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Abstract. Fungi and bacteria are the two dominant groups of soil microbial communities 47 

worldwide. By controlling the turnover of soil organic matter, these organisms directly regulate 48 

the cycling of carbon between the soil and the atmosphere. Fundamental differences in the 49 

physiology and life history of bacteria and fungi suggest that variation in the biogeography of soil 50 

fungal and bacterial relative abundance could drive striking differences in carbon decomposition 51 

and soil organic matter formation across different biomes. However, a lack of global and predictive 52 

information on the distribution of these organisms in terrestrial ecosystems has prevented the 53 

inclusion of soil fungal and bacterial relative abundance and the associated processes into global 54 

biogeochemical models. Here, we used a global scale dataset (>3000 distinct observations of soil 55 

fungal and bacterial abundance) in the top soil surface (up to 15 cm) to generate the first 56 

quantitative and spatially high resolution (1km2) explicit map of soil fungal proportion, defined as 57 

fungi/fungi + bacteria, across terrestrial ecosystems. We reveal striking latitudinal trends where 58 

fungal dominance increases in cold and high latitude environments with large soil carbon stocks. 59 

There was strong non-linear response of fungal dominance to environmental gradient, i.e., mean 60 

annual temperature (MAT) and net primary productivity (NPP). Fungi and bacteria dominated in 61 

regions with low and high MAT and NPP, respectively, thus representing slow vs. fast soil energy 62 

channels, a concept with a long history in soil ecology. These high-resolution models provide the 63 

first steps towards representing the major soil microbial groups and their functional differences in 64 

global biogeochemical models to improve predictions of soil organic matter turnover under current 65 

and future climate scenarios. The code and data of machine learning is available at 66 

https://github.com/KailiangYu/Biogeography-of-soil-microbes.git (Yu et al., 2022). 67 

  68 

https://github.com/KailiangYu/Biogeography-of-soil-microbes.git
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1. Introduction 69 

Fungi and bacteria are the dominant members of soil microbial communities worldwide in terms 70 

of diversity, abundance and biomass (Bahram et al., 2018). Representing distinct kingdoms of life, 71 

bacteria and fungi systematically differ in a multitude of physiological and life-history traits with 72 

direct implications for global soil biogeochemical cycles (Waring et al., 2013; Wieder et al., 2015) 73 

including the decomposition of organic matter, which contributes to one of the largest fluxes of 74 

CO2 on Earth (Glassman et al., 2018). Compared to bacteria, fungi generally have slower growth 75 

and turnover rates (Rousk and Bååth, 2007), greater carbon (C) to nutrient stoichiometry (Waring 76 

et al., 2013), greater capacity to degrade a wider and more recalcitrant range of substrates 77 

(Strickland and Rousk, 2010) and potentially higher C use efficiency (Soares and Rousk, 2019). 78 

For these reasons, a new generation of soil and ecosystem models have begun to explicitly 79 

represent these fundamentally distinct fast and slow cycling microbial groups, suggesting that 80 

spatially-explicit information about the relative abundance of fungal and bacteria in a region can 81 

dramatically improve the accuracy of global carbon cycling model predictions (Shi et al., 2018; 82 

Sulman et al., 2014; Wieder et al., 2013, 2015). Generating an understanding of the factors 83 

affecting the biogeography of the relative abundance of fungal and bacteria in soil, and its 84 

connection to global carbon cycle, would represent a breakthrough step forward in our general 85 

understanding of the natural history of soil microbial life. 86 

        Temperature, precipitation, soil pH and soil C:N have all been linked to the balance of fungi 87 

vs. bacteria within soil communities across different spatial scales (Bahram et al., 2018; 88 

Strickland and Rousk, 2010; Tedersoo et al., 2014). Relative to fungi, bacteria tend to dominate 89 

in locations with high soil nutrient contents or in frequently disturbed soils that limit the growth 90 

of fungal hyphae or make N more available (Fierer et al., 2009; Van Der Heijden et al., 2008; 91 
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Strickland and Rousk, 2010). However, until now, the relative importance of these different 92 

environmental drivers remains relatively unclear at global scale, and the biogeography of these 93 

major functional groups (fungi vs. bacteria) has only been demonstrated at local and regional 94 

scales. A recent analysis suggested that the relative soil bacterial abundance is high in tropical 95 

latitudes and decreases in abundance towards the high-latitude boreal regions, where fungi tend 96 

to dominate (Bahram et al., 2018). Translating these broad-scale trends into quantitative, 97 

spatially explicit information will be necessary if we intend to represent regional variations in 98 

soil community functioning (Wieder et al., 2013, 2015), or predict future changes in terrestrial 99 

carbon and nutrient cycling.  100 

       Some progress was made in the quantitative and spatially explicit understanding of global 101 

biogeographic patterns of fungal and bacterial biomass and their biomass ratio. By synthesizing 102 

phospholipid-derived fatty acids data from 1323 locations across the globe, and extrapolating 103 

linear relationships with environmental factors, a recent study generate the global maps of fungal 104 

and bacterial biomass and their biomass ratio at the resolution of 0.5 degree for top soil (0-30 105 

cm) (He et al., 2020). This approach provided the support for the broad-scale latitudinal trends, 106 

with high fungal dominance in high-latitude regions. Yet to date, there are three crucial 107 

knowledge gaps to be addressed. First, we still lack a high resolution evaluation of the spatial 108 

patterns and regional contingencies in fungal:bacterial ratios, which would allow representation 109 

of microbial-mediated mechanisms that operate within and/or across ecosystems at fine scales 110 

(Frindte et al., 2019; Zhu et al., 2017). Second, the response of soil microbial community 111 

composition across environmental gradients are expected to be non-linear, with strong interactive 112 

effects of different environmental characteristics that give rise to thresholds that diverge from the 113 

global latitudinal trends (Sengupta et al., 2021; Wang et al., 2018; Waring et al., 2013). This 114 
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non-linear linkage of soil microbial communities with environmental resource gradient has not 115 

been assessed, while it has fundamental implications on ecosystem functions and management 116 

solutions (Sengupta et al., 2021; Wang et al., 2018). Third, there are distinct difference of soil 117 

nutrients, soil microbial community and the associated biogeochemical processes across soil 118 

depths, i.e., from top surface soil (i.e., 0-10 cm) to top subsurface soil (i.e., 0-30 cm) (Lavahun et 119 

al., 1996; Yue et al., 2015). A continental-scale empirical study further showed that strong 120 

positive associations among soil microbial community, fertility and plant productivity are limited 121 

to the top surface soil (Delgado-Baquerizo et al., 2017), thus highlighting its potential dominant 122 

role regulated by top surface soil microbial communities on ecosystem functions and the 123 

research needs of generating a global spatially explicit understanding of soil fungi and bacteria in 124 

top surface soil. 125 

        Here, we present a global analysis of total and relative abundance of soil fungi and bacteria 126 

in soil surfaces (defined as top 10-15 cm) informed from over 3000 spatially distinct surface soil 127 

observations from phospholipid-derived fatty acids (PLFA) (Fig. 1a). The use of PLFA data 128 

provides an opportunity to provide quantitative insights into the abundances of the major 129 

functional groups. We conducted the analysis on the abundances in view of the uncertainty in 130 

conversion factors used to convert abundance derived from PLFA to biomass (Frostegård et al., 131 

2011; Klamer and Bååth, 2004). We used machine learning to link the variation in soil fungi and 132 

bacteria abundances to global variation in 95 climate, vegetation, and soil variables. This allowed 133 

us to 1) explore the environmental drivers of fungal and bacterial dominance, defined as fungal 134 

proportion - fungi/(fungi + bacteria), where values closer to 1 indicate a higher fungal dominance 135 

and values closer to zero indicate a greater bacterial dominance (see Methods); 2) examine the 136 

non-linear response or pattern of fungal proportion across environmental gradients, i.e., mean 137 
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annual temperature-MAT and net primary productivity-NPP. Based on the observed 138 

relationships (by accounting for the non-linearity), we generated a quantitative spatially-explicit 139 

global map (1 km2) of fungal proportion, and assessed how soil fungal and bacterial dominance 140 

varies with key climate, soil, vegetation and geographic drivers.  141 

2. Material and methods 142 

2.1. Data acquisition of soil microbe composition 143 

We compiled data of abundance of soil fungi and bacteria and fungal proportion, defined as 144 

fungi/(fungi + bacteria). We focused on phospholipid-derived fatty acids (PLFA) and the data 145 

derived from PLFA reported the balance between fungal and bacterial PLFAs (Frostegård et al., 146 

2011) can provide a valuable estimation of the comparative dominance of both functional groups. 147 

The data based on qPCR was not included because of difference in units with PLFA. With non-148 

significant difference using data of fungal proportion and fungi : bacteria ratio, we focused on and 149 

reported the results on the fungal proportion rather than fungi : bacteria ratio because 1) The fungal 150 

proportion is insensitive to whether fungi or bacteria are the numerator (i.e. bacterial proportion = 151 

1 – fungal proportion), and 2) fungal proportion had more spread frequency distribution and thus 152 

led to better machine learning predictions (Fig. S1). The data was compiled by a primary literature 153 

review through Google Scholar, Web of Science (http://apps.webofknowledge.com) and China 154 

National Knowledge Infrastructure Database (http://cnki.net) till 30 June, 2020 using the keywords 155 

“fungi”, “bacteria”, “abundance”, “PLFA”. To be included in our data analysis, the study had to 156 

at least have the following metadata: longitude and latitude, sampling date, sampling depth, 157 

information on land use (agriculture, tree plantations, or natural sites), units and the methods used. 158 

In total, this led to 319 references. We further used the following criteria to select eligible 159 

references and datasets: (1) when the studies were manipulative experiments, we only included the 160 

http://cnki.net/
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data from “control” plots (Chen et al., 2016). (2) we standardized our efforts by focusing on all 161 

samples that were collected from the top surface soils ( 0-10/15 cm) because this layer contains 162 

greater biomass and has the majority of sample size. (3) we used the datasets based on reporting 163 

abundance with units of nmol, umol, or mol% since the majority (>90%) of datasets reported 164 

abundance. Thus, we exclude all datasets reporting biomass instead of abundance. (4) we excluded 165 

observations located in sea since our study focuses on terrestrial ecosystems. (5) we only included 166 

the datasets on soil samples derived from field experiments and thus excluded the datasets from 167 

incubation experiments. (6) some datasets reported in original references as average across 168 

sampling sites or sampling dates were included.  169 

       The criteria were carefully scrutinized by three independent researchers and this ultimately 170 

led to 179 eligible references (see Supplementary references for PLFA) used for this study. In total, 171 

we compiled a dataset of fungal proportion (n = 3224) at a global scale. The subset of data (n = 172 

1795) with only natural ecosystems (Fig. S2a) were used to examine the potential role of land use 173 

change (see Supplementary Methods). The results showed minimal difference of the two scenarios 174 

of including all data and natural ecosystems. All data points falling within the same 30 arc-seconds 175 

(~1-km2) pixel were aggregated via an average. The aggregated data of fungal proportion (n = 946 176 

for all data; n = 716 for natural ecosystems) were used to examine its environmental controls and 177 

geospatial modelling in making the global map (Fig. 1a; Fig. S2a).  178 

        The spatial variations of fungi and bacteria ratio or fungal proportion across latitude could be 179 

influenced by either changes (increases or decreases) in abundance of fungi or bacteria or both. 180 

Thus, to better understand the biogeographic pattern of fungal and bacterial composition, we also 181 

analysed the spatial patterns of abundance of fungi and bacteria by using the abundance data with 182 

the same unit (nmol g-1 PLFA). In total, our data compiling led to a final subset of 2753, and 2759 183 
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samples which were used for further analyses of abundance of fungi and bacteria, respectively (Fig. 184 

S3). As compared to the larger sample size of fungal proportion (n = 946 for all data), the data of 185 

abundance of fungi (n = 646 for all data) and bacteria (n = 647 for all data) aggregated within the 186 

30 arc-seconds (~1-km2) pixel via an average were used for the analysis of their spatial trends 187 

across vegetation biome, vegetation type and latitude (see Supplementary Methods).  188 

2.2. Geospatial modelling  189 

A stack (n = 95) of ecologically relevant, global map layers including soil physical, chemical and 190 

nutrient properties, climate conditions, vegetative indices, radiation and topographic variables and 191 

anthropogenic covariates (Supplementary Table 1) were used to derive the environmental factors 192 

which could affect fungal proportion. All of these covariate map layers were standardized at 30 193 

arc-seconds resolution (≈1km2 at the equator) (van den Hoogen et al., 2019). These covariates 194 

were then derived based on the georeferenced coordinates of the soil samples aggregated at 30 arc-195 

seconds resolution.  196 

        We used the Random Forest machine learning algorithm (see Supplementary Methods) with 197 

the derived 95 covariates to extrapolate these relationships between fungal proportion and 198 

environmental conditions across the globe and generate the first spatially-explicit, quantitative 199 

map of fungal proportion at a global scale. The strength of prediction was evaluated using k-fold 200 

cross validation (with k = 10) and the best model having high coefficient of determination and low 201 

standard deviation in the mean cross-validation were used to generate the global map of fungal 202 

proportion. The standard error sharply decreased with increasing sample size across all vegetation 203 

biomes and the analysis showed that an efficient prediction required a large sample size (n > 500) 204 

(Fig. S4). To evaluate the sensitivity, we also generate the uncertainty (standard deviation as a 205 

fraction of the mean predicted value) map of  fungal proportion by using a stratified bootstrapping 206 
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procedure (van den Hoogen et al., 2019). The stratification category was the sampled biomes of 207 

each point feature (fungal proportion) with the total number collection of fungal proportion points 208 

to avoid biases. In total, 100 bootstrap iterations were used, thus generating 100 global maps of 209 

fungal proportion used to quantify statistically robust 95% confidence intervals per pixel.   210 

2.3. Environmental drivers and statistic analysis 211 

To examine the environmental controls of soil microbial composition at a global scale, we chose 212 

the top drivers (Chen et al., 2016; Drenovsky et al., 2010a; de Vries et al., 2012) which include 213 

soil properties, climate conditions, vegetation index  and human activities (see Supplementary 214 

Methods). These variables were examined to avoid multicollinearity using a matrix of pairwise 215 

correlations to remove any variable with high correlations (R>0.7) with other predictor variables 216 

(Anderegg et al., 2013). Random Forest machine learning algorithm was then used to determine 217 

variable importance for each variable(Breiman, 2001). Mean decrease in accuracy (%IncMSE) 218 

and mean decrease gini (IncNodePurity) were reported and the variables with greater values 219 

of %IncMSE and IncNodePurity are more important in influencing fungal proportion. Partial 220 

functions of most important variables (MAT and NPP) were plotted using forestFloor package to 221 

examine their influences on fungal proportion.  222 

3. Code and data availability of machine learning 223 

The code and data of machine learning is available at 224 

https://github.com/KailiangYu/Biogeography-of-soil-microbes.git.  225 

4. Results and discussion 226 

4.1. Raw data patterns of fungal proportion 227 

Globally, we observed greater than 10-fold variation in soil fungal proportion across all sites, 228 

ranging from 0.01 to 0.6 (Fig. 1b). At a global scale, we found clear latitudinal trends, with the 229 

https://github.com/KailiangYu/Biogeography-of-soil-microbes.git
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abundance of both fungi and bacteria increasing in high-latitude regions. Yet, the abundance of 230 

fungi increased with latitude at a greater rate than the abundance of bacteria (Fig. S5), resulting in 231 

a higher proportion of fungi in the cold, high-latitude regions. These latitudinal trends lend support 232 

to the general global patterns detected in a previous broad-scale analysis (Bahram et al., 2018) and 233 

in a recent meta-data analysis (He et al., 2020). As such, the highest fungal dominance was 234 

observed in tundra and boreal forest ecosystems (mean  1SE: 0.23  0.02; Fig. 1b). In addition, 235 

high elevation and cold grasslands (i.e., Montane grasslands) with large soil organic C (SOC) 236 

content generally harbor higher proportion of fungi, relative to bacteria (Fig. 1b).  237 

              Within similar climates, soil fungal and bacterial abundance as well as fungal proportion 238 

was greatest in ecosystems harboring woody vegetation compared to grasslands and managed 239 

(agricultural) ecosystems (Fig. S6). This finding is consistent with the idea that ecosystems 240 

dominated by woody plants generate lignified, more recalcitrant and nutrient poor soil C inputs 241 

that characteristically favor fungal dominance (Fierer et al., 2009; Strickland and Rousk, 2010), 242 

and have a biomass stoichiometry better suited to low nutrient environments (Waring et al., 2013). 243 

But we stress that this link of belowground soil microbial composition (fungi vs bacteria) with 244 

aboveground plant community composition (woody plants vs grasses) can be complex, non-linear 245 

and even divergent, as demonstrated by the non-existence of woody plants in grasslands and 246 

scarcity of grasses in forests but with well mixed fungi vs bacteria abundances. This raises the 247 

curiosity whether the interactions, associations or couplings of belowground soil microbial 248 

composition vs aboveground plant community composition are stronger in ecosystems where 249 

woody plants and grasses interact or coexist (i.e., savannas) (Yu and D’Odorico, 2015). It also 250 

remains unclear how this coupling could improve our understanding of ecosystem carbon cycling 251 

and other services.  252 
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               Management of agricultural ecosystems often disrupts soil fungal networks (i.e. tillage, 253 

frequent dry/wet cycles due to irrigation, machine operations, etc.), which decreases the abundance 254 

of fungi relative to bacteria in agricultural soils (Fig. S6) (Drenovsky et al., 2010b; Jangid et al., 255 

2011; Waldrop et al., 2017). A central concern in agricultural ecosystems is the tradeoff of 256 

increased food production to feed the increasing population vs the decreased soil carbon storage 257 

to accelerate the global climate change (Sanderman et al., 2017). This study showed the higher 258 

bacterial abundance relative to fungal abundance in soils of agricultural lands where soil carbon 259 

storge is low; this corresponds with the global trends of bacterial dominance in low latitude where 260 

soil carbon storage is low. These results suggest the potential strong but complex interactions and 261 

feedbacks of soil microbial composition and soil functions (i.e., soil carbon storge) (Bardgett et 262 

al., 2008), while the mechanistic links need further studies.  263 

4.2. Drivers of fungal proportion 264 

Globally, the fungal proportion in soil can be predicted by few primary environmental drivers (Fig. 265 

2; Fig. S7). Specifically, mean annual temperature (MAT) and primary productivity (NPP) were 266 

strong determinants of fungal dominance. The responses of fungal proportion to both MAT and 267 

NPP were strongly non-linear, with warmer, more productive regions of the world (i.e. tropical 268 

forest biomes) showing lower dominance of fungi as compared to colder, less productive 269 

ecosystems (i.e. boreal forest and tundra biomes, Fig. 3; Fig. S8). This pattern is consistent with 270 

the idea that fungi and bacteria represent slow vs. fast soil energy channels, respectively (Crowther 271 

et al., 2019; Malik et al., 2016), a concept with a long history in soil ecology (Moore et al., 2003; 272 

Moore and William Hunt, 1988). This finding is important because it could potentially link the 273 

belowground slow – fungi vs fast – bacteria energy channels with aboveground plant slow growth 274 

rates – woody plants vs fast growth rates – grasses, while the linkage could be complex, non-linear 275 
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or even divergent. The fast vs slow concept or spectrum have fundamentally improved the 276 

understandings and predictions of land carbon storage across resource gradient or under global 277 

change. The faster growth could be typically trade off with higher mortality or heterotrophic 278 

respiration with resource (i.e., CO2) enriched conditions (Jiang et al., 2020; Terrer et al., 2021; Yu 279 

et al., 2019), thus constraining land carbon storage. This raises the question of how the 280 

belowground fast vs slow energy channels and the aboveground fast vs slow growth spectrum 281 

could be potentially linked or integrated to assess land carbon storage.  282 

             Temperature can affect soil microbial composition in complex ways, via directly 283 

physiology or via indirectly soil substrate (Romero-Olivares et al., 2017). Previous studies have 284 

shown the non-linear response of soil fungal and bacterial ratio to soil substrate (Waring et al., 285 

2013). The non-linear trends of the temperature sensitivity (Q10) of soil organic C decomposition, 286 

as regulated by soil fungal and bacterial ratio, were also found along latitude (Wang et al., 2018). 287 

Other environmental variables such as soil C to nitrogen ratio (C:N) have previously been found 288 

to be important drivers in influencing fungal proportion within local and regional scale analyses 289 

(Fierer et al., 2009; Waring et al., 2013). Our results suggest a more complicated relationship 290 

between fungal proportion and the soil C:N. In the low range of soil C:N values, fungal proportion 291 

decreased with soil C:N (Fig. S9a), suggesting the likely role of site-specific differences (i.e., 292 

climate or plant community) in out-weighting the influence of N availability (Soares and Rousk, 293 

2019). Aside from these ecosystems, we observed a positive relationship between fungal 294 

proportion and soil C:N at a global scale, consistent with previous work at local and regional scales 295 

(Strickland and Rousk, 2010; Waring et al., 2013). Additionally, pH has been thought as a critical 296 

driver of microbial diversity and biomass in soils. At local scales, previous studies reported either 297 

no relationship, a negative correlation or convex curve between fungal and bacterial ratio and soil 298 
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pH (Rousk et al., 2009, 2010; de Vries et al., 2012). Our global scale analysis suggests a convex 299 

relationship between fungal proportion and soil pH, with fungi dominating only within a narrow 300 

pH range (<5-6) (Fig. S9b).  301 

4.3. Biogeographic pattern from the machine learning model 302 

Across all samples, the machine learning model was able to predict the variation in fungal and 303 

bacterial dominance with high predictive accuracy (R2 = 0.43/0.35 in 10-fold cross validation; R2 304 

= 0.92/0.91 in final model; Fig. S10a-b). By extrapolating these relationships across terrestrial 305 

ecosystems, we could identify clear global trends in fungal dominance. Despite these general 306 

global scale patterns of increase in fungi dominance with latitude, our models also revealed 307 

regional contingencies that diverge from the global trends (Fig. 4a; Fig. S11a). For instance, 308 

Northeastern Europe is dominated by woody vegetation and exhibits high fungal proportion, while 309 

the United Kingdom and northern Kazakhstan have much lower fungal proportion despite being 310 

at comparable latitude, likely because these areas are dominated by herbaceous vegetation with 311 

lower lignin content than in woody tissues. Tibetan alpine grasslands are at comparatively much 312 

lower latitude but have high values of fungal proportion in part due to very high SOC stocks and 313 

cold temperatures. Model predictions of  fungal proportion had high uncertainty in dry regions 314 

(i.e., Northern and Southern Africa, Australia, Western USA, eastern Mongolia) (Fig. 4b; Fig. 315 

S11b), presumably because of the low sample size in drylands and/or complex response of fungi 316 

and bacteria to water availability (Fierer et al., 2009; Strickland and Rousk, 2010). Indeed, 317 

our datasets are mostly concentrated to US, Europe and East Asia, thus highlighting the data gaps 318 

at tropical and boreal biomes. Even for the temperate biome, there were data gaps in west Australia 319 

and central Asia. Because of the unbalanced sample distribution, we also used a bootstrapping 320 

strategy (100 iterations) by randomly sampling 90% data with replacement. The results showed 321 
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the similar spatial patterns of fungal proportion (Fig. S12a) and uncertainty (Fig. S12b) as the 322 

scenario of using full dataset without bootstrapping.  323 

            Our study differs from a previous study (He et al., 2020) in several aspects including 324 

sample size (n > 3000), spatial resolution (1km2), consideration of non-linearity (through random 325 

forest analysis), soil depth (soil surface 0-10/15 cm). We also note that our analysis sticks to the 326 

original data of abundance derived from PLFA instead of converting abundance to biomass. 327 

Conversion of abundance to biomass needs the conversion factor, which has large uncertainty 328 

(Frostegård et al., 2011; Klamer and Bååth, 2004). Our high resolution map would allow 329 

representation of microbial-mediated mechanisms at fine scales to link with ecosystem functions. 330 

For instance, the significant functional differences between fungi and bacterial mean that the 331 

relative dominance of fungi vs. bacteria is likely to influence a wide range of ecosystem 332 

functions such as C use efficiency (CUE) of the decomposer community (Six et al., 2006; Soares 333 

and Rousk, 2019) and enzymatic activity in soil N vs P acquisition (Caldwell, 2005; Crowther et 334 

al., 2019).  At fine, local or even regional scales, these relationships between soil microbial 335 

composition and ecosystem functions could only be well identified using fine scale maps of soil 336 

microbial composition.  337 

4.4. Implications and limitations of this study 338 

It is generally accepted that the soil microbiome exerts major control over soil processes, and in 339 

turn ecosystem functioning, and by extension the global biogeochemical cycles (Bahram et al., 340 

2018; Crowther et al., 2019; Van Der Heijden et al., 2008; Jenny, 1941). Fungi and bacteria 341 

represent most of the diversity of life on Earth (Bardgett and van der Putten, 2014; Locey and 342 

Lennon, 2016). Yet, inclusion of fungal and bacterial abundance into quantitative ecosystem and 343 

Earth system models has been hindered by the paucity of information about organisms at 344 
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appropriate spatial scales. Here, we impose a global top-down constraint on the broad composition 345 

of soil microbial life. By doing so, we hope to empower microbial, ecosystem and Earth-system 346 

scientists to consider how this broad constraint on the soil biodiversity may inform and transform 347 

how we understand terrestrial ecosystem functioning. As we develop a spatially-explicit 348 

understanding of the global soil community, we will be able to better parameterize and benchmark 349 

our predictions about the rate and efficiency of carbon turnover in soil and the feedbacks to 350 

ongoing climate change.  351 

          Despite of the progress made in this study, here we clarify two limitations on this study. 352 

First, our study highlights the data gaps in fungal proportion prediction in low latitude – tropical 353 

biome and high latitude – boreal biome (i.e., boreal forests and tundra). Tropical vs boreal 354 

biomes are hotpots or debated regions with their relative capacity and capability to sequestrate 355 

atmospheric CO2 and mitigate climate change in an increasingly changing climate (Schimel et 356 

al., 2015; Tagesson et al., 2020). They are also regions with striking differences of soil microbial 357 

composition (fungal proportion), plant communities and soil carbon storge, thus suggesting their 358 

potentially strong interactions and feedbacks in these regions (Bardgett et al., 2008). Boreal 359 

biome contains large amount of soil organic carbon which could be sensitive to global change 360 

(i.e., warming), whereby soil microbial community (i.e., total biomass or the relative abundance 361 

of of soil fungi and bacteria) could play an essential role. Second, microbial biomass (C) is more 362 

relevant to be linked with soil carbon cycling and carbon stock in term of their own contribution 363 

by living carbon pools and the impacts of its microbial necromass (Liang et al., 2019), while the 364 

conversion factor of converting abundance into biomass across space is currently not available. 365 

To mechanistically and explicitly incorporate soil microbial composition into biogeochemical 366 

models, the biogeographic patterns of abundance or biomass of each major group (fungi vs 367 
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bacteria), the relative ratio within fungi (i.e., saprotrophic fungi, arbuscular mycorrhiza fungi vs 368 

ectomycorrhizal fungi) and/or bacteria (i.e., gram positive bacteria vs gram negative bacteria) 369 

would also be critical in view of their striking functional difference (Averill et al., 2014; 370 

Crowther et al., 2019). These knowledge gaps highlight the urgent research needs in these new 371 

research endeavors with the increasing availability of datasets.  372 

5. Conclusions 373 

This study used a global scale dataset (>3000 distinct observations of soil fungal and bacterial 374 

abundance) in the top soil surface (up to 15 cm) to generate the first quantitative and spatially high 375 

resolution (1 km2) explicit maps of soil fungal and bacterial relative abundance across global 376 

terrestrial ecosystems. Our machine learning approach (random forest) enabled us to link the 377 

variation in fungal proportion to global variation in climate, soil, vegetation and other 378 

environmental drivers, whilst accounting for the interactions and non-linearities among them. We 379 

found the striking latitudinal trends where fungal dominance increases in cold and high latitude 380 

environments with large soil carbon stocks. The fungal proportion in soil can be predicted by few 381 

primary environmental drivers – temperature and NPP with strong non-linear effects of 382 

temperature and NPP. We demonstrated that fungi and bacteria represent slow vs fast energy 383 

channels, whereby they dominate in regions of low MAT and NPP vs high MAT and NPP, 384 

respectively. Overall, our spatially-explicit model would enable us to explicitly represent the 385 

different contributions of fast - bacterial vs. slow – fungal energy channels in spatially-explicit 386 

biogeochemical models, with the potential to enhance the accuracy of soil carbon turnover and 387 

carbon storge predictions. We further highlight the data gaps in tropical and boreal regions and 388 

needs of future research endeavors in generating high resolution biogeographic patterns of biomass 389 
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of each major microbial group, the relative biomass ratios across and within major microbial 390 

groups.  391 

 392 

  393 



 19 

References 394 

Anderegg, L. D. L., Anderegg, W. R. L., Abatzoglou, J., Hausladen, A. M. and Berry, J. A.: 395 
Drought characteristics’ role in widespread aspen forest mortality across Colorado, USA, 396 
Glob. Chang. Biol., 19(5), 1526–1537, doi:10.1111/gcb.12146, 2013. 397 

Averill, C., Turner, B. L. and Finzi, A. C.: Mycorrhiza-mediated competition between plants and 398 
decomposers drives soil carbon storage, Nature, 505(7484), doi:10.1038/nature12901, 2014. 399 

Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., Bodegom, 400 
P. M., Bengtsson-Palme, J., Anslan, S., Coelho, L. P., Harend, H., Huerta-Cepas, J., 401 
Medema, M. H., Maltz, M. R., Mundra, S., Olsson, P. A., Pent, M., Põlme, S., Sunagawa, S., 402 
Ryberg, M., Tedersoo, L. and Bork, P.: Structure and function of the global topsoil 403 
microbiome, Nature, 560(7717), 233–237, doi:10.1038/s41586-018-0386-6, 2018. 404 

Bardgett, R. D. and van der Putten, W. H.: Belowground biodiversity and ecosystem 405 
functioning., Nature, 515(7528), 505–11, doi:10.1038/nature13855, 2014. 406 

Bardgett, R. D., Freeman, C. and Ostle, N. J.: Microbial contributions to climate change through 407 
carbon cycle feedbacks, ISME J., 2(8), doi:10.1038/ismej.2008.58, 2008. 408 

Breiman, L.: Random forests, Mach. Learn., 45(1), 5–32, doi:10.1023/A:1010933404324, 2001. 409 
Caldwell, B. A.: Enzyme activities as a component of soil biodiversity: A review, in 410 

Pedobiologia, vol. 49., 2005. 411 
Chen, Y. L., Ding, J. Z., Peng, Y. F., Li, F., Yang, G. B., Liu, L., Qin, S. Q., Fang, K. and Yang, 412 

Y. H.: Patterns and drivers of soil microbial communities in Tibetan alpine and global 413 
terrestrial ecosystems, J. Biogeogr., 43(10), 2027–2039, doi:10.1111/jbi.12806, 2016. 414 

Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., Averill, C. 415 
and Maynard, D. S.: The global soil community and its influence on biogeochemistry, 416 
Science (80-. )., doi:10.1126/science.aav0550, 2019. 417 

Delgado-Baquerizo, M., Powell, J. R., Hamonts, K., Reith, F., Mele, P., Brown, M. V., Dennis, 418 
P. G., Ferrari, B. C., Fitzgerald, A., Young, A., Singh, B. K. and Bissett, A.: Circular 419 
linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the 420 
continental scale, New Phytol., 215(3), doi:10.1111/nph.14634, 2017. 421 

Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E. and Scow, K. M.: Land use and climatic 422 
factors structure regional patterns in soil microbial communities, Glob. Ecol. Biogeogr., 423 
19(1), 27–39, doi:10.1111/j.1466-8238.2009.00486.x, 2010a. 424 

Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E. and Scow, K. M.: Land use and climatic 425 
factors structure regional patterns in soil microbial communities, Glob. Ecol. Biogeogr., 426 
doi:10.1111/j.1466-8238.2009.00486.x, 2010b. 427 

Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. and Cleveland, C. C.: Global patterns 428 
in belowground communities, Ecol. Lett., 12(11), 1238–1249, doi:10.1111/j.1461-429 
0248.2009.01360.x, 2009. 430 

Frindte, K., Pape, R., Werner, K., Löffler, J. and Knief, C.: Temperature and soil moisture 431 
control microbial community composition in an arctic–alpine ecosystem along elevational 432 
and micro-topographic gradients, ISME J., 13(8), doi:10.1038/s41396-019-0409-9, 2019. 433 

Frostegård, Å., Tunlid, A. and Bååth, E.: Use and misuse of PLFA measurements in soils, Soil 434 
Biol. Biochem., doi:10.1016/j.soilbio.2010.11.021, 2011. 435 

Glassman, S. I., Weihe, C., Li, J., Albright, M. B. N., Looby, C. I., Martiny, A. C., Treseder, K. 436 
K., Allison, S. D. and Martiny, J. B. H.: Decomposition responses to climate depend on 437 
microbial community composition, Proc. Natl. Acad. Sci. U. S. A., 438 



 20 

doi:10.1073/pnas.1811269115, 2018. 439 
He, L., Mazza Rodrigues, J. L., Soudzilovskaia, N. A., Barceló, M., Olsson, P. A., Song, C., 440 

Tedersoo, L., Yuan, F., Yuan, F., Lipson, D. A. and Xu, X.: Global biogeography of fungal 441 
and bacterial biomass carbon in topsoil, Soil Biol. Biochem., 151, 442 
doi:10.1016/j.soilbio.2020.108024, 2020. 443 

Van Der Heijden, M. G. A., Bardgett, R. D. and Van Straalen, N. M.: The unseen majority: Soil 444 
microbes as drivers of plant diversity and productivity in terrestrial ecosystems, Ecol. Lett., 445 
doi:10.1111/j.1461-0248.2007.01139.x, 2008. 446 

van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., de 447 
Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W. S., Bardgett, R. D., Bonkowski, 448 
M., Campos-Herrera, R., Cares, J. E., Caruso, T., de Brito Caixeta, L., Chen, X., Costa, S. 449 
R., Creamer, R., Mauro da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B. 450 
S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., 451 
Krashevska, V., Kudrin, A. A., Li, Q., Liang, W., Magilton, M., Marais, M., Martín, J. A. 452 
R., Matveeva, E., Mayad, E. H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T. A. D., 453 
Nielsen, U. N., Okada, H., Rius, J. E. P., Pan, K., Peneva, V., Pellissier, L., Carlos Pereira da 454 
Silva, J., Pitteloud, C., Powers, T. O., Powers, K., Quist, C. W., Rasmann, S., Moreno, S. S., 455 
Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A. V., Trap, J., van der Putten, W., Vestergård, 456 
M., Villenave, C., Waeyenberge, L., Wall, D. H., Wilschut, R., Wright, D. G., Yang, J. and 457 
Crowther, T. W.: Soil nematode abundance and functional group composition at a global 458 
scale, Nature, doi:10.1038/s41586-019-1418-6, 2019. 459 

Jangid, K., Williams, M. A., Franzluebbers, A. J., Schmidt, T. M., Coleman, D. C. and Whitman, 460 
W. B.: Land-use history has a stronger impact on soil microbial community composition 461 
than aboveground vegetation and soil properties, Soil Biol. Biochem., 43(10), 2184–2193, 462 
doi:10.1016/j.soilbio.2011.06.022, 2011. 463 

Jenny, H.: Factors of Soil Formation, Soil Sci., doi:10.1097/00010694-194111000-00009, 1941. 464 
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C., Barton, C. V. M., Boer, 465 

M. M., Carrillo, Y., Castañeda-Gómez, L., Collins, L., Crous, K. Y., De Kauwe, M. G., dos 466 
Santos, B. M., Emmerson, K. M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, 467 
S., Johnson, S. N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries, 468 
L., Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J., Ochoa-Hueso, R., Pathare, 469 
V. S., Pendall, E., Pihlblad, J., Piñeiro, J., Powell, J. R., Power, S. A., Reich, P. B., Renchon, 470 
A. A., Riegler, M., Rinnan, R., Rymer, P. D., Salomón, R. L., Singh, B. K., Smith, B., 471 
Tjoelker, M. G., Walker, J. K. M., Wujeska-Klause, A., Yang, J., Zaehle, S. and Ellsworth, 472 
D. S.: The fate of carbon in a mature forest under carbon dioxide enrichment, Nature, 473 
580(7802), doi:10.1038/s41586-020-2128-9, 2020. 474 

Klamer, M. and Bååth, E.: Estimation of conversion factors for fungal biomass determination in 475 
compost using ergosterol and PLFA 18:2ω6,9, Soil Biol. Biochem., 36(1), 476 
doi:10.1016/j.soilbio.2003.08.019, 2004. 477 

Lavahun, M. F. E., Joergensen, R. G. and Meyer, B.: Activity and biomass of soil 478 
microorganisms at different depths, Biol. Fertil. Soils, 23(1), doi:10.1007/BF00335816, 479 
1996. 480 

Liang, C., Amelung, W., Lehmann, J. and Kästner, M.: Quantitative assessment of microbial 481 
necromass contribution to soil organic matter, Glob. Chang. Biol., 25(11), 482 
doi:10.1111/gcb.14781, 2019. 483 

Locey, K. J. and Lennon, J. T.: Scaling laws predict global microbial diversity, Proc. Natl. Acad. 484 



 21 

Sci. U. S. A., doi:10.1073/pnas.1521291113, 2016. 485 
Malik, A. A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J., Vazquez, P. G. M., Jehmlich, 486 

N., von Bergen, M., Griffiths, R. I. and Gleixner, G.: Soil fungal: Bacterial ratios are linked 487 
to altered carbon cycling, Front. Microbiol., 7(AUG), doi:10.3389/fmicb.2016.01247, 2016. 488 

Moore, J. C. and William Hunt, H.: Resource compartmentation and the stability of real 489 
ecosystems, Nature, doi:10.1038/333261a0, 1988. 490 

Moore, J. C., McCann, K., Setälä, H. and De Ruiter, P. C.: Top-down is bottom-up: Does 491 
predation in the rhizosphere regulate aboveground dynamics?, Ecology, doi:10.1890/0012-492 
9658(2003)084[0846:TIBDPI]2.0.CO;2, 2003. 493 

Romero-Olivares, A. L., Allison, S. D. and Treseder, K. K.: Soil microbes and their response to 494 
experimental warming over time: A meta-analysis of field studies, Soil Biol. Biochem., 495 
doi:10.1016/j.soilbio.2016.12.026, 2017. 496 

Rousk, J. and Bååth, E.: Fungal biomass production and turnover in soil estimated using the 497 
acetate-in-ergosterol technique, Soil Biol. Biochem., 39(8), 2173–2177, 498 
doi:10.1016/j.soilbio.2007.03.023, 2007. 499 

Rousk, J., Brookes, P. C. and Bååth, E.: Contrasting soil pH effects on fungal and bacterial 500 
growth suggest functional redundancy in carbon mineralization, Appl. Environ. Microbiol., 501 
75(6), 1589–1596, doi:10.1128/AEM.02775-08, 2009. 502 

Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R. and 503 
Fierer, N.: Soil bacterial and fungal communities across a pH gradient in an arable soil, 504 
ISME J., 4(10), 1340–1351, doi:10.1038/ismej.2010.58, 2010. 505 

Sanderman, J., Hengl, T. and Fiske, G. J.: Soil carbon debt of 12,000 years of human land use, 506 
Proc. Natl. Acad. Sci. U. S. A., 114(36), doi:10.1073/pnas.1706103114, 2017. 507 

Schimel, D., Stephens, B. B. and Fisher, J. B.: Effect of increasing CO2 on the terrestrial carbon 508 
cycle, Proc. Natl. Acad. Sci. U. S. A., doi:10.1073/pnas.1407302112, 2015. 509 

Sengupta, A., Fansler, S. J., Chu, R. K., Danczak, R. E., Garayburu-Caruso, V. A., Renteria, L., 510 
Song, H. S., Toyoda, J., Wells, J. and Stegen, J. C.: Disturbance triggers non-linear microbe-511 
environment feedbacks, Biogeosciences, 18(16), doi:10.5194/bg-18-4773-2021, 2021. 512 

Shi, Z., Crowell, S., Luo, Y. and Moore, B.: Model structures amplify uncertainty in predicted 513 
soil carbon responses to climate change, Nat. Commun., doi:10.1038/s41467-018-04526-9, 514 
2018. 515 

Six, J., Frey, S. D., Thiet, R. K. and Batten, K. M.: Bacterial and Fungal Contributions to Carbon 516 
Sequestration in Agroecosystems, Soil Sci. Soc. Am. J., 70(2), 555, 517 
doi:10.2136/sssaj2004.0347, 2006. 518 

Soares, M. and Rousk, J.: Microbial growth and carbon use efficiency in soil: Links to fungal-519 
bacterial dominance, SOC-quality and stoichiometry, Soil Biol. Biochem., 520 
doi:10.1016/j.soilbio.2019.01.010, 2019. 521 

Strickland, M. S. and Rousk, J.: Considering fungal: Bacterial dominance in soils - Methods, 522 
controls, and ecosystem implications, Soil Biol. Biochem., 523 
doi:10.1016/j.soilbio.2010.05.007, 2010. 524 

Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. and Pacala, S. W.: Microbe-driven 525 
turnover offsets mineral-mediated storage of soil carbon under elevated CO 2, Nat. Clim. 526 
Chang., doi:10.1038/nclimate2436, 2014. 527 

Tagesson, T., Schurgers, G., Horion, S., Ciais, P., Tian, F., Brandt, M., Ahlström, A., Wigneron, 528 
J. P., Ardö, J., Olin, S., Fan, L., Wu, Z. and Fensholt, R.: Recent divergence in the 529 
contributions of tropical and boreal forests to the terrestrial carbon sink, Nat. Ecol. Evol., 530 



 22 

doi:10.1038/s41559-019-1090-0, 2020. 531 
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., 532 

Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, 533 
A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., Piepenbring, M., Phosri, 534 
C., Peterson, M., Parts, K., Pärtel, K., Otsing, E., Nouhra, E., Njouonkou, A. L., Nilsson, R. 535 
H., Morgado, L. N., Mayor, J., May, T. W., Majuakim, L., Lodge, D. J., Lee, S., Larsson, K. 536 
H., Kohout, P., Hosaka, K., Hiiesalu, I., Henkel, T. W., Harend, H., Guo, L. D., Greslebin, 537 
A., Grelet, G., Geml, J., Gates, G., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., De 538 
Kesel, A., Dang, T., Chen, X., Buegger, F., Brearley, F. Q., Bonito, G., Anslan, S., Abell, S. 539 
and Abarenkov, K.: Global diversity and geography of soil fungi, Science (80-. )., 540 
346(6213), doi:10.1126/science.1256688, 2014. 541 

Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., van 542 
Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini, A. F. 543 
A., Pendall, E., Zhang, H., Evans, R. D., Carrillo, Y., Fisher, J. B., Van Sundert, K., Vicca, 544 
S. and Jackson, R. B.: A trade-off between plant and soil carbon storage under elevated 545 
CO2, Nature, 591(7851), doi:10.1038/s41586-021-03306-8, 2021. 546 

de Vries, F. T., Manning, P., Tallowin, J. R. B., Mortimer, S. R., Pilgrim, E. S., Harrison, K. A., 547 
Hobbs, P. J., Quirk, H., Shipley, B., Cornelissen, J. H. C., Kattge, J. and Bardgett, R. D.: 548 
Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial 549 
communities, Ecol. Lett., 15(11), 1230–1239, doi:10.1111/j.1461-0248.2012.01844.x, 2012. 550 

Waldrop, M. P., Holloway, J. M., Smith, D. B., Goldhaber, M. B., Drenovsky, R. E., Scow, K. 551 
M., Dick, R., Howard, D., Wylie, B. and Grace, J. B.: The interacting roles of climate, soils, 552 
and plant production on soil microbial communities at a continental scale, Ecology, 553 
doi:10.1002/ecy.1883, 2017. 554 

Wang, Q., Liu, S. and Tian, P.: Carbon quality and soil microbial property control the latitudinal 555 
pattern in temperature sensitivity of soil microbial respiration across Chinese forest 556 
ecosystems, Glob. Chang. Biol., doi:10.1111/gcb.14105, 2018. 557 

Waring, B. G., Averill, C. and Hawkes, C. V.: Differences in fungal and bacterial physiology 558 
alter soil carbon and nitrogen cycling: Insights from meta-analysis and theoretical models, 559 
Ecol. Lett., 16(7), 887–894, doi:10.1111/ele.12125, 2013. 560 

Wieder, W. R., Bonan, G. B. and Allison, S. D.: Global soil carbon projections are improved by 561 
modelling microbial processes, Nat. Clim. Chang., 3(10), 909–912, 562 
doi:10.1038/nclimate1951, 2013. 563 

Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O., He, Y., Hopkins, F., 564 
Luo, Y., Smith, M. J., Sulman, B., Todd-Brown, K., Wang, Y. P., Xia, J. and Xu, X.: 565 
Explicitly representing soil microbial processes in Earth system models, Global 566 
Biogeochem. Cycles, 29(10), 1782–1800, doi:10.1002/2015GB005188, 2015. 567 

Yu, K. and D’Odorico, P.: Hydraulic lift as a determinant of tree-grass coexistence on savannas, 568 
New Phytol., 207(4), 1038–1051, doi:10.1111/nph.13431, 2015. 569 

Yu, K., Smith, W. K., Trugman, A. T., Condit, R., Hubbell, S. P., Sardans, J., Peng, C., Zhu, K., 570 
Peñuelas, J., Cailleret, M., Levanic, T., Gessler, A., Schaub, M., Ferretti, M. and Anderegg, 571 
W. R. L.: Pervasive decreases in living vegetation carbon turnover time across forest climate 572 
zones, Proc. Natl. Acad. Sci. U. S. A., doi:10.1073/pnas.1821387116, 2019. 573 

Yu, K., Biogeography-of-soil-microbes https://github.com/KailiangYu/Biogeography-of-soil-574 
microbes.git, 2022. 575 

 576 

https://github.com/KailiangYu/Biogeography-of-soil-microbes.git
https://github.com/KailiangYu/Biogeography-of-soil-microbes.git


 23 

Yue, H., Wang, M., Wang, S., Gilbert, J. A., Sun, X., Wu, L., Lin, Q., Hu, Y., Li, X., He, Z., 577 
Zhou, J. and Yang, Y.: The microbe-mediated mechanisms affecting topsoil carbon stock in 578 
Tibetan grasslands, ISME J., 9(9), doi:10.1038/ismej.2015.19, 2015. 579 

Zhu, Q., Riley, W. J. and Tang, J.: A new theory of plant-microbe nutrient competition resolves 580 
inconsistencies between observations and model predictions, Ecol. Appl., 27(3), 581 
doi:10.1002/eap.1490, 2017. 582 

  583 



 24 

 584 
Figure 1. Map of sample locations and fungal and bacterial abundance and fungal 585 

proportion data. a, Sampling sites. A total of 3224 samples were collected and aggregated into 586 

943 1-km2 pixels that were used for geospatial modelling. b, The median and interquartile range 587 

of abundance of fungi and bacteria and fungal proportion across vegetation biomes. Tundra and 588 

boreal forest, Mediterranean and desert have low sample sizes (<25) and thus were combined.  589 
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 590 

Figure 2. Mean decrease in accuracy (%IncMSE, mean and SD, a) and mean decrease gini 591 

(IncNodePurity, mean and SD, b) estimated from 1000 simulations of random forests. This 592 

is used to evaluate the importance of top environmental drivers on proportion of fungi derived 593 

from ‘all’ dataset. 594 

a 

b 



 26 

 595 

Figure 3. Fungal proportion is primarily associated with climate- mean annual 596 

temperature (MAT) and net primary productivity (NPP). a–b, Partial feature contributions 597 

of primary environmental variables (a, MAT; b, NPP) to fungal proportion. c, Partial feature 598 

contributions of primary environmental variable interactions (MAT vs NPP) to fungal 599 

proportion.  600 

 601 
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  602 
 603 
Figure 4. Global map of fungal proportion (a) and bootstrapped (100 iterations) coefficient 604 

of variation (b) at the 30 arcsec (approximately 1 km2) pixel scale. Bootstrapped coefficient 605 

of variation is standard deviation divided by the mean predicted value as a measure of prediction 606 

accuracy. Sampling was stratified by biome. 607 

 608 
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