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Abstract. Offshore wind energy is at the advent of a massive global expansion. Driven by carbon neutral alternatives for

energy generation, offshore wind energy receives growing attention as a renewable energy source. Despite the large amount of

unused wind energy capacities worldwide, offshore wind farms have to be integrated into already intensively used maritime

economic areas. The optimal choice of offshore wind farm locations is as crucial as compatibility with other stakeholders while

minimising ecological impacts. Thus, a spatiotemporal data set for offshore wind turbine deployment is necessary to involve5

all stakeholders and exchange knowledge during the upcoming massive expansion of offshore wind farms. To that end, we

introduce the DeepOWT data set (global offshore wind turbines derived with deep learning; available at: https://doi.org/10.

5281/zenodo.5933967 (Hoeser and Kuenzer, 2022)), which provides 9,941 locations of offshore wind energy infrastructure

along with their deployment stages on a global scale. DeepOWT is based on freely accessible Earth observation data from

2016 until 2021. The locations were derived from radar imagery of the Sentinel-1 mission by applying deep learning based10

object detection, trained on synthetic training examples. The entire deployment process is reported in a quarterly frequency

and spatially contextualised for each single wind turbine location in a ready to use GIS format. Therewith, the DeepOWT data

set can directly be used to enable spatial planning, environmental investigations and to optimise location decisions and the

deployment process.

1 Introduction15

Lately, the expansion of carbon neutral energy is being strongly promoted (COP26, 2021). Offshore wind energy is an efficient

and reliable energy source and appears to be an important cornerstone for a renewable energy mix (Esteban et al., 2011).

For example, the EU plans to increase the installed offshore wind energy capacity from 12 GW in 2020 to 300 GW in 2050

towards a carbon neutral energy production. Most of this expansion is planned to be realised in the North Sea Basin, an already

established hot spot for offshore wind energy production. Nevertheless, new sites in the Mediterranean Sea will be developed20

to achieve the stated goals (EC, 2020). The plans of the European Union are exemplary for a global trend of expanding offshore

wind energy projects. Offshore wind farms (OWF) will be deployed to already established offshore wind energy production

sites like the East China Sea. At the same time, the development of new sites for large OWFs, for example, in the Atlantic

Ocean on the East coast of the United States, is ongoing (Rodrigues et al., 2015). Thus, today the offshore wind energy sector
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is starting a phase of massive expansion worldwide which also affects stakeholders active in the same marine economic zone25

(Henderson et al., 2003; Wever et al., 2015; Gusatu et al., 2020; Gus, atu et al., 2021) as well as the marine ecosystem itself

(Drewitt and Langston, 2006; Wilson and Elliott, 2009; Bailey et al., 2014; Bergström et al., 2014; Slavik et al., 2019). In

order to document this starting point of OWF expansion and provide a database accessible for all stakeholders, we introduce

the DeepOWT data set, which reports offshore wind turbine (OWT) locations along with their deployment time series for five

years from 2016 until 2021 on a global scale.30

With the increase in freely available Earth observation data over the last years, today well structured archives of remote

sensing data offer the opportunity to investigate time series on a global scale. Due to the recent successes in machine learning,

especially deep learning (LeCun et al., 2015; Zhu et al., 2017) with convolutional neural networks (Hoeser and Kuenzer, 2020),

it has become possible to apply novel data processing techniques to these data archives to reveal new insights (Hoeser et al.,

2020; Zhu et al., 2021).35

The proposed DeepOWT data set has been derived from the Sentinel-1 spaceborne radar archive by applying deep learning

based object detection, which was completely trained on synthetic training examples generated by the novel SyntEO approach

(Hoeser and Kuenzer, 2021). Therewith, DeepOWT is based on a methodological workflow that allows to extract highly

detailed information from large Earth observation archives. The most important novelty of the resulting data set is that, along

with global OWT locations, it provides deployment stages for each detected object over the entire time series from 2016 until40

2021. This is of major interest for investigations of the impact and optimisation measures during the deployment processes,

which is an eventful and critical period in an OWT lifecycle. Besides OWT locations, DeepOWT also provides locations of

OWF substations like transformer stations and meteorological masts to increase further the information depth and precision

of a global OWT data set. Besides this novel information, DeepOWT is openly accessible, comes along with valuable ground

truth data sets for spatial and temporal validation and can easily be used in GIS software due to its lightweight size of 4.1 MB45

and established .geojson format.

2 Related Research

The detection of persistent offshore infrastructure has been investigated by applying different approaches. The constant false

alarm rate (CFAR) (Zhang et al., 2019) and an adapted version of it in combination with a preprocessing by the difference of

Gaussians (DoG) approach (Wong et al., 2019) were used to detect marine infrastructure in radar imagery. Xu et al. (2020)50

applied order statistic filtering in combination with a derived set of thresholds to extract marine infrastructure from the Landsat

and Sentinel-2 missions. Zhang et al. (2021) developed a handcrafted morphologic approach with thresholds to identify single

OWTs in Sentinel-1 data. Thereby, all studies strongly depend on the high contrast between offshore infrastructure and the

surrounding open sea. In a preceding study to this data set, Hoeser and Kuenzer (2021) proposed an adaptive deep learning

based object detection approach that takes multiscale spatial patterns of the target objects into account to further distinguish55

different types of offshore infrastructure in a single model.

2

https://doi.org/10.5194/essd-2022-115

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 19 April 2022
c© Author(s) 2022. CC BY 4.0 License.



In 2022, three data sets exist that describe OWT locations on a global scale and parts of which are accessible to the public.

These are the 4C offshorewind data set (4C Offshore, 2021), OWT locations in open street map (OSM) and the global offshore

wind turbine (GOWT v1.3) data set (Zhang et al., 2021). The 4C offshorewind data set collects information about offshore wind

projects provided by OWF operators, project descriptions and contracts. It gives an overview of OWF boundaries, single OWT60

locations and specifications, and OWF substations like transformer stations and export cables (4C Offshore, 2021). However,

the private company 4C Offshore maintains the 4C offshorewind data set and sells the information. Therewith, the data set is

only partly accessible to the public and can not freely be used in planning and research to its full extent.

The first open source variant is the OSM project which provides OWT locations in its spatial database. Since OSM data

relies on the activity of its community, the accuracy and completeness for OWT locations vary from region to region. Hence,65

the data set accuracy is not spatially homogenous. Furthermore, there is only a limited temporal consistency in this data set.

An entry made in OSM on a specific date does not necessarily correlate with its first appearance in the real world, especially

when the temporal accuracy is narrowed down to weeks or months.

The GOWT v1.3 data set demonstrated the possibility of large scale OWT detection by investigating Earth observation

data. In its published version 1.3 it provides OWT locations from 2014 until 2019. It shows OWT locations from the time the70

construction started. Thereby, it does not distinguish between turbines under construction and those completed (Zhang et al.,

2021). This class indifference leads to a temporarily shifted overestimation of the number of power generating OWTs since

the construction phase is not provided separately. GOWT v1.3 does not separately classify OWF substations like transformer

stations or meteorological masts and has difficulties differentiating them from OWTs, which results in false positive detections

of OWTs within OWFs areas. The published data set GOWT v1.3 does not include all recently built large offshore wind farm75

projects. One example is the Hornsea project of the United Kingdom, the currently largest OWF project in the North Sea

Basin. Despite over already 170 available OWT records in the underlying Earth observation data in 2019, they do not appear

in GOWT v1.3, which causes a high number of false omissions.

From these existing data sets and their limitations, the following characteristics have been derived for a global OWT data

set:80

– Access to all OWT information like location and construction stage in a single file

– Global extent with homogenous reliability

– Temporal consistency regarding the date given in the data set for a single data point and its real world appearance

– Differentiation between OWTs which are under construction and OWTs which are completed

– Differentiation between OWTs and OWF substations like transformer stations or meteorological stations85

– Inclusion of latest OWF projects independent of their size, location and construction type

To that end, we introduce DeepOWT (deep learning derived global offshore wind turbines), an independent and openly

accessible data set of offshore wind energy infrastructure locations and their temporal deployment dynamics on a global scale.
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It was derived by applying deep learning based object detection on ESA’s spaceborne Sentinel-1 synthetic aperture radar (SAR)

archive. DeepOWT provides OWT locations along with their quarterly deployment stages from July 2016 until June 2021. It90

differentiates between OWTs under construction and OWTs which are readily deployed. Furthermore, it includes locations of

OWF substations as a third class. By using two cascading deep learning convolutional neural network (CNN) object detectors,

first OWFs and upon them, single OWTs and substations are detected. Previously, the CNNs were trained on large synthetic

data sets, which were generated with the lately introduced SyntEO approach (Hoeser and Kuenzer, 2021). That way, new

developments of OWFs in size and geometry can be introduced during the training process even when their number in real95

world data is small, which successfully decreases false omissions of recently developed OWFs projects. To our knowledge,

DeepOWT is the first data set that provides spatiotemporal information at a single object level and multiple deployment stages

on a global scale derived from spaceborne SAR-data with deep learning.

3 Data

ESA’s Copernicus program provides open access to continuously acquired Earth observation data (Aschbacher, 2017). As part100

of this program, the spaceborne Sentinel-1 SAR mission covers mainland and coastal areas on a global scale with a 10 m pixel

spacing. The active C-band radar system with a wavelength of 5.6 cm is independent of cloud coverage and can acquire images

day and night (Torres et al., 2012), which together makes it an excellent tool to monitor coastal environments and provide a

data source for a global OWF investigation. All Sentinel-1 acquisitions with the specification IW (interferometric wide swath),

GRD (ground range detected) and VH (vertical horizontal) polarised were chosen as underlying data for this data set. Figure105

1a) shows how often a location on Earth is sensed by the two Sentinel-1 satellites A and B for this specification in the second

quarter of the year 2021. The European focus of the Copernicus program becomes visible with a higher number of acquisitions.

Here the satellites acquire data at both ascending and descending orbits, with an inclination of 98.18°, resulting in the X like

pattern and a higher revisit rate than other parts of the Earth. In order to harmonise all quarterly acquisitions of the entire Earth

to a single global mosaic with a pixel spacing of 10 m, all acquisitions were stacked and reduced to a single band median110

image, see figure 1b).

The extent of the data set was defined by a buffer of 200 km towards the sea from the global coastline, which originates

from OSM. In order to systematically manage and process the data, a 1.8° regular grid was generated, and all grid cells which

intersect the 200 km buffer were selected. The final grid, pictured in figure 1b, defines the area where the DeepOWT data set

was detected.115

The Google Earth Engine (Gorelick et al., 2017) python API was used with the prepared grid cells to query the Sentinel-1

data as specified above. The Sentinel-1 image collection in Google Earth Engine provides the IW GRD VH acquisitions with

additional preprocessing for accurate orbit information, border and thermal noise removal, radiometric calibration and terrain

correction. The global median mosaic with a pixel size of 10 m × 10 m was generated and downloaded from this image

collection. To reduce the amount of data before downloading, the 16 bit floating-point number with a range of 0 to -40, which120

describes the Sentinel-1 backscatter signal in decibel, were rescaled to 0 to 255 and downloaded as 8 bit integers. The global
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Figure 1. a) Global distribution of the number of all available Sentinel-1 (IW-GRD-VH) acqusitions for the second quater in 2021. b) The

corresponding median backscatter amplitude and the data set boundary as 1.8° grid within a buffer of 200 km of the global coastline.
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mosaic was queried for the second quarter of 2021 (2021-Q2). Upon this mosaic, the global OWF and OWT locations were

derived.

Quarterly subsets from 2016-Q3 to 2021-Q1 were generated the same way as the 2021-Q2 global mosaic to investigate

temporal deployment dynamics. However, for the 19 quarterly subsets, only the grid cells were queried, which include OWF125

areas detected in 2021-Q2. Thus, the underlying data for the DeepOGWT data set are 20 quarterly sets from 2016-Q3 to 2021-

Q2. The latest period in 2021-Q2 holds a Sentinel-1 median mosaic of the entire global coastline. All other 19 sets only store

Sentinel-1 median images for OWF areas present in 2021-Q2.

4 Methodology

Figure 2 shows an overview of the methodological workflow to derive the OWT locations and their temporal deployment130

dynamics of the proposed data set. The core of the workflow is a cascade of two CNN object detectors, where the first CNN

detects the OWF boundaries and the second CNN detects OWT locations on the 2021-Q2 global input data. In order to train

both object detector CNNs, two synthetic training data sets were generated in a preceding step. This is the first application

of the recently introduced SyntEO approach (Hoeser and Kuenzer, 2021) embedded in a complete workflow to generate a

global data set. After the OWT locations have been detected in the 2021-Q2 data, the second input data set, a time series of 19135

quarterly time steps, is investigated to derive deployment dynamics for each OWT location from 2016-Q3 until 2021-Q1. In

the next step, OWT locations are refined from a bounding box to accurate point locations. Finally, these point locations and the

time series information corresponding to each OWT location are combined in the final DeepOWT data set in a single file.

4.1 Synthetic training data set generation with SyntEO

In deep learning, layers of untrained weights are stacked to build deep neural networks. In order to adjust the weights in140

a neural network to succeed in a given task, a large data set with annotated examples is necessary for supervised training

(LeCun et al., 2015). The annotation of such large training data sets by hand is a resource expensive task and, in the case

of only a few real world examples, which applies for OWFs, even impossible. In order to solve these problems, the SyntEO

approach was introduced to automatically synthesise large annotated training data sets with a special focus on the needs of

Earth observation data. In SyntEO, a domain expert formulates an ontology that describes entities in a remote sensing scene145

and their spatiotemporal interrelations. The SyntEO ontology is a complex description of nested entities that are additionally

related by using topological rules to describe their spatial dependencies. A synthetic image is generated upon the formulated

ontology by composing spatially meaningful geometries of all entities in an abstract scene composition. Hereinafter, sensor

specific texture is added to the geometries of the abstract scene composition to generate the final remote sensing image.

Furthermore, annotations are derived from the discrete geometries of the scene composition simultaneously. That way, large150

deep learning ready data sets can be created fast and automatically. Figure 3 shows a visual summary of the SyntEO process

for a better intuition. For an in-depth explanation of the SyntEO framework and the underlying ontology concept for automatic

data generation in Earth observation, we refer to (Hoeser and Kuenzer, 2021).
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Figure 2. Methodological workflow to generate the DeepOWT data set from the Sentinel-1 archive. Two CNNs detect OWF and OWT

locations, trained on synthetic examples. These spatial detections are used to define their temporal dynamics and accurate location. Finally,

DeepOWT combines these spatiotemporal results.
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Figure 3. Simplyfied overview of a SyntEO workflow for automatic training example generation (Hoeser and Kuenzer, 2021). a) visualises

how the structure of a single OWF entity is generated. b) shows how multiple entities are composed to a scene composition. The final image

is generated by adding texture to the composed scene. The bounding box annotations are derived from the scene composition.

For this study, the ontology drafted by Hoeser and Kuenzer (2021) was extended to generate training examples for OWF and

OWT detection at the same time. In addition to the origin ontology, which only describes polygon shaped OWFs, linear shaped155

OWFs were introduced to increase the target object variance of the training examples. To enrich the training data set, non-target

classes like synthetically generated oil rigs and mainland were added with explicitly no annotations to provide negative training

examples.

Furthermore, the ontology which has been formulated to generate training examples for OWF detection was reused for OWT

detection. Most importantly, the size of the generated images and the annotation were changed. Instead of large scale bounding160

box annotations for OWFs in synthetic images with a dimension of 2048× 2048 pixel, small scale bounding box annotations

for OWTs were derived from synthetic images with a dimension of 512× 512 pixel, see figure 3b).

In order to include other targets besides readily deployed OWTs, the non-target class oil rigs in OWF detection was reused to

provide annotated examples for OWF transformer stations and a third class showing OWFs under construction was introduced.

The mainland examples without any annotation were kept to provide false positive training examples for OWT detection.165

Two pools of training-annotation pairs with additional metadata were generated to create the synthetic training data sets.

Two balanced training data sets were compiled from these pools by taking the synthetic image type described in the metadata

into account. To enable the TensorFlow deep learning framework (Abadi et al., 2016), the selected image annotation pairs were

parsed to the TFrecord binary format. That way, a first training data set with 90,000 examples for OWF detection and a second

training data set with 275,000 examples for OWT detection were created.170
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4.2 Global OWT Object detection with CNNs

Deep learning became an important driver for new insights and methodological developments in Earth system science (Zhu

et al., 2017; Reichstein et al., 2019). In Earth observation, the convolutional neural network (CNN) is the most widely used

deep learning model type, and recent developments of CNNs allow to detect objects in large images by taking spatial context

into account (Ma et al., 2019; Hoeser and Kuenzer, 2020). For object detection, the two stage R-CNN models are the most175

commonly used architecture in Earth observation applications (Hoeser et al., 2020). To derive the DeepOWT data set, we used

a cascade of two ResNet-50 (He et al., 2016) Faster R-CNN (Ren et al., 2015) models, where the first stage detects OWF areas

on a global scale and the second stage detects single OWT and non-OWT objects within the OWF areas of the first stage.

The first CNN for OWF detection ingests images with a 1024×1024 pixel dimension. That requires an on the fly downscaling

of the training examples for OWF detection with a dimension of 2048×2048. For OWT detection, the training examples already180

have a dimension of 512×512 that matches the CNN architecture. Another difference in the model architectures for OWF and

OWT detection are the adapted scale factors for the region proposal network (RPN), a submodule of the Faster R-CNN object

detector (Ren et al., 2015). In order to adjust the sensitivity for specific sizes of the target objects, the scale ratios were set to

[0.25, 0.5, 1, 2, 3.5] for OWF and [0.25, 0.5] for OWT detection. The scale factors were calculated by applying the approach

introduced by Hoeser and Kuenzer (2021).185

The entire training process of the two CNNs was done on four parallel NVIDIA RTX 2080Ti GPUs. The training schemes

are the same for both architectures. A 0.95-0.05 training-validation split was used for both synthetic data sets. A single epoch

without any data augmentation was used, which was possible due to the large size and variability of the synthetic data set. The

learning rate was scheduled to smoothly decrease by implementing the cosine decay method (Loshchilov and Hutter, 2017).

After a warm up phase, the base learning rate of 0.01 is reached and then decreased for all remaining training steps.190

The trained models were used in a cascading manner. The first stage detects OWF by applying a threshold of 0.5 on the

prediction score of the CNN. Thus the first stage tends to allow a higher false positive rate in order to include more areas

as necessary but therewith avoids false omissions of OWF areas. The second stage detects OWTs and non-OWTs within the

potential OWF areas by applying a threshold of 0.75 to consider a prediction valid. With the second stage’s results, which

focus on a smaller spatial scale, the predictions of the first stage are refined. Potential OWF areas with a share of 90% or more195

non-OWTs are belatedly dropped as false detection of stage one. This self-checking property of the cascade leads to a high

detection rate with a low number of false omissions by simultaneously decreasing false detections. This property was highly

suitable for precisely scanning Earth observation archives to find sparsely scattered target objects in a large amount of image

data.

B1 :=

B−1



b=1

B1 ∪Bb+1, if Bb+1 ⊆ B1

B1 ∪Bb+1, if B1∩Bb+1
B1∪Bb+1

> τIoU

B1, otherwise

(1)200
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Figure 4. Detection results of the CNN cascade for the North Sea Basin. a) shows the OWFs detected by stage 1, b) the OWT and OWF

substations detected by stage 2 within the OWF boundaries of stage 1 in the German Bight.
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Figure 5. Detection results of the CNN cascade for the South and East China Sea. a) shows the OWFs detected by stage 1, b) the OWT, OWF

substations and such under construction detected by stage 2 within the OWF boundaries of stage 1 in the Taiwan Strait.

Since all predictions are made on overlapping input tiles, the same object can be detected multiple times. To summarise all

bounding boxes in one file, the pixel coordinates of the bounding boxes are translated to the geographic coordinate system

WGS84. Furthermore, to consolidate the bounding boxes B which belong to the same object, they were sorted in descending

order by their prediction score and indexed with b= 1,2,3...B. This sorted list of bounding boxes Bb was unified in a cascading
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manner if the next box of the list is completely within the unified box or together they have an intersection over union larger205

than τIoU = 0.333, see equation (1).

In order to calculate the exact area of each Bb, the bounding box polygons were temporarily reprojected to their correspond-

ing UTM coordinate system depending on their UTM zone. Finally, the bounding box from the unified polygon describes

each object location. Figure 4 and 5 show the detection results of the CNN cascade for North Europe and South-East China

respectively.210

4.3 Time series analysis for deployment dynamics and location refinement

Figure 6. Deployment time series from 2016Q3 until 20201Q2 of an OWT. First and third row show quarterly Sentinel-1 median images of

the same detected bounding box over time. Second and fourth row show the corresponding maximal swath profiles with detected peaks. The

automatically derived construction stages are given for each image: sea = open sea/no turbine, const = under construction, owt = offshore

wind turbine.

In order to describe the temporal dynamics of OWT deployment, a backwards looking time series analysis of the detected

locations in 2021-Q2 was performed. For each bounding box of an object location, a multi temporal stack of 19 quarterly

Sentinel-1 median images was analysed to determine if an image shows open sea, an OWT or OWF substation under con-

struction, or an OWT or OWF substation readily deployed. Swath profiles that describe each column’s maximum value along215

the horizontal axes from each image in the multitemporal stack were generated. Figure 6 shows quarterly images and corre-
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sponding swath profiles for an OWT deployment time series. By applying two consecutive peak finder algorithms with a high

and low prominence (Virtanen et al., 2020) to the swath profile, the centre peak and adjacent peaks to the left and right of the

centre peak were detected. With the analysis of changes in the number of peaks, centre peak amplitude and width by taking

the class predicted by the CNN for the 2021Q2 period into account, the 19 preliminary image patches of the time series were220

automatically classified in the classes mentioned above.

To finally refine the bounding boxes to point locations, all bounding box images of the 2021-Q2 period were also analysed

to find the centre peak of the CNN detected object. With the x coordinate and amplitude of the centre peak coming from the

swath profile analysis, the column at the x location of the image patch was queried to find the corresponding y coordinate.

By taking the geographic origin of the image patch into account, the WGS84 coordinate for this pixel was derived. Thus, the225

object is no longer described by a bounding box but by an accurate point location that is precisely at the amplitude maximum

of the detected object. By merging spatial and temporal processing results, point locations with the classified quarterly time

series from 2016-Q3 until 2021-Q2, the final content for the derived data set is completed. Figure 7 provides an overview of

all detected objects and their corresponding class of the entire time series in the DeepOWT data set.

Figure 7. The temporal development of all 9941 objects and their corresponding class in the DeepOWT data set. Class and location in a

period with an * were derived by a CNN. In all other periods, the class was derived by the swath profile analysis upon the location detected

by the CNN, see figure 6.

5 Ground truth data sets230

In order to evaluate the DeepOWT data set, ground truth data sets for two areas were generated. The areas are the North Sea

Basin (NSB) and the East China Sea (ECS), pictured in figure 8, which boundaries were aligned with the processing grid in this

study. These two areas were chosen due to their importance for offshore wind generation and their differences concerning the

underlying Sentinel-1 data and the interaction of coasts, coastal infrastructure, and islands. Where the majority of OWFs in the
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Figure 8. Overview of the ground truth sites boundaries and the hand labelled object locations and deployment stages for the second quarter

in 2021. a) shows the North Sea Basin (NSB), b) the East China Sea (ECS).
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NSB are located within a considerable distance to the coast, small islands and other infrastructure like bridges and harbours,235

OWFs in the ECS are built close to those features, see figure 5. Furthermore, the NSB has a higher number of quarterly

Sentinel-1 acquisitions at both orbits, whereas the ECS is mainly detected at a single orbit and thus has lesser acquisitions

at the same time interval, see figure 1. That results in different characteristics of the global Sentinel-1 median image in both

areas. Together, the NSB and ECS represent various OWF types and how they appear in their natural environment and are

representational ground truth sites.240

Two types of ground truth data sets were generated and included in the proposed DeepOWT data set. The first type describes

the locations of the target objects at a single point in time. The second type describes quarterly time series of deployment

dynamics.

Two data sets of the first type were generated, one for 2021-Q2 and one for 2019-Q4. The 2019-Q4 data set will later be

used to compare DeepOWT to OSM and GOWT v1.3 records since the latter ends in 2019. For both ground truth data sets, all245

locations of OWTs and OWF substations, both readily deployed or under construction, were annotated by hand for the entire

NSB and ECS. Afterwards, these point locations were buffered with a radius of 100 m, which is the final area that defines a

true positive point location prediction. About 15% of the 2021-Q2 ground truth locations were selected for both the _nsb and

the _ecs variant. For them, the entire quarterly time series from 2016-Q3 until 2021-Q2 was annotated by hand. An overview

of the different ground truth data sets and their number of annotated target objects is provided in table 1.250

Table 1. Overview of all ground truth data sets, their corresponding time stamp and number of objects in each class. * are the numbers for

the start in 2016Q3 and end in 20201Q1 of the ground truth time series. † is the number of all hand labelled classes of the entire ground truth

time sereis with 19 periods.

Site Time stamp Data set name OWT Construction Substation Open sea
∑

label

NSB 2021Q2 2021Q2_nsb 4,016 253 85 - 4,354

ECS 2021Q2 2021Q2_ecs 2,208 574 62 - 2,844

NSB 2019Q4 2019Q4_nsb 3,571 172 78 - 3,821

ECS 2019Q4 2019Q4_ecs 1,208 214 47 - 1,469

NSB 2016Q3-2021Q1 16Q3-21Q1_nsb 352-583* 59-47* 12-19* 227-1* 12,350†

ECS 2016Q3-2021Q1 16Q3-21Q1_ecs 40-311* 12-87* 3-11* 375-21* 8,170†

During manual ground truth data labelling, all locations and time steps were visually examined and cross checked with differ-

ent data sources. Therefore, Sentinel-1 images were investigated in combination with additional RGB images from Sentinel-2

and Google Earth and public information concerning the deployment dynamics provided by official planning documents, OWF

operators and news portals.
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6 Technical description255

DeepOWT (Global Offshore Wind Turbines derived with Deep Learning) is introduced with version number 1.21.2, where the

first number is increased when significant changes are made to the methodology used to detect the OWF and OWT objects

automatically or additional content is appended to the data set. The second and third numbers describe the year and quarter

of the latest entry included in the data set. Hereby, methodological and temporal information is incorporated into the data set

name and versioning.260

Table 2. Overview of the metadata of all files included in the DeepOWT data set. The data set is available as repository on Zenodo, see

Hoeser and Kuenzer (2022).

File Extent Time stamp Periods Geometry OWT const sub sea Entries

DeepOWT.geojson global 2016Q3-2021Q2 20 points 3 3 3 3 9,941

gt_2021Q2_nsb.geojson NSB 2021Q2 1 polygons 3 3 3 7 4,354

gt_2021Q2_ecs.geojson ECS 2021Q2 1 polygons 3 3 3 7 2,844

gt_2019Q4_nsb.geojson NSB 2019Q4 1 polygons 3 3 3 7 3,821

gt_2019Q4_ecs.geojson ECS 2019Q4 1 polygons 3 3 3 7 1,469

gt_2016Q3-2021Q1_nsb.geojson NSB 2016Q3-2021Q1 19 polygons 3 3 3 3 650

gt_2016Q3-2021Q1_ecs.geojson ECS 2016Q3-2021Q1 19 polygons 3 3 3 3 430

gt_nsb_gridded.geojson NSB - - polygons 7 7 7 7 1

gt_ecs_gridded.geojson ECS - - polygons 7 7 7 7 1

The data set contains the automatically derived target location and the earlier described hand labelled ground truth data

sets. Table 2 provides an overview of which file of the data set contains which information. DeepOWT 1.21.2 describes

the deployment stages of OWT and OWF substations on a global scale from 2016-Q3 until 2021-Q2. Each entry holds the

information of the deployment state within three months of the respective quarter in a year. 9,737 OWTs were detected for

the second quarter of 2021. Of these, 8,885 were readily deployed, and 852 were under construction. Additionally, 204 OWF265

substations were detected for the same period. The file size of DeepOWT is 4.1 MB.

All automatically detected and hand labelled objects are described as points or polygons using the geographic coordinate

system WGS84. The spatial geometries were checked topologically to identify duplicate entries, even if no topological errors

were found during this inspection. The checked geometries are stored in .geojson files along with the temporal deployment

information in the corresponding attribute table. The quarterly periods of the time series in the attribute table of a .geojson file270

are named in the format YyyyyQq, where yyyy is the year and q the quarter of a year. For each location and time series

entry, the object class or deployment stage is described as an integer between 0 and 3. Table 3 provides the mapping of the

corresponding semantic labels.
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Table 3. Mapping of the key in integer format, used in the data set files, to semantic labels and their abbreviations.

Data set key Semantic label Abbreviation

0 open sea sea

1 under construction const

2 offshore wind turbine owt

3 offshore wind farm substation sub

7 Data set evaluation and comparison

The evaluation was performed on two ground truth sites, the North Sea Basin (NSB) and the East China Sea (ECS), see section275

5. In order to provide consistent and comparable metrics which take the different numbers of objects for each site into account,

first, the metrics were calculated separately. Thereby, a predicted object is considered a true positive (TP) when it is within

the polygon, a 100 m radius around the object centre, of a ground label and both have the same class, otherwise, it is a false

positive (FP). A wrongly omitted ground truth area is considered a false omission (FO). Upon that, precision Pr and recall Rc

were calculated:280

Pr =
TP

TP +FP
(2)

Rc =
TP

TP +FO
(3)

The harmonic mean of Pr and Rc, summarises both metrics as the F1 score:

F1 = 2× Pr×Rc
Pr +Rc

(4)

Furthermore, all detections from a CNN with a prediction score were sorted in descending order and indexed with c=285

1,2, ...,C. From this ordered list, an all point interpolated precision-recall curve Printerp is generated.

Printerp = max
R̃c : R̃c≥Rc

Printerp(R̃c) (5)

Finally, the area under the all-point interpolated precision-recall curve describes the average precision AP (Padilla et al.,

2021),

AP =
C∑

c=1

(Rc(c)−Rc(c− 1))×Printerp(Rc(c)), (6)290
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with Rc(0) = 0.

In order to report overall metrics for all n sites or periods of a time series, the separately calculated metrics were combined

by macro averaging:

Pravg =
1
n

n∑

i=1

Pri (7)

Rcavg =
1
n

n∑

i=1

Rci (8)295

F1avg =
1
n

n∑

i=1

F1i (9)

Thus the macro F1avg score is defined as the arithmetic mean over harmonic means following (Opitz and Burst, 2021).

7.1 Data set evaluation

Table 4. Overview of all calculated metrics for the CNN cascade detections on the 2021Q2 global Sentinel-1 median image for each class

separately. The detections were evaluated with the 2021Q2_nsb (North Sea Basin) and 2021Q2_ecs (East China Sea) ground truth data sets.

Site Class GT TP FP FO Pr Rc F1 AP

North Sea Basin OWT 4,016 3,996 1 20 1.0 0.995 0.997 0.995

North Sea Basin under construction 253 186 7 67 0.964 0.735 0.834 0.72

North Sea Basin OWF substation 85 74 2 11 0.974 0.871 0.919 0.859

East China Sea OWT 2,208 2,168 16 40 0.993 0.982 0.987 0.981

East China Sea under construction 574 393 7 181 0.982 0.685 0.807 0.678

East China Sea OWF substation 62 56 6 6 0.903 0.903 0.903 0.853

Pravg Rcavg F1avg

Combined OWT 6,224 6,164 17 60 0.996 0.988 0.992

Combined under construction 827 579 14 248 0.973 0.71 0.821

Combined OWF substation 147 130 8 17 0.938 0.887 0.911

Table 4 and figure 9 summarise the evaluation of the latest period (2021-Q2) of the data set, which was derived by CNNs. The

results show that the performance is stable across both study sites. Thus, the CNN model trained on synthetic data can handle300

both test site characteristics equally well despite the more challenging conditions in the ECS. In general, OWT detection is of
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the highest quality with a F1avg score of 99.2%. Furthermore, the F1avg score for OWF substations is at 91.1%. OWT under

construction appear to be the most challenging class and can be explained as follows. An OWT under construction’s first real

world appearance can be restrained in median images when their onset is at the end of a quarter, and thus, just a small amount

of acquisitions are part of the quarterly stack. Also, due to the unspecific spatial pattern of single OWT under construction,305

they are falsely rejected since they are similar to small islands and other persistent marine infrastructure. This interpretation is

supported by the PR-curve in figure 9, which clearly shows that when an OWT under construction is recognised, it always is

a true positive resulting in high precision. However, the PR-curve drops sharply at a very high precision level around a recall

level of 0.7. That indicates false omissions, which can also be seen in table 4. However, the class OWT under construction still

has a F1avg score of 82%.310

Figure 9. Precision recall curves for the CNN cascade detections on the 2021Q2 global Sentinel-1 median image for each class separately.

The detections were evaluated with the 2021Q2_nsb (North Sea Basin) and 2021Q2_ecs (East China Sea) ground truth data sets. The AP

values from table 4 are the corresponding areas under the interpolated precision recall curves.

Figure 10 shows the results of the time series evaluation. For each class and period, the F1 scores were calculated. The

boxplots on the right side show their distribution and the F1avg over the entire time series. The combined assessment reports

the F1avg in each period by averaging the corresponding results from the two ground truth sites. The results show that the time

series analysis performs equally well on both sites like the CNN. OWT have a F1avg of 98.1%, OWF substations of 97.6% and

OWT under construction of 81%.315

7.2 Data set comparison

As reported in section 2, two openly accessible data sets exist, which describe OWT locations, these are OWT records in the

OSM database and the GOWT v1.3 data set (Zhang et al., 2021). In order to compare DeepOWT to both data sets, all available

entries until 2019Q4 were chosen. Also, for OSM, only such entries were queried, which have an entry date until 31.12.2019.

For all 2019 subsets, the evaluation metrics were calculated on the 2019Q4_nsb and 2019Q4_ecs ground truth data sets.320
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Figure 10. F1 scores for each period pictured as points, where the point size describes the number of ground truth labels. On the right side,

boxplots describe the F1 time sereis for each class and provide the temporal F1avg over the entire time sereis. The data was evaluated on the

16Q3-21Q1_nsb (North Sea Basin) and 16Q3-21Q1_ecs (East China Sea) ground truth data sets.

Since OSM only describes locations of readily deployed OWT, only the class ’owt’ from DeepOWT was assessed. The

comparison in figure 11 shows a consistently better performance of DeepOWT compared to entries of the OSM database. It

also becomes clear that the availability of OWT entries in the OSM database differs significantly between the two ground truth

sites. In comparison, the remote sensing data derived OWT locations in DeepOWT are independent of their spatial location,

and the data set performs equally well on both sites. This clearly shows the advantages of remote sensing data based OWT325

detection on a global scale.
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Figure 11. Comparision of the F1 score and false omissions from the OSM and DeepOWT data sets for readily deployed OWT locations in

2019Q4. The data sets were evaluated with the 2019Q4_nsb (North Sea Basin) and 2019Q4_ecs (East China Sea) ground truth data sets.

GOWT v1.3 contains OWT locations beginning at the time when the construction of a turbine foundation was started.

However, it does not distinguish between OWTs under construction and those completed. Therefore, the ’under construction’

and ’owt’ classes of DeepOWT were combined to compare with GOWT v1.3 records. The result in figure 12 shows that both

remote sensing based data sets perform consistently on both sites. Nevertheless, this study’s deep learning-based DeepOWT330

data set performs better than GOWT v1.3, which has been derived by applying a handcrafted morphologic approach for OWT

detection.

Figure 12. Comparision of the F1 score and false omissions from the GOWT v1.3 and DeepOWT data sets for readily deployed OWT and

OWT under construction in 2019Q4. The data sets were evaluated with the 2019Q4_nsb (North Sea Basin) and 2019Q4_ecs (East China

Sea) ground truth data sets.
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8 Potential data set applications

Due to the increasing expansion of OWFs at existing and recently newly developed sites for wind energy production, a holistic

understanding, as well as detailed insights of the expansion process, are gaining importance (Fox et al., 2006; Gus, atu et al.,335

2021). The proposed DeepOWT data set enables all stakeholders to access OWT deployment time series globally. Thereby,

the division in the pre-, meanwhile, and post-construction phases of the deployment process is particularly important. OWT

operators can use this information to develop optimisation measures for the necessary construction process with a specific

focus on environmental conditions. Furthermore, single turbine locations on a global scale and under different conditions

enable operators to investigate OWFs beyond their own facilities to optimise efficiency during the energy production phase and340

make better location decisions.

Since OWF often expand in areas that are already used as fishing grounds, shipping routes or are, to some extent, restricted

areas like nature reserves or military exclusion zones, potential conflicts have to be recognised early and solved by integrated

spatial planning towards multi-use concepts of marine space (Wever et al., 2015; Gusatu et al., 2020). DeepOWT supports the

investigation and documentation of past and present OWF projects and potential conflicts to apply the insights to upcoming345

projects at an early planning phase.

The ecological impacts of OWFs are manifold and have to be differentiated on a spatiotemporal scale (Drewitt and Langston,

2006; Wilson and Elliott, 2009; Bailey et al., 2014; Bergström et al., 2014; Slavik et al., 2019). Thus the spatially contextualised

deployment time series in DeepOWT are an important data source for investigations of habitats and migration routes of marine

wildlife. For policymakers, DeepOWT offers the opportunity to quickly overview OWF expansion and compare trends on350

multiple scales in space and time (Rodrigues et al., 2015). Finally, DeepOWT can be used as a database to foster the exchange

and transfer of knowledge between these different stakeholders, which was found to be of high importance (Henderson et al.,

2003; Fox et al., 2006; Wever et al., 2015; Gusatu et al., 2020).

From a technical perspective, DeepOWT offers a direct integration in analysis made with GIS software and spatial databases

(Cavazzi and Dutton, 2016; Gusatu et al., 2020). The lightweight file size and structure of OWT locations, which summarises355

petabytes of underlying remote sensing images, enables fast processing even on mobile devices. Thus the DeepOWT data set

can be used in computational heavy GIS analysis as well as in field campaigns to enrich on-site mapping information.

9 Conclusions

This study introduced DeepOWT, the first openly accessible data set that provides offshore wind turbine (OWT) locations

along with their quarterly deployment stages on a global scale. The underlying data originates from the spaceborne C-band360

radar mission Sentinel-1, from which all acquisitions between July 2016 and June 2021 of the global coastline were used

to build quarterly median images. The latest median images from 2021 were investigated using deep learning-based object

detection. A cascade of two convolutional neural networks subsequently detects potential offshore wind farm (OWF) locations

and single OWT and OWF substations (e.g. transformer stations). The two CNNs were trained entirely on synthetic training

data generated by using the novel SyntEO approach for synthetic data generation in Earth observation. Based on the detections365
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of the CNN cascade, a quarterly time series was derived, which describes the entire deployment dynamics for every single

OWT between 2016 and 2021.

The data set covers 8,885 OWTs, 852 platforms under construction and 204 OWF substations for the latest period, the second

quarter of 2021. The majority of OWTs are located in the North Sea Basin and the East and South China Sea. With equally

good performance on the two ground truth data sets in the North Sea Basin and East China Sea, the quality of the data set370

is consistent over time and securely describes large OWFs far off the coast as well as small OWFs in a complex near coast

environment. The DeepOWT data set contains nine .geojson files, one with the predicted offshore wind energy infrastructure

locations and deployment time series, and eight additional files which describe the ground truth data. With a file size of 4.1 MB,

DeepOWT is easily portable and ready to use in GIS software.

DeepOWT contributes to a holistic understanding as well as detailed insights into the ongoing development of offshore wind375

energy production, which is at the beginning of a massive increase in OWTs and the development of new OWF sites on a

global scale. Furthermore, DeepOWT proves the possibility of automatically detecting small scale objects within large Earth

observation archives of radar acquisitions without using auxiliary data by applying state of the art deep learning methods. With

the continuation of the Sentinel-1 mission secured, a future detection of OWT deployment time series on a global scale is

possible.380

10 Data availability

The DeepOWT data set is freely available at https://doi.org/10.5281/zenodo.5933967 (Hoeser and Kuenzer, 2022). To get an

overview of the data set, the derived boundaries of the offshore wind energy infrastructure objects along with their temporal

deployment dynamics for every single object are presented in the Coastal Explorer (https://coastalx.eoc.dlr.de/) made with the

UKIS frontend library (Boeck et al., 2022).385
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