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Abstract.  

The growing urbanization trend and increasingly frequent extreme weather events urge further monitoring and understanding 15 

of weather in cities. In order to gain information on these intra urban weather patterns, dense high quality atmospheric 

measurements are needed. Crowdsourced weather stations (CSW) could be a promising solution to reach such monitoring 

networks in a cost-efficient way. Because of their non-traditional measuring equipment and installation settings, the quality of 

these datasets remains however an issue of concern. This paper presents crowdsourced data from the Leuven.cool network, a 

citizen science network of around 100 low-cost weather stations (Fine Offset WH2600) distributed across Leuven, Belgium. 20 

The dataset is accompanied by a newly developed station specific temperature quality control (QC) and correction procedure. 

The procedure consists of three levels removing implausible measurements, while also correcting for inter (in between stations) 

and intra (station-specific) station temperature biases by means of a random-forest approach. The QC method is evaluated  

using data from four WH2600 stations installed next to official weather stations belonging to the Royal Meteorological Institute 

of Belgium (RMIB). A positive temperature bias with strong relation to the incoming solar radiation was found between the 25 

CSW data and official data. The QC method is able to reduce this bias from 0.15 ± 0.56°C to 0.00 ± 0.22°C. After evaluation, 

the QC method is applied to the data of the Leuven.cool network, making it a very suitable data set to study in detail local 

weather phenomena such as the urban heat island (UHI) effect.

1 Introduction  

More than 50% of the world population currently lives in urban areas and this number is expected to grow to 70% by 2050 30 

(UN, 2018). Keeping this growing urbanisation trend in mind and knowing that both the frequency and intensity of extreme 

weather events will increase (IPCC, 2021), it becomes clear that both our cities and its citizens are vulnerable for climate 
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change. To plan efficient mitigation and adaptation measures, and hence mitigate future risks, information on intra-urban 

weather patterns is needed (Kousis et al., 2021). Dense high-quality atmospheric measurements are thus becoming increasingly 

important to investigate the heterogeneous urban climate. Due to their high installation and maintenance costs and strict siting 35 

instructions (WMO, 2018), official weather station networks are however sparse. As a results, most cities only have one or 

even no official station at all (Muller et al., 2015). Belgium only counts around 30 official weather stations distributed across 

a surface area of 30,689 km2. 18 of them (Sotelino et al., 2018) are owned and operated by the Royal Meteorological Institute 

of Belgium (RMIB). These classical observation networks operate at a synoptic scale and are thus not suitable to observe city-

specific or intra-urban weather phenomena such as the urban heat island (UHI) effect (Chapman et al., 2017).  40 

 

The UHI can be measured by a number of methods. Fixed pair stations (e.g., Bassani et al., 2022; Oke, 1973) or mobile transect 

approaches (e.g., Kousis et al., 2021) have traditionally been used to quantify this phenomenon. Both methods are however 

not ideal as pair stations lack detailed spatial information while transects often miss a temporal component (Chapman et al., 

2017; Heaviside et al., 2017). Other studies have quantified the UHI using remote sensing data derived from thermal sensors. 45 

Such methods can provide spatially continuous data over large geographical extents but are limited to land surface temperatures 

(LST) (Arnfield, 2003; Qian et al., 2018). As opposed to LST,  canopy air temperatures (Tair) are however more closely related 

to human health and comfort (Arnfield, 2003). Finding the relationship between LST and Tair is known to be rather difficult 

and inconsistent (Yang et al., 2021). Numerical simulation models (e.g. UrbClim (De Ridder et al., 2015), SURFEX (Masson 

et al., 2013)) in which air temperatures are continuously modelled over space and time could be a possible solution. They do 50 

however still have some drawbacks. Due to computational power capacity, models only take into account a limited number of 

variables, making them less suitable for real-life applications (Rizwan et al., 2008). Additionally, they often lack observational 

data to train and validate their simulations (Heaviside et al., 2017). 

 

The rise of crowdsourced data, especially in urban areas, could be a promising solution to bridge this knowledge gap (Muller 55 

et al., 2015). Such data are obtained through a large number of non-traditional sensors, mostly set up by citizens (cf. citizen 

science) (Bell et al., 2015; Muller et al., 2015). Crowdsourced datasets have already been successfully used for monitoring 

temperature (Chapman et al., 2017; Feichtinger et al., 2020; Fenner et al., 2017; Hammerberg et al., 2018; Meier et al., 2017; 

Napoly et al., 2018; de Vos et al., 2020), rainfall (de Vos et al., 2020, 2017, 2019), wind speed (Chen et al., 2021; de Vos et 

al., 2020) and air pollution (Castell et al., 2017; EEA, 2019) within complex urban settings. Because of their non-traditional 60 

measuring equipment and installation settings, the quality of these datasets remains however an issue of concern (Bell et al., 

2015; Chapman et al., 2017; Cornes et al., 2020; Meier et al., 2017; Muller et al., 2015; Napoly et al., 2018; Nipen et al., 2020). 

Quality uncertainty arises due to several issues: (1) calibration issues in which the sensor could be biased either before the 

installation or drifts over time, (2) design flaws in which the design of the station makes it susceptible to inaccurate 

observations, (3) communication and software errors leading to incorrect or missing data, (4) incomplete metadata (Bell et al., 65 

2015) and (5) unsuitable installation locations (Cornes et al., 2020; Feichtinger et al., 2020). 

https://doi.org/10.5194/essd-2022-113

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 2 May 2022
c© Author(s) 2022. CC BY 4.0 License.



3 

 

 

Recent studies have therefore highlighted the importance of performing a data quality control in data processing applications 

(Båserud et al., 2020; Longman et al., 2018), especially before analysing crowdsourced temperature data (Bell et al., 2015; 

Chapman et al., 2017; Cornes et al., 2020; Feichtinger et al., 2020; Jenkins, 2014; Meier et al., 2017; Napoly et al., 2018; 70 

Nipen et al., 2020). Jenkins et al. (2014) and Bell et al. (2015) both conducted a field comparison in which multiple 

crowdsourced weather stations (CWS) were compared with official, and thus professional, observation networks. Both found 

a profound positive instrument temperature bias during daytime with strong relation to the incoming solar radiation. The use 

of crowdsourced data thus requires quality assurance and quality control (QA/QC) that both removes gross errors and corrects 

station-specific instrument biases (Bell et al., 2015). Using the findings of Bell et al. (2015) as a basis, Cornes et al. (2020) 75 

corrected crowdsourced air temperature data across the Netherlands using radiation from satellite imagery and background 

temperature data from official stations belonging to the Royal Netherlands Meteorological Institute (KMNI). To investigate 

the UHI in London, UK, Chapman et al. (2017) used Netatmo weather stations and removed crowdsourced observations that 

deviated more than three standard deviations from the mean of all stations. Meier et al. (2017) developed a detailed QC 

procedure for Netatmo stations using reference data from two official observation networks in Berlin, Germany. The QC 80 

consists of four steps, each identifying and removing suspicious temperature data. Their methods highlight the need for 

standard, calibrated and quality-checked sensors in order to assess the quality of crowdsourced data (Chapman et al., 2017; 

Cornes et al., 2020; Meier et al., 2017). Such official sensors are however not present in most cities, hindering the transferability 

of these QC methods. To this end, Napoly et al. (2018) developed a statistically based QC method for Netatmo stations 

independent of official networks (the R-package CrowdQC). The QC method was developed on data from Berlin, Germany 85 

and Toulouse, France and was later applied to Paris, France to demonstrate the transferability of this method. The procedure 

consists of four main and three optional QC levels, removing suspicious values, correcting for elevation differences and 

interpolating single missing values. Since the CrowdQC filtered dataset still contained some radiative errors, Feichtinger et al. 

(2020) combined the methods of Napoly et al. (2018) and Meier et al. (2017) to study a high temperature period in August 

2018 in Vienna. Most recently, Fenner et al. (2021) presented the QC R-package CrowdQC+, which is a further development 90 

of the existing package CrowdQC developed by Napoly et al. (2018). The core enhancements deal with radiative errors and 

sensor response time issues (Fenner et al., 2021). 

 

Current QC studies mostly identify and remove implausible measurements (Chapman et al., 2017; Meier et al., 2017; Napoly 

et al., 2018), instead of correcting for known temperature biases (Cornes et al., 2020). We do however know that both the 95 

siting and the design of CWS can introduce such a bias. By parameterising this bias, it can be learned and corrected for, hereby 

limiting the number of observations that is eliminated (Bell et al., 2015). Additionally, most QC procedures require data from 

official networks (Chapman et al., 2017; Cornes et al., 2020; Meier et al., 2017), while most cities do not have such 

measurements available (Muller et al., 2015). Lastly, previous research also noted that biases can be station specific, this 

because the design of a CWS is an important uncertainty source (Bell et al., 2015), indicating the need for station-specific 100 
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quality control methods. There is thus a need for station specific quality control and correction methods, independent of official 

weather station networks.  

 

Here we report a statistically-based QC method for the crowdsourced air temperature data of the Leuven.cool network, a 

citizens science network of almost 100 weather stations distributed across Leuven, Belgium. The Leuven.cool network is a 105 

uniform network in the sense that only one weather station type (Fine Offset WH2600) is used for the entire network. To our 

knowledge, no quality control method has been developed for this sensor type. The stations were installed following a strict 

protocol, lots of metadata is available and both the dataflow and station siting are continuously controlled. This novel QC 

method removes implausible measurements, while also correcting for inter (in between stations) - and intra (station-specific) 

station temperature biases. The QC method only needs an official network during its development and evaluation stage, 110 

afterwards the method can be implemented independent of an official network.  

 

The paper is organised as follows. Section 2 describes materials and methods, providing information on the study area, 

crowdsourced (Leuven.cool) dataset and official reference dataset. The development of the quality control method is explained 

in Section 3. In Section 4 the newly developed QC method is first tested on four crowdsourced stations installed next to three 115 

official stations from the Royal Meteorological Institute of Belgium (RMIB). This allows us to quantify the data quality 

improvement after every QC level. In Section 5 the QC method is applied to a network of CWS in Leuven, Belgium. 

Concluding remarks are summarized in Section 6. After applying this quality control and correction method, the crowdsourced 

Leuven.cool dataset becomes suitable to monitor local weather phenomena such as the urban heat island (UHI) effect.  

2 Materials & methods 120 

2.1 Study area  

The QC method is developed for a citizens science weather station network “Leuven.cool”, based in Leuven, Belgium 

(50°52’39” N 4°42’16” E). The Leuven.cool project is a close collaboration between the KU Leuven, the city of Leuven and 

the RMIB aiming to measure the micro-climate in Leuven and gain knowledge on the mitigating effects of green and blue 

infrastructures (Leuven.cool, 2021). Leuven has a warm temperate climate with no dry season and a warm summer (Cfb) with 125 

no influence from mountains or seas and overall weak topography (Kottek et al., 2006). Leuven is the capital and largest city 

of the province of Flemish Brabant and is situated in the Flemish region of Belgium, 25 kilometres east of Brussels, the capital 

of Belgium. The city comprises the districts of Leuven, Heverlee, Kessel-Lo, Wilsele and Wijgmaal, covering an area of 56.63 

km2. The main characteristics of the study area are summarized in Table 1. 

 130 
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Table 1: Main characteristics of the study area 

Climate  

Annual Min/Mean/Max daily temperature (°C) 6.9/11.2/15.5 Leuven, 1991-2020 (RMI, 2020) 

Mean annual rainfall (mm y-1) 780.7 Leuven, 1991-2020 (RMI, 2020) 

Köppen’s classification Cfb (Kottek et al., 2006) 

Demographics 

Size (km2) 56.63 Figure 2 

Population  101 315 (Bevolkingsregister Stad Leuven, 2021) 

 

2.2 Leuven.cool dataset  

Data from the citizens science network Leuven.cool are presented in this paper. The crowdsourced weather station network 

consists of 98 weather stations distributed across Leuven and surroundings. The meteorological variables are measured by 135 

low-cost consumer weather stations produced by the manufacturer Fine Offset: the WH2600 wireless digital weather station 

(Figure 1). The station’s specifications, as defined by the manufacturer, are summarized in Appendix A.1. The weather station 

consists of an outdoor unit (sensor array) and a base station. The outdoor sensor array measures temperature, humidity, 

precipitation, wind speed, wind direction, solar radiation, and UV every 16 seconds. This outdoor sensor array transmits its 

measurements wirelessly, through the 868MHz radiofrequency, to the base station. This base station needs both power and 140 

internet - via a LAN connection - supply in order to send the data to a server. The data is forwarded to the Weather Observations 

Website (Kirk et al., 2020), a crowdsourcing platform initiated and managed by the UK Met Office. RMIB participates in this 

initiative and operates its own WOW portal (WOW-BE, 2021). The outdoor unit is powered by three rechargeable batteries 

which are recharged by a small built-in solar panel. A radiation shield protects both the temperature and humidity sensors 

against extreme weather conditions and the direct exposure of solar radiation. 145 

  

Figure 1: The outdoor unit of the WH2600 wireless digital weather station at the Mathieu Layensplein in Leuven (LC-105) (a) and 

next to the official AWS equipment in Humain (LC-R05) (b). Pictures: Maarten Reyniers.  
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From July 2019 onwards the weather stations were distributed along an urban gradient from green (private) gardens to public 150 

(semi-)grey locations following a stratified sampling design (Figure 2). The stratification was based on the concept of Local 

Climate Zones (LCZ) (Stewart and Oke, 2012). This LCZ scheme was originally developed as an objective tool for classifying 

urban-rural gradients, herby capturing important urban morphological characteristics (Verdonck et al., 2018). Stewart & Oke 

(2012) formally define these zones as “regions of uniform surface cover, structure, material, and human activity that span 

hundreds of meters to several kilometres in horizontal scale”. 155 

 

Stewart & Oke (2012) define 17 LCZ classes, divided into 10 urban LCZs (1-10) and 7 natural LCZs (A-G) . A LCZ map for 

Leuven was developed following a methodology proposed by Demuzere et al. (2021). Details on this LCZ map are available 

in Appendix B. Table 2 summarises the LCZ present in Leuven and the number of weather stations in each LCZ class.  

 160 

Table 2: LCZs present in Leuven and the number of weather stations in each LCZ class.  

LCZ ID LCZ description # Stations 

LCZ 2 Compact midrise 15 

LCZ 3 Compact low-rise 9 

LCZ 5 Open midrise 16 

LCZ 6 Open low-rise 29 

LCZ 8 Large low-rise 12 

LCZ 9 Sparsely built 12 

LCZ A Dense trees 0 

LCZ B Scattered trees 2 

LCZ D Low plants 3 

LCZ G Water 0 

 

It can be noted that the weather stations are not evenly distributed across the different LCZ classes. Due to the complex urban 

settings in which the network is deployed, practical limitations apply to the eligible locations for installation. We rely on 

volunteering citizens, private companies and government institutions giving permission to install a weather station on their 165 

property. Further, the middle-sized city of Leuven does not contain all available LCZ classes. In the urban context high-rise, 

lightweight low-rise and heavy industry is missing. In the natural context, brush or shrub vegetation, bare rock or paved and 

bare soil or sand are not present in sufficiently large areas (Table 2). Lastly, the number of stations within more natural settings 

are limited due to the technical limitations of the weather stations; each outdoor unit needs a base station, with both power and 

LAN connection, within 50 to 100 meters in order to transmit its data.  170 
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The weather stations were installed according to a strict protocol. In private gardens the weather stations were installed at 2 

meters height using a steel pole with a length of 2.70 meters. Dry concrete was used to anchor the pole into the soil at a depth 

of 70 cm. Following the station’s guidelines, stations were installed at an open location within the garden, at least 1 meter from 

interfering objects, such as nearby buildings and trees. In order to maximize the absorption of solar radiation by the solar panel 175 

and to assure correct measurements of wind direction and precipitation, the weather station was levelled horizontally and the 

solar panel of the weather station was directed towards the south Weather stations located on public impervious surfaces were 

installed on available light poles using specially designed L-structures to avoid direct effect contact with the pole. For security 

reasons an installation height between 3-4 meters was used. 

 180 

The data is currently available from July 2019 (2019Q3) until December 2021 (2021Q4). The dataset can be downloaded in 

periods of three months and is thus available for each quarter. The raw 16 seconds measurements are aggregated to 10 minutes 

observations. This is done for three reasons: (1) an extremely high temporal resolution of 16 seconds is too high for most 

meteorological analyses, (2) the aggregation to 10 minutes is necessary to exclude the natural small-scale variability and noise 

on the observations and most importantly (3) the reference dataset of official measurement is only available in a 10 minute 185 

resolution. After resampling the data, some basic data manipulation steps are performed to obtain the correct units and 

resolution for every meteorological variable. The final dataset contains air temperature with the three quality level stages (see 

further), relative humidity, dewpoint temperature, solar radiation, rain intensity, daily rain sum, wind direction, and windspeed. 

We must stress that only the air temperature measurements undergo a quality check and correction procedure, further explained 

in the next sections. The variables other than temperature are, however, used in the correction procedure. 190 

2.3 Reference dataset 

Standard, calibrated and quality controlled reference measurements are used to develop the QC method and evaluate its 

performance. Since no official measurements are available in Leuven, we used data from three official RMIB stations in Uccle 

(6447 – 50.80°N 04.26°E, alt 100m), Diepenbeek (6477 - 50.92°N 5.45°E, alt 39m) and Humain (6472 - 50.19°N 5.26°E, alt 

295m) (Figure 2).  195 

 

The meteorological observation network of the RMIB consists of 18 automatic weather stations (AWS), ensuring continuous 

data collecting and limiting human errors. These weather stations report meteorological parameters such as air pressure, 

temperature, relative humidity, precipitation (quantity, duration), wind (speed, gust, direction), sunshine duration, shortwave 

solar radiation and infrared radiation every 10 minutes. The AWS network is set up according to the WMO guidelines (WMO, 200 

2018).  
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Since there is no AWS station available in the region of Leuven, four low-cost WH2600 weather stations were installed next 

to the official and more professional equipment of the RMIB in Uccle, Diepenbeek and Humain. Since these stations will serve 

as a reference, they were defined as LC-R01, LC-R02, LC-R04 and LC-R05 (Table 3). LC-R03 was installed for a short time 205 

in Diepenbeek, but has been removed due to communication problems and is not taken into account in our further analysis. 

Since January 2020, the oldest reference station LC-R01 is no longer active. This setup enables us to calculate the temperature 

difference or bias between the low cost reference stations and the official RMIB stations in Uccle, Diepenbeek and Humain. 

 

Table 3: Specifics of Leuven.cool low-cost reference stations.  210 

Station ID Location  Installation date 

Leuven.cool R01 Uccle  11/09/2018 

Leuven.cool R02 Uccle 02/09/2019 

Leuven.cool R04 Diepenbeek 06/11/2019 

Leuven.cool R05 Humain 20/08/2020 

 

In the rest of the paper, the terminology of Table 4 is used to refer to the different datasets and stations. 

 

Table 4: Terminology of datasets and stations used in this paper 

Terminology Description 

LC-X The Leuven.cool (WH2600) stations installed in the study area (area of Leuven, Belgium) 

LC-R The Leuven.cool (WH-2600) stations installed next to the official weather stations operated by RMIB. 

AWS The Automatic Weather Stations owned and operated by RMIB. In our study, the AWS in Uccle, 

Diepenbeek and Humain are used. 
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Figure 2: The Leuven.cool network (LC-X) with LCZ classification (a) and BBK (bodembedekkingskaart; land use map) 

classification (b) and Belgium delineated by the three official regions (Flanders, Wallonia and Brussels) with the location- of Leuven 

and the three RMIB stations (AWS) used in this study (c). Background map: Esri. 220 
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3. Description of the quality control and correction method  

The newly developed QC control method consists of three levels (Table 5), mostly focussing on eliminating calibration issues, 

design flaws and communication or software errors. Due to the strict installation protocol used for the Leuven.cool station 

network, some of the typical uncertainty sources are a priori discarded. Both the location and metadata of each station were 225 

controlled by experts, eliminating incomplete metadata or unsuitable installation locations. We further know that the low cost 

station used in this study has some design flaws (e.g. during clear sky with low sun conditions both the radiation and 

thermometer sensors experience shadow from the anemometer). Our correction method, however, is designed in such a way 

that these errors will be accounted for.  

 230 

The first QC level removes implausible values mostly caused by software or communication errors. The second and third level 

correct for temperature biases. Both fixed inter (in between stations) biases due to sensor calibration uncertainties and variable 

intra (station-specific) biases due to the station’s design and siting are parameterized and corrected for. 

 

Table 5: Quality control levels, criteria for data filtering and potential error sources for crowdsourced air temperature 235 
measurements.  

Quality control level  Description Potential error sources 

L1 Outlier detection    

L1.1 Range test Range check against climatological extremes Sensor malfunctioning  

L1.2 Temporal outliers Ensure realistic change in magnitude between 

consecutive observations of a specific station 

Battery loss, server failure, connection 

issues, sensor malfunctioning  

L1.3 Spatial outliers Ensure realistic observation compared to 

neighbouring stations  

Battery loss, server failure, sensor 

malfunctioning, outdoor sensor set up 

inside (not applicable in our setup due 

to the installation by team members) 

L2 Inter station bias correction Model the fixed in-between temperature bias  Sensor calibration issues  

L3 Intra station bias correction Model the variable station-specific temperature 

bias  

Design flaws, outdoor sensor set up in 

sunlit conditions (no active ventilation)  

3.1 Quality control level 1 – Outlier detection 

The outlier detection algorithm uses a flag system in which every 10 min observation is assigned flag of either 0, 1 or -1 

referring to “no outlier”, “outlier” or “not enough information to determine whether observation is an outlier”. The outlier 

detection method consists of three steps: a range test, a temporal outlier test and a spatial outlier test. The thresholds of the 240 

parameter settings used during each of these steps are explained in Table 6. We used an iterative procedure for threshold 
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optimization. Observations which received a flag of 1 and are thus defined as outliers are set to NA in the quality controlled 

(QC) level 1 dataset, hereby not considered during the following QC levels.  

 

Table 6: Parameter settings for QC level 1 - Outlier detection.  245 

Outlier parameter Value (unit) Description 

Range outliers (RO) 

dev_reference 1 (°C) Max allowed deviation between climatological min and max temperature 

of AWS stations in Uccle/Diepenbeek/Humain and LC-R in 

Uccle/Diepenbeek/Humain 

dev 5 (°C) Max allowed deviation between climatological min and max temperature 

of AWS station in Uccle and LC-X in Leuven 

Temporal outliers (TO) 

TOathresmin -3 (°C) Min allowed difference between sequential 10 min observations 

TOathresmax 2.5 (°C) Max allowed difference between sequential 10 min observations 

TObthresmin 0.05 (°C) Min difference that should be noted in TObtimespan  

TObtimespan  19 (-) Number of consecutive 10 min observations in which temperature should 

change with TObthresmin 

Spatial outliers (SO)  

range  2500 (m) Range used to define neighbouring stations  

SOthresmin -3 (°C) Min allowed Z-score  

SOthresmax 3 (°C) Max allowed Z-score  

nstat 1 (-) Minimum requirement of measurements in range 

 

3.1.1 QC level 1.1 - Range outliers 

During QC L1.1 a range test based on climatology is performed. Range outliers can occur when a station is malfunctioning or 

installed in a wrongful location. The latter has been largely eliminated by the installation protocol described in Section 2. 

Observations are flagged as 1 whenever they exceed the maxima or minima climate thresholds, plus/minus an allowed 250 

deviation (Tmax/min_AWS ± dev). These thresholds are based on historical data from nearby official weather stations while the 

allowed deviations from the climate thresholds are based on local knowledge on environmental phenomena The thresholds are 

calculated as the maximum and minimum temperature from the official AWS station in Uccle within the 3 month period that 

currently undergoes the QC. Observations receive a flag equal to -1 when the no temperature observation is available.  
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3.1.2 QC level 1.2 - Temporal outliers 255 

In QC L1.2 temporal outliers are detected using both (a) a step test and (b) persistence test. Temporal outliers occur when an 

observation of a specific station is not in line with the surrounding observations of this station. The step test ensures that the 

change in magnitude between two consecutive observations lies within a certain interval; the test checks the rate of change 

and flags unrealistic jumps in consecutive values. Flags are set to 1 when observations increase more than 2.5°C (TOaThresMax) 

or decrease more than 3°C (TOaThresMin) in 10 minutes. Such steep increases or decreases in temperature are found when a 260 

station reconnects with its receiver after a period of hitches. Observations are assigned a flag equal to -1 when the difference 

between sequential observations cannot be calculated.  

 

The persistence test, on the other hand, makes sure that observations change minimally with time. Here we detect stations with 

connection issues, transmitting the same observation repeatedly. Observations changing less than 0.05°C (TObThresMin) within 265 

3 hours (TObTimespan) are flagged as 1. Whenever the difference between sequential observations cannot be calculated as 

observation get a flag equal to -1.  

3.1.3 QC level 1.3 - Spatial outliers 

QC L1.3 detects spatial outliers in the dataset. Spatial outliers occur when the observation of a specific station is too different 

compared to the observations from neighbouring stations. First neighbouring stations are defined as stations located within a 270 

2.5 km radius (range). Next the Z-score or standard score is calculated for each observation following Eq. (1) 

𝑍 =
𝑥 − 𝜇 

𝜎
 ,           (1) 

where x is the observed value, 𝜇 the mean value and 𝜎 the standard deviation across all neighbours. This standard score can 

be explained as the number of standard deviations by which the observed value is above or below the mean value of what is 

being observed. Whenever the Z-score is lower than -3°C (SOThresMin) or higher than 3°C (SOThresMax) the observation is seen 275 

as a spatial outlier and receives a flag equal to 1. When there are no neighbours available within the predefined range, or the 

Z-score cannot be calculated, each observation is flagged with -1. 

3.2 Quality control level 2 – Inter station bias correction 

The second quality control level corrects the data for the fixed offset or inter station temperature bias between the weather 

stations. This step is necessary since the temperature sensor are only calibrated by the manufacturer, and small calibration 280 

differences are expected for this consumer-grade weather sensor. Moreover, the Leuven.cool stations originate from different 

production batches, with possible hardware changes in the electronics. Calibration tests between multiple LC-X stations in the 

same controlled environment were both technically and logistically not feasible. Simultaneous measurements are only 
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available for two LC-R stations (LC-R01 and LC-R02 at the AWS of Uccle) for a period of four months, showing that sensor 

differences indeed exist and are non-negligible. 285 

 

In order to quantify this inter station temperature bias, a rather pragmatic approach was followed to mimic a controlled 

environment: we selected episodes for which a similar temperature across the study area is expected. Such episodes occur 

under breezy cloudy conditions with no rainfall (Arnfield, 2003; Kidder and Essenwanger, 1995). In practice, the database is 

searched for suitable episodes every 6 months, currently ranging from 2019S2 to 2021S2. All 10 minute observations are 290 

resampled to 2 hour observations, hereby calculating the mean temperature, windspeed, radiation and rainfall across all weather 

stations. Next, suitable episodes are found by selecting episodes where the average rainfall intensity equals 0 mm/h and the 

average radiation lies below 100 W/m2. The selected episodes are ordered on average windspeed and limited to the top 10 

results.  

 295 

For these episodes, one can assume the temperature to be very uniform over the study area, and solely controlled by altitude 

(Lu Aigang et al., 2009). In practise, only episodes with a high correlation between temperature and altitude (> 0.7) are retained. 

By regressing temperature versus altitude for every episode and calculating the residuals e.g. the difference between the 

observed and predicted temperature, a fixed offset for each station and every episode is obtained. Finally, the median offset 

across all episodes is considered as the true offset for each station. These offsets are added to the QC level 1 temperature data 300 

in order to obtain the corrected QC level 2 temperature data.  

3.3 Quality control level 3 – Intra station bias correction  

During the third quality control level the QC level 2 temperature data is further corrected for the variable intra station 

temperature biases. This bias is present in the data since the measurements are made with non-standard equipment as compared 

to the AWS measurements (e.g., passive instead of active ventilation, dimension of the Stevenson screen). These biases change 305 

during day and night time, and according to their local environment (e.g., radiation and windspeed patterns). (Bell et al., 2015).  

 

By identifying the climatic variables mostly correlated with the temperature bias between the low-cost reference stations (LC-

R) and the official RMIB stations in Uccle, Diepenbeek and Humain (AWS), a predictor for temperature bias is created. To 

produce a robust model, data from all low-cost reference stations (LC-R01, LC-R02, LC-R04 and LC-R05) were used 310 

simultaneously to create a predictor for the intra station temperature bias.  

 

For the construction of a predictor model, the dataset was split in training (0.60) and validation (0.40) data. The training data 

was used to train simple regression models, multiple regression models, random forest (RF) models and boosted regression 

trees (BRT). Since previous research (Bell et al., 2015; Cornes et al., 2020; Jenkins, 2014) has shown that both radiation and 315 

wind speed highly influence the temperature bias, the simple and multiple regression models are mostly based on these 
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variables. A previous study by Bell et al. (2015) also suggested that past radiation measurements, using an exponential 

weighting, are an even better prediction of the temperature bias, resulting in an advanced correction model (Bell et al., 2015). 

The potential predictor models are validated using the validation data, ensuring an fair evaluation of the model. The coefficient 

of determination (R2) and root mean square error (RMSE) are calculated to identify the most optimal prediction model for the 320 

temperature bias. After validation, the prediction model can be applied to the weather station network in Leuven (LC-X), 

hereby providing a temperature bias for each observation of every station in function of its local climatic conditions. The 

predicted temperature bias is subtracted from the QC level 2 temperature data to obtain the QC level 3 corrected temperature 

dataset.  

3.3.1 The intra station temperature bias 325 

The overall temperature bias (i.e., all LC-R stations together) between the LC-R and the AWS data has a mean value of 0.10°C 

and a standard deviation of 0.55°C (Figure 3). By splitting up the temperature bias for day and night, a positive mean 

temperature bias during daytime (0.32°C) and a negative mean temperature bias during night time (-0.10°C) is obtained. Figure 

3 further suggests a higher standard deviation during daytime (0.61 °C) compared to night time (0.37 °C), both with a 

remarkably skewed (and opposite) distribution. 330 

 

 

Figure 3: Histograms of the temperature bias between the low-cost reference stations (LC-R) and the official RMIB stations (AWS) 

for day and night (a), daytime defined by a radiation > 0 (b) and night time defined by a radiation = 0 (c). Mean biases and their 

standard deviations are given above the graphs. 335 

 

To get a better understanding of the monthly and daily patterns of this temperature bias, Figure 4a shows the mean temperature 

bias in function of month and hour of the day. The stations show clear diurnal and seasonal patterns, confirming the positive 
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temperature bias during daytime and negative temperature bias during night time previously observed in Figure 3. In general, 

we see a positive bias that is high around midday and is more pronounced during the summer months, lasting for several hours 340 

during the day. In summer months, a shallow local minimum is seen around noon, which we expect to be an effect of the 

specific station design (shadow of anemometer). The night-time temperature bias is low for all months. A temperature bias of 

0°C is reached for every month at a certain time of the day, the specific time at which this minimal temperature bias occurs, 

depends however on the season. Figure 4b shows the mean temperature bias in function of windspeed and radiation. As 

expected, a positive temperature bias is noticed for high solar radiation and low windspeed conditions. The rather strange high 345 

values at low radiation and high wind speed can be explained as outliers (Figure 4c). Figure 4c shows the sample size of each 

cell. After removing cells with sample size lower than 10, the final graph is obtained (Figure 4d).  

 

 

Figure 4: Temperature bias (°C) as a function of hour of the day and month of the year for all LC-R (a), temperature bias (°C) as a 350 
function of radiation and wind speed for all LC-R (b), temperature bias (°C) as a function of radiation and wind speed for all LC-

R, the values written in each cell signify the sample size (c), temperature bias (°C) as a function of radiation and wind speed for all 

LC-R, cells with sample size lower than 10 are not shown in the graph (d). 

 

3.3.2 Building a predictor for the intra station temperature bias 355 

A correlation matrix between the temperature bias and other meteorological variables, measured by the low-cost weather 

station, is calculated (Table 7). The values indicate how the temperature bias will change for different meteorological 

conditions. 
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Table 7: Correlation matrix of temperature bias with other meteorological variables measured by the low-cost station. 360 

Temperature  

(°C) 

Dew point temperature 

(°C) 

Humidity 

(%) 

Radiation  

(W/m2) 

Radiation60 

(W/m2) 

Wind speed  

(m/s) 

0.41 0.18 -0.48 0.49 0.56 -0.01 

 

The most correlated variable is radiation (0.49) directly followed by humidity (-0.48), temperature (0.41), dew point 

temperature (0.18) and wind speed (-0.01). As expected, taking the past radiation measurements into account further improves 

the correlation, reaching a maximum value when considering the last 60 minutes (0.56). An exponential weighting, giving  

higher importance to the radiation measurements closer to the temperature measurement, was used. This variable is further 365 

denoted as Radiation60 (Rad60). 

 

The variables listed in Table 7 were used to build a predictor for the temperature bias. For this purpose, multiple models were 

calibrated in which the temperature bias is described as a function of only one or multiple meteorological variables. Below 

(Table 8 and Figure 5) only the models with the best performance are shown. Figure 5 shows the uncorrected temperature bias 370 

(a) as well as the corrected temperature biases after validation with six different models; a simple linear regression with the 

past radiation (b), a multiple linear regression with the past radiation and windspeed (c), with the past radiation and humidity 

(d), with the past radiation, windspeed and humidity (e), a random forest model (f) and a boosted regression trees model both 

including temperature, dew point temperature, humidity, radiation, radiation60, windspeed, altitude, month and hour.  

 375 

Table 8: The coefficient of determination (R2) and root mean square error (RMSE) of the different models. 

Model  R2 RMSE 

Radiation60 0.321 0.450 

Radiation60 & windspeed 0.327 0.448 

Radiation60 & humidity 0.336 0.445 

Radiation60 & windspeed & humidity 0.342 0.443 

Random Forest 0.741 0.279 

Boosted regression trees 0.658 0.319 
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 380 

Figure 5: The uncorrected temperature bias (a) and the corrected temperature bias after validation with a simple linear regression 

with the past radiations (b), a multiple linear regression with the past radiations and windspeed (c), a multiple linear regression with 

the past radiations and humidity (d), a multiple linear regression with the past radiations, humidity and windspeed (e), a random 

forest model (f) and boosted regression trees model including temperature, dew point temperature, humidity, radiation, radiation60, 

windspeed, altitude, month and hour (g). Mean biases and their standard deviations are given above the graphs. 385 

 

A simple linear regression based on the past radiation is already sufficient to suppress the mean temperature bias. Adding 

additional variables to the model, such as wind speed, humidity or both is statistically significant but only further decreases 

the RMSE by 0.003°C to 0.008°C. The RF and BRT models result in an RMSE of 0.279 and 0.319 and R2 of 0.741 and 0.658 

respectively, indicating a better precision and more robust models.  390 
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The random forest prediction of temperature bias showed the best results. By splitting up the results for day and night (Figure 

6),  a smaller standard deviation of the bias during night time (0.25) compared to daytime (0.31) is obtained. The statistical 

details of the random forest model are summarized in Table 9. 

 395 

Figure 6: The corrected Tbias after validation with the random forest model for daytime (a) and for night time (b). Mean biases and 

their standard deviations are given above the graphs. 

Table 9: Statistical details of the random forest temperature bias prediction model. 

Formula Tbias ~ QC L2 Temperature + Humidity + Dew point temperature + Radiation + 

Radiation60 + Windspeed + Altitude + Month + Hour 

Number of trees 500 

Number of variables tried at each split 3 

Mean of squared residuals  0.091 

% variance explained 69.5 

 

  400 
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4 Evaluation of the quality control and correction method  

To evaluate the quality of the developed QC method, it is first applied to the four low cost WH2600 stations (LC-R) (Table 3) 

installed next to the official measuring equipment in Uccle, Diepenbeek and Humain (AWS). Comparing this LC-R dataset 

with AWS dataset, allows us to investigate the improvement or deterioration of the data quality after each QC level.  

4.1 Quality control level 1 – Outlier detection 405 

For QC L1.1 the range outliers are detected by comparing the temperature of each LC-R station with the climatic thresholds 

set by its nearby official AWS station (Tmax/min_AWS ± dev_reference). As can be seen in Table 6, the allowed deviation from 

the climatic thresholds is smaller for the LC-R stations compared to the LC-X stations in the study area. This is due to the fact 

that the LC-R stations are installed next to the official AWS stations, no environmental factors should thus be taken into 

account. The temporal outliers are detected in QC L1.2 by comparing the rate of change between consecutive observations 410 

with the thresholds defined in Table 6. In QC L1.3 spatial outliers are detected using the Z-score. We should however stress 

that this analysis here is not ideal since every reference station only has 1 neighbour, the official AWS station. Only LC-R01 

and LC-R02 located in Uccle have two neighbours during a period of 4 months, when both stations were active simultaneously.  

 

The results show no spatial outliers for the LC-R stations. Some observations are however highlighted as range or temporal 415 

outliers. Table 10 summarises the number and percentage of observations flagged as 1. These observations are set to NA 

resulting in the temperature dataset with quality level 1. The temperature profiles of the LC-R stations versus the official AWS 

temperature (Figure 7; full coloured versus dashed grey line) highlight observations defined as range or temporal outliers as 

circles or squares respectively. Scatterplots in which the temperature of the LC-R stations is compared to the temperature of 

the AWS stations (Figure 8) use the same layout. The temperature difference between the LC-R stations and AWS stations 420 

(ΔT = TLC-R - TAWS) is calculated as an effective quality measure. 

 

Table 10: Number and percentage of observations flagged as outliers during QC level 1.  

QC level # flagged observations % flagged observations 

QC L1.1 Range test 21 0.006 

QC L1.2 Temporal outliers 180 0.048 

QC L1.3 Spatial outliers 0 0.000 

Total 201 0.054 

 

The results show only a few range outlier and even no spatial outliers for the LC-R reference stations. The procedure does 425 

however highlight 180 observations as temporal outliers (Table 10). These observations were highlighted during the 

persistence test, 180 observations change less than 0.1° within 2 hours. With only 0.054% of the observations flagged as 
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outliers we can conclude that the LC-R reference dataset does not contain a lot of outliers. Because of their importance in this 

QC method, especially in QC L3, these reference stations are indeed closely monitored hereby preventing and minimising the 

occurrence of outliers. Since only 0.054% of the data was set to NA, no difference in the ΔT statistics occurred. The histograms 430 

in Figure 9 thus represent the data with both QC level 0 and QC level 1. The mean temperature difference and standard 

deviation for all reference stations equals 0.15 ± 0.56°C. 

 

 435 

Figure 7: Temperature profile of LC-R stations in Uccle (LC-R01, LC-R02) (a), Diepenbeek (LC-R04) (b) and Humain (LC-R05) 

(c). The grey dashed line represents the official AWS temperature of a specific location. Observations defined as range outliers are 

symbolized by a circle, temporal outliers as a square.  
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 440 

Figure 8: Scatterplots of LC-R versus AWS temperature for each reference station LC-R01 (a), LC-R02 (b), LC-R04 (c), LC-R05 

(d) at QC level 0. Observations defined as range outliers are symbolized by a red circle, temporal outliers by a red square. 

 

Reference station LC-R01 only has a small positive mean ΔT, while the mean ΔT of LC-R02 and especially LC-R05 is 

remarkably higher. The mean ΔT of LC-R04 equals zero. The standard deviations of LC-R04 and L-R05 are noticeably smaller 445 

than those of LC-R01 and LC-R02 (Figure 9). As expected, the temperature difference between the LC-R and AWS stations 

is not constant and is correlated with  other variables. A higher difference is obtained during a summer day with low cloud and 

low windspeed conditions (Figure 10 and Figure 11). 
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 450 

Figure 9: Histograms of temperature difference (ΔT = TLC-R - TAWS) for each reference station LC-R01 (a), LC-R02 (b), LC-R04 (c), 

LC-R05 (d) at QC level 0 and QC level 1. Mean differences and their standard deviations are given above the graphs.  

 

Figure 10: Temperature difference (ΔT = TLC-R - TAWS) as a function of hour of the day and month of the year for each reference 

station LC-R01 (a), LC-R02 (b), LC-R04 (c), LC-R05 (d) at QC level 1. 455 
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Figure 11: Temperature difference (ΔT = TLC-R - TAWS) as a function of radiation and wind speed for each reference station LC-R01 

(a), LC-R02 (b), LC-R04 (c), LC-R05 (d) at QC level 1. Cells with sample size lower than 10 are not shown in the graph. 

 

4.2 Quality control level 2 – Inter station bias correction 460 

During QC level 2 temperatures are corrected for the fixed offset between stations or inter station bias, due to intrinsic sensor 

differences at the level of the electronics. The proposed methodology of searching for episodes with a very uniform temperature 

field over the study area (see Section 3), cannot be applied here, due to the large distance between the three locations with LC-

R stations.  

 465 

Here we selected episodes for which we expect a similar temperature between the LC-R and AWS stations. This occurs again 

under breezy cloudy conditions with no rainfall (Figure 11). For each reference station, all 10 minute observations are 

resampled to 2 hour observations, hereby calculating the mean temperature, windspeed, radiation and rainfall. Next, suitable 

episodes are found by selecting episodes where the average rainfall intensity equals 0 mm/h and the average radiation lies 

below 100 W/m2. The selected episodes are ordered on average windspeed and limited to the top 10 results. The mean LC-R 470 

and AWS temperature is calculated for each episode, next an offset between both is calculated. Finally the median offset across 

all episodes is considered as the true offset for each station. These offsets are subtracted from the QC L1 temperature data in 

order to obtain a corrected temperature; the QC level 2 dataset.  

 

Reference stations LC-R01 and LC-R04 have a small negative offset, equal to -0.029°C and -0.072°C respectively. Stations 475 

LC-R02 and LC-R05 have positive and notably larger offsets equal to 0.113°C and 0.243°C (Figure 12).  
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Figure 12: Offsets during the selected episodes (dots), the median offset (diamond) and its error bar (mean ± standard deviation) for 

each reference station (LC-R). For reference the zero-line is plotted in red. 480 

 

To check the quality improvement of QC level 2, the temperature difference (ΔT = TLC-R - TAWS) between the LC-R and AWS 

stations is again calculated for every station (Figure 13). Reference stations LC-R01 and LC-R04 show a small increase in 

their mean ΔT, the mean ΔT of LC-R02 and LC-R05 however decreases. As a result, the ΔT of all stations becomes more 

equal. Since QC level 2 only added a fixed temperature offset, the standard deviation of all ΔT remain the same. The inter 485 

station bias correction further highlights the seasonal and daily pattern of the ΔT, especially for reference station LC-R05 

(Figure 14). 

 

Figure 13: Histograms of temperature difference (ΔT = TLC-R - TAWS) for each reference station LC-R01 (a), LC-R02 (b), LC-R04 

(c), LC-R05 (d) at QC level 2. Mean biases and their standard deviations are given above the graphs. 490 
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Figure 14: Temperature difference (ΔT = TLC-R - TAWS) as a function of hour of the day and month of the year for each reference 

station LC-R01 (a), LC-R02 (b), -LC-R04 (c), LC-R05 (d) at QC level 2. 

 

4.3 Quality control level 3 – Intra station bias correction 495 

From Section 3, we recall that the random forest prediction of temperature bias showed the best results After applying this 

prediction model on the complete reference dataset (LC-R), a level 3 corrected temperature is obtained for each LC-R station.  

 

To evaluate the quality improvement of QC level 3, the temperature difference (ΔT = TLC-R - TAWS) between the LC-R and 

AWS stations is again calculated for every station (Figure 15). Histograms of the temperature show a mean ΔT of almost 0°C 500 

for each reference station, the standard deviation clearly decreased compared to QC level 2 (Figure 13). When the ΔT is plotted 

in function of each month and hour of the day, one can notice that the diurnal and seasonal pattern is completely corrected for 

(Figure 16). Also effects of wind speed and radiation are effectively eliminated (Figure 17). The mean temperature difference 

and standard deviation for all LC-R stations equals to 0.00 ± 0.22°C.  

 505 
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Figure 15: Histograms of temperature difference (ΔT = TLC-R - TAWS) for each reference station LC-R01 (a), LC-R02 (b), LC-R04 

(c), LC-R05 (d) at QC level 3. Mean biases and their standard deviations are given above the graphs.  

 

Figure 16: Temperature difference (ΔT = TLC-R - TAWS) as a function of hour of the day and month of the year for each reference 510 
station LC-R01 (a), LC-R02 (b), LC-R04 (c), LC-R05 (d) at QC level 3. 
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Figure 17: Temperature difference (ΔT = TLC-R - TAWS) as a function of radiation and wind speed for each reference station LC-R01 

(a), LC-R02 (b), LC-R04 (c), LC-R05 (d) at QC level 3. Cells with sample size lower than 10 are not shown in the graph. 

  515 
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5 Application of the QC method to the stations in the study area 

In this section the newly developed QC method is applied to the low-cost stations of the Leuven.cool network (LC-X). The 

Leuven.cool dataset currently ranges from July 2019 (2019Q3) until December 2021 (2021Q4). The QC method is performed 

4 times a year, each time for a period of three months.  

5.1 Quality control level 1 – Outlier detection 520 

During QC level 1 range, temporal and spatial outliers are removed using climatological thresholds from Uccle, neighbouring 

observations and neighbouring stations respectively. Table 11 summarizes the number of observations flagged as outliers in 

each step. For each year, only between 0.5% and 1% of the data is defined as outliers and thus eliminated, indicating that the 

raw data quality is rather good compared to other citizens science networks.  

 525 

Table 11: Number and percentage of observations flagged as outliers during QC level 1 for 2019, 2020 and 2021. 

QC level # 2019 % 2019 # 2020 % 2020 # 2021 % 2021 

QC L1.1 Range test 0 0.000 9 0.000 26 0.000 

QC L1.2 Temporal outliers: step 22 0.001 276 0.006 169 0.003 

QC L1.2 Temporal outliers: persistence 796 0.039 1216 0.025 4796 0.092 

QC L1.3 Spatial outliers 11769 0.581 31846 0.658 26186 0.503 

Total 12587 0.621 33317 0.689 31177 0.599 

 

The simple spatial outliers test performed by Chapman et al. (2017) yielded comparable results: 1.5% of the data was omitted 

in this study. Other studies reported a much higher fraction of eliminated data. Meier et al. (2017) only kept 47% of the raw 

data after conducting their 4 step QC analysis. Napoly et al (2018) and Feichtinger et al. (2020) kept 58% and 55% of the data 530 

respectively. CrowdQC+ as a further development of CrowdQC, results in an even lower data availability, only 30% of the 

raw data remains after the QC (Fenner et al., 2021). These high numbers of omitted data can however be explained by (1) a 

great number of CWS installed indoors (not applicable in our setup), thereby lacking the typical diurnal temperature patterns, 

and (2) radiative errors due to solar radiation exposure of poorly designed devices, resulting in very high temperature 

observations (Fenner et al., 2021; Napoly et al., 2018). In the QC method presented in this paper, calibration and radiative 535 

errors are, however, rather than omitted, corrected for during QC level 2 and 3. 

5.2 Quality control level 2 – Inter station bias correction 

In QC level 2 a fixed offset for each weather station is obtained. These offsets, induced by the intrinsic differences on the level 

of the sensors’ electronics, are subtracted from the station’s temperature, thereby accounting for calibration errors. The 
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obtained offsets, median offset and error bar for each station are plotted in Figure 18. The mean offset of all stations equals 540 

0.010°C. Station LC-102 has the highest offset equal to 0.349°C, station LC-074 has the lowest offset equal to -0.220°C. It 

can be noticed that the error bars of most stations are rather small, which reinforces our confidence of a valid determination of 

the fixed calibration offset.  

 

Figure 18: Offsets during the selected episodes (grey dots), the median offset (black diamond) and its error bar (mean ± standard 545 
deviation) for each station active during at least one episode. For reference the zero-line is plotted in red.  

For stations that were not active during one of the selected timeframes, we were not able to determine their calibration offset 

(stations LC-003, LC-096, LC-108, LC-109, LC-114, LC-124, LC-125, LC-127 and LC-128). As a consequence, no corrected 

temperature could be calculated, meaning that those stations are not considered during the following QC level (QC level 3). 

The search for episodes should be extended with upcoming periods of 6 months in order to resolve this problem.  550 

5.3 Quality control level 3 – Intra station bias correction 

In QC level 3 the random forest model is applied to each station in order to obtain a site-specific prediction for its temperature 

bias. As expected, this prediction shows the same pattern as seen for the LC-R stations: generally, we see a positive bias that 

peaks around midday and is more pronounced during both summer months and low cloud and low windspeed conditions 

(Figure 19). Note that the actual bias calculation in QC level 3 is performed for every timestamp and every LC-X station 555 

separately, using the other weather variables measured by the station, as input for the RF model. After subtracting this 

temperature bias from the observed temperature, corrected temperature for each station is obtained. 
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Figure 19: Prediction of the temperature bias (°C) as a function of hour of the day and month of the year for all LC-X stations (a) 

and prediction of the temperature bias (°C) as a function of radiation and wind speed for all LC-X stations, cells with sample size 560 
lower than 10 are not shown in the graph (b). 

These results are in line with the findings of Jenkins et al. (2014) and Bell et al. (2015):both found a significant positive 

instrument temperature bias during daytime with strong relation to the incoming solar radiation for multiple types of 

crowdsourced weather stations. To our knowledge, previous to our study, only Cornes et al. (2020) has used the findings of 

Bell et al. (2015) to actually correct crowdsourced air temperature data. Radiation from satellite imagery and background 565 

temperature data from official stations was used to parameterize the short-wave radiation bias, as a consequence no correction 

was performed for night time. The data correction has reduced the error from ± 0.2 - 0.8°C to ± 0.2 - 0.4°C. These results are 

comparable with our results, although here slightly smaller errors of only 0.18 - 0.24°C are obtained (Figure 15). Cornes et al. 

(2020) do suggest to incorporate wind speed as an additional co-variate in order to incorporate the effect of passive ventilation. 

The random forest model described in this study does include additional co-variates, including wind speed, but most 570 

importantly only needs data from the weather station itself. No satellite imagery or official stations are needed once the random 

forest model is built. Cornes et al. (2020) further highlights the need for station specific quality controls in order to remove the 

confounding effect of different instrument types. The use of a unique station type in this study assures that no such effects are 

present in our dataset. 

5.5 Overall impact of the QC method on the dataset 575 

To assess the impact of the different QC stages on the global dataset, several violin boxplots were created both on monthly 

and yearly base. Figure 20 illustrates the monthly violin plots for 2019, 2020 and 2021 at each quality control level. Table 12 

summarises the mean monthly temperature and its standard deviation for each quality control level.  
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The violin plots, and accompanying mean temperature and standard deviation, do not change much over the different QC 580 

levels. Since QC level 1 removes outliers from the dataset we would expect a lower standard deviation for QC level 1 compared 

to QC level 0. Figure 20 does indicate the removal of some outliers, but Table 12 does not confirm the expected decrease in 

standard deviation. This can be explained by the low percentage of observations defined as outliers, per year only 0.5 to 1 % 

of the data was defined as outlier. Due to the strict installation protocol, most errors were already eliminated upfront. If errors 

do occur as a result of station malfunctioning, they are quickly resolved since the dataflow and station siting are continuously 585 

controlled.  

 

During QC level 2 each station is corrected for its inter station temperature bias. Since both positive and negative biases, 

ranging from 0.349°C to -0.220°C, are possible no clear change in the mean temperature is expected between QC level 1 and 

QC level 2. Because this QC level corrects each station with a fixed offset the standard deviation should stay the same. Both 590 

of these assumptions are confirmed by Figure 20 and Table 12.  

 

During the third QC level we do see a clear change in mean temperature and standard deviation. For the summer months a 

reduction in both the mean temperature and standard deviation up to respectively -0.40°C and -0.36°C is noted. The change in 

standard deviation shows a monthly pattern with a higher reduction during the summer months and almost no change during 595 

winter. The change in mean temperature is not as consistent and seems dependent on the observed temperatures. A higher 

reduction in mean temperature is noted for the hot summers of 2019 and 2020 compared to the rather cold summer of 2021. 

These results can easily be explained by the daily and seasonally patterns of the predicted temperature bias (Figure 19).  
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 600 

 

Figure 20: Monthly violin plots of temperature data (°C) at quality control level 0 (raw data), level 1 (outliers removed), level 2 (inter 

station bias correction) and level 3 (intra station bias correction) for 2019 Q3-4 (a), 2020 Q1-2-3-4 (b) and 2021 Q1-2-3-4 (c).  

 605 

Table 12: The mean monthly temperature (°C) and its standard deviation at quality control level 0 (raw data), level 1 (outliers 

removed), level 2 (inter station bias correction) and level 3 (intra station bias correction). 

 QC level 0 QC level 1 QC level 2 QC level 3 ΔL0-L3 

 Mean T  Std T Mean T Std T Mean T Std T Mean T Std T Mean T Std T 

2019           
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7 20.95 6.21 20.93 6.23 20.96 6.23 20.54 5.89 -0.40 -0.32 

8 19.82 5.32 19.81 5.33 19.84 5.34 19.53 4.96 -0.29 -0.36 

9 15.08 3.99 15.08 3.99 15.08 3.99 14.91 3.76 -0.17 -0.23 

10 12.26 3.93 12.25 3.93 12.26 3.93 12.22 3.83 -0.04 -0.10 

11 6.54 3.70 6.53 3.70 6.54 3.70 6.54 3.68 0.00 -0.03 

12 6.12 3.65 6.12 3.65 6.12 3.65 6.15 3.65 0.03 0.00 

2020           

1 6.21 3.68 6.20 3.68 6.21 3.68 6.21 3.66 0.00 -0.02 

2 7.57 3.33 7.57 3.33 7.57 3.33 7.56 3.29 -0.02 -0.05 

3 7.62 3.76 7.62 3.77 7.62 3.76 7.49 3.69 -0.13 -0.07 

4 12.89 5.97 12.88 5.97 12.88 5.97 12.55 5.71 -0.33 -0.26 

5 14.95 6.10 14.94 6.11 14.93 6.10 14.58 5.79 -0.37 -0.32 

6 18.60 5.38 18.60 5.38 18.61 5.39 18.26 5.05 -0.35 -0.33 

7 18.79 4.66 18.79 4.67 18.80 4.67 18.47 4.36 -0.33 -0.30 

8 21.55 6.00 21.54 6.00 21.52 6.00 21.18 5.63 -0.37 -0.37 

9 16.54 5.28 16.53 5.28 16.54 5.28 16.35 5.01 -0.19 -0.27 

10 11.88 2.86 11.88 2.86 11.87 2.85 11.84 2.79 -0.05 -0.08 

11 9.08 4.34 9.07 4.34 9.07 4.34 9.05 4.31 -0.03 -0.03 

12 5.79 3.63 5.78 3.63 5.79 3.62 5.80 3.62 0.01 0.00 

2021           

1 3.58 2.95 3.57 2.96 3.57 2.95 3.58 2.94 0.01 -0.02 

2 5.59 6.88 5.59 6.89 5.59 6.88 5.50 6.84 -0.09 -0.04 

3 7.55 4.84 7.55 4.84 7.51 4.80 7.40 4.61 -0.16 -0.23 

4 7.80 4.95 7.80 4.95 7.78 4.96 7.60 4.76 -0.21 -0.20 

5 12.30 4.75 12.30 4.75 12.29 4.76 12.10 4.52 -0.20 -0.23 

6 19.70 5.11 19.70 5.11 19.69 5.12 19.37 4.77 -0.33 -0.34 

7 18.72 3.64 18.71 3.64 18.71 3.65 18.48 3.29 -0.23 -0.34 

8 17.51 3.53 17.51 3.54 17.51 3.54 17.38 3.22 -0.13 -0.31 

9 16.88 4.52 16.87 4.52 16.86 4.52 16.68 4.26 -0.20 -0.26 

10 11.68 3.55 11.67 3.55 11.66 3.56 11.63 3.44 -0.05 -0.11 

11 6.38 3.29 6.37 3.29 6.36 3.29 6.37 3.26 -0.01 -0.03 

12 5.90 3.92 5.89 3.92 5.88 3.93 5.90 3.92 0.00 0.00 
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6 Conclusion 

This study presents the data from the citizen science weather station network Leuven.cool, which consists of around 100 610 

weather stations in the city of Leuven, Belgium. The crowdsourced weather stations (Fine Offset WH2600) are distributed 

across Leuven and surroundings, measuring the local climate since July 2019. The dataset is accompanied by a newly 

developed station specific temperature quality control procedure. The quality control method consists of three levels, removing 

implausible measurements, while also correcting for inter (in between stations) - and intra (station-specific) station temperature 

biases. This QC method combines suggestions of previous developed methods but improves them by correcting aberrant 615 

temperature observations rather than removing them. As a result, more data can be retained allowing researchers to study the 

highly heterogeneous urban climate in all its detail. Moreover, the QC method uses information from the crowdsourced data 

itself and only requires reference data from official stations during its development and evaluation stage. As a consequence, 

the method is easily transferable to other urban regions not having an official weather station. A validation of the proposed QC 

method was carried out on four Leuven.cool stations installed next to official equipment, and showed that it is able to reduce 620 

the mean temperature difference and standard deviation from 0.15 ± 0.56°C to 0.00 ± 0.22°C. Knowing that both the frequency 

and intensity of heat waves will only increase during the upcoming years, dense high-quality datasets such as the Leuven.cool 

datasets become highly valuable for studying local climate phenomena, planning efficient mitigation and adaptation measures 

and hence mitigating future risks. 

Data and code availability 625 

All data described in this paper and scripts used to design, evaluate and apply the QC method are stored in RDR, KU Leuven's 

Research Data Repository and accessible through the following DOI: https://doi.org/10.48804/SSRN3F (Beele et al., 2022).  
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Appendices 

Appendix A. Specifications of the WH2600 digital weather station 645 

The technical specifications of the Fine Offset WH2600 weather station are given in Table A1.  

 

Table A1: Technical specifications of the Fine Offset WH2600 weather station as given by the manufacturer. 

Outdoor sensor array  

Transmission distance in open field   100m 

Temperature range   -40°C - 60°C  

Temperature accuracy   +/- 1°C 

Temperature resolution   0.1°C 

Relative humidity range  1% - 99% 

Relative humidity accuracy   +/- 5% 

Rain volume range   0 – 9999mm  

Rain volume accuracy   +/- 10% 

Rain volume resolution   0.3mm (if rain volume < 1000mm) 

 1mm (if rain volume > 1000mm) 

Wind speed range  0 - 50m/s  

Wind speed accuracy  +/- 1m/s (wind speed < 5m/s) 

 +/- 10% (wind speed > 5m/s) 

Light range  0 - 400k Lux 

Light accuracy   +/- 15% 

Measuring interval   16 sec 

 

  650 
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Appendix B. Specifications LCZ map  

The LCZ map was created with the LCZ generator developed within the WUDAPT project (Demuzere et al., 2021). A grid 

area of 15 by 15 km was drawn around the city centre of Leuven. Within this grid area training polygons for 10 LCZ types 

were drawn using the Training Area Template kml file proposed by the WUDAPT project. Based on these training polygons 

the LCZ generator provides the user with a final LCZ map and corresponding accuracy metrics. The LCZ map was reprojected 655 

from ESPG:4326 – WGS 84 to ESPG: 31370 – Belge Lambert 72 using the projectRaster function and nearest neighbour 

method in R.  

 

The resulting LCZ map has an overall accuracy of 0.73, the accuracy for each LCZ can be found in Figure B1. The confusion 

matrix is presented in Table B1. 660 

 

 

Figure B1: Accuracy metrics LCZ map. A boxplot of the overall accuracy (OA), the overall accuracy of urban classes (1-10) 

(OAU), the overall accuracy of built zones versus natural zones (OABU), the weighted accuracy (OAW)  and the F1 metric of each 

LCZ class are given are given.  665 
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Table B1: Confusion matrix LCZ map. The matric summarises the number of cells wrongly or correctly classified for each LCZ 

class. The user accuracy (UA) and producer accuracy (PA) for each LCZ class and the overall accuracy are included as well. 

 
LCZ 2 LCZ 3 LCZ 5 LCZ 6 LCZ 8 LCZ 9 LCZ 11 LCZ 12 LCZ 14 LCZ 17 Total UA (%) 

LCZ 2 8.0 7.0 0.0 0.0 3.0 0.0 0.0 1.0 0.0 0.0 19.0 42.1 

LCZ 3 6.0 2.0 1.0 1.0 3.0 0.0 0.0 0.0 0.0 0.0 13.0 15.4 

LCZ 5 2.0 2.0 20.0 9.0 15.0 2.0 0.0 0.0 1.0 0.0 51.0 39.2 

LCZ 6 0.0 4.0 7.0 75.0 3.0 7.0 0.0 0.0 0.0 0.0 96.0 78.1 

LCZ 8 1.0 1.0 9.0 10.0 37.0 1.0 0.0 1.0 0.0 0.0 60.0 61.7 

LCZ 9 0.0 1.0 2.0 7.0 0.0 34.0 2.0 18.0 1.0 1.0 66.0 51.5 

LCZ 11 0.0 0.0 0.0 0.0 0.0 1.0 160.0 35.0 0.0 0.0 196.0 81.6 

LCZ 12 0.0 0.0 0.0 1.0 0.0 1.0 0.0 8.0 0.0 0.0 10.0 80.0 

LCZ 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.0 0.0 95.0 100.0 

LCZ 17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.0 15.0 100.0 

Total 17.0 17.0 39.0 103.0 61.0 46.0 162.0 63.0 97.0 16.0 621.0 
 

PA (%) 47.1 11.8 51.3 72.8 60.7 73.9 98.8 12.7 97.9 93.8 
 

73.1 

 

 670 
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