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Abstract. The management and conservation of lakes should be conducted in the context of catchment because lakes collect
water and materials from their upstream catchments. So the datasets of catchment-level characteristics are essential for
limnology studies. Lakes are widely spread on the Tibetan Plateau (TP), with a total lake area exceeding 50 000 km?,
accounting for more than half of the total lake area in China. However, there has been no dataset of lake-catchment
characteristics in this region to date. This study constructed the first dataset of lake-catchment characteristics for 1525 lakes
with areas from 0.2 to 4503 km? on the TP. Considering that large lakes block the transport of materials from upstream to
downstream, lake catchments are delineated in two ways: the full catchment, which refers to the full upstream contributing
area of each lake, and the inter-lake catchments, which are obtained by excluding the contributing areas of upstream lakes
larger than 0.2 km? from the full catchment. There are six categories (i.e., lake body, topographic, climatic, land cover/use,
soil & geology, and anthropogenic activity) and a total of 721 attributes in the dataset. Besides multi-year average attributes,
the time series of 16 hydrological and meteorological variables are extracted, which can be used to drive or validate lumped
hydrological models and machine learning models for hydrological simulation. The LCC-TP dataset contains fundamental
information for analysing the impact of catchment-level characteristics on lake properties, which on the one hand, can
deepen our understanding of the drivers of lake environment change, and on the other hand can be used to predict the water
and sediment properties in unsampled lakes based on limited samples. This provides exciting opportunities for lake studies in
a spatially-explicit context and promotes the development of landscape limnology on the TP. The dataset of lake-catchment
characteristics for the Tibetan Plateau (LCC-TP v1.0) is accessible at the National Tibetan Plateau/Third Pole Environment
Data Center (https://doi.org/10.11888/Terre.tpdc.272026, Liu, 2022).
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1 Introduction

Lakes are an essential component of inland water and play a key role in maintaining regional ecosystem services (Cole et al.,
2007). The management and conservation of lakes should be conducted in the context of catchment because lakes collect
water and materials from their upstream catchments. The properties of lake water and sediments (e.g., nutrient
concentrations and carbon storage) are affected by catchment-level characteristics such as terrain, land cover, and
precipitation amount (Soranno et al., 2010). It was reported that catchment-level land-use composition could explain 45-62%
of lake water-quality metrics (e.g., turbidity, total nitrogen, and dissolved organic carbon) across conterminous US (CONUS)
(Read et al., 2015). Therefore, characterizing the upstream catchments of lakes is essential for the scientific study and
management of lakes.

It requires multiple steps and specialized geospatial techniques to calculate catchment-level characteristics (Hill et al., 2018;
Hao et al., 2021). First, flow directions should be determined from digital elevation model (DEM), and catchment boundaries
are then delineated according to flow direction. After that, multiple related spatial datasets are collected and processed (e.g.,
data format conversion and reprojection). Finally, zonal statistics are performed to get catchment-level characteristics. These
procedures need to be repeated for every lake in a region, which is time-consuming, so automatic processing needs to be
implemented. This is not easy for people who are not experts on geospatial techniques. In addition, the lake-catchment
characteristics calculated by different researchers are usually not consistent on the aspects of feature types and data sources,
making the analysis based on them less comparable.

To provide consistent baseline datasets of lake-catchment characteristics, several products, such as the LAGOS-NE and
Lake-Catchment (LakeCat) datasets (Soranno et al., 2017; Hill et al., 2018), have been produced. The LAGOS-NE dataset
contains catchment-level characteristics for 51 101 lakes and reservoirs larger than 4 ha in the northeastern-most 17 US
states. In this dataset, lake catchments were defined as “inter-lake watersheds” which contains two parts: the area draining
directly into a lake and the area draining into its upstream streams and lakes smaller than 0.1 km? (Soranno et al., 2017). The
contributing areas of upstream lakes larger than 0.1 km? were not included because large lakes can block the transport of
materials from upstream to downstream (Zhang et al., 2012). The LakeCat dataset, as an extension to LAGOS-NE, covers
the CONUS and contains the data for 378 088 lakes. Besides inter-lake watersheds, the whole upstream watershed was also
used as the statistical units and there were more than 200 catchment-level attributes characterizing soil, lithology, land cover,
mines, roads, and so on (Hill et al., 2018). These datasets facilitated the research on landscape limnology, which means the
study of lakes in the context of catchment-level landscapes (Soranno et al., 2010). Besides, the river-oriented datasets of
catchment characteristics, represented by the CAMELS (Catchment Attributes and Meteorology for Large-sample Studies)
series of datasets like CMALES (Addor et al., 2017), CAMLES-CL (Alvarez-Garreton et al., 2018), CMALES-BR (Chagas
et al., 2020), CAMLES-GB (Coxon et al., 2020), CCAM (Hao et al., 2021), and LamaH-CE (Klingler et al., 2021), also

showed the great value of such catchment-level attributes datasets.
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In this research, we focus on the Tibetan Plateau (TP), which has a total lake area exceeding 50 000 km?, accounting for
more than half of the total area of lakes in China (Zhang et al., 2019). Due to the paucity of in-situ measurements in lakes on
the TP, catchment-level characteristics are especially important as they can be used to predict water and sediment properties
in unsampled lakes based on limited samples. However, there has been no dataset of lake-catchment characteristics on the
TP yet, which hinders the research on lakes in this region. This study aims to construct the first dataset of lake-catchment
characteristics for the Tibetan Plateau (LCC-TP v1.0) and provide indispensable data for studies on TP lakes. Section 2
introduces the study area. Section 3 describes the methodology for metrics calculation of lake-catchment characteristics,
including catchment delineation, attribute data collection and zonal statistics. The main lake-catchment characteristics on the

TP are presented in Section 4. Section 5 concludes and discusses the potential application of the constructed dataset.

2 Study area

The TP is located between 74-98° E and 28-40° N (Fig. 1). It is the largest and highest plateau in the world, covering an
area of about 2.5x10°km? and with an average altitude above 4000 meters above sea level (Zhang et al., 2019). The TP is the
source of more than 10 big rivers, such as the Yangtze River, the Yellow River, and the Ganges River, therefore also
acknowledged as the “Water Tower of Asia” (Immerzeel et al., 2010). Figure 1 shows the major basins over the TP, such as
Brahmaputra, Hexi Corridor, Indus, Inner TP, Mekong, Qaidam, Salween, Tarim, Yangtze River, and Yellow River. Lakes
are a key component of the Asia water tower, and there are 1 424 lakes with an area of more than 1 km? (Zhang et al., 2019).
Most lakes on the TP are seldom disturbed by human activities, so they are good information carriers of global changes in

this region (Li et al., 1998).



85

90

35°N

30°N

25°N

80°E 90°E

Figure 1: The spatial distribution of lakes on the Tibetan Plateau.

3 Methodology and source datasets

Three steps are conducted to construct the LCC-TP dataset (Fig. 2). First, delineate the lake catchments and establish the
topological relationships among nested lakes. Meanwhile, collect related attribute datasets and conduct necessary processing
such as data format conversion and reprojection. Then perform zonal statistics using catchment extents and datasets of

spatial attributes to obtain the catchment-level attributes.
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Figure 2: Procedures to construct the dataset of lake-catchment characteristics for the TP (LCC-TP).
3.1 Catchment delineation

Considering that large lakes are likely to block the transport of materials from upstream to downstream, two types of
catchments, the full catchments and inter-lake catchments, are defined in this study. The full catchment refers to the full
upstream contributing area of each lake, while the inter-lake catchment is obtained by excluding the contributing areas of
upstream lakes larger than 0.2 km? from the full catchment following the definition of Soranno et al. (2017). For example,
the green area in Fig. 3 is the full watershed of lake No. 1, and the black stippled area is its inter-lake catchment.



100

105

110

[ Lake
—— Hydrological connection
nter-lake catchment

[ 1 Full catchment

Figure 3: Illustration of the inter-lake catchment (black stippled area) and full catchment (green area).

Traditional river-oriented catchment delineation methods are not suitable for the delineation of lake catchments. Liu et al
(2020) proposed a lake-oriented approach to delineating endorheic catchments, which can be used to delineate the full
catchments of endorheic lakes in this study. But there are more tasks in this study, including the delineation of both full
catchments and inter-lake catchments for endorheic lakes and upstream lakes, the construction of topological relationship
among lakes/lake-catchments, and the tracing of flow path among upstream and stream lakes. Therefore, we developed a
software using the C and Python programming language to implement these tasks, and the source code are open
(https://github.com/LoserOne-ovo/basin_delineation).

Flow direction and lake boundary data are needed for catchment delineation. Firstly, the vector lake data is rasterized using
the same geospatial reference system and pixel size as the flow direction data (Yamazaki et al., 2019). Meanwhile, calculate
the reverse flow direction data (recorded as 8 bits corresponding to 8 neighbours, e.g., 10000001 means the first and eighth
neighbours flow into the current pixel) to assist the tracing of upstream contributing areas. Next, iterate over all the pixels to
find the inlets to the lake, which are defined as the pixels flowing directly into a lake according to the flow direction. Then

put the inlet pixels into a stack. Repeat taking a pixel out and pushing its direct upstream pixels in until the stack is empty.

Finally, we get the full upstream contributing area (i.e. full catchment) of the lake. Following the same procedures above but
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Figure 4: Flowchart for lake catchment delineation.

In this study, flow direction data from the MERIT Hydro dataset (Yamazaki et al., 2019) was used, which has a resolution of
120 3 arc-second (~90 m at the equator). This dataset was verified to have high accuracy in terms of flow accumulation area and
river basin shape. The lake boundaries in 2018 were used in the delineation of catchments, and the dataset from Zhang et al.

(2019) (https://doi.org/10.11888/Hydro.tpdc.270303) was adopted. Some additional operations like merging adjacent lakes

and filling holes were employed to remove topology errors.

3.2 Data collection and processing

125 The lake-catchments are characterized from six aspects: lake body, topography, climate, land cover/use, soils & geology, and
anthropogenic activities. The following standards were adopted for source dataset selection. Firstly, the corresponding
environmental variables should have theoretical impacts on the attributes of lake water or sediment. Secondly, the dataset

covers the whole TP and can be publicly available. Finally, the most reputable datasets with high resolution are preferred
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when multiple data sources are available. Following these standards, the vast majority of selected datasets were well-
validated and recognized in each field. For example, the SoilGrids dataset (Poggio et al., 2021) is the de facto standard of
gridded soil property data, and the China meteorological forcing dataset (CMFD) (Yang and He, 2019) is the most widely
used climatic dataset on the TP. The information of source datasets used in the LCC-TP dataset can be found in Table Al.
All the spatial datasets were converted to GDAL/OGR readable formats and projected to the Albers equal-area conic
projection. Besides static attributes, the dynamic time series of hydrological and meteorological data are also provided.
Version 1.0 of LCC-TP offers 57 different variables with a total of 721 individual attributes. The details of these attributes

are described in Section 4.

3.3 Zonal statistics

For each lake, zonal statistics are conducted to calculate catchment-level characteristics for inter-lake catchments and full
catchments, respectively. Different methods are used for raster data and vector data. For raster data, the grid cells within each
catchment are picked out and the statistics of their values are calculated. For continuous variables (e.g. elevation and
precipitation amount), the average value or maximum/minimum value is calculated. For categorical variables (e.g. land use
type), the mode is calculated, and the percentages of each category are also calculated for some variables. The rasterstats

Python package (https://github.com/perrygeo/python-rasterstats) and the Google Earth Engine cloud platform were adopted

for implementation. For vector data like the spatial distribution of glaciers stored in the ESRI shapefile format, it is first
intersected with the catchment extent layer, then the ratio of the intersection’s area within each catchment to the catchment’s
total area is calculated. The obtained spatial distribution of catchment-scale variables was plotted and visually checked by
the authors to ensure the correctness of the dataset. For numerical variables whose original data was in raster format, their
ranges at the grid-cell scale (i.e. before zonal statistics) and the catchment scale (i.e. after zonal statistics) were calculated

(Table S2), and it is checked that the range at the catchment scale fell within those at the grid-cell scale for each variable.

4 Results
4.1 Validation of the delineated catchments

The catchment delineation in this study was based on the flow direction data from Yamazaki et al. (2019) which has been
widely verified. To further validate the accuracy of delineated catchments, the dataset from Liu et al. (2020) was used as a
reference, which contains the boundaries of 421 lake catchments on the Inner TP. Figure 5 shows that the catchment areas in
this study have a high correlation (r=0.988) with those of Liu et al. (2020), which proves the correctness of our results. The
small differences between these two datasets may be related to the errors in DEM and the different methods for depression

filling and flow direction correction.
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Figure 5: Comparison of the areas of delineated catchments in this study with those of Liu et al. (2020).

4.2 Lake body characteristics

The area, perimeter, lake development index, and type of each lake were calculated. The lake development index was used to
characterise the complexity of lake shoreline, which was defined in formula (1), where L represents the length of lake
shoreline and s represents lake area, i.e. the ratio of the shoreline length to the circumference of a circle with the same area as

the lake. The value increases with increasing shoreline complexity, and the maximum value is one while the shape is a circle.

The type of lake herein refers to whether it is an upstream lake (i.e. a lake with outflow to a downstream river or lake) or a

terminal lake (i.e. a lake without outflows).

The smallest lake has an area of 0.2 km? and the largest lake (i.e. Qinghai Lake) has an area of 4503.5 km?. 72% of the 1525
lakes have an area less than 10 km?. Figure 6 shows the spatial distribution of lake development index and type on the TP.
The average development index for lakes across the TP is 3.40, and there is a cluster of lakes with high development indices

in the north of the Inner TP. 364 out of 1525 lakes (24 %) are terminal lakes, most of which are located in the Inner TP and
the Qaidam Basin.
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Figure 6: Spatial distribution of lake development index (a) and type (b) on the TP.
4.3 Topographic characteristics

The catchment-level elevation (including average, the maximum and minimum value), relief, slope, catchment area, and
lake-catchment area ratio were calculated based on the MERIT DEM (Yamazaki et al., 2017). These characteristics were
calculated for both the full and inter-lake catchments. The slope values were calculated using ArcGIS 10.5. The relief values,
defined as the difference between the maximum and minimum elevations in a neighbourhood, were calculated using window
sizes of 5% 5, 11 x 11, 21 x 21, 31 x 31, 41 x 41, and 51 % 51 based on DEM (digital elevation model) of 0.00833°
resolution. The usage of different window sizes in relief value calculation aims to meet the needs of different analysis
scenarios: for the researches focusing on small-scale terrain variation, a small window size is appropriate; when the focus is
large-scale terrain variation, a larger window size is preferred. Figure 7 shows the spatial distribution of mean elevation,
relief, slope (%), and lake-catchment area ratio for inter-lake catchments on the TP. The mean elevation is relatively low in
the eastern TP and the valley between the Kunlun and Gangdise Mountains in the south of the Inner TP. The relief and slope
are relatively low in the north of the Inner TP, where the elevation is very high. The lake-catchment area ratio is high in the

south and east parts of the Inner TP and the upper Yellow River Basin.

10
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Figure 7: Spatial distribution of mean elevation (a), relief (b), slope (%) (c), and lake-catchment area ratio (d) for inter-lake
catchments on the TP. The relief was calculated using window size of 11x11 based on DEM of 0.00833° resolution.

4.4 Climatic characteristics

Eleven climatic variables were included in the constructed dataset, including 2-meter air temperature, surface pressure, and
specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation, precipitation
amount, potential evapotranspiration (PET), actual evapotranspiration (AET), climate moisture index (CMI), and aridity
index. The multi-year average values of all the variables were calculated at three levels (i.e. the lake body, inter-lake
catchment, and full catchment level), and the monthly and growing-season (May to September) average values of all the
variables except the aridity index were also calculated.

The grid-based CMFD dataset (Yang and He, 2019), ranging from 1979 to 2018, was used to calculate the catchment-level
climatic characteristics. CMFD was constructed through the fusion of in-situ observations from weather stations, remote
sensing products, and reanalysis datasets, which improved the data quality in Western China where weather stations are
sparse. It has a spatial resolution of 0.1° and a temporal resolution of three hours. The background field data of air
temperature came from GLDAS NOAHI10SUBP 3H V001 and the precipitation data was the combination of GLDAS
NOAH10SUBP 3H V001, GLDAS NOAHO025 3H V2.1 and TRMM 3B42 V7.

PET was derived from the Global Potential Evapotranspiration (Global-PET) dataset (Zomer et al., 2008). In this dataset,
monthly PET was estimated via the Hargreaves (1994) equation at a spatial resolution of 30 arc seconds using precipitation
and temperature inputs obtained from the WorldClim dataset (Hijmans et al., 2005). The aridity index was derived from the
Global-Aridity dataset (Zomer et al., 2008), which quantifies precipitation availability over atmospheric water demand and

was calculated as the ratio of long-term mean precipitation and PET. CMI was another metric to characterize the degree of

11



210

215

220

225

humidity, which is defined via following function: [CMI = (P / PET) - 1 when P < PET] or [CMI =1 - (PET / P) when P >=
PET] (Willmott and Feddema, 1992).

Figure 8 shows the spatial distribution of multi-year average climatic characteristics for inter-lake catchments on the TP. The
air temperature and pressure are low in the north of Inner TP where elevation is high. Radiation is high in the southwest of
the TP and low in the north part. Wind speed is high in the east and southwest of the Inner TP. Precipitation and
evapotranspiration have a decreasing trend from southeast to northwest, and accordingly, it gets drier from southeast to the
northwest as shown by the spatial distribution of air specific humidity, climate moisture index, and aridity index. It should be
noted that aridity indices are higher under more humid conditions and lower under more arid conditions according to its
formula.
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Figure 8: Spatial distribution of multi-year average climatic characteristics for inter-lake catchments on the TP. MAT represents
mean annual temperature, and MAP represents mean annual precipitation.

4.5 Land cover/use characteristics

The land cover/use characteristics include remote-sensed vegetation indices (i.e. EVI (Enhanced Vegetation Index) and
NDVI (Normalized Difference Vegetation Index)), Gross Primary Productivity (GPP), Net Primary Production (NPP) and
dominant land cover/use type in each catchment and the fractions of each type, and the fractions of protected area. The
average vegetation indices, GPP and NPP across the whole year and in the growing season were calculated, respectively.

The land cover/use data came from the fusion land use product on the TP produced by Xu (2019), which was constructed

based on six mainstream land use products, i.e. ESA GlobCover (Arino et al., 2010), NLCD-China (Liu et al., 2005),

12
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FROM-GLC (Gong et al., 2019), MODIS MCD12Q1 (Friedl and Sulla-Menashe, 2019), UMD GLCF GLCDS (Hansen et al.,
1998), and USGS IGBP DISCover (Loveland et al., 2009). This dataset has a spatial resolution of 300 m and covers three
historical periods (1992, 2005, and 2015). There are nine different land use types over the TP, including grassland,
shrubland, forest, glacier, bare land, water body & wetland, desert, farmland and urban land. In addition, the second glacier
inventory dataset of China (version 1.0, 2006-2011) (Liu et al., 2012) and a wetland distribution dataset (the 1970s, 2000s)
(Zhou, 2018) were used as independent datasets for glaciers and wetlands. For the protected area, the World Database on
Protected Arecas (WDPA) (UNEP-WCMC and IUCN, 2021) was used. The fractional snow cover data (i.e. the fraction of a
pixel that is snow-covered) was extracted from the MODIS daily cloud-free snow cover product over the Tibetan Plateau
(2002-2015) (Qiu, 2018a). Considering that cloud and snow have similar reflection signals, eight different methods were
employed in this product to remove the influence of cloud on snow cover identification.

Figure 9 shows the spatial distribution of land use/cover characteristics for inter-lake catchments on the TP. EVI is generally
low for catchments across the TP and there is a deceasing trend from southeast to northwest following the spatial pattern of
precipitation. The fraction of grassland is higher in the south of the Inner TP and the source region of the Yellow River, and
that of shrubland is higher in the middle of the Inner TP. Wetlands have higher coverage mainly in the south and east part of
the Inner TP and the upper Yellow River Basin. There is no cropland in most lake-catchments, and the bare land and desert

are mainly distributed in the north of the TP. The faction of glaciers is relatively higher in the south and west of the TP.
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Figure 9: Spatial distribution of land use/cover characteristics for inter-lake catchments on the TP. The multi-year average EVI
from 2000 to 2021, the land use/cover type and fraction in 2015 are shown in the figure.

4.6 Soil & geology characteristics

Twenty-one physical and chemical variables of soil were included in this study. The proportions of sand, silt, clay, and
coarse fragments, the bulk density, cation exchange capacity (CEC), pH, total nitrogen (TN), and SOC (soil organic carbon)
content/density/stock were derived from the 250 m-resolution SoilGrids 2.0 product (Poggio et al., 2021). These soil
properties were predicted at six different depths (i.e. 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60—100 cm, and 100-200 cm)
using machine learning models based on observations from over 230 000 soil profiles globally in the WoSIS database and
over 400 environmental covariates. Data of all the six layers were aggregated at the inter-lake catchment and full catchment
level. The grading standards of soil particle size are as follows: coarse fragments in the soil refer to particles larger than 2
mm and smaller than 25 c¢m in diameter, sand refers to particles > 0.05 mm in the fine earth fraction (i.e. the particles less
than 2 mm), silt refers to particles = 0.002 mm and < 0.05 mm in the fine earth fraction, and clay refers to the particles <
0.002 mm. The CEC measures the ability of soil to hold on exchangeable cations which can resist nutrient leaching and is an
important variable in soil fertility. The organic carbon content, density, and stock are the mass of organic carbon per unit
mass, volume, and surface area, respectively. Besides SoilGrids, the dataset of soil organic carbon content at different depth
intervals (i.e. 0-30 cm, 0—50 cm, 0—-100 cm, 0-200 cm, and 0-300 cm) over the Third Pole produced by Wang et al. (2021)
was also used.

Soil erosion data came from the dataset of soil erosion intensity with 300 m resolution in Tibetan Plateau (1992, 2005, 2015)
(Zhang, 2019). It was calculated using China Soil Loss Equation (CSLE) considering precipitation, soil erodibility, slope
length, slope, vegetation cover, management and crop factors. Soil erodibility was also included in the dataset, and the Soil
Erodibility Dataset of Pan-Third Pole in 2020 (Yang et al., 2019) was used. The soil water content data was derived from the
Global High-Resolution Soil-Water Balance dataset (Trabucco and Zomer, 2010), which defines the fraction of soil water
content available for evapotranspiration processes (as a percentage of the maximum soil water content) and is therefore a
measure of soil water stress. We calculated catchment-level soil water content at monthly and annual scales. The mean
annual ground temperature (MAGT) was derived from the MAGT and permafrost thermal stability dataset over Tibetan
Plateau from 2005 to 2015 (Ran et al., 2019).

The geology characteristics include lithological class, subsurface permeability and porosity. The lithological classes came
from the Global Lithological Map (GLiM) database V 1.0 (Hartmann and Moosdorf, 2012). GLiM consists of three
classification levels, and the first level which contains 16 lithological classes was adopted. The subsurface permeability and
porosity, two crucial parameters for groundwater modelling, were derived from the GLobal HYdrogeology MaPS 2.0
(GLHYMPS 2.0) dataset (Huscroft et al., 2018). Permeability measures how easy the rock permits the passage of fluids, and
porosity measures how much water that can be stored in the subsurface. These two parameters were estimated based on the

GLiM lithological map, which can differentiate fine and coarse-grained sediments and sedimentary rocks. To calculate the
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catchment-level characteristics, the arithmetic mean was used for porosity, while the logarithmic scale geometric mean was
used for permeability.

Figure 10 shows the spatial distribution of soil & geology characteristics for inter-lake catchments on the TP. The pH value
is high in the west of the Inner TP, and SOC and total nitrogen content are low in this region. The sand content is high in the
south of the Inner TP and the northeast of the TP, while the clay content shows the opposite pattern. The fraction of
permafrost extent is high in the north of the Inner TP. The lithological classes show a latitudinal distribution, and the main
types include siliciclastic sedimentary rocks, mixed sedimentary rocks, and unconsolidated sediments. The subsurface
permeability is higher in the south of the TP than in the north, and the subsurface porosity is higher in the north of the TP
and the valley between the Kunlun and Gangdise Mountains in the south of the Inner TP.
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Figure 10: Spatial distribution of soil & geology characteristics for inter-lake catchments on the TP.
4.7 Anthropogenic activity characteristics

Population count and density, man-made objects such as cities and roads, and nighttime lights were used to characterize
human activities in a catchment. Human footprint, a comprehensive index for evaluating human activities, was also included
in this dataset. The population count and density data were obtained from the Gridded Population of the World (GPW)
database v4.11 (Center for International Earth Science Information Network - Columbia University, 2018). This database

provides estimates of the human population (number of persons per pixel) at a spatial resolution of 30 arc-seconds for the
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years 2000, 2005, 2010, 2015, and 2020. Nighttime Lights (NLI) are a useful proxy to characterise the intensity of human
activity, and the DMSP-OLS Nighttime Lights v4 dataset (Doll, 2008) was used in this study. It was produced using cloud-
free remote-sensing images from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS)
at a spatial resolution of 30 arc-seconds. The values in this dataset represent the product of the average visible band digital
number of cloud-free light detections and the percent frequency of light detection.

Road density was derived from the Global Roads Inventory Project (GRIP) dataset (Meijer et al., 2018). Nearly 60
geospatial datasets on road infrastructure (from 1997 to current) were gathered, harmonized and integrated into a global road
dataset. The resulting dataset includes over 21 million km of roads, classified into five types. In this research, catchment-
level road density was calculated from a simplified grid dataset at 5 arc-minute spatial resolution. Human Footprint is a
measure of how much we are using the Earth’s natural resources, and the Global Human Footprint v2 dataset at a spatial
resolution of 30 arc-seconds (Venter et al., 2016) was used by us. In this dataset, eight different factors, including built
environments, population density, electric infrastructure, crop lands, pasture lands, roads, railways, and navigable waterways,
were combined to measure the direct and indirect human pressures on the environment globally in 1993 and 2009.

Figure 11 shows the spatial distribution of anthropogenic activity characteristics for inter-lake catchments on the TP. The
population density, road density, and human footprint all suggest that human activities are relatively intense in the south and
northeast of the TP and there is almost no human activity in the north of the Inner TP where elevation is high and

environmental conditions are harsh.
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Figure 11: Spatial distribution of anthropogenic activity characteristics for inter-lake catchments on the TP.
4.8 Hydrological and meteorological time series

This dataset also provides the time series of several important hydrological and meteorological variables (Table S2),
including: 1) daily meteorological variables (i.e. 2-meter air temperature, surface pressure, and specific humidity, 10-meter
wind speed, downward shortwave radiation, downward longwave radiation, and precipitation amount) from the CMFD
dataset covering the period 1979-2018 (Yang and He, 2019), 2) remote-sensed submonthly water level and volume data
(2000-2017) extracted from Landsat images and altimetry data based on lake shoreline positions (Li et al., 2019), ~monthly
water level data (2010-2020) extracted from multi-sensor altimetry data (Xu et al., 2022), lake area and mass change data at
five-year intervals (1976-2020) extracted from satellite stereo and multispectral images (Zhang et al., 2021), 3) remote-
sensed daily fractional snow cover based on the MODIS surface reflectance product MO/YDO9GA covering the period
2000-2022 (Jiang et al., 2022), daily snow depth data (1980-2019) produced through the fusion of five gridded snow depth
datasets using machine learning methods (Che et al., 2021), and daily snow water equivalent data (2002-2011) based on
AMSR-E brightness temperature (Qiu, 2018b), 4) yearly glacier mass change rates (2000-2019) extracted from large-scale
and openly available satellite and airborne elevation datasets (Hugonnet et al., 2021), 5) decadal maximum freezing depth

data of seasonal frozen-soil (1961-2020) produced by the support vector regression model based on in-situ measurements
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from 2001 to 2010 and spatial environmental variables (Wang and Ran, 2021). These time series data facilitate the analysis

of temporal variation at the catchment scale and can be used for hydrological modelling based on lumped hydrological

models or machine learning methods.

5 Uncertainties of the dataset

Since the catchment-scale attributes in this dataset were mostly derived from existing datasets by calculating zonal statistics

(such as sums, means, and medians), uncertainties of source datasets were propagated to the results and determined the

uncertainties of this dataset. We have done our best to collect the most reliable datasets to date and will regularly update the

related datasets in the future to ensure their timeliness. Still, users of this dataset need to be aware of the uncertainties of the

main source datasets which are listed as follows.

1)

3)

4)

Lake water level and volume. The RMSE (root mean square error) of the Landsat-derived water levels from Li et al.
(2019) was 0.11 m. The water level data from Xu et al. (2022) had R? > 0.80 and RMSE < 0.12 m in Qinghai Lake. The
uncertainties for each value in the time series of Li et al. (2019), Zhang et al. (2021), and Xu et al. (2022) can be found
in corresponding uncertainty files (Table S2).

Topographic data. Most topographic attributes in this dataset were derived from MERIT DEM and MERIT Hydro (flow
direction map) datasets. MERIT DEM was produced by eliminating main error components (e.g. absolute bias, stripe
noise, speckle noise, and tree height bias) from existing DEMs (SRTM3 DEM, AW3D DEM, and VFP-DEM). It has a
resolution of 3” (~90 m at the equator) and the land areas mapped with £2 m or better vertical accuracy were 58%
(Yamazaki et al., 2017). MERIT Hydro was derived from MERIT DEM and water body datasets (G1WBM, Global
Surface Water Occurrence, and OpenStreetMap). The relative error of MERIT Hydro in drainage area delineation was
less than 0.05 for 90% of Global Runoff Data Center (GRDC) gauges.

Climatic data. The CMFD meteorological dataset used in this study was produced through fusion of remote sensing
products, reanalysis datasets, and in-situ observations from a larger number of stations. Its accuracy in western China
was validated based on independent observations, and the results showed that CMFD had closer-to-zero MBE (mean
bias error), lower RMSE, and higher R? than the Global Land Data Assimilation System (GLDAS) for almost all
meteorological variables (He et al., 2020).

Land cover/use data. The land cover/use data used in this study came from the fusion of six popular land use products,
with an accuracy of 88.71% (Xu, 2019). The GPP and NPP data came from the MODIS products (MOD17A2H.006 and
MOD17A3HGF.006). The R? between monthly MODIS GPP and eddy covariance measurements was reported to be
0.64 on average, and the RMSE was 2.55 g C m? day! in alpine grassland, which is the most widely-distributed biome
on the TP (Zhu et al., 2018), and the R? between MODIS NPP and in-situ observations in 23 stations across China was
reported to be 0.81, and the RMSE was 73.44 ¢ C m™ (Sun et al., 2021). The RMSE of fractional snow cover data from
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Jiang et al. (2022) was 0.14 taking the results from high-resolution Landsat images as reference. The R? between snow
depth data from Che et al. (2021) and in-situ observations was 0.81, and the RMSE and MAE were 7.7 cm and 2.7 cm.

5) Soil data. The SoilGrids 2.0 dataset used in this study was generated by machine learning methods, using approximately
240 000 soil observations worldwide and over 400 environmental variables as inputs. It provides a spatial distribution
map of data uncertainty generated by the quantile regression forest prediction model, which is the ratio of the
interquartile range (i.e. the difference between 0.95 quantile and 0.05 quantile) over the median (Poggio et al., 2021).
The catchment-level average uncertainty for each soil variable was calculated and included in this dataset. For the
maximum freezing depth of seasonal frozen-soil, the R? in the four periods of 1980s, 1990s, 2000s and 2010s were 0.77,
0.83, 0.73 and 0.71, respectively (Wang and Ran, 2021).

6 Data availability

The dataset of lake-catchment characteristics for the Tibetan Plateau (LCC-TP v1.0) is accessible at the National Tibetan
Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Terre.tpdc.272026, Liu, 2022) and the figshare
website (https://figshare.com/articles/dataset/A_dataset of lake-
catchment_characteristics_for the Tibetan Plateau vl 0 /20222178). There are two types of data in this dataset: spatial
data stored in shapefile format and attribution data stored in csv format. The spatial data is stored in the “spatial data” folder,
including the spatial distribution of lakes (lakes.shp), the spatial extent of full catchments (full _catchments.shp), the spatial
extent of inter-lake catchments (inter-lake catchments.shp), and the flow paths among upstream and downstream lakes
(flowpath.shp). The attributes of lakes and their lake catchments are stored in LCC-TP_attributes.csv, which can be linked to
the spatial data through the "LakeID" field. The time series of daily meteorological data from 1979 to 2018 are stored in the
csv files in the “time_series” folder. Each column in the csv file, except for the first one, corresponds to the data of a lake,
and the column name is lake ID. The name of each file consists of two parts, connected by an underscore. The first part
specifies the spatial extent which can be lake body (LK), full catchments (FC) and inter-lake catchments (IC). The second
part specifies the type of meteorological variable which can be temp (temperature, K), prec (precipitation, mm), wind (wind
speed, m/s), pres (air pressure, Pa), LRAD (long wave radiation, W/m?), SRAD (short wave radiation, W/m?) and Shum
(specific humidity, kg/kg).

7 Conclusions

This study constructed the first dataset of lake-catchment characteristics for 1525 lakes with areas from 0.2 to 4503 km? on
the TP (LCC-TP v1.0). The catchment-level characteristics were extracted for both inter-lake catchments and full catchments
of lakes, and there are six categories (i.e. lake body, topographic, climatic, land cover/use, soil & geology, and anthropogenic

activity) and a total of 721 attributes in the dataset. Besides multi-year average attributes, the daily time series of climatic
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variables were also extracted, which can be used to drive lumped hydrological models or machine learning models to
simulate hydrological processes. The LCC-TP dataset contains fundamental information for analysing the impact of the
catchment on lakes, which on the one hand can deepen our understanding of the drivers of lake environment change, and on
the other hand, can be used to predict the water and sediment properties in unsampled lakes based on limited samples and the
catchment-level attributes provided by our dataset. This provides exciting opportunities for lake studies in a spatially-explicit

context and promotes the development of landscape limnology on the TP.
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