling depth, 156 

information on land use (agriculture, tree plantations, or natural sites), units and the methods used. 157 

In total, this led to 319 references. We further used the following criteria to select eligible 158 

references and datasets: (1) when the studies were manipulative experiments, we only included the 159 

http://cnki.net/
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data from “control” plots (Chen et al., 2016). (2) we standardized our efforts by focusing on all 160 

samples that were collected from the top surface soils ( 0-10/15 cm) because this layer contains 161 

greater biomass and has the majority of sample size. (3) we used the datasets based on reporting 162 

abundance with units of nmol, umol, or mol% since the majority (>90%) of datasets reported 163 

abundance. Thus, we exclude all datasets reporting biomass instead of abundance. (4) we excluded 164 

observations located in sea since our study focuses on terrestrial ecosystems. (5) we only included 165 

the datasets on soil samples derived from field experiments and thus excluded the datasets from 166 

incubation experiments. (6) some datasets reported in original references as average across 167 

sampling sites or sampling dates were included.  168 

       The criteria were carefully scrutinized by three independent researchers and this ultimately 169 

led to 179 eligible references (see Supplementary references for PLFA) used for this study. In total, 170 

we compiled a dataset of fungal proportion (n = 3224) at a global scale. The subset of data (n = 171 

1795) with only natural ecosystems (Fig. S2a) were used to examine the potential role of land use 172 

change (see Supplementary Methods). The results showed minimal difference of the two scenarios 173 

of including all data and natural ecosystems. All data points falling within the same 30 arc-seconds 174 

(~1-km2) pixel were aggregated via an average. The aggregated data of fungal proportion (n = 946 175 

for all data; n = 716 for natural ecosystems) were used to examine its environmental controls and 176 

geospatial modelling in making the global map (Fig. 1a; Fig. S2a).  177 

        The spatial variations of fungi and bacteria ratio or fungal proportion across latitude could be 178 

influenced by either changes (increases or decreases) in abundance of fungi or bacteria or both. 179 

Thus, to better understand the biogeographic pattern of fungal and bacterial composition, we also 180 

analysed the spatial patterns of abundance of fungi and bacteria by using the abundance data with 181 

the same unit (nmol g-1 PLFA). In total, our data compiling led to a final subset of 2753, and 2759 182 
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samples which were used for further analyses of abundance of fungi and bacteria, respectively (Fig. 183 

S3). As compared to the larger sample size of fungal proportion (n = 946 for all data), the data of 184 

abundance of fungi (n = 646 for all data) and bacteria (n = 647 for all data) aggregated within the 185 

30 arc-seconds (~1-km2) pixel via an average were used for the analysis of their spatial trends 186 

across vegetation biome, vegetation type and latitude (see Supplementary Methods).  187 

2.2. Geospatial modelling  188 

A stack (n = 95) of ecologically relevant, global map layers including soil physical, chemical and 189 

nutrient properties, climate conditions, vegetative indices, radiation and topographic variables and 190 

anthropogenic covariates (Supplementary Table 1) were used to derive the environmental factors 191 

which could affect fungal proportion. All of these covariate map layers were standardized at 30 192 

arc-seconds resolution (≈1km2 at the equator) (van den Hoogen et al., 2019). These covariates 193 

were then derived based on the georeferenced coordinates of the soil samples aggregated at 30 arc-194 

seconds resolution.  195 

        We used the Random Forest machine learning algorithm (see Supplementary Methods) with 196 

the derived 95 covariates to extrapolate these relationships between fungal proportion and 197 

environmental conditions across the globe and generate the first spatially-explicit, quantitative 198 

map of fungal proportion at a global scale. The strength of prediction was evaluated using k-fold 199 

cross validation (with k = 10) and the best model having high coefficient of determination and low 200 

standard deviation in the mean cross-validation were used to generate the global map of fungal 201 

proportion. The standard error sharply decreased with increasing sample size across all vegetation 202 

biomes and the analysis showed that an efficient prediction required a large sample size (n > 500) 203 

(Fig. S4). To evaluate the sensitivity, we also generate the uncertainty (standard deviation as a 204 

fraction of the mean predicted value) map of  fungal proportion by using a stratified bootstrapping 205 
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procedure (van den Hoogen et al., 2019). The stratification category was the sampled biomes of 206 

each point feature (fungal proportion) with the total number collection of fungal proportion points 207 

to avoid biases. In total, 100 bootstrap iterations were used, thus generating 100 global maps of 208 

fungal proportion used to quantify statistically robust 95% confidence intervals per pixel.   209 

2.3. Environmental drivers and statistic analysis 210 

To examine the environmental controls of soil microbial composition at a global scale, we chose 211 

the top drivers (Chen et al., 2016; Drenovsky et al., 2010a; de Vries et al., 2012) which include 212 

soil properties, climate conditions, vegetation index  and human activities (see Supplementary 213 

Methods). These variables were examined to avoid multicollinearity using a matrix of pairwise 214 

correlations to remove any variable with high correlations (R>0.7) with other predictor variables 215 

(Anderegg et al., 2013). Random Forest machine learning algorithm was then used to determine 216 

variable importance for each variable(Breiman, 2001). Mean decrease in accuracy (%IncMSE) 217 

and mean decrease gini (IncNodePurity) were reported and the variables with greater values 218 

of %IncMSE and IncNodePurity are more important in influencing fungal proportion. Partial 219 

functions of most important variables (MAT and NPP) were plotted using forestFloor package to 220 

examine their influences on fungal proportion.  221 

3. Code and data availability of machine learning 222 

The code and data of machine learning is available at 223 

https://github.com/KailiangYu/Biogeography-of-soil-microbes.git.  224 

4. Results and discussion 225 

4.1. Raw data patterns of fungal proportion 226 

Globally, we observed greater than 10-fold variation in soil fungal proportion across all sites, 227 

ranging from 0.01 to 0.6 (Fig. 1b). At a global scale, we found clear latitudinal trends, with the 228 

https://github.com/KailiangYu/Biogeography-of-soil-microbes.git
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abundance of both fungi and bacteria increasing in high-latitude regions. Yet, the abundance of 229 

fungi increased with latitude at a greater rate than the abundance of bacteria (Fig. S5), resulting in 230 

a higher proportion of fungi in the cold, high-latitude regions. These latitudinal trends lend support 231 

to the general global patterns detected in a previous broad-scale analysis (Bahram et al., 2018) and 232 

in a recent meta-data analysis (He et al., 2020). As such, the highest fungal dominance was 233 

observed in tundra and boreal forest ecosystems (mean  1SE: 0.23  0.02; Fig. 1b). In addition, 234 

high elevation and cold grasslands (i.e., Montane grasslands) with large soil organic C (SOC) 235 

content generally harbor higher proportion of fungi, relative to bacteria (Fig. 1b).  236 

              Within similar climates, soil fungal and bacterial abundance as well as fungal proportion 237 

was greatest in ecosystems harboring woody vegetation compared to grasslands and managed 238 

(agricultural) ecosystems (Fig. S6). This finding is consistent with the idea that ecosystems 239 

dominated by woody plants generate lignified, more recalcitrant and nutrient poor soil C inputs 240 

that characteristically favor fungal dominance (Fierer et al., 2009; Strickland and Rousk, 2010), 241 

and have a biomass stoichiometry better suited to low nutrient environments (Waring et al., 2013). 242 

But we stress that this link of belowground soil microbial composition (fungi vs bacteria) with 243 

aboveground plant community composition (woody plants vs grasses) can be complex, non-linear 244 

and even divergent, as demonstrated by the non-existence of woody plants in grasslands and 245 

scarcity of grasses in forests but with well mixed fungi vs bacteria abundances. This raises the 246 

curiosity whether the interactions, associations or couplings of belowground soil microbial 247 

composition vs aboveground plant community composition are stronger in ecosystems where 248 

woody plants and grasses interact or coexist (i.e., savannas) (Yu and D’Odorico, 2015). It also 249 

remains unclear how this coupling could improve our understanding of ecosystem carbon cycling 250 

and other services.  251 
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               Management of agricultural ecosystems often disrupts soil fungal networks (i.e. tillage, 252 

frequent dry/wet cycles due to irrigation, machine operations, etc.), which decreases the abundance 253 

of fungi relative to bacteria in agricultural soils (Fig. S6) (Drenovsky et al., 2010b; Jangid et al., 254 

2011; Waldrop et al., 2017). A central concern in agricultural ecosystems is the tradeoff of 255 

increased food production to feed the increasing population vs the decreased soil carbon storage 256 

to accelerate the global climate change (Sanderman et al., 2017). This study showed the higher 257 

bacterial abundance relative to fungal abundance in soils of agricultural lands where soil carbon 258 

storge is low; this corresponds with the global trends of bacterial dominance in low latitude where 259 

soil carbon storage is low. These results suggest the potential strong but complex interactions and 260 

feedbacks of soil microbial composition and soil functions (i.e., soil carbon storge) (Bardgett et 261 

al., 2008), while the mechanistic links need further studies.  262 

4.2. Drivers of fungal proportion 263 

Globally, the fungal proportion in soil can be predicted by few primary environmental drivers (Fig. 264 

2; Fig. S7). Specifically, mean annual temperature (MAT) and primary productivity (NPP) were 265 

strong determinants of fungal dominance. The responses of fungal proportion to both MAT and 266 

NPP were strongly non-linear, with warmer, more productive regions of the world (i.e. tropical 267 

forest biomes) showing lower dominance of fungi as compared to colder, less productive 268 

ecosystems (i.e. boreal forest and tundra biomes, Fig. 3; Fig. S8). This pattern is consistent with 269 

the idea that fungi and bacteria represent slow vs. fast soil energy channels, respectively (Crowther 270 

et al., 2019; Malik et al., 2016), a concept with a long history in soil ecology (Moore et al., 2003; 271 

Moore and William Hunt, 1988). This finding is important because it could potentially link the 272 

belowground slow – fungi vs fast – bacteria energy channels with aboveground plant slow growth 273 

rates – woody plants vs fast growth rates – grasses, while the linkage could be complex, non-linear 274 
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or even divergent. The fast vs slow concept or spectrum have fundamentally improved the 275 

understandings and predictions of land carbon storage across resource gradient or under global 276 

change. The faster growth could be typically trade off with higher mortality or heterotrophic 277 

respiration with resource (i.e., CO2) enriched conditions (Jiang et al., 2020; Terrer et al., 2021; Yu 278 

et al., 2019), thus constraining land carbon storage. This raises the question of how the 279 

belowground fast vs slow energy channels and the aboveground fast vs slow growth spectrum 280 

could be potentially linked or integrated to assess land carbon storage.  281 

             Temperature can affect soil microbial composition in complex ways, via directly 282 

physiology or via indirectly soil substrate (Romero-Olivares et al., 2017). Previous studies have 283 

shown the non-linear response of soil fungal and bacterial ratio to soil substrate (Waring et al., 284 

2013). The non-linear trends of the temperature sensitivity (Q10) of soil organic C decomposition, 285 

as regulated by soil fungal and bacterial ratio, were also found along latitude (Wang et al., 2018). 286 

Other environmental variables such as soil C to nitrogen ratio (C:N) have previously been found 287 

to be important drivers in influencing fungal proportion within local and regional scale analyses 288 

(Fierer et al., 2009; Waring et al., 2013). Our results suggest a more complicated relationship 289 

between fungal proportion and the soil C:N. In the low range of soil C:N values, fungal proportion 290 

decreased with soil C:N (Fig. S9a), suggesting the likely role of site-specific differences (i.e., 291 

climate or plant community) in out-weighting the influence of N availability (Soares and Rousk, 292 

2019). Aside from these ecosystems, we observed a positive relationship between fungal 293 

proportion and soil C:N at a global scale, consistent with previous work at local and regional scales 294 

(Strickland and Rousk, 2010; Waring et al., 2013). Additionally, pH has been thought as a critical 295 

driver of microbial diversity and biomass in soils. At local scales, previous studies reported either 296 

no relationship, a negative correlation or convex curve between fungal and bacterial ratio and soil 297 
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pH (Rousk et al., 2009, 2010; de Vries et al., 2012). Our global scale analysis suggests a convex 298 

relationship between fungal proportion and soil pH, with fungi dominating only within a narrow 299 

pH range (<5-6) (Fig. S9b).  300 

4.3. Biogeographic pattern from the machine learning model 301 

Across all samples, the machine learning model was able to predict the variation in fungal and 302 

bacterial dominance with high predictive accuracy (R2 = 0.43/0.35 in 10-fold cross validation; R2 303 

= 0.92/0.91 in final model; Fig. S10a-b). By extrapolating these relationships across terrestrial 304 

ecosystems, we could identify clear global trends in fungal dominance. Despite these general 305 

global scale patterns of increase in fungi dominance with latitude, our models also revealed 306 

regional contingencies that diverge from the global trends (Fig. 4a; Fig. S11a). For instance, 307 

Northeastern Europe is dominated by woody vegetation and exhibits high fungal proportion, while 308 

the United Kingdom and northern Kazakhstan have much lower fungal proportion despite being 309 

at comparable latitude, likely because these areas are dominated by herbaceous vegetation with 310 

lower lignin content than in woody tissues. Tibetan alpine grasslands are at comparatively much 311 

lower latitude but have high values of fungal proportion in part due to very high SOC stocks and 312 

cold temperatures. Model predictions of  fungal proportion had high uncertainty in dry regions 313 

(i.e., Northern and Southern Africa, Australia, Western USA, eastern Mongolia) (Fig. 4b; Fig. 314 

S11b), presumably because of the low sample size in drylands and/or complex response of fungi 315 

and bacteria to water availability (Fierer et al., 2009; Strickland and Rousk, 2010). Indeed, 316 

our datasets are mostly concentrated to US, Europe and East Asia, thus highlighting the data gaps 317 

at tropical and boreal biomes. Even for the temperate biome, there were data gaps in west Australia 318 

and central Asia. Because of the unbalanced sample distribution, we also used a bootstrapping 319 

strategy (100 iterations) by randomly sampling 90% data with replacement. The results showed 320 
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the similar spatial patterns of fungal proportion (Fig. S12a) and uncertainty (Fig. S12b) as the 321 

scenario of using full dataset without bootstrapping.  322 

            Our study differs from a previous study (He et al., 2020) in several aspects including 323 

sample size (n > 3000), spatial resolution (1km2), consideration of non-linearity (through random 324 

forest analysis), soil depth (soil surface 0-10/15 cm). We also note that our analysis sticks to the 325 

original data of abundance derived from PLFA instead of converting abundance to biomass. 326 

Conversion of abundance to biomass needs the conversion factor, which has large uncertainty 327 

(Frostegård et al., 2011; Klamer and Bååth, 2004). Our high resolution map would allow 328 

representation of microbial-mediated mechanisms at fine scales to link with ecosystem functions. 329 

For instance, the significant functional differences between fungi and bacterial mean that the 330 

relative dominance of fungi vs. bacteria is likely to influence a wide range of ecosystem 331 

functions such as C use efficiency (CUE) of the decomposer community (Six et al., 2006; Soares 332 

and Rousk, 2019) and enzymatic activity in soil N vs P acquisition (Caldwell, 2005; Crowther et 333 

al., 2019).  At fine, local or even regional scales, these relationships between soil microbial 334 

composition and ecosystem functions could only be well identified using fine scale maps of soil 335 

microbial composition.  336 

4.4. Implications and limitations of this study 337 

It is generally accepted that the soil microbiome exerts major control over soil processes, and in 338 

turn ecosystem functioning, and by extension the global biogeochemical cycles (Bahram et al., 339 

2018; Crowther et al., 2019; Van Der Heijden et al., 2008; Jenny, 1941). Fungi and bacteria 340 

represent most of the diversity of life on Earth (Bardgett and van der Putten, 2014; Locey and 341 

Lennon, 2016). Yet, inclusion of fungal and bacterial abundance into quantitative ecosystem and 342 

Earth system models has been hindered by the paucity of information about organisms at 343 
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appropriate spatial scales. Here, we impose a global top-down constraint on the broad composition 344 

of soil microbial life. By doing so, we hope to empower microbial, ecosystem and Earth-system 345 

scientists to consider how this broad constraint on the soil biodiversity may inform and transform 346 

how we understand terrestrial ecosystem functioning. As we develop a spatially-explicit 347 

understanding of the global soil community, we will be able to better parameterize and benchmark 348 

our predictions about the rate and efficiency of carbon turnover in soil and the feedbacks to 349 

ongoing climate change.  350 

          Despite of the progress made in this study, here we clarify two limitations on this study. 351 

First, our study highlights the data gaps in fungal proportion prediction in low latitude – tropical 352 

biome and high latitude – boreal biome (i.e., boreal forests and tundra). Tropical vs boreal 353 

biomes are hotpots or debated regions with their relative capacity and capability to sequestrate 354 

atmospheric CO2 and mitigate climate change in an increasingly changing climate (Schimel et 355 

al., 2015; Tagesson et al., 2020). They are also regions with striking differences of soil microbial 356 

composition (fungal proportion), plant communities and soil carbon storge, thus suggesting their 357 

potentially strong interactions and feedbacks in these regions (Bardgett et al., 2008). Boreal 358 

biome contains large amount of soil organic carbon which could be sensitive to global change 359 

(i.e., warming), whereby soil microbial community (i.e., total biomass or the relative abundance 360 

of of soil fungi and bacteria) could play an essential role. Second, microbial biomass (C) is more 361 

relevant to be linked with soil carbon cycling and carbon stock in term of their own contribution 362 

by living carbon pools and the impacts of its microbial necromass (Liang et al., 2019), while the 363 

conversion factor of converting abundance into biomass across space is currently not available. 364 

To mechanistically and explicitly incorporate soil microbial composition into biogeochemical 365 

models, the biogeographic patterns of abundance or biomass of each major group (fungi vs 366 
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bacteria), the relative ratio within fungi (i.e., saprotrophic fungi, arbuscular mycorrhiza fungi vs 367 

ectomycorrhizal fungi) and/or bacteria (i.e., gram positive bacteria vs gram negative bacteria) 368 

would also be critical in view of their striking functional difference (Averill et al., 2014; 369 

Crowther et al., 2019). These knowledge gaps highlight the urgent research needs in these new 370 

research endeavors with the increasing availability of datasets.  371 

5. Conclusions 372 

This study used a global scale dataset (>3000 distinct observations of soil fungal and bacterial 373 

abundance) in the top soil surface (up to 15 cm) to generate the first quantitative and spatially high 374 

resolution (1 km2) explicit maps of soil fungal and bacterial relative abundance across global 375 

terrestrial ecosystems. Our machine learning approach (random forest) enabled us to link the 376 

variation in fungal proportion to global variation in climate, soil, vegetation and other 377 

environmental drivers, whilst accounting for the interactions and non-linearities among them. We 378 

found the striking latitudinal trends where fungal dominance increases in cold and high latitude 379 

environments with large soil carbon stocks. The fungal proportion in soil can be predicted by few 380 

primary environmental drivers – temperature and NPP with strong non-linear effects of 381 

temperature and NPP. We demonstrated that fungi and bacteria represent slow vs fast energy 382 

channels, whereby they dominate in regions of low MAT and NPP vs high MAT and NPP, 383 

respectively. Overall, our spatially-explicit model would enable us to explicitly represent the 384 

different contributions of fast - bacterial vs. slow – fungal energy channels in spatially-explicit 385 

biogeochemical models, with the potential to enhance the accuracy of soil carbon turnover and 386 

carbon storge predictions. We further highlight the data gaps in tropical and boreal regions and 387 

needs of future research endeavors in generating high resolution biogeographic patterns of biomass 388 
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of each major microbial group, the relative biomass ratios across and within major microbial 389 

groups.  390 
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Figure 1. Map of sample locations and fungal and bacterial abundance and fungal 655 

proportion data. a, Sampling sites. A total of 3224 samples were collected and aggregated into 656 

943 1-km2 pixels that were used for geospatial modelling. b, The median and interquartile range 657 

of abundance of fungi and bacteria and fungal proportion across vegetation biomes. Tundra and 658 

boreal forest, Mediterranean and desert have low sample sizes (<25) and thus were combined.  659 
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Figure 2. Mean decrease in accuracy (%IncMSE, mean and SD, a) and mean decrease gini 676 

(IncNodePurity, mean and SD, b) estimated from 1000 simulations of random forests. This 677 

is used to evaluate the importance of top environmental drivers on proportion of fungi derived 678 

from ‘all’ dataset. 679 
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 682 

Figure 3. Fungal proportion is primarily associated with climate- mean annual 683 

temperature (MAT) and net primary productivity (NPP). a–b, Partial feature contributions 684 

of primary environmental variables (a, MAT; b, NPP) to fungal proportion. c, Partial feature 685 

contributions of primary environmental variable interactions (MAT vs NPP) to fungal 686 

proportion.  687 
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Figure 4. Global map of fungal proportion (a) and bootstrapped (100 iterations) coefficient 717 

of variation (b) at the 30 arcsec (approximately 1 km2) pixel scale. Bootstrapped coefficient 718 

of variation is standard deviation divided by the mean predicted value as a measure of prediction 719 

accuracy. Sampling was stratified by biome. 720 
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