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Abstract. Offshore wind energy is at the advent of a massive global expansion. To investigate the development of the offshore

wind energy sector, optimal offshore wind farm locations, or the impact of offshore wind farm projects, a freely accessible

spatiotemporal data set of offshore wind energy infrastructure is necessary. With free and direct access to such data, it is more

likely that all stakeholders who operate in marine and coastal environments are getting involved in the upcoming massive

expansion of offshore wind farms. To that end, we introduce the DeepOWT data set (Deep learning derived Offshore Wind5

Turbines; available at: https://doi.org/10.5281/zenodo.5933967 (Hoeser and Kuenzer, 2022b)), which provides 9,941 locations

of offshore wind energy infrastructures along with their deployment stages on a global scale. DeepOWT is based on freely

accessible Earth observation data from the Sentinel-1 radar mission. The offshore wind energy infrastructure locations were

derived by applying deep learning based object detection with two cascading CNNs (Convolutional Neural Networks) to search

the entire Sentinel-1 archive on a global scale. The two successive CNNs have previously been optimised solely on synthetic10

training examples to detect the offshore wind energy infrastructures in real-world imagery. With a subsequent temporal analysis

of the radar signal at the detected locations, the DeepOWT data set reports the deployment stages of each infrastructure in a

quarterly frequency from July 2016 until June 2021. The spatiotemporal information is compiled in a ready-to-use GIS (Geo

Information System) format to make the usability of the dataset as accessible as possible.

1 Introduction15

Lately, the expansion of carbon-neutral energy is being strongly promoted (COP26, 2021) (United Nations Framework Con-

vention on Climate Change, Conference Of the Parties). Offshore wind energy is an efficient and reliable energy source and

appears to be an important cornerstone for a renewable energy mix (Esteban et al., 2011). For example, the EU (European

Union) plans to increase the installed offshore wind energy capacity from 12 GW in 2020 to 300 GW in 2050 toward carbon-

neutral energy production. Most of this expansion is planned to be realised in the North Sea Basin (NSB), an already established20

hot spot for offshore wind energy production. Nevertheless, new sites in the Mediterranean Sea will be developed to achieve the

stated goals (EC, 2020). The plans of the European Union are exemplary for a global trend of expanding offshore wind energy

projects. Offshore Wind Farms (OWF) will be deployed to already established offshore wind energy production sites like the

East China Sea (ECS). At the same time, the development of new sites for large OWFs, for example, in the Atlantic Ocean
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Table 1. Acronyms and abbreviations

AP Average Precision GRD Ground Range Detected

API Application Programming Interface GT Ground Truth

CFAR Constant False Alarm Rate IW Interferometric Wide

CNN Convolutional Neural Network NSB North Sea Basin

COP26 United Nations Framework Convention on Cli-

mate Change, Conference Of the Parties

OSM Open Street Map

DeepOWT Deep learning derived Offshore Wind Turbine

dataset

OWF Offshore Wind Farm

DoG Difference of Gaussians OWT Offshore Wind Turbine

EC European Commission Pr Precision

ECS East China Sea PR Precision-Recall

ESA European Space Agency Rc Recall

EU European Union ResNet-50 ResidualNetwork with 50 convolutional layers

F1 harmonic mean of Precision and Recall RGB Red-Green-Blue

Faster R-CNN Faster Region based Convolutional Neural Net-

work

RPN Region Proposal Network

FO False Omission SAR Synthetic Aperture Radar

FP False Positive SyntEO Synthetic data generation for Earth Observation

GEE Google Earth Engine TP True Positive

GIS Geo Information System UTM Universal Transverse Mercator

GOWT Global Offshore Wind Turbine data set by

Zhang et al. (2021)

VH Vertical sent Horizontal received

GPU Graphics Processing Unit WGS World Geodetic System

on the East coast of the United States, is ongoing (Rodrigues et al., 2015). Today, the offshore wind energy sector is starting a25

phase of massive expansion worldwide, affecting marine ecosystems (Drewitt and Langston, 2006; Wilson and Elliott, 2009;

Bailey et al., 2014; Bergström et al., 2014; Slavik et al., 2019) as well as stakeholders of different socio-economic sectors active

or interested in the same areas, like the fishing industry, shipping routes, military exclusion zones, cultural heritage, residents

of coastal areas or the recreational industry (Henderson et al., 2003; Wever et al., 2015; Gusatu et al., 2020; Gus, atu et al.,

2021; Virtanen et al., 2022). In order to foster the development of offshore wind energy and to provide all stakeholders with30

free access to data in order to ensure the most sustainable development possible, we introduce the DeepOWT data set, which

reports Offshore Wind Turbine (OWT) locations along with their deployment time series for five years from 2016 until 2021

on a global scale.
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The proposed DeepOWT data set has been derived from the Sentinel-1 radar archive by applying deep learning based

object detection. The employed object detection models were completely trained on synthetic training examples generated35

by the novel SyntEO (Synthetic data generation in Earth Observation) approach (Hoeser and Kuenzer, 2022a). Thus, the

methodological workflow enables the extraction of highly detailed information from extensive Earth observation archives.

That way, in addition to the offshore wind energy infrastructure locations, the temporal deployment process can be described at

each detected location. This is of major interest for investigating the impact and optimisation measures during the deployment

processes, which is an eventful and critical period in an OWT lifecycle. Besides OWT locations, DeepOWT also provides40

locations of OWF substations and offshore wind energy infrastructures under construction to increase further the information

depth and precision of a global OWT data set. Besides this novel information, DeepOWT is openly accessible, comes with

valuable ground truth data sets for spatial and temporal evaluation and can easily be used in GIS (Geo Information System)

software due to its lightweight size of 4.1 MB and the established .geojson format.

2 Related research45

The proposed study applies deep learning based image analysis to detect offshore wind energy infrastructures in Earth observa-

tion imagery. To provide an overview of the applied method and investigated application, 2.1 briefly introduces the application

of CNNs (Convolutional Neural Networks) in Earth observation. Furthermore, 2.2 gives an overview of the extraction of per-

sistent marine infrastructures from Earth observation data with a specific focus on OWTs.

2.1 Deep learning based image analysis in Earth observation50

Krizhevsky et al. (2012) proposed the CNN AlexNet during the ImageNet Large Scale Visual Recognition Challenge, which

won the contest in 2012. The successful implementation of a deep learning model with many adjustable parameters by using

an excessive amount of training data in combination with modern hardware like GPUs (Graphics Processing Units) to optimise

the model brought new attention to deep learning and neural networks from many research domains (Krizhevsky et al., 2017;

LeCun et al., 2015). CNNs turned out to be particularly suitable for image analysis, e.g. for tasks such as image recognition,55

image segmentation and object detection. These capabilities make CNNs the most widely used deep learning models in remote

sensing (Zhu et al., 2017; Ma et al., 2019; Hoeser and Kuenzer, 2020).

In addition to optical and multispectral Earth observation data, deep learning models have also been increasingly used

to analyse radar data from spaceborne Earth observation missions (Zhu et al., 2021). Baumhoer et al. (2019) and Dirscherl

et al. (2021) demonstrated how U-Net based CNNs can be used to extract the antarctic coastline and supraglacial lakes from60

Sentinel-1 data, respectively. Other examples for pixel-wise classifications or image segmentation tasks which exploit Sentinel-

1 data with CNNs are the mapping of burned areas (Belenguer-Plomer et al., 2021), crop type mapping (Cué La Rosa et al.,

2018; Mullissa et al., 2018) or the classification of irrigated agricultural land (Bazzi et al., 2020). Closely related to the topic

of persistent marine infrastructure in this manuscript is the application of ship detection with CNNs and Sentinel-1 data. A
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considerable number of studies have looked at the extraction of vessels from Sentinel-1 data by employing CNN based object65

detection models, see Hoeser et al. (2020) for a comprehensive overview.

Multiple studies demonstrate that CNNs can learn the spatial representation of target classes in Sentinel-1 images where

they can also take into account spatial context to reduce false positives (Dirscherl et al., 2021; Kang et al., 2017; Hoeser and

Kuenzer, 2022a). This property of CNNs is a particularly important argument for using them when extracting object classes

from extensive, unfiltered satellite data archives, as demonstrated in this study.70

2.2 Offshore wind turbine detection in Earth observation imagery

The detection of persistent offshore infrastructure in Earth observation data has been investigated by applying different ap-

proaches. A commonly used approach is the Constant False Alarm Rate (CFAR) as used by Zhang et al. (2019) for marine

infrastructure detection. Wong et al. (2019) combined the CFAR approach with a Difference of Gaussians (DoG) preprocessing

of the remote sensing radar imagery to increase further the contrast of persistent marine infrastructure and the surrounding sea.75

Xu et al. (2020) applied order statistic filtering in combination with a derived set of thresholds to extract marine infrastructure

from the Landsat and Sentinel-2 missions. Zhang et al. (2021) developed a handcrafted morphologic approach with manual

thresholds to identify single OWTs in Sentinel-1 data. All studies have in common that they strongly depend on the high con-

trast between offshore infrastructure and the surrounding open sea. In a preceding study to this data set, Hoeser and Kuenzer

(2022a) proposed an adaptive, deep learning based object detection approach that takes multiscale spatial patterns of the target80

objects into account to distinguish further different types of offshore infrastructure in a single model.

Radar imagery, especially provided by the Sentinel-1 mission, is an auspicious data source for studies related to the offshore

wind energy sector. Besides the detection of persistent offshore infrastructures, the successful investigation of Sentinel-1 data

for estimating wind energy potentials in near coast and offshore areas (Majidi Nezhad et al., 2019) demonstrates the versatility

of radar Earth observation data in the context of offshore wind energy production.85

In 2022, there are three datasets that describe OWT on a global scale, some of which are freely accessible. These are

the 4C offshore wind data set (4C Offshore, 2021), OWT locations in the Open Street Map (OSM) project and the Global

Offshore Wind Turbine (GOWT v1.3) data set by Zhang et al. (2021). The 4C offshore wind data set collects information

about offshore wind projects provided by OWF operators, project descriptions and contracts. It provides an overview of OWF

boundaries, single OWT locations and specifications, OWF substations and export cables (4C Offshore, 2021). However, the90

private company 4C Offshore maintains the 4C offshore wind data set and sells the information. Hence, the data set is only

partly accessible to the public and can not freely be used in planning and research to its full extent.

The first open source variant to mention is the OSM project which provides OWT locations in its spatial database. Since

OSM data relies on the activity of its community, the accuracy and completeness for OWT locations vary from region to

region. Hence, the data set accuracy is not spatially homogenous. Furthermore, there is only a limited temporal consistency in95

this data set. An entry made in OSM on a specific date does not necessarily correlate with its first appearance in the real world,

especially when the temporal accuracy is narrowed down to weeks or months.

4



The GOWT v1.3 data set demonstrates the possibility of large-scale OWT detection by investigating Earth observation data.

In its published version 1.3 it provides OWT locations from 2014 until 2019. Thereby, OWT location is reported as such

when it first appears in a remote sensing image. In GOWT v1.3 there is no difference between OWTs under construction and100

those completed (Zhang et al., 2021). This class indifference leads to a temporarily shifted overestimation of the number of

power-generating OWTs since the construction phase is not provided separately. Furthermore, GOWT v1.3 does not separately

classify OWF substations and has difficulties differentiating them from OWTs, which results in false positive detections of

OWTs within OWFs areas.

From these existing data sets and their limitations, the following characteristics have been derived for a global OWT data105

set:

– Access to all OWT information like location and construction stage in a single file

– Global extent with homogenous reliability

– Temporal consistency regarding the date given in the data set for a single data point and its real-world appearance

– Differentiation between OWTs which are under construction and OWTs which are completed110

– Differentiation between OWTs and OWF substations

– Inclusion of latest OWF projects independent of their size, location and construction type

The motivation of this study is to use a deep learning based object detection approach in order to derive a global offshore

wind turbine data set with an information depth that is not yet freely available. To that end, we present the DeepOWT (Deep

learning derived Offshore Wind Turbines) data set in this study. The main contributions are:115

– the presentation of a deep learning based object detection workflow with two cascading CNNs which detect offshore

wind farms in the first and single offshore wind energy infrastructure facilities in the second stage.

– the application of the recently proposed SyntEO framework by (Hoeser and Kuenzer, 2022a) for using synthetic data to

train the two supervised deep learning models.

– the introduction of the DeepOWT data set with offshore wind energy infrastructure locations on a global scale and120

quarterly deployment stages for each location from July 2016 until June 2021.

– the differentiation between offshore wind turbines, offshore wind energy substations and offshore wind energy infras-

tructures under construction for each detected object in the DeepOWT data set.

– the generation of spatiotemporal ground truth data sets of offshore wind energy infrastructures for the two major wind

energy production sites, the North Sea Basin and the East China Sea.125

– a comprehensive spatiotemporal evaluation of the automatically derived DeepOWT data set.

– free access to the DeepOWT data set and the ground truth data sets created.
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3 Materials and methods

The upcoming sections introduce the investigated Sentinel-1 data, see section 3.1 and the applied workflow to obtain the

proposed data set, see section 3.2. The workflow describes how the training data for the deep learning approach is generated,130

how the CNNs are trained and used to extract offshore wind energy infrastructures. The proceeding section explains how the

deployment time series are derived for each extracted object. Finally, the evaluation process of the automatically derived results

with hand annotated benchmark data sets is described.

3.1 Materials

ESA’s (European Space Agency) Copernicus program provides open access to continuously acquired Earth observation data135

(Aschbacher, 2017). As part of this program, the spaceborne Sentinel-1 SAR (Synthetic Aperture Radar) mission covers main-

land and coastal areas on a global scale with a 10 m pixel spacing. The active C-band radar system with a wavelength of

5.6 cm is independent of cloud coverage and able to acquire images day and night (Torres et al., 2012). These specifications

make the radar data of the Sentinel-1 mission an excellent source to monitor coastal environments and investigate OWTs on a

global scale. All Sentinel-1 acquisitions with the specification IW (Interferometric Wide), GRD (Ground Range Detected) and140

VH (Vertical sent Horizontal received) polarised were chosen as underlying data in this study. Figure 1a) shows how often a

location on Earth is sensed by the two Sentinel-1 satellites A and B for the mentioned data product specification in the second

quarter of the year 2021. The focus of the Copernicus program becomes visible with a higher number of acquisitions over

Europe. Here the satellites acquire data at both ascending and descending orbits, with an inclination of 98.18°. This leads to

the X-like pattern and a higher revisit rate compared to other parts of the Earth. In order to harmonise all quarterly acquisitions145

of the entire Earth to a single global mosaic with a pixel spacing of 10 m, all acquisitions were stacked and reduced to a single

band median composite, see figure 1b).

The extent of the study area is defined by a 200 km buffer of the OSM coastline towards the open sea. In order to system-

atically manage and process the data, a 1.8° regular grid was generated for the entire Earth. All grid cells which intersect the

200 km buffer were selected. The final grid, pictured in figure 1b, defines the area where the DeepOWT data set was detected.150

A global Sentinel-1 median composite was queried for the second quarter of 2021 (2021-Q2). Upon this median compos-

ite, the global OWF and OWT locations were derived. The Google Earth Engine (GEE) (Gorelick et al., 2017) python API

(Application Programming Interface) was used to query the Sentinel-1 data within each 1.8° grid cell. The Sentinel-1 image

collection in GEE provides the IW GRD VH acquisitions with additional preprocessing for accurate orbit information, border

and thermal noise removal, radiometric calibration and terrain correction. The queried acquisitions within the three-month155

period were reduced to a median composite with a pixel size of 10 m × 10 m and downloaded. To reduce the amount of data

before downloading, the 16 bit floating-point number with a range of 0 to -40, which describes the Sentinel-1 backscatter signal

in decibel, were rescaled to 0 to 255 and downloaded as 8 bit integers.

Quarterly subsets from 2016-Q3 to 2021-Q1 were generated the same way as the 2021-Q2 global median composite to

investigate temporal deployment dynamics. For these 19 quarterly subsets, the Sentinel-1 median composites were only created160
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Figure 1. a) Global distribution of the number of all available Sentinel-1 (IW-GRD-VH) acqusitions for the second quater in 2021. b) The

corresponding median backscatter amplitude and the data set boundary as 1.8° grid within a buffer of 200 km of the global coastline.
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if a grid cell contained detected OWTs in 2021-Q2. Thus, the underlying data for the DeepOWT data set are 20 quarterly sets

from 2016-Q3 to 2021-Q2. The latest period in 2021-Q2 holds a Sentinel-1 median composite of the entire global coastline.

All other 19 sets only store Sentinel-1 median composites for OWF areas present in 2021-Q2.

3.2 Methodology

Figure 2 shows an overview of the methodological workflow to derive the OWT locations and their temporal deployment165

dynamics of the proposed data set. The core of the workflow is a cascade of two CNN object detectors, where the first CNN

detects the OWF boundaries and the second CNN detects OWT locations on the 2021-Q2 global median composite. In order to

train both object detector CNNs, two synthetic training data sets were generated in a preceding step. This is the first application

of the recently introduced SyntEO approach (Hoeser and Kuenzer, 2022a) embedded in a complete workflow to generate a

global data set. After the OWT locations have been detected in the 2021-Q2 data, a time series of 19 quarterly periods is170

investigated to derive deployment dynamics for each OWT location from 2016-Q3 until 2021-Q1. In a final step, the OWT

locations are refined from a bounding box to accurate point locations and combined with the derived deployment time series.

Together the spatiotemporal information is saved as a single file which is the DeepOWT data set.

3.2.1 Synthetic training data set generation with SyntEO

In deep learning, layers of untrained weights are stacked to build deep neural networks. In order to adjust the weights in a175

neural network to succeed in a given task, a large data set with annotated examples is necessary for supervised training (LeCun

et al., 2015). The annotation of such large training data sets by hand is time-consuming and, in the case of only a few real-world

examples, which applies for OWFs, even impossible. In order to solve these problems, the SyntEO approach was introduced

to automatically synthesise large annotated training data sets with a special focus on the needs of Earth observation data. In

SyntEO, a domain expert formulates an ontology that describes entities in a remote sensing scene and their spatiotemporal180

interrelations. The SyntEO ontology is a complex description of nested entities that are related by using topological rules

to describe their spatial dependencies. A synthetic image is generated upon the formulated ontology by composing spatially

meaningful geometries of all entities to create an abstract scene composition. Hereinafter, sensor-specific texture is added to the

geometries of the abstract scene composition to generate the final remote sensing image. Furthermore, annotations are derived

from the discrete geometries of the scene composition simultaneously. That way, large deep learning ready data sets can be185

created fast and automatically. Figure 3 shows a visual summary of the SyntEO process for better intuition. For an in-depth

explanation of the SyntEO framework and the underlying ontology concept for automatic data generation in Earth observation,

we refer to Hoeser and Kuenzer (2022a).

For this study, the ontology drafted by Hoeser and Kuenzer (2022a) was extended to simultaneously generate training

examples for OWF and OWT detection. In addition to the origin ontology, which only describes polygon-shaped OWFs,190

linear-shaped OWFs were introduced to increase the target object variance of the training examples. To further enrich the

training data set, non-target classes like synthetically generated oil rigs and images which show the mainland were added with

explicitly no annotations to provide negative training examples.
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Figure 2. Methodological workflow to generate the DeepOWT data set based on the Sentinel-1 archive. Two CNNs detect OWF and OWT

locations, trained on synthetic examples. These spatial detections are used to define their temporal dynamics and accurate location. Finally,

DeepOWT combines these spatiotemporal results.

9



Furthermore, the ontology which has been formulated to generate training examples for OWF detection was reused for OWT

detection. Most importantly, the size of the generated images and the annotation were changed. Instead of large-scale bounding195

box annotations for OWFs in synthetic images with a dimension of 2048× 2048 pixel, small-scale bounding box annotations

for each OWT were derived from synthetic images with a dimension of 512× 512 pixel, see figure 3b). Thus, the CNN object

detector, which detects OWTs and other offshore wind energy infrastructures, learns explicitly to focus on small-scale spatial

features.

In order to include other targets besides readily deployed OWTs, the non-target class oil rigs in OWF detection was reused. In200

the second synthetic data set, they are employed to provide annotated examples for OWF substations and offshore wind energy

infrastructure under construction. The mainland examples without annotation were kept to provide false positive training

examples for OWT detection.

Two pools of training-annotation pairs with additional metadata were generated to compile two balanced synthetic training

data sets - one training data set for OWF and the other for single offshore wind energy infrastructure detection. To enable the205

TensorFlow deep learning framework (Abadi et al., 2016), the selected image annotation pairs were parsed to the TFrecord

binary format. That way, the first training data set with 90,000 examples for OWF detection and the second training data set

with 275,000 examples for OWT detection were created.

Figure 3. Simplyfied overview of a SyntEO workflow for automatic training example generation (Hoeser and Kuenzer, 2022a). a) visualises

how the structure of a single OWF entity is generated. b) shows how multiple entities are composed to a scene composition. The final image

is generated by adding texture to the composed scene. The bounding box annotations are derived from the scene composition.
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3.2.2 Global OWT object detection with CNNs

Deep learning became an important driver for new insights and methodological developments in Earth system science (Zhu210

et al., 2017; Reichstein et al., 2019). Recent developments of CNNs allow for the detection of objects in large images by

taking spatial context into account (Hoeser and Kuenzer, 2020). For object detection, the two-stage Region based CNN (R-

CNN) models are the most commonly used architecture in Earth observation applications (Hoeser et al., 2020). To derive the

DeepOWT data set, we used a cascade of two ResNet-50 (ResidualNetwork with 50 convolutional layers) (He et al., 2016)

Faster R-CNN (Ren et al., 2015) models, where the first stage of the cascade detects OWF areas on a global scale, and the215

second stage detects single offshore wind energy infrastructure facilities within the previously detected OWF areas.

The first CNN for OWF detection ingests images with a dimension of 1024× 1024 pixel. That requires an on-the-fly down-

scaling of the training examples for OWF detection, which have a dimension of 2048× 2048 pixel. For OWT detection in the

second stage of the cascade, the training examples already have a dimension of 512× 512 that matches the CNN architecture.

Another difference in the model architectures for OWF and OWT detection is the adapted scale factors for the Region Proposal220

Network (RPN), a submodule of the Faster R-CNN object detector (Ren et al., 2015). In order to adjust the sensitivity for

specific sizes of the target objects, the scale ratios were set to [0.25, 0.5, 1, 2, 3.5] for OWF and [0.25, 0.5] for OWT detection.

The scale factors were calculated by applying the approach introduced by Hoeser and Kuenzer (2022a).

The training of the two CNNs was conducted on four parallel NVIDIA RTX 2080Ti GPUs. The training schemes are the

same for both architectures. A 0.95-0.05 training-validation split was prepared for both synthetic data sets. A single epoch225

without any data augmentation was used, which was possible due to the large size and variability of the synthetic data sets. The

learning rate was scheduled to decrease smoothly by implementing the cosine decay method (Loshchilov and Hutter, 2017).

After a warm-up phase, the base learning rate of 0.01 is reached and then reduced to 0 for all remaining training steps.

The two trained models were used in a cascading manner. The first stage detects OWF by applying a threshold of 0.5 on the

prediction score. Thus, the first stage allows a higher false positive rate to include more OWF areas as necessary but avoids230

false omissions of OWF areas. The second stage detects single offshore wind energy infrastructure facilities within the potential

OWF areas by applying a threshold of 0.75 to consider a valid prediction. With the second stage’s results, the predictions of the

first stage are refined. Potential OWF areas with a share of 90% or more non-OWTs are belatedly dropped as false detection

of stage one. This self-checking property of the cascade leads to a high detection rate with a low number of false omissions by

simultaneously decreasing false detections. This property was highly suitable for scanning extensive Earth observation archives235

to find sparsely scattered target objects in large amounts of image data.

Since all predictions are performed on overlapping input tiles, the same object can be detected multiple times. To summarise

all predicted bounding boxes in one file, the pixel coordinates of the bounding boxes are translated to the geographic coordinate

system WGS84. Furthermore, the bounding boxes were sorted in descending order by their prediction score and indexed with

b= 1,2,3...B, to consolidate the bounding boxes which belong to the same object B. This sorted list of bounding boxes Bb240

was unified in a cascading manner if the next box of the list is completely within the unified box or together they have an

intersection over union larger than τIoU = 0.333, see equation (1).
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Figure 4. Detection results of the CNN cascade for the North Sea Basin. a) shows the OWFs detected by stage 1, b) the OWT and OWF

substations detected by stage 2 within the OWF boundaries of stage 1 in the German Bight.
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Figure 5. Detection results of the CNN cascade for the South and East China Sea. a) shows the OWFs detected by stage 1, b) the OWT, OWF

substations and such under construction detected by stage 2 within the OWF boundaries of stage 1 in the Taiwan Strait.

In order to calculate the exact area of each Bb, the bounding box polygons were temporarily reprojected to their corre-

sponding UTM (Universal Transverse Mercator) coordinate system depending on their UTM zone. The final unified polygons
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describe the OWF and OWT locations. Figure 4 and 5 show the detection results of the CNN cascade for North Europe and245

South-East China respectively.

B1 :=

B−1
b=1

B1 ∪Bb+1, if Bb+1 ⊆ B1
B1 ∪Bb+1, if B1∩Bb+1

B1∪Bb+1
> τIoU

B1, otherwise

(1)

3.2.3 Time series analysis for deployment dynamics and location refinement

Figure 6. Deployment time series from 2016Q3 until 20201Q2 of an OWT. First and third row show quarterly Sentinel-1 median composites

of the same detected bounding box over time. Second and fourth row show the corresponding maximal swath profiles with detected peaks.

The automatically derived construction stages are given for each image: sea = open sea/no turbine, const = under construction, owt = offshore

wind turbine.

To describe the temporal dynamics of offshore wind energy infrastructure deployment, a backwards-looking time series

analysis of the detected locations in 2021-Q2 was performed. For each bounding box of an object location, a multi-temporal250

stack of 19 quarterly Sentinel-1 median composites was analysed to determine if an image shows the open sea, an OWT

or OWF substation under construction, or an OWT or OWF substation readily deployed. Swath profiles that describe each

column’s maximum value along the horizontal axes from each image in the multitemporal stack were generated. Figure 6
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shows quarterly images and corresponding swath profiles for an OWT deployment time series. By applying two consecutive

peak finder algorithms with a high and low prominence (Virtanen et al., 2020) to the swath profile, the centre peak and adjacent255

peaks to the left and right of the centre peak were detected. In a subsequent analysis which starts in 2021-Q2 with the predicted

class of the second stage CNN, the changes in the number of peaks, centre peak amplitude and peak width are investigated to

differentiate the deployment stages until 2016-Q3.

To finally refine the bounding boxes of offshore wind energy infrastructure locations to point locations, all pixel values within

each bounding box of the 2021-Q2 period were analysed. As with the time series analysis, a maximum swath profile was created260

along the x-axis, and the centre peak was searched for. With the derived x coordinate and amplitude of the centre peak, the

column at the x location of the image patch within the bounding box was queried to find the corresponding y coordinate. By

taking the geographic origin of the image patch into account, the WGS84 (World Geodetic System 1984) coordinate for this

pixel was derived. Thus, the detected offshore wind energy infrastructure location is no longer described by a bounding box

but by an accurate point location that is precisely at the centre amplitude maximum of the detected object. The final content265

for the derived data set is completed by merging spatial and temporal processing results.

3.2.4 Data set evaluation

In order to evaluate the DeepOWT data set, two ground truth data sets were generated. The test areas are the North Sea Basin

(NSB) and the East China Sea (ECS), pictured in figure 7. Their boundaries were aligned with the processing grid of this

study. The two areas were chosen due to their importance for offshore wind energy generation, their differences concerning270

the underlying Sentinel-1 data and the different interaction of OWFs with coastlines, coastal infrastructure and islands. Where

the majority of OWFs in the NSB are located within a considerable distance to the coast, in the ECS, OWFs are built closely

to small islands and other infrastructures like bridges and harbours, see figure 5. Furthermore, the NSB has a higher number

of quarterly Sentinel-1 acquisitions at both orbit directions, whereas the ECS is mainly observed from a single orbit direction

and thus has lesser acquisitions at the same time interval, see figure 1. That results in different characteristics of the global275

Sentinel-1 median composite in both areas. Together, the NSB and ECS represent various OWF types and how they appear in

their natural environment and are therefore representational test sites.

Two types of ground truth data sets were generated and included as separate files along with the proposed DeepOWT data

set. The first type describes the locations of the target objects at a single point in time. The second type describes quarterly

time series of deployment dynamics.280

Two data sets of the first type were generated, one for 2021-Q2 and one for 2019-Q4. The 2019-Q4 data set will later be

used to compare the records of the DeepOWT data set to OSM and GOWT v1.3 records since the latter ends in 2019. For

both ground truth data sets, all locations of OWTs and OWF substations, both readily deployed or under construction, were

annotated by hand for the entire NSB and ECS. Afterwards, the point locations were buffered with a radius of 100 m, which is

the final area that defines a true positive location. To generate the temporal ground truth data sets, about 15% of the 2021-Q2285

ground truth locations were selected for both the NSB and the ECS variant. For these selected locations, the entire quarterly
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Figure 7. Overview of the ground truth sites boundaries and the hand labelled object locations and deployment stages for the second quarter

in 2021. a) shows the North Sea Basin (NSB), b) the East China Sea (ECS).
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time series from 2016-Q3 until 2021-Q2 was annotated by hand. An overview of the different ground truth data sets and their

number of annotated target objects is provided in table 2.

During manual ground truth data labelling, all locations and temporal intervals were visually examined and cross-checked

with different data sources. Therefore, Sentinel-1 images were investigated in combination with additional RGB (Red-Green-290

Blue) images from Sentinel-2 and Google Earth. Furthermore, public information concerning the deployment dynamics pro-

vided by official planning documents, OWF operators and news portals were conducted mainly to validate the labels of the

temporal ground truth data sets.

Following the manual generation of the ground truth data sets, we calculated evaluation metrics to assess the automatically

derived DeepOWT data set. To provide consistent and comparable metrics that take the different numbers of objects for each295

test site into account, the metrics were calculated separately in the first step. A predicted object is considered a true positive

(TP) when it is within the ground truth polygon, a 100 m radius around the object centre of a test label, and the predicted

point and test polygon have the same class. Otherwise, it is a false positive (FP). A wrongly omitted ground truth polygon is

considered a false omission (FO). Upon that, precision Pr and recall Rc were calculated:

Pr =
TP

TP+FP
(2)300

Rc =
TP

TP+FO
(3)

The harmonic mean of Pr and Rc, summarises both metrics as the F1 score:

F1 = 2× Pr×Rc

Pr+Rc
(4)

Table 2. Overview of all ground truth data sets, their corresponding time stamp and number of objects in each class. * are the numbers for

the start in 2016Q3 and end in 20201Q1 of the ground truth time series. † is the number of all hand labelled classes of the entire ground truth

time sereis with 19 intervals.

Site Time stamp Data set name OWT Construction Substation Open sea
∑

label

NSB 2021Q2 2021Q2_nsb 4,016 253 85 - 4,354

ECS 2021Q2 2021Q2_ecs 2,208 574 62 - 2,844

NSB 2019Q4 2019Q4_nsb 3,571 172 78 - 3,821

ECS 2019Q4 2019Q4_ecs 1,208 214 47 - 1,469

NSB 2016Q3-2021Q1 16Q3-21Q1_nsb 352-583* 59-47* 12-19* 227-1* 12,350†

ECS 2016Q3-2021Q1 16Q3-21Q1_ecs 40-311* 12-87* 3-11* 375-21* 8,170†
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Furthermore, all detections made by a CNN were sorted by their prediction scores in descending order and indexed with

c= 1,2, ...,C. From this ordered list, an all point interpolated precision-recall curve Printerp is generated.305

Printerp = max
R̃c : R̃c≥Rc

Printerp(R̃c) (5)

Finally, the area under the all-point interpolated precision-recall curve describes the average precision AP (Padilla et al.,

2021),

AP=

C∑
c=1

(Rc(c)−Rc(c− 1))×Printerp(Rc(c)), (6)

with Rc(0) = 0.310

In order to report overall metrics for all n sites or intervals of a time series, the separately calculated metrics were combined

by macro averaging:

Pravg =
1

n

n∑
i=1

Pri (7)

Rcavg =
1

n

n∑
i=1

Rci (8)

F1avg =
1

n

n∑
i=1

F1i (9)315

Thus the macro F1avg score is defined as the arithmetic mean over harmonic means following (Opitz and Burst, 2021).

4 Results

The derived DeepOWT data set contains 9,941 offshore wind energy infrastructure locations on a global scale. Each detected

location is associated with 20 quarterly deployment stages from July 2016 until June 2021, which inform about the deployment

process and the object class to further specify the offshore wind energy infrastructure type. The potential three classes are320

offshore wind turbines, offshore substations, and offshore wind energy infrastructure under construction. If no infrastrucutre

object is present at a time interval, the class is set to open sea. Figure 8 provides an overview of all detected objects and their

corresponding classes over the entire time series in the DeepOWT data set from July 2016 until June 2021.

18



Figure 8. The temporal development of all 9,941 objects and their corresponding class in the DeepOWT data set. Class and location in an

interval with an * were derived by a CNN. In all other intervals, the class was derived by the swath profile analysis, see figure 6.

4.1 Evaluation results

Table 3. Overview of all calculated metrics for the CNN cascade detections on the 2021Q2 global Sentinel-1 median composite for each

class separately. The detections were evaluated with the 2021Q2_nsb (North Sea Basin) and 2021Q2_ecs (East China Sea) ground truth data

sets.

Site Class GT TP FP FO Pr Rc F1 AP

North Sea Basin OWT 4,016 3,996 1 20 1.0 0.995 0.997 0.995

North Sea Basin under construction 253 186 7 67 0.964 0.735 0.834 0.72

North Sea Basin OWF substation 85 74 2 11 0.974 0.871 0.919 0.859

East China Sea OWT 2,208 2,168 16 40 0.993 0.982 0.987 0.981

East China Sea under construction 574 393 7 181 0.982 0.685 0.807 0.678

East China Sea OWF substation 62 56 6 6 0.903 0.903 0.903 0.853

Pravg Rcavg F1avg

Combined OWT 6,224 6,164 17 60 0.996 0.988 0.992

Combined under construction 827 579 14 248 0.973 0.71 0.821

Combined OWF substation 147 130 8 17 0.938 0.887 0.911
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Figure 9. Precision recall curves for the CNN cascade detections on the 2021Q2 global Sentinel-1 median composite for each class separately.

The detections were evaluated with the 2021Q2_nsb (North Sea Basin) and 2021Q2_ecs (East China Sea) ground truth data sets. The AP

values from table 3 are the corresponding areas under the interpolated precision recall curves.

Table 3 and figure 9 summarise the evaluation results of the objects detected by the CNN cascade in the latest interval (2021-325

Q2). The evaluation results show that the performance is stable across both study sites. Thus, the CNN models trained on

synthetic data can handle both test site characteristics equally well despite the more challenging conditions in the ECS.

OWT detection is of the highest quality with a F1avg score of 99.2%. Furthermore, the F1avg score for OWF substations

is at 91.1%. Offshore wind energy infrastructure under construction appears to be the most challenging class, which can be

explained as follows. An OWT under construction’s first real-world appearance can be restrained in median images when their330

onset is at the end of a quarter, and thus, just a small amount of Sentinel-1 acquisitions contribute to the quarterly median

composite. Also, due to the unspecific spatial pattern of single OWT under construction, they are falsely rejected since they

are similar to small islands and other persistent marine infrastructure. The PR-curve in figure 9 supports this interpretation,

which clearly shows that when an OWT under construction is recognised, it always is a true positive resulting in high precision.

However, the PR-curve drops sharply at a high precision level around a recall level of 0.7. That indicates false omissions, which335

can also be seen in table 3. However, the class OWT under construction still has a F1avg score of 82%.

Figure 10 shows the results of the time series evaluation. For each class and interval, the F1 scores were calculated. The

boxplots on the right side show their distribution and the F1avg over the entire time series. The combined assessment reports

the F1avg in each period by averaging the corresponding results from the two ground truth sites. The results show that the time

series analysis performs equally well on both sites, similar to the performance of the CNN cascade. OWT have a F1avg of340

98.1%, OWF substations of 97.6% and offshore wind energy infrastructure under construction of 81%.

4.2 Data set comparison

As reported in section 2, two openly accessible data sets exist, which describe OWT locations, these are OWT records in the

OSM database and the GOWT v1.3 data set (Zhang et al., 2021). Since the GOWT v1.3 data set holds records until December
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Figure 10. F1 scores for quarterly intervals pictured as points, where the point size describes the number of ground truth labels. On the right

side, boxplots describe the F1 time series for each class and provide the temporal F1avg over the entire time series. The data was evaluated

on the 16Q3-21Q1_nsb (North Sea Basin) and 16Q3-21Q1_ecs (East China Sea) ground truth data sets.

2019, all entries until 2019Q4 of the DeepOWT data set were chosen to perform the comparison. Likewise, for OSM records345

of OWTs, only those entries were queried that were registered by 31.12.2019. The evaluation metrics for all three data sets

were calculated on the 2019Q4_nsb and 2019Q4_ecs ground truth data sets.

Since OSM describes locations of readily deployed OWT, only the class ’owt’ from DeepOWT was assessed. The com-

parison in figure 11 shows a consistently better performance of DeepOWT compared to entries of the OSM database. It also

becomes clear that the availability of OWT entries in the OSM database differs significantly between the two ground truth350

sites. In comparison, the records of the DeepOWT data set, which were derived from remote sensing data, show similar and
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consistently better performance metrics on both sites. This clearly shows the advantages of remote sensing data based OWT

detection on a global scale.

Figure 11. Comparision of the F1 score and false omissions from the OSM and DeepOWT data sets for readily deployed OWT locations in

2019Q4. The data sets were evaluated with the 2019Q4_nsb (North Sea Basin) and 2019Q4_ecs (East China Sea) ground truth data sets.

GOWT v1.3 contains OWT locations, classified as such when the construction of a turbine foundation starts. Yet, it does not

distinguish between OWTs under construction and those completed. Therefore, the ’under construction’ and ’owt’ classes of355

the DeepOWT data set were combined to compare the results with GOWT v1.3 records. The comparison in figure 12 shows

that both remote sensing based data sets perform consistently on both test sites. Nevertheless, this study’s deep learning-based

DeepOWT data set performs better than GOWT v1.3, which has been derived by applying a handcrafted morphologic approach

for OWT detection.

Figure 12. Comparision of the F1 score and false omissions from the GOWT v1.3 and DeepOWT data sets for readily deployed OWT and

OWT under construction in 2019Q4. The data sets were evaluated with the 2019Q4_nsb (North Sea Basin) and 2019Q4_ecs (East China

Sea) ground truth data sets.
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Table 4. Overview of the metadata of all files included in the DeepOWT data set.

File Extent Time stamp Periods Geometry OWT const sub sea Entries

DeepOWT.geojson global 2016Q3-2021Q2 20 points 3 3 3 3 9,941

gt_2021Q2_nsb.geojson NSB 2021Q2 1 polygons 3 3 3 7 4,354

gt_2021Q2_ecs.geojson ECS 2021Q2 1 polygons 3 3 3 7 2,844

gt_2019Q4_nsb.geojson NSB 2019Q4 1 polygons 3 3 3 7 3,821

gt_2019Q4_ecs.geojson ECS 2019Q4 1 polygons 3 3 3 7 1,469

gt_2016Q3-2021Q1_nsb.geojson NSB 2016Q3-2021Q1 19 polygons 3 3 3 3 650

gt_2016Q3-2021Q1_ecs.geojson ECS 2016Q3-2021Q1 19 polygons 3 3 3 3 430

gt_nsb_gridded.geojson NSB - - polygons 7 7 7 7 1

gt_ecs_gridded.geojson ECS - - polygons 7 7 7 7 1

4.3 Technical description360

DeepOWT (Deep learning derived Offshore Wind Turbines) is introduced with version number 1.21.2, where the first number

is increased when significant changes are made to the methodology used to detect the OWF and OWT objects automatically

or additional content is appended to the data set. The second and third numbers describe the year and quarter of the latest

interval recorded in the data set. With this, methodological and temporal information is incorporated into the data set name and

versioning.365

The data set contains the automatically derived target location and the earlier described hand-labelled ground truth data sets.

Table 4 provides an overview of which data set file contains which information. DeepOWT 1.21.2 describes the deployment

stages of OWT and OWF substations on a global scale from 2016-Q3 until 2021-Q2. Each entry holds the information of the

deployment stage within three months of the respective quarter in a year. 9,737 OWTs were detected for the second quarter

of 2021. Of these, 8,885 were readily deployed, and 852 were under construction. Additionally, 204 OWF substations were370

detected for the same period. The file size of DeepOWT is 4.1 MB.

All automatically detected and hand labelled objects are described as points or polygons using the geographic coordinate

system WGS84. The spatial geometries were checked topologically to identify duplicate entries, even if no topological errors

were found during this inspection. The checked geometries are stored in .geojson files along with the temporal deployment

information as corresponding attribute table. The quarterly periods of the time series in the attribute table of a .geojson file375

are named in the format YyyyyQq, where yyyy is the year and q the quarter of a year. For each location and time series

record, the object class or deployment stage is described as an integer between 0 and 3. Table 5 provides the mapping of the

corresponding semantic labels.
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Table 5. Mapping of the key in integer format, used in the data set files, to semantic labels and their abbreviations.

Data set key Semantic label Abbreviation

0 open sea sea

1 under construction const

2 offshore wind turbine owt

3 offshore wind farm substation sub

4.4 Potential data set applications

Due to the increasing expansion of OWFs at existing and recently newly developed sites for wind energy production, a holistic380

understanding and detailed insights of the expansion process are gaining importance (Fox et al., 2006; Gus, atu et al., 2021;

Johnson et al., 2022). The proposed DeepOWT data set enables all stakeholders involved to access OWT deployment time series

globally. Thereby, the division in the pre-, meanwhile, and post-construction phases of the deployment process is particularly

important. OWT operators can use this information to develop optimisation measures for the necessary construction process

with a specific focus on environmental conditions. Furthermore, single turbine locations on a global scale and under different385

conditions enable operators to investigate OWFs beyond their own facilities to optimise efficiency during the energy production

phase and make better location decisions.

Since OWF often expand in areas that are already used as fishing grounds, shipping routes or are, to some extent, restricted

areas like nature reserves or military exclusion zones, potential conflicts have to be recognised early and solved by integrated

spatial planning towards multi-use concepts of marine space (Wever et al., 2015; Gusatu et al., 2020). DeepOWT supports the390

investigation and documentation of OWF projects and potential conflicts to apply the insights to upcoming projects at an early

planning phase.

The ecological impacts of OWFs are manifold and have to be differentiated on a spatiotemporal scale (Drewitt and Langston,

2006; Wilson and Elliott, 2009; Bailey et al., 2014; Bergström et al., 2014; Slavik et al., 2019). Thus the spatially contextualised

deployment time series in DeepOWT are an important data source for investigations of how habitats and migration routes of395

marine wildlife are impacted. For policymakers, DeepOWT offers the opportunity to quickly overview OWF expansion and

compare trends on multiple scales in space and time (Rodrigues et al., 2015). Finally, DeepOWT can be used as a database to

foster the exchange and transfer of knowledge between different stakeholders, which was found to be of high importance in

offshore wind energy projects (Henderson et al., 2003; Fox et al., 2006; Wever et al., 2015; Gusatu et al., 2020).

From a technical perspective, DeepOWT offers a direct integration in analysis made with GIS software and spatial databases400

(Cavazzi and Dutton, 2016; Gusatu et al., 2020). The lightweight file size and structure of OWT locations, which summarises

petabytes of underlying remote sensing images, enables fast processing even on mobile devices. Thus the DeepOWT data set

can be used in computational heavy GIS analysis as well as in field campaigns to enrich on-site mapping information.
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5 Data availability

The DeepOWT data set is freely available at https://doi.org/10.5281/zenodo.5933967 (Hoeser and Kuenzer, 2022b). Addi-405

tionally, the Coastal Explorer (https://coastalx.eoc.dlr.de/) made with the UKIS frontend library (Boeck et al., 2022) provides

an interactive overview of the derived OWF boundaries and offshore wind energy infrastructure locations along with their

temporal deployment dynamics.

6 Conclusions

This study introduced DeepOWT (Deep learning derived Offshore Wind Turbines), the first openly accessible data set that410

provides offshore wind turbine (OWT) locations along with their quarterly deployment stages on a global scale. DeepOWT is

derived from the data provided by the spaceborne C-band radar mission Sentinel-1. All available acquisitions along the global

coastline between July 2016 and June 2021 were used to build quarterly median composites. The latest median composite

from 2021 was investigated by using deep learning-based object detection. A cascade of two convolutional neural networks

subsequently detects potential offshore wind farm (OWF) locations and single OWT and OWF substations within these areas.415

The two CNNs were trained entirely on synthetic training data generated using the novel SyntEO approach for Synthetic data

generation in Earth Observation (Hoeser and Kuenzer, 2022a). Based on the detections of the CNN cascade, a quarterly time

series was derived, which describes the deployment dynamics for every offshore wind energy infrastructure location between

2016 and 2021.

The data set covers 8,885 OWTs, 852 platforms under construction and 204 OWF substations for the latest period, the420

second quarter of 2021. The majority of OWTs are located in the North Sea Basin and the East and South China Sea. With

equally good performance on the two ground truth data sets in the North Sea Basin and East China Sea, the quality of the data

set is consistent over time and space. It securely describes large OWFs far off the coast as well as small OWFs in complex

near-coast environments. The DeepOWT data set contains nine .geojson files, one with the predicted offshore wind energy

infrastructure locations and deployment time series, and eight additional files which describe the ground truth data. With a file425

size of 4.1 MB, DeepOWT is easily portable and ready to use in GIS software.

DeepOWT contributes to a holistic understanding as well as detailed insights into the ongoing development of the offshore

wind energy sector, which is at the beginning of a massive expansion phase on a global scale. Furthermore, DeepOWT proves

the possibility of automatically detecting small-scale objects within large Earth observation archives of radar acquisitions

without using auxiliary data by applying state-of-the-art deep learning methods. With the continuation of the Sentinel-1 mission430

secured, a future detection of OWT deployment time series on a global scale is possible.
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