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Abstract.  

The growing urbanization trend and increasingly frequent extreme weather events urge further monitoring and understanding 15 

of weather in cities. In order to gain information on these intra-urban weather patterns, dense high quality atmospheric 

measurements are needed. Crowdsourced weather stations (CSW) could be a promising solution to reach such monitoring 

networks in a cost-efficient way. Because of their non-traditional measuring equipment and installation settings, the quality of 

these datasets remains an issue of concern. This paper presents crowdsourced data from the Leuven.cool network, a citizen 

science network of around 100 low-cost weather stations (Fine Offset WH2600) distributed across Leuven, Belgium (50°52’N 20 

4°42’E). The dataset is accompanied by a newly developed station specific temperature quality control (QC) and correction 

procedure. The procedure consists of three levels removing implausible measurements, while also correcting for inter (in 

between stations) and intra (station-specific) station temperature biases by means of a random-forest approach. The QC method 

is evaluated  using data from four WH2600 stations installed next to official weather stations belonging to the Royal 

Meteorological Institute of Belgium (RMIB). A positive temperature bias with strong relation to the incoming solar radiation 25 

was found between the CSW data and official data. The QC method is able to reduce this bias from 0.15 ± 0.56 °K to 0.00 ± 

0.28 °K. After evaluation, the QC method is applied to the data of the Leuven.cool network, making it a very suitable data set 

to study in detail local weather phenomena such as the urban heat island (UHI) effect. (https://doi.org/10.48804/SSRN3F)

1 Introduction  

More than 50% of the world population currently lives in urban areas and this number is expected to grow to 70 % by 2050 30 

(UN, 2018). Keeping this growing urbanisation trend in mind and knowing that both the frequency and intensity of extreme 

weather events will increase (IPCC, 2021), it becomes clear that both cities and their citizens are vulnerable for climate change. 

https://doi.org/10.48804/SSRN3F
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To plan efficient mitigation and adaptation measures, and hence mitigate future risks, information on intra-urban weather 

patterns is needed (Kousis et al., 2021). Dense high-quality atmospheric measurements are thus becoming increasingly 

important to investigate the heterogeneous urban climate. Due to their high installation and maintenance costs and strict siting 35 

instructions (WMO, 2018), official weather station networks are however sparse. As a results, most cities only have one or 

even no official station at all (Muller et al., 2015). Belgium only counts around 30 official weather stations distributed across 

a surface area of 30,689 km2. 18 of them (Sotelino et al., 2018) are owned and operated by the Royal Meteorological Institute 

of Belgium (RMIB). These classical observation networks operate at a synoptic scale and are thus not suitable to observe city-

specific or intra-urban weather phenomena such as the urban heat island (UHI) effect (Chapman et al., 2017).  40 

 

The UHI can be measured by a number of methods. Fixed pair stations (e.g., Bassani et al., 2022; Oke, 1973) or mobile transect 

approaches (e.g., Kousis et al., 2021) have traditionally been used to quantify this phenomenon. Both methods are however 

not ideal as pair stations lack detailed spatial information while transects often miss a temporal component (Chapman et al., 

2017; Heaviside et al., 2017). Other studies have quantified the UHI using remote sensing data derived from thermal sensors. 45 

Such methods can provide spatially continuous data over large geographical extents but are limited to land surface temperatures 

(LST) (Arnfield, 2003; Qian et al., 2018). As opposed to LST,  canopy air temperatures (Tair) are however more closely related 

to human health and comfort (Arnfield, 2003). Finding the relationship between LST and Tair is known to be rather difficult 

and inconsistent (Yang et al., 2021). Numerical simulation models (e.g. UrbClim (De Ridder et al., 2015), SURFEX (Masson 

et al., 2013)) in which air temperature is continuously modelled over space and time could be a possible solution. They do 50 

however still have some drawbacks. Due to computational power capacity, models only take into account a limited number of 

variables, making them less suitable for real-life applications (Rizwan et al., 2008). Additionally, they often lack observational 

data to train and validate their simulations (Heaviside et al., 2017). 

 

The rise of crowdsourced air-temperature data, especially in urban areas, could be a promising solution to bridge this 55 

knowledge gap (Muller et al., 2015). Such data are obtained through a large number of non-traditional sensors, mostly set up 

by citizens (cf. citizen science) (Muller et al., 2015; Bell et al., 2015). Crowdsourced datasets have already been successfully 

used for monitoring air temperature (Chapman et al., 2017; de Vos et al., 2020; Fenner et al., 2017; Napoly et al., 2018; Meier 

et al., 2017; Hammerberg et al., 2018; Feichtinger et al., 2020), rainfall (de Vos et al., 2019, 2020, 2017), wind speed (Chen 

et al., 2021; de Vos et al., 2020) and air pollution (EEA, 2019; Castell et al., 2017) within complex urban settings. Because of 60 

their non-traditional measuring equipment and installation settings, the quality of these datasets remains however an issue of 

concern (Bell et al., 2015; Napoly et al., 2018; Chapman et al., 2017; Meier et al., 2017; Muller et al., 2015; Cornes et al., 

2020; Nipen et al., 2020). Quality uncertainty arises due to several issues: (1) calibration issues in which the sensor could be 

biased either before the installation or drifts over time, (2) design flaws in which the design of the station makes it susceptible 

to inaccurate observations, (3) communication and software errors leading to incorrect or missing data, (4) incomplete metadata 65 

(Bell et al., 2015) and (5) unsuitable installation locations (Feichtinger et al., 2020; Cornes et al., 2020). 
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Recent studies have therefore highlighted the importance of performing a data quality control in data processing applications 

(Båserud et al., 2020; Longman et al., 2018), especially before analysing crowdsourced air-temperature data (Bell et al., 2015; 

Jenkins, 2014; Chapman et al., 2017; Meier et al., 2017; Napoly et al., 2018; Cornes et al., 2020; Nipen et al., 2020; Feichtinger 70 

et al., 2020). Jenkins et al. (2014) and Bell et al. (2015) both conducted a field comparison in which multiple crowdsourced 

weather stations (CWS) were compared with official, and thus professional, observation networks. Both found a profound 

positive instrument temperature bias during daytime with strong relation to the incoming solar radiation. The use of 

crowdsourced data thus requires quality assurance and quality control (QA/QC) that both removes gross errors and corrects 

station-specific instrument biases (Bell et al., 2015). Using the findings of Bell et al. (2015) as a basis, Cornes et al. (2020) 75 

corrected crowdsourced air-temperature data across the Netherlands using radiation from satellite imagery and background 

temperature data from official stations belonging to the Royal Netherlands Meteorological Institute (KMNI). To investigate 

the UHI in London, UK, Chapman et al. (2017) used Netatmo weather stations and removed crowdsourced observations that 

deviated more than three standard deviations from the mean of all stations. Meier et al. (2017) developed a detailed QC 

procedure for Netatmo stations using reference data from two official observation networks in Berlin, Germany. The QC 80 

consists of four steps, each identifying and removing suspicious temperature data. Their methods highlight the need for 

standard, calibrated and quality-checked sensors in order to assess the quality of crowdsourced data (Cornes et al., 2020; 

Chapman et al., 2017; Meier et al., 2017). Such official sensors are however not present in most cities, hindering the 

transferability of these QC methods. To this end, Napoly et al. (2018) developed a statistically based QC method for Netatmo 

stations independent of official networks (the R-package CrowdQC). The QC method was developed on data from Berlin, 85 

Germany and Toulouse, France and was later applied to Paris, France to demonstrate the transferability of this method. The 

procedure consists of four main and three optional QC levels, removing suspicious values, correcting for elevation differences 

and interpolating single missing values. Since the CrowdQC filtered dataset still contained some radiative errors, Feichtinger 

et al. (2020) combined the methods of Napoly et al. (2018) and Meier et al. (2017) to study a high temperature period in August 

2018 in Vienna. Most recently, Fenner et al. (2021) presented the QC R-package CrowdQC+, which is a further development 90 

of the existing package CrowdQC developed by Napoly et al. (2018). The core enhancements deal with radiative errors and 

sensor response time issues (Fenner et al., 2021). 

 

Current QC studies mostly identify and remove implausible temperature measurements (Chapman et al., 2017; Meier et al., 

2017; Napoly et al., 2018), instead of correcting for known temperature biases (Cornes et al., 2020). We do however know 95 

that both the siting and the design of CWS can introduce such a bias. By parameterising this bias, it can be learned and corrected 

for, hereby limiting the number of observations that is eliminated (Bell et al., 2015). Additionally, most QC procedures require 

data from official networks (Cornes et al., 2020; Chapman et al., 2017; Meier et al., 2017), while most cities do not have such 

measurements available (Muller et al., 2015). Lastly, previous research also noted that biases can be station specific, this 

because the design of a CWS is an important uncertainty source (Bell et al., 2015), indicating the need for station-specific 100 
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quality control methods. Thus, there is a need for station specific quality control and correction methods, independent of 

official weather station networks.  

 

Here we report on a statistically-based QC method for the crowdsourced air-temperature data of the Leuven.cool network, a 

citizens science network of almost 100 weather stations distributed across private gardens and (semi-) public locations in 105 

Leuven, Belgium. The Leuven.cool network is a uniform network in the sense that only one weather station type (Fine Offset 

WH2600) is used for the entire network. To our knowledge, no quality control method has been developed for this sensor type. 

The stations were installed following a strict protocol, lots of metadata is available and both the dataflow and station siting are 

continuously controlled. This novel QC method removes implausible measurements, while also correcting for inter (in between 

stations) - and intra (station-specific) station temperature biases. The QC method only needs an official network during its 110 

development and evaluation stage. Afterwards the method can be applied independently of the official network that was used 

in the development phase. Transferring the method to other networks or regions would require the recalibration of the QC 

parameters. After applying this quality control and correction method, the crowdsourced Leuven.cool dataset becomes suitable 

to monitor local weather phenomena such as the urban heat island (UHI) effect.  

 115 

The paper is organised as follows. Section 2 describes materials and methods, providing information on the study area, 

crowdsourced (Leuven.cool) dataset and official reference dataset. The development of the quality control method is explained 

in Section 3. In Section 4 the newly developed QC method is first tested on four crowdsourced stations installed next to three 

official stations from the Royal Meteorological Institute of Belgium (RMIB). This allows us to quantify the data quality 

improvement after every QC level. In Section 5 the QC method is applied to a network of CWS in Leuven, Belgium. Section 120 

6 shortly focusses on the application potential of the dataset. Concluding remarks are summarized in Section 7.  

2 Materials & methods 

2.1 Study area  

The QC method is developed for a citizens science weather station network “Leuven.cool”, based in Leuven, Belgium 

(50°52’39” N 4°42’16” E 65m ASL). The Leuven.cool project is a close collaboration between the KU Leuven, the city of 125 

Leuven and the RMIB aiming to measure the micro-climate in Leuven and gain knowledge on the mitigating effects of green 

and blue infrastructures (Leuven.cool, 2020). Leuven has a warm temperate climate with no dry season and a warm summer 

(Cfb) with no influence from mountains or seas and overall weak topography (Kottek et al., 2006). Leuven is the capital and 

largest city of the province of Flemish Brabant and is situated in the Flemish region of Belgium, 25 kilometres east of Brussels, 

the capital of Belgium. The city comprises the districts of Leuven, Heverlee, Kessel-Lo, Wilsele and Wijgmaal, covering an 130 

area of 56.63 km2. The main characteristics of the study area are summarized in Table 1. 
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Table 1: Main characteristics of the study area Leuven 

Climate  

Annual Min/Mean/Max daily temperature (°C) 6.9/11.2/15.5 Leuven, 1991-2020 (RMI, 2020) 

Mean annual rainfall (mm y-1) 780.7 Leuven, 1991-2020 (RMI, 2020) 

Köppen’s classification Cfb (Kottek et al., 2006) 

Demographics 

Size (km2) 56.63 Figure 2 

Population  101 315 (Demografie, 2021) 

 

2.2 Leuven.cool dataset  135 

Data from the citizens science network Leuven.cool are presented in this paper. The crowdsourced weather station network 

consists of 106 weather stations distributed across Leuven and surroundings. The meteorological variables are measured by 

low-cost consumer weather stations produced by the manufacturer Fine Offset: the WH2600 wireless digital weather station 

(Figure 1). The station’s specifications, as defined by the manufacturer, are summarized in Appendix A.1. The weather station 

consists of an outdoor unit (sensor array) and a base station. The outdoor sensor array measures temperature (°C, add 273.15 140 

for K), humidity (%), precipitation (mm), wind speed (m/s), wind direction (°), solar radiation (W/m2), and UV (-) every 16 

seconds. This outdoor sensor array transmits its measurements wirelessly, through the 868 MHz radiofrequency, to the base 

station. This base station needs both power and internet - via a LAN connection - supply in order to send the data to a server. 

The data is forwarded to the Weather Observations Website (Kirk et al., 2020), a crowdsourcing platform initiated and managed 

by the UK Met Office. RMIB participates in this initiative and operates its own WOW portal (Weather Observations Website 145 

- Belgium). The outdoor unit is powered by three rechargeable batteries which are recharged by a small built-in solar panel. A 

radiation shield protects both the temperature and humidity sensors against extreme weather conditions and the direct exposure 

of solar radiation. 

  

Figure 1: The outdoor unit of the WH2600 wireless digital weather station at the Mathieu Layensplein in Leuven (LC-105) (a) and 150 
next to the official AWS equipment in Humain (LC-R05) (b). Pictures: Maarten Reyniers.  

(a) (b) 
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From July 2019 onwards the weather stations were distributed along an urban gradient from green (private) gardens to public 

grey locations following a sampling design based on the concept of Local Climate Zones (LCZ) (Figure 2) (Stewart and Oke, 

2012). This LCZ scheme was originally developed as an objective tool for classifying urban-rural gradients, herby capturing 155 

important urban morphological characteristics (Verdonck et al., 2018). Stewart & Oke (2012) formally define these zones as 

“regions of uniform surface cover, structure, material, and human activity that span hundreds of meters to several kilometres 

in horizontal scale”. 

 

Stewart & Oke (2012) define 17 LCZ classes, divided into 10 urban LCZs (1-10) and 7 natural LCZs (A-G). A LCZ map for 160 

Leuven was developed using a supervised random forest classification approach based on fine-scale land use, building height, 

building density and green ratio data. Details on this LCZ map are available in Appendix B. Table 2 summarises the LCZs 

present in Leuven and the number of weather stations in each LCZ class.  

 

Table 2: LCZs present in Leuven and the number of weather stations in each LCZ class.  165 

LCZ ID LCZ description # Stations (106) 

LCZ 2 Compact midrise 20  

LCZ 3 Compact low-rise 7  

LCZ 4 Open high-rise 3  

LCZ 5 Open midrise 24  

LCZ 6 Open low-rise 19  

LCZ 8 Large low-rise 2  

LCZ 9 Sparsely built 16  

LCZ A Dense trees 0 

LCZ B Scattered trees 10  

LCZ D Low plants 4  

LCZ E Bare rock or paved 0 

LCZ G Water 1  

 

It can be noted that the weather stations are not evenly distributed across the different LCZ classes, also the number of weather 

station within a LCZ class does not represent the spatial coverage of this LCZ class. Due to the complex urban settings in 

which the network is deployed, practical limitations apply to the eligible locations for installation. We rely on volunteering 

citizens, private companies and government institutions giving permission to install a weather station on their property. Further, 170 
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the middle-sized city of Leuven does not contain all available LCZ classes. In the urban context compact high-rise, lightweight 

low-rise and heavy industry is missing. In the natural context, brush or shrub vegetation and bare soil or sand are not present 

in sufficiently large areas (Table 2). Furthermore, the number of stations within more natural settings is limited due to the 

technical limitations of the weather stations; each outdoor unit needs a base station, with both power and LAN connection, 

within 50 to 100 meters in order to transmit its data. Lastly, the network was implemented with the intention of gaining 175 

knowledge on the mitigating effect of green and blue infrastructures within urban settings. The weather station network thus 

mostly focusses on urban classes.  

 

The weather stations were installed according to a strict protocol. In private gardens the weather stations were installed at 2 

meters height using a steel pole with a length of 2.70 meters. Dry concrete was used to anchor the pole into the soil at a depth 180 

of 70 cm. Following the station’s guidelines, stations were installed at an open location within the garden, at least 1 meter from 

interfering objects, such as nearby buildings and trees. In order to maximize the absorption of solar radiation by the solar panel 

and to assure correct measurements of wind direction and precipitation, the weather station was levelled horizontally and the 

solar panel of the weather station was directed towards the south Weather stations located on public impervious surfaces were 

installed on available light poles using specially designed L-structures to avoid direct contact with the pole. For security reasons 185 

an installation height between 3-4 meters was used. 

 

The data is currently available from July 2019 (2019Q3) until December 2021 (2021Q4). The dataset can be downloaded in 

periods of three months and is thus available for each quarter. The raw 16 seconds measurements are aggregated (temporally 

averaged) to 10 minutes observations. This is done for three reasons: (1) an extremely high temporal resolution of 16 seconds 190 

is too high for most meteorological analyses, (2) the aggregation to 10 minutes is necessary to exclude the natural small-scale 

variability and noise on the observations and most importantly (3) the reference dataset of official measurement is only 

available in a 10 minute resolution. After resampling the data, some basic data manipulation steps are performed to obtain the 

correct units and resolution for every meteorological variable. The final dataset contains air temperature with the three quality 

level stages (see further), relative humidity, dewpoint temperature, solar radiation, rain intensity, daily rain sum, wind 195 

direction, and windspeed. We must stress that only the air-temperature measurements undergo a quality check and correction 

procedure, further explained in the next sections. The variables other than temperature are, however, used in the correction 

procedure. A qualitative assessment of the data quality of these variables in included in Appendix C.  

 

The maintenance of the network is controlled by PhD students and the technical staff at the Division of Forest, Nature & 200 

Landscape of the KU Leuven and with support of the RMIB. Since most of the weather stations are installed in private gardens, 

our volunteers keep an eye out for generic problems as well (e.g. leaves in the rain gauge, …). 
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2.3 Reference dataset 

Standard, calibrated and quality controlled reference measurements are used to develop the QC method and evaluate its 

performance. Since no official measurements are available in Leuven, we used data from three official RMIB stations in Uccle 205 

(6447 – 50.80°N 04.26°E, alt 100 m), Diepenbeek (6477 - 50.92°N 5.45°E, alt 39 m) and Humain (6472 - 50.19°N 5.26°E, alt 

295 m) (Figure 2).  

 

The meteorological observation network of the RMIB consists of 18 automatic weather stations (AWS), ensuring continuous 

data collecting and limiting human errors. These weather stations report meteorological parameters such as air pressure, 210 

temperature, relative humidity, precipitation (quantity, duration), wind (speed, gust, direction), sunshine duration, shortwave 

solar radiation and infrared radiation every 10 minutes. The AWS network is set up according to the WMO guidelines (WMO, 

2018).  

 

Since there is no AWS station available in the region of Leuven, four low-cost WH2600 weather stations were installed next 215 

to the official and more professional equipment of the RMIB in Uccle, Diepenbeek and Humain. Since these stations will serve 

as a reference, they were defined as LC-R01, LC-R02, LC-R04 and LC-R05 (Table 3). LC-R03 was installed for a short time 

in Diepenbeek, but has been removed due to communication problems and is not taken into account in our further analysis. 

Since January 2020, the oldest reference station LC-R01 is no longer active. This setup enables us to calculate the temperature 

difference or bias between the low cost reference stations and the official RMIB stations in Uccle, Diepenbeek and Humain. 220 

 

Table 3: Specifics of Leuven.cool low-cost reference stations.  

Station ID Location  Installation date 

Leuven.cool R01 Uccle  11/09/2018 

Leuven.cool R02 Uccle 02/09/2019 

Leuven.cool R04 Diepenbeek 06/11/2019 

Leuven.cool R05 Humain 20/08/2020 

 

In the rest of the paper, the terminology of Table 4 is used to refer to the different datasets and stations. 

 225 

Table 4: Terminology of datasets and stations used in this paper 

Terminology Description 

LC-X The Leuven.cool (WH2600) stations installed in the study area (area of Leuven, Belgium) 

LC-R The Leuven.cool (WH-2600) stations installed next to the official weather stations operated by RMIB. 
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AWS The Automatic Weather Stations owned and operated by RMIB. In our study, the AWS in Uccle, 

Diepenbeek and Humain are used. 
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(a) 

(b) 
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Figure 2: The Leuven.cool network (LC-X) with LCZ classification (a) and BBK (bodembedekkingskaart; land use map) 230 
classification (b) and Belgium delineated by the three official regions (Flanders, Wallonia and Brussels) with the location- of Leuven 

and the three RMIB stations (AWS) used in this study (c). Background map: Esri. 

  

(c) 
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3. Description of the quality control and correction method  

The newly developed QC control method consists of three levels (Table 5), mostly focussing on eliminating calibration issues, 235 

design flaws and communication or software errors. Due to the strict installation protocol used for the Leuven.cool station 

network, some of the typical uncertainty sources are a priori discarded. Both the location and metadata of each station were 

controlled by experts, eliminating incomplete metadata or unsuitable installation locations. We further know that the low cost 

station used in this study has some design flaws (e.g. during clear sky with low sun conditions both the radiation and 

thermometer sensors experience shadow from the anemometer). Our correction method, however, is designed in such a way 240 

that these errors will be accounted for.  

 

The first QC level removes implausible values mostly caused by software or communication errors. The second and third level 

correct for temperature biases. Both fixed inter (in between stations) biases due to sensor calibration uncertainties and variable 

intra (station-specific) biases due to the station’s design and siting are parameterized and corrected for. 245 

 

Table 5: Quality control levels, criteria for data filtering and potential error sources for crowdsourced air-temperature 

measurements.  

Quality control level  Description Potential error sources 

L1 Outlier detection    

L1.1 Range test Range check against climatological extremes Sensor malfunctioning  

L1.2 Temporal outliers Ensure realistic change in magnitude between 

consecutive observations of a specific station 

Battery loss, server failure, connection 

issues, sensor malfunctioning  

L1.3 Spatial outliers Ensure realistic observation compared to 

neighbouring stations  

Battery loss, server failure, sensor 

malfunctioning, outdoor sensor set up 

inside (not applicable in our setup due 

to the installation by team members) 

L2 Inter station bias correction Model the fixed in-between temperature bias  Sensor calibration issues  

L3 Intra station bias correction Model the variable station-specific temperature 

bias  

Design flaws, outdoor sensor set up in 

sunlit conditions (no active ventilation)  

3.1 Quality control level 1 – Outlier detection 

The outlier detection algorithm uses a flag system in which every 10 min observation is assigned flag of either 0, 1 or -1 250 

referring to “no outlier”, “outlier” or “not enough information to determine whether observation is an outlier”. The outlier 

detection method consists of three steps: a range test, a temporal outlier test and a spatial outlier test. The thresholds of the 

parameter settings used during each of these steps are explained in Table 6. We used an iterative procedure for threshold 
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optimization. Observations which received a flag of 1 and are thus defined as outliers are set to NA in the quality controlled 

(QC) level 1 dataset, hereby not considered during the following QC levels.  255 

 

Table 6: Parameter settings for QC level 1 - Outlier detection.  

Outlier parameter Value (unit) Description 

Range outliers (RO) 

dev_reference 1 (°C) Max allowed deviation between climatological min and max temperature 

of AWS stations in Uccle/Diepenbeek/Humain and LC-R in 

Uccle/Diepenbeek/Humain 

dev 5 (°C) Max allowed deviation between climatological min and max temperature 

of AWS station in Uccle and LC-X in Leuven 

Temporal outliers (TO) 

TOaThresMin -3 (°C) Min allowed difference between sequential 10 min observations 

TOaThresMax 2.5 (°C) Max allowed difference between sequential 10 min observations 

TObThresMin 0.05 (°C) Min difference that should be noted in TObTimespan 

TObTimespan 19 (-) Number of consecutive 10 min observations in which temperature should 

change with TObThresMin 

Spatial outliers (SO)  

range  2500 (m) Range used to define neighbouring stations  

SOThresMin -3 (-) Min allowed Z-score  

SOThresMax 3 (-) Max allowed Z-score  

nstat 1 (-) Minimum requirement of measurements in range 

 

3.1.1 QC level 1.1 - Range outliers 

During QC L1.1 a range test based on climatology is performed. Range outliers can occur when a station is malfunctioning or 260 

installed in a wrongful location. The latter has been largely eliminated by the installation protocol described in Section 2. 

Observations are flagged as 1 whenever they exceed the maxima or minima climate thresholds, plus/minus an allowed 

deviation (Tmax/min_AWS ± dev). In this study these thresholds are based on historical data from nearby official weather stations 

while the allowed deviations from the climate thresholds are based on local knowledge on environmental phenomena The 

thresholds are calculated as the maximum and minimum temperature from the official AWS station in Uccle within the 3 265 

month period that currently undergoes the QC. Observations receive a flag equal to -1 when the no temperature observation is 

available.  
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3.1.2 QC level 1.2 - Temporal outliers 

In QC L1.2 temporal outliers are detected using both (a) a step test and (b) persistence test. Temporal outliers occur when an 

observation of a specific station is not in line with the surrounding observations of this station. The step test ensures that the 270 

change in magnitude between two consecutive observations lies within a certain interval; the test checks the rate of change 

and flags unrealistic jumps in consecutive values. Flags are set to 1 when observations increase more than 2.5 °C (TOaThresMax) 

or decrease more than 3 °C (TOaThresMin) in 10 minutes. Such steep increases or decreases in temperature are found when a 

station reconnects with its receiver after a period of hitches. The values of TOaThresMin and TOaThresMax differ for meteorological 

reasons. The cooling down of air temperatures will, from a meteorological point of view, occur faster (e.g. through the passing 275 

of a cold front or thunderstorm) compared to the heating up of air temperatures (Ahrens, 2009). Observations are assigned a 

flag equal to -1 when the difference between sequential observations cannot be calculated.  

 

The persistence test, on the other hand, makes sure that observations change minimally with time. Here we detect stations with 

connection issues, transmitting the same observation repeatedly. Observations changing less than 0.05 °C (TObThresMin) within 280 

3 hours (TObTimespan) are flagged as 1. Whenever the difference between sequential observations cannot be calculated an 

observation gets a flag equal to -1.  

3.1.3 QC level 1.3 - Spatial outliers 

QC L1.3 detects spatial outliers in the dataset. Spatial outliers occur when the observation of a specific station is too different 

compared to the observations from neighbouring stations. First neighbouring stations are defined as stations located within a 285 

2.5 km radius (range). Next the Z-score or standard score is calculated for each observation following Eq. (1) 

𝑍 =
𝑥 − 𝜇 

𝜎
 ,           (1) 

where x is the observed value, 𝜇 the mean value and 𝜎 the standard deviation across all neighbours. This standard score can 

be explained as the number of standard deviations by which the observed value is above or below the mean value of what is 

being observed. Whenever the Z-score is lower than -3 (SOThresMin) or higher than 3 (SOThresMax) the observation is seen as a 290 

spatial outlier and receives a flag equal to 1. When there are no neighbours available within the predefined range, or the Z-

score cannot be calculated, each observation is flagged with -1. 

3.2 Quality control level 2 – Inter station bias correction 

The second quality control level corrects the data for the fixed offset or inter station temperature bias between the weather 

stations. This step is necessary since the temperature sensor are only calibrated by the manufacturer, and small calibration 295 

differences are expected for this consumer-grade weather sensor. Moreover, the Leuven.cool stations originate from different 

production batches, with possible hardware changes in the electronics. Calibration tests between multiple LC-X stations in the 



15 

 

same controlled environment were both technically and logistically not feasible. Simultaneous measurements are only 

available for two LC-R stations (LC-R01 and LC-R02 at the AWS of Uccle) for a period of four months, showing that sensor 

differences indeed exist and are non-negligible. A temperature difference of 0.2°C was found, which cannot be explained by 300 

the resolution of the temperature sensor (0.1°C). 

 

In order to quantify this inter station temperature bias, a rather pragmatic approach was followed to mimic a controlled 

environment: we selected episodes for which a similar temperature across the study area is expected. Such episodes occur 

under breezy cloudy conditions with no rainfall (Arnfield, 2003; Kidder and Essenwanger, 1995). In practice, the database is 305 

searched for suitable episodes every 6 months, currently ranging from 2019S2 to 2021S2. All 10 minute observations are 

resampled to 2 hour observations, hereby calculating the mean temperature, windspeed, radiation and rainfall across all weather 

stations. Next, suitable episodes are found by selecting episodes where the average rainfall intensity equals 0 mm/h and the 

average radiation lies below 100 W/m2. The selected episodes are ordered on average windspeed and limited to the top 10 

results.  310 

 

For these episodes, one can assume the temperature to be very uniform over the study area, and solely controlled by altitude 

(Lu Aigang et al., 2009). In practise, only episodes with a high correlation between temperature and altitude (> 0.7) are retained. 

By regressing temperature versus altitude for every episode and calculating the residuals i.e. the difference between the 

observed and predicted temperature, a fixed offset for each station and every episode is obtained. Finally, the median offset 315 

across all episodes is considered as the true offset for each station. These offsets are added to the QC level 1 temperature data 

in order to obtain the corrected QC level 2 temperature data.  

3.3 Quality control level 3 – Intra station bias correction  

During the third quality control level the QC level 2 temperature data is further corrected for the variable intra station 

temperature biases. This bias is present in the data since the measurements are made with non-standard equipment as compared 320 

to the AWS measurements (e.g., passive instead of active ventilation, dimension of the Stevenson screen). These biases change 

during day and night time, and according to their local environment (e.g., radiation and windspeed patterns). (Bell et al., 2015).  

 

By identifying the climatic variables mostly correlated with the temperature bias between the low-cost reference stations (LC-

R) and the official RMIB stations in Uccle, Diepenbeek and Humain (AWS), a predictor for temperature bias is created. To 325 

produce a robust model, data from all low-cost reference stations (LC-R01, LC-R02, LC-R04 and LC-R05), ranging from their 

installation data until December 2021, were used simultaneously to create a predictor for the intra station temperature bias.  

 

For the construction of a predictor model, the dataset was randomly split in training (0.60) and validation (0.40) data. The 

training data was used to train simple regression models, multiple regression models, random forest (RF) models and boosted 330 
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regression trees (BRT). Since previous research (Bell et al., 2015; Jenkins, 2014; Cornes et al., 2020) has shown that both 

radiation and wind speed highly influence the temperature bias, the simple and multiple regression models are mostly based 

on these variables. A previous study by Bell et al. (2015) also suggested that past radiation measurements, using an exponential 

weighting, are an even better prediction of the temperature bias, resulting in an advanced correction model (Bell et al., 2015). 

The potential predictor models are validated using the validation data, ensuring an fair evaluation of the model. The coefficient 335 

of determination (R2) and root mean square error (RMSE) are calculated to identify the most optimal prediction model for the 

temperature bias. After validation, the prediction model can be applied to the weather station network in Leuven (LC-X), 

hereby providing a temperature bias for each observation of every station in function of its local climatic conditions. The 

predicted temperature bias is subtracted from the QC level 2 temperature data to obtain the QC level 3 corrected temperature 

dataset.  340 

3.3.1 The intra station temperature bias 

The overall temperature bias (i.e., all LC-R stations together) between the LC-R and the AWS data has a mean value of 0.10°C 

and a standard deviation of 0.55 °C (Figure 3). By splitting up the temperature bias for day (radiation > 0 W/m2) and night 

(radiation = 0 W/m2), a positive mean temperature bias during daytime (0.32 °C) and a negative mean temperature bias during 

night time (-0.10 °C) is obtained. Figure 3 further suggests a higher standard deviation during daytime (0.61 °C) compared to 345 

night time (0.37 °C), both with a remarkably skewed (and opposite) distribution. 

 

 

Figure 3: Histograms of the temperature bias between the low-cost reference stations (LC-R) and the official RMIB stations (AWS) 

for day and night (a), daytime defined by a radiation > 0 W/m2 (b) and night time defined by a radiation = 0 W/m2 (c). Mean biases 350 
and their standard deviations are given above the graphs. Note that the ranges on the y axis differ for the different subplots. The 

temperature bias was calculated for all measurements between the installation data of each LC-R and December 2021.  

 

(a) (b) (c) 
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To get a better understanding of the monthly and daily patterns of this temperature bias, Figure 4a shows the mean temperature 

bias in function of month and hour of the day. The stations show clear diurnal and seasonal patterns, confirming the positive 355 

temperature bias during daytime and negative temperature bias during night time previously observed in Figure 3. In general, 

we see a positive bias that is high around midday and is more pronounced during the summer months, lasting for several hours 

during the day. The night-time temperature bias is low for all months. A temperature bias of 0°C is reached for every month 

at a certain time of the day, the specific time at which this minimal temperature bias occurs, depends however on the season.  

 360 

Figure 4b shows the mean temperature bias in function of windspeed and radiation. As expected, a positive temperature bias 

is noticed for high solar radiation and low windspeed conditions. The rather strange high values at low radiation and high wind 

speed can be explained as outliers (Figure 4c). Figure 4c shows the sample size of each cell. After removing cells with sample 

size lower than 10, the final graph is obtained (Figure 4d). The shallow local minimum seen around noon during the summer 

months (Figure 4a) and the fact that the largest biases are found in the middle of the radiation range rather than at the top 365 

(Figure 4d) are probably related to the station design itself. Two effects are at play here: (1) the placement of the radiation 

sensor and (2) the placement of the temperature sensor. For (1), certainly for lower solar elevations (during winter), the wind 

vane drops its shadow at the radiation sensor for a short time of the day. For (2), which we might consider more important, the 

temperature sensor is more shaded around midday (highest radiation) by the body of the station (during all seasons).  

 370 

 

Figure 4: Temperature bias (°C) as a function of hour of the day and month of the year for all LC-R (a), temperature bias (°C) as a 

function of radiation and wind speed for all LC-R (b), temperature bias (°C) as a function of radiation and wind speed for all LC-

R, the values written in each cell signify the sample size (c), temperature bias (°C) as a function of radiation and wind speed for all 

LC-R, cells with sample size lower than 10 are not shown in the graph (d). Note that the ranges on the y axis differ for the different 375 
subplots. Background colours, ranging from blue (-1.7°C) to red (1.7°C), represent the temperature bias. The temperature bias was 

calculated for all measurements between the installation data of each LC-R and December 2021. 

 

(b) (c) (d) (a) 
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3.3.2 Building a predictor for the intra station temperature bias 

A correlation matrix between the temperature bias and other meteorological variables, measured by the low-cost weather 380 

station, is calculated (Table 7). The values indicate how the temperature bias will change for different meteorological 

conditions. 

  

Table 7: Pearson correlation matrix of temperature bias with other meteorological variables measured by the low-cost station. 

Temperature  

 

Dew point temperature  Humidity  Radiation  

 

Radiation60  Wind speed  

 

0.41 0.18 -0.48 0.49 0.56 -0.01 

 385 

The most correlated variable is radiation (0.49) directly followed by humidity (-0.48), temperature (0.41), dew point 

temperature (0.18) and wind speed (-0.01). As expected, taking the past radiation measurements into account further improves 

the correlation, reaching a maximum value when considering the last 60 minutes (0.56). An exponential weighting, giving  

higher importance to the radiation measurements closer to the temperature measurement, was used. This variable is further 

denoted as Radiation60 (Rad60). 390 

 

The variables listed in Table 7 were used to build a predictor for the temperature bias. For this purpose, multiple models were 

calibrated in which the temperature bias is described as a function of only one or multiple meteorological variables. Below 

(Table 8 and Figure 5) only the models with the best performance are shown. Figure 5 shows the uncorrected temperature bias 

(a) as well as the corrected temperature biases after validation with six different models; a simple linear regression with the 395 

past radiation (b), a multiple linear regression with the past radiation and windspeed (c), with the past radiation and humidity 

(d), with the past radiation, windspeed and humidity (e), a random forest model (f) and a boosted regression trees model both 

including temperature, dew point temperature, humidity, radiation, radiation60, windspeed, altitude, month and hour.  

 

Table 8: The coefficient of determination (R2) and root mean square error (RMSE) of the different models. 400 

Model  R2 RMSE 

Radiation60 0.321 0.450 

Radiation60 & windspeed 0.327 0.448 

Radiation60 & humidity 0.336 0.445 

Radiation60 & windspeed & humidity 0.342 0.443 

Random Forest 0.741 0.279 

Boosted regression trees 0.658 0.319 
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Figure 5: The uncorrected temperature bias (a) and the corrected temperature bias after validation with a simple linear regression 405 
with the past radiations (b), a multiple linear regression with the past radiations and windspeed (c), a multiple linear regression with 

the past radiations and humidity (d), a multiple linear regression with the past radiations, humidity and windspeed (e), a random 

forest model (f) and boosted regression trees model including temperature, dew point temperature, humidity, radiation, radiation60, 

windspeed, altitude, month and hour (g). Mean biases and their standard deviations are given above the graphs. Note that the ranges 

on the y axis differ for the different subplots.  410 

 

A simple linear regression based on the past radiation is already sufficient to suppress the mean temperature bias. Adding 

additional variables to the model, such as wind speed, humidity or both is statistically significant but only further decreases 

the RMSE by 0.003 °C to 0.008 °C. The RF and BRT models result in an RMSE of 0.279 and 0.319 and R2 of 0.741 and 0.658 

respectively, indicating a better precision and more robust models.  415 
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The random forest prediction of temperature bias showed the best results. By splitting up the results for day (radiation > 0 

W/m2) and night (radiation = 0 W/m2) (Figure 6), a smaller standard deviation of the bias during night time (0.25) compared 

to daytime (0.31) is obtained. This differentiation between night and day is only for illustrative purposes, only one RF was 

built for both day and night. The statistical details of the random forest model are further summarized in Table 9.  420 

 

Figure 6: The corrected Tbias after validation with the random forest model for daytime (a) and for night time (b). Mean biases and 

their standard deviations are given above the graphs. Note that the ranges on the y axis differ for the different subplots. 

Table 9: Statistical details of the random forest temperature bias prediction model. 

Formula Tbias ~ QC L2 Temperature + Humidity + Dew point temperature + Radiation + 

Radiation60 + Windspeed + Altitude + Month + Hour 

Number of trees 500 

Number of variables tried at each split 3 

Mean of squared residuals  0.091 

% variance explained 69.5 

 425 

  

(a) (b) 



21 

 

4 Evaluation of the quality control and correction method  

To evaluate the quality of the developed QC method, it is first applied to the four low cost WH2600 stations (LC-R) (Table 3) 

installed next to the official measuring equipment in Uccle, Diepenbeek and Humain (AWS). Comparing this LC-R dataset 

with AWS dataset, allows us to investigate the improvement or deterioration of the data quality after each QC level.  430 

4.1 Quality control level 1 – Outlier detection 

For QC L1.1 the range outliers are detected by comparing the temperature of each LC-R station with the climatic thresholds 

set by its nearby official AWS station (Tmax/min_AWS ± dev_reference). As can be seen in Table 6, the allowed deviation from 

the climatic thresholds is smaller for the LC-R stations compared to the LC-X stations in the study area. This is due to the fact 

that the LC-R stations are installed next to the official AWS stations, no environmental factors should thus be taken into 435 

account. The temporal outliers are detected in QC L1.2 by comparing the rate of change between consecutive observations 

with the thresholds defined in Table 6. In QC L1.3 spatial outliers are detected using the Z-score. We should however stress 

that this analysis here is not ideal since every reference station only has 1 neighbour, the official AWS station. Only LC-R01 

and LC-R02 located in Uccle have two neighbours during a period of 4 months, when both stations were active simultaneously.  

 440 

The results show no spatial outliers for the LC-R stations. Some observations are however highlighted as range or temporal 

outliers. Table 10 summarises the number and percentage of observations flagged as 1. These observations are set to NA 

resulting in the temperature dataset with quality level 1. The temperature profiles of the LC-R stations versus the official AWS 

temperature (Figure 7; full coloured versus dashed grey line) highlight observations defined as range or temporal outliers as 

circles or squares respectively. Scatterplots in which the temperature of the LC-R stations is compared to the temperature of 445 

the AWS stations (Figure 8) use the same layout. The temperature difference between the LC-R stations and AWS stations 

(ΔT = TLC-R - TAWS) is calculated as an effective quality measure. 

 

Table 10: Number and percentage of observations flagged as outliers during QC level 1.  

QC level # flagged observations % flagged observations 

QC L1.1 Range test 21 0.006 

QC L1.2 Temporal outliers 180 0.048 

QC L1.3 Spatial outliers 0 0.000 

Total 201 0.054 

 450 

The results show only a few range outlier and even no spatial outliers for the LC-R reference stations. The procedure does 

however highlight 180 observations as temporal outliers (Table 10). These observations were highlighted during the 

persistence test, 180 observations change less than 0.05 °C within 2 hours. With only 0.054% of the observations flagged as 
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outliers we can conclude that the LC-R reference dataset does not contain a lot of outliers. Because of their importance in this 

QC method, especially in QC L3, these reference stations are indeed closely monitored hereby preventing and minimising the 455 

occurrence of outliers. Since only 0.054% of the data was set to NA, no difference in the ΔT statistics occurred. The histograms 

in Figure 9 thus represent the data with both QC level 0 and QC level 1. The mean temperature difference and standard 

deviation for all reference stations equals 0.15 ± 0.56 °C. 

 460 

 

Figure 7: Temperature profile of LC-R stations in Uccle (LC-R01, LC-R02) (a), Diepenbeek (LC-R04) (b) and Humain (LC-R05) 

(c). The grey dashed line represents the official AWS temperature of a specific location. Observations defined as range outliers are 

symbolized by a circle, temporal outliers as a square. The temperature profiles include all measurements between the installation 

data of each LC-R and December 2021. 465 

(a) 

(b) 

(c) 
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Figure 8: Scatterplots of LC-R versus AWS temperature for each reference station LC-R01 (a), LC-R02 (b), LC-R04 (c), LC-R05 

(d) at QC level 0. Observations defined as range outliers are symbolized by a red circle, temporal outliers by a red square. The 

identity line is shown in black. The colour scale indicates the density of observations, white indicating the highest, black the lowest. 470 
The scatterplots include all measurements between the installation data of each LC-R and December 2021. 

 

Reference station LC-R01 only has a small positive mean ΔT, while the mean ΔT of LC-R02 and especially LC-R05 is 

remarkably higher. The mean ΔT of LC-R04 equals zero. The standard deviations of LC-R04 and L-R05 are noticeably smaller 

than those of LC-R01 and LC-R02 (Figure 9). As expected, the temperature difference between the LC-R and AWS stations 475 

is not constant and is correlated with other variables. A higher difference is obtained during the summer months (Figure 10) 

under low cloud and low windspeed conditions (Figure 11). 

 

(a) (b) 

(c) (d) 
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Figure 9: Histograms of temperature difference (ΔT = TLC-R - TAWS) for each reference station LC-R01 (a), LC-R02 (b), LC-R04 (c), 480 
LC-R05 (d) at QC level 0 and QC level 1. Mean differences and their standard deviations are given above the graphs. Note that the 

ranges on the y axis differ for the different subplots. The temperature difference was calculated for all measurements between the 

installation data of each LC-R and December 2021. 

 

Figure 10: Temperature difference (ΔT = TLC-R - TAWS) as a function of hour of the day and month of the year for each reference 485 
station LC-R01 (a), LC-R02 (b), LC-R04 (c), LC-R05 (d) at QC level 1. Background colours, ranging from blue (-1.7°C) to red 

(1.7°C), represent the ΔT. The temperature difference was calculated for all measurements between the installation data of each LC-

R and December 2021. 

(a) (b) (c) (d) 

(b) (c) (d) (a) 
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Figure 11: Temperature difference (ΔT = TLC-R - TAWS) as a function of radiation and wind speed for each reference station LC-R01 490 
(a), LC-R02 (b), LC-R04 (c), LC-R05 (d) at QC level 1. Cells with sample size lower than 10 are not shown in the graph. Note that 

the ranges on the y axis differ for the different subplots. Background colours, ranging from blue (-1.7°C) to red (1.7°C), represent 

the ΔT. The temperature difference was calculated for all measurements between the installation data of each LC-R and December 

2021. 

 495 

4.2 Quality control level 2 – Inter station bias correction 

During QC level 2 temperatures are corrected for the fixed offset between stations or inter station bias, due to intrinsic sensor 

differences at the level of the electronics. The proposed methodology of searching for episodes with a very uniform temperature 

field over the study area (see Section 3), cannot be applied here, due to the large distance between the three locations with LC-

R stations.  500 

 

Here we selected episodes for which we expect a similar temperature between the LC-R and AWS stations. This occurs again 

under breezy cloudy conditions with no rainfall (Figure 11). For each reference station, all 10 minute observations are 

resampled to 2 hour observations, hereby calculating the mean temperature, windspeed, radiation and rainfall. Next, suitable 

episodes are found by selecting episodes where the average rainfall intensity equals 0 mm/h and the average radiation lies 505 

below 100 W/m2. The selected episodes are ordered on average windspeed and limited to the top 10 results. The mean LC-R 

and AWS temperature is calculated for each episode, next an offset between both is calculated. Finally the median offset across 

all episodes is considered as the true offset for each station. These offsets are subtracted from the QC L1 temperature data in 

order to obtain a corrected temperature; the QC level 2 dataset.  

 510 

(b) (c) (d) (a) 
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Reference stations LC-R01 and LC-R04 have a small negative offset, equal to -0.029 °C and -0.072 °C respectively. Stations 

LC-R02 and LC-R05 have positive and notably larger offsets equal to 0.113 °C and 0.243 °C (Figure 12).  

 

 

Figure 12: Offsets during the selected episodes (dots), the median offset (diamond) and its error bar (mean ± standard deviation) for 515 
each reference station (LC-R). For reference the zero-line is plotted in red. 

 

To check the quality improvement of QC level 2, the temperature difference (ΔT = TLC-R - TAWS) between the LC-R and AWS 

stations is again calculated for every station (Figure 13). Reference stations LC-R01 and LC-R04 show a small increase in 

their mean ΔT, the mean ΔT of LC-R02 and LC-R05 however decreases. As a result, the ΔT of all stations becomes more 520 

equal. Since QC level 2 only added a fixed temperature offset, the standard deviation of all ΔT remain the same. The inter 

station bias correction further highlights the seasonal and daily pattern of the ΔT, especially for reference station LC-R05 

(Figure 14). 
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Figure 13: Same as Figure 9 for QC level 2.  525 

 

Figure 14: Same as Figure 10 for QC level 2.  

 

4.3 Quality control level 3 – Intra station bias correction 

From Section 3, we recall that the random forest prediction of temperature bias showed the best results After applying this 530 

prediction model on the reference dataset (LC-R), a level 3 corrected temperature is obtained for each LC-R station. These 

results could be biased since the RF model is trained on 60 % of the LC-R dataset, and then applied on the complete LC-R 

dataset. To account for this we did apply the prediction model to both the complete dataset and the test data set (which was 

not used for training the model). The outcome for each LC-R is listed in Appendix D. It can be noted that mean T difference 

(a) (b) (c) (d) 

(b) (c) (d) (a) 
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remains equal for both datasets, the standard deviation does slightly increase with 0.5 to 0.7 °C when using the test dataset. 535 

The results below are based on the test dataset only.  

 

To evaluate the quality improvement of QC level 3, the temperature difference (ΔT = TLC-R - TAWS) between the LC-R and 

AWS stations is again calculated for every station (Figure 15). Histograms of the temperature show a mean ΔT of almost 0°C 

for each reference station, the standard deviation clearly decreased compared to QC level 2 (Figure 13). When the ΔT is plotted 540 

in function of each month and hour of the day, one can notice that the diurnal and seasonal pattern is completely corrected for 

(Figure 16). Also effects of wind speed and radiation are effectively eliminated (Figure 17). The mean temperature difference 

and standard deviation for all LC-R stations equals to 0.00 ± 0.28 °C.  

 

 545 

Figure 15: Same as Figure 9 for QC level 3.  

(a) (b) (c) (d) 
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Figure 16: Same as Figure 10 for QC level 3.  

 

Figure 17: Same as Figure 11 for QC level 3.  550 

  

(b) (c) (d) (a) 

(b) (c) (d) (a) 
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5 Application of the QC method to the stations in the study area 

In this section the newly developed QC method is applied to the low-cost stations of the Leuven.cool network (LC-X). The 

Leuven.cool dataset currently ranges from July 2019 (2019Q3) until December 2021 (2021Q4). The QC method is performed 

4 times a year, each time for a period of three months.  555 

5.1 Quality control level 1 – Outlier detection 

During QC level 1 range, temporal and spatial outliers are removed using climatological thresholds from Uccle, neighbouring 

observations and neighbouring stations respectively. If no official weather station would be available, thresholds can be based 

on existing climate classification maps. Table 11 summarizes the number of observations flagged as outliers in each step. For 

each year, only between 0.5 % and 1 % of the data is defined as outliers and thus eliminated, indicating that the raw data 560 

quality is rather good compared to other citizens science networks.  

 

Table 11: Number and percentage of observations flagged as outliers during QC level 1 for 2019 Q3-4, 2020 Q1-2-3-4 and 2021 Q1-

2-3-4 for all LC-X measurements. 

QC level # 2019 % 2019 # 2020 % 2020 # 2021 % 2021 

QC L1.1 Range test 0 0.000 9 0.000 26 0.000 

QC L1.2 Temporal outliers: step 22 0.001 276 0.006 169 0.003 

QC L1.2 Temporal outliers: persistence 796 0.039 1216 0.025 4796 0.092 

QC L1.3 Spatial outliers 11769 0.581 31846 0.658 26186 0.503 

Total 12587 0.621 33317 0.689 31177 0.599 

 565 

The simple spatial outliers test performed by Chapman et al. (2017) yielded comparable results: 1.5 % of the data was omitted 

in this study. Other studies reported a much higher fraction of eliminated data. Meier et al. (2017) only kept 47 % of the raw 

data after conducting their 4 step QC analysis. Napoly et al (2018) and Feichtinger et al. (2020) kept 58 % and 55 % of the 

data respectively. CrowdQC+ as a further development of CrowdQC, results in an even lower data availability, only 30 % of 

the raw data remains after the QC (Fenner et al., 2021). These high numbers of omitted data can however be explained by (1) 570 

a great number of CWS installed indoors (not applicable in our setup), thereby lacking the typical diurnal temperature patterns, 

and (2) radiative errors due to solar radiation exposure of poorly designed devices, resulting in very high temperature 

observations (Napoly et al., 2018; Fenner et al., 2021). In the QC method presented in this paper, calibration and radiative 

errors are, however, rather than omitted, corrected for during QC level 2 and 3. 
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5.2 Quality control level 2 – Inter station bias correction 575 

In QC level 2 a fixed offset for each weather station is obtained. These offsets, induced by the intrinsic differences on the level 

of the sensors’ electronics, are subtracted from the station’s temperature, thereby accounting for calibration errors. The 

obtained offsets, median offset and error bar for each station are plotted in Figure 18. The mean offset of all stations equals 

0.010 °C. Station LC-102 has the highest offset equal to 0.349 °C, station LC-074 has the lowest offset equal to -0.220 °C. It 

can be noticed that the error bars of most stations are rather small, which reinforces our confidence of a valid determination of 580 

the fixed calibration offset.  

 

Figure 18: Offsets during the selected episodes (grey dots), the median offset (black diamond) and its error bar (mean ± standard 

deviation) for each LC-X station active during at least one episode. For reference the zero-line is plotted in red.  

For stations that were not active during one of the selected timeframes, we were not able to determine their calibration offset 585 

(stations LC-003, LC-096, LC-108, LC-109, LC-114, LC-124, LC-125, LC-127 and LC-128). As a consequence, no corrected 

temperature could be calculated, meaning that those stations are not considered during the following QC level (QC level 3). 

The search for episodes should be extended with upcoming periods of 6 months in order to resolve this problem.  

5.3 Quality control level 3 – Intra station bias correction 

In QC level 3 the random forest model is applied to each temperature observation of all LC-X stations in order to obtain a site-590 

and time-specific prediction for its temperature bias. As expected, this prediction shows the same pattern as seen for the LC-

R stations: generally, we see a positive bias that peaks around midday and is more pronounced during both summer months 

and low cloud and low windspeed conditions (Figure 19). Note that the actual bias calculation in QC level 3 is performed for 
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every timestamp and every LC-X station separately, using the other weather variables measured by the station, as input for the 

RF model. After subtracting this temperature bias from the observed temperature, corrected temperature for each station is 595 

obtained. 

 

Figure 19: Prediction of the temperature bias (°C) as a function of hour of the day and month of the year for all LC-X stations (a) 

and prediction of the temperature bias (°C) as a function of radiation and wind speed for all LC-X stations, cells with sample size 

lower than 10 are not shown in the graph (b). Background colours, ranging from blue (-1.7°C) to red (1.7°C), represent the 600 
temperature bias. The prediction of the temperature bias was calculated for all LC-X measurements July 2019 and December 2021. 

 

These results are in line with the findings of Jenkins et al. (2014) and Bell et al. (2015):both found a significant positive 

instrument temperature bias during daytime with strong relation to the incoming solar radiation for multiple types of 

crowdsourced weather stations. To our knowledge, previous to our study, only Cornes et al. (2020) has used the findings of 605 

Bell et al. (2015) to actually correct crowdsourced air-temperature data. Radiation from satellite imagery and background 

temperature data from official stations was used to parameterize the short-wave radiation bias, as a consequence no correction 

was performed for night time. The data correction has reduced the error from ± 0.2 - 0.8 °C to ± 0.2 - 0.4 °C. These results are 

comparable with our results, although here slightly smaller errors of only 0.23 - 0.30 °C are obtained (Figure 15). Cornes et 

al. (2020) do suggest to incorporate wind speed as an additional co-variate in order to incorporate the effect of passive 610 

ventilation. The random forest model described in this study does include additional co-variates, including wind speed, but 

most importantly only needs data from the weather station itself. No satellite imagery or official stations are needed once the 

random forest model is built. Cornes et al. (2020) further highlights the need for station specific quality controls in order to 

remove the confounding effect of different instrument types.  With the use of a unique station type, we aimed at minimizing 

such effects in our dataset. QC level 2 (Sect. 5.2) showed that these effects were indeed limited. 615 

(b) (a) 
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5.4 Overall impact of the QC method on the dataset 

To assess the impact of the different QC stages on the global dataset, several violin boxplots were created both on monthly 

and yearly base. Figure 20 illustrates the monthly violin plots for 2019, 2020 and 2021 at each quality control level. Table 12 

summarises the mean monthly temperature and its standard deviation for each quality control level.  

 620 

The violin plots, and accompanying mean temperature and standard deviation, do not change much over the different QC 

levels. Since QC level 1 removes outliers from the dataset we would expect a lower standard deviation for QC level 1 compared 

to QC level 0. Figure 20 does indicate the removal of some outliers, but Table 12 does not confirm the expected decrease in 

standard deviation. This can be explained by the low percentage of observations defined as outliers, per year only 0.5 to 1 % 

of the data was defined as outlier. Due to the strict installation protocol, most errors were already eliminated upfront. If errors 625 

do occur as a result of station malfunctioning, they are quickly resolved since the dataflow and station siting are continuously 

controlled.  

 

During QC level 2 each station is corrected for its inter station temperature bias. Since both positive and negative biases, 

ranging from 0.349 °C to -0.220 °C, are possible no clear change in the mean temperature is expected between QC level 1 and 630 

QC level 2. Because this QC level corrects each station with a fixed offset the standard deviation should stay the same. Both 

of these assumptions are confirmed by Figure 20 and Table 12.  

 

During the third QC level we do see a clear change in mean temperature and standard deviation. For the summer months a 

reduction in both the mean temperature and standard deviation up to respectively -0.40 °C and -0.36 °C is noted. The change 635 

in standard deviation shows a monthly pattern with a higher reduction during the summer months and almost no change during 

winter. The change in mean temperature is not as consistent and seems dependent on the observed temperatures. A higher 

reduction in mean temperature is noted for the hot summers of 2019 and 2020 compared to the rather cold summer of 2021. 

These results can easily be explained by the daily and seasonally patterns of the predicted temperature bias (Figure 19).  

  640 
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Figure 20: Monthly violin plots of temperature data (°C) of all LC-X stations at quality control level 0 (raw data), level 1 (outliers 

removed), level 2 (inter station bias correction) and level 3 (intra station bias correction) for 2019 Q3-4 (a), 2020 Q1-2-3-4 (b) and 645 
2021 Q1-2-3-4 (c).  

 

Table 12: The mean monthly temperature (°C) and its standard deviation of all LC-X stations at quality control level 0 (raw data), 

level 1 (outliers removed), level 2 (inter station bias correction) and level 3 (intra station bias correction). 

 QC level 0 QC level 1 QC level 2 QC level 3 ΔL0-L3 

 Mean T  Std T Mean T Std T Mean T Std T Mean T Std T Mean T Std T 

(a) 

(b) 

(c) 



35 

 

2019           

7 20.95 6.21 20.93 6.23 20.96 6.23 20.54 5.89 -0.40 -0.32 

8 19.82 5.32 19.81 5.33 19.84 5.34 19.53 4.96 -0.29 -0.36 

9 15.08 3.99 15.08 3.99 15.08 3.99 14.91 3.76 -0.17 -0.23 

10 12.26 3.93 12.25 3.93 12.26 3.93 12.22 3.83 -0.04 -0.10 

11 6.54 3.70 6.53 3.70 6.54 3.70 6.54 3.68 0.00 -0.03 

12 6.12 3.65 6.12 3.65 6.12 3.65 6.15 3.65 0.03 0.00 

2020           

1 6.21 3.68 6.20 3.68 6.21 3.68 6.21 3.66 0.00 -0.02 

2 7.57 3.33 7.57 3.33 7.57 3.33 7.56 3.29 -0.02 -0.05 

3 7.62 3.76 7.62 3.77 7.62 3.76 7.49 3.69 -0.13 -0.07 

4 12.89 5.97 12.88 5.97 12.88 5.97 12.55 5.71 -0.33 -0.26 

5 14.95 6.10 14.94 6.11 14.93 6.10 14.58 5.79 -0.37 -0.32 

6 18.60 5.38 18.60 5.38 18.61 5.39 18.26 5.05 -0.35 -0.33 

7 18.79 4.66 18.79 4.67 18.80 4.67 18.47 4.36 -0.33 -0.30 

8 21.55 6.00 21.54 6.00 21.52 6.00 21.18 5.63 -0.37 -0.37 

9 16.54 5.28 16.53 5.28 16.54 5.28 16.35 5.01 -0.19 -0.27 

10 11.88 2.86 11.88 2.86 11.87 2.85 11.84 2.79 -0.05 -0.08 

11 9.08 4.34 9.07 4.34 9.07 4.34 9.05 4.31 -0.03 -0.03 

12 5.79 3.63 5.78 3.63 5.79 3.62 5.80 3.62 0.01 0.00 

2021           

1 3.58 2.95 3.57 2.96 3.57 2.95 3.58 2.94 0.01 -0.02 

2 5.59 6.88 5.59 6.89 5.59 6.88 5.50 6.84 -0.09 -0.04 

3 7.55 4.84 7.55 4.84 7.51 4.80 7.40 4.61 -0.16 -0.23 

4 7.80 4.95 7.80 4.95 7.78 4.96 7.60 4.76 -0.21 -0.20 

5 12.30 4.75 12.30 4.75 12.29 4.76 12.10 4.52 -0.20 -0.23 

6 19.70 5.11 19.70 5.11 19.69 5.12 19.37 4.77 -0.33 -0.34 

7 18.72 3.64 18.71 3.64 18.71 3.65 18.48 3.29 -0.23 -0.34 

8 17.51 3.53 17.51 3.54 17.51 3.54 17.38 3.22 -0.13 -0.31 

9 16.88 4.52 16.87 4.52 16.86 4.52 16.68 4.26 -0.20 -0.26 

10 11.68 3.55 11.67 3.55 11.66 3.56 11.63 3.44 -0.05 -0.11 

11 6.38 3.29 6.37 3.29 6.36 3.29 6.37 3.26 -0.01 -0.03 

12 5.90 3.92 5.89 3.92 5.88 3.93 5.90 3.92 0.00 0.00 



36 

 

6. Application potential of the quality controlled and corrected Leuven.cool dataset 650 

A validation of the proposed QC method showed that it can reduce the mean temperature difference and standard deviation 

from 0.15 ± 0.56 °C to 0.00 ± 0.28 °C. The QC method can correct the temperature difference equally across different hours 

of the day and months of the year (Figure 16) as well and under different radiation and windspeed conditions (Figure 17).  

 

The quality-controlled Leuven.cool dataset enables a detailed comparison with other crowdsourced datasets for which less or 655 

even no metadata is available. As such, the Leuven.cool stations can serve as gatekeepers for other crowdsourced observations. 

In the past this role has been limited to standard weather station network which mostly only have a limited number of 

observations available (Chapman et al., 2017).  

 

Numerous studies have shown that the UHI effect causes night time temperature differences up 6 to 9 °C during clear nights 660 

(Chapman et al., 2017; Venter et al., 2021; Stewart, 2011; Napoly et al., 2018; Feichtinger et al., 2020). These thresholds are 

much higher than mean bias obtained after correction. The dense quality controlled Leuven.cool dataset thus allows for 

microscale modelling of urban weather patterns, including the urban heat island (Chapman et al., 2017; de Vos et al., 2020; 

Napoly et al., 2018; Feichtinger et al., 2020). Since such high-quality datasets contain measurements with both high spatial 

and temporal resolution, they can easily be used to obtain spatially continuous temperature patterns across a region (e.g. Napoly 665 

et al., 2018; Feichtinger et al., 2020). Interpolation methods based on single pair stations or mobile transect methods are much 

less trustworthy (Napoly et al., 2018). Dense weather station networks can be used to investigate the inter- and intra LCZ 

variability within a city (Fenner et al., 2017; Verdonck et al., 2018). The dataset can further help investigate the relation 

between temperature and human and ecosystem health (e.g. Demoury et al., 2022; Troeyer et al., 2020) and their effect on 

evolutionary processes (e.g. Brans et al., 2022).   670 

 

The dataset can also help refine existing weather forecast models which are currently mostly based on official rural 

observations (Sgoff et al., 2022). Nipen et al. (2020) showed that the inclusion of citizen observations improves the accuracy 

of short-term temperature forecasts in regions where official stations are sparse. Mandement and Caumont (2020) used 

crowdsourced weather stations to improve the observation and prediction of near convection. After quality control and 675 

correction, also the wind (Chen et al., 2021) and precipitation measurements (de Vos et al., 2019) can be useful to improve 

detection and forecasting. Further, the Leuven.cool dataset could be a useful input in air pollution prediction models (e.g. IFD-

model (Lefebvre et al., 2011)). 

  



37 

 

7 Conclusion 680 

This study presents the data from the citizen science weather station network Leuven.cool, which consists of around 100 

weather stations in the city of Leuven, Belgium. The crowdsourced weather stations (Fine Offset WH2600) are distributed 

across Leuven and surroundings, measuring the local climate since July 2019. The dataset is accompanied by a newly 

developed station specific temperature quality control procedure. The quality control method consists of three levels, removing 

implausible measurements, while also correcting for inter (in between stations) - and intra (station-specific) station temperature 685 

biases. This QC method combines suggestions of previous developed methods but improves them by correcting aberrant 

temperature observations rather than removing them. As a result, more data can be retained allowing researchers to study the 

highly heterogeneous urban climate in all its detail. Moreover, the QC method uses information from the crowdsourced data 

itself and only requires reference data from official stations during its development and evaluation stage. Afterwards the 

method can be applied independently of the official network that was used in the development phase. Transferring the method 690 

to other networks or regions would require the recalibration of the QC parameters. Specifically, for QC L1.1 some indication 

of climate thresholds is needed. QC L1.3 and QC L2 require a dense weather station network, the QC method is thus less 

suitable for single or few stations. For QC L3 quite some other data (e.g. radiation, windspeed, …) are needed. The random 

forest model is however easily adaptable to the parameters that are available. 

 695 

A validation of the proposed QC method was carried out on four Leuven.cool stations installed next to official equipment, and 

showed that it is able to reduce the mean temperature difference and standard deviation from 0.15 ± 0.56 °C to 0.00 ± 0.28 °C. 

The quality-controlled Leuven.cool dataset enables a detailed comparison with other crowdsourced datasets for which less or 

even no metadata is available. The dense dataset further allows for microscale modelling of urban weather patterns, such as 

the urban heat island, and can help identify the relation between temperature and human and ecosystem and their effect on 700 

evolutionary processes. Lastly the dataset could be used to refine existing forecast models which are currently mostly based 

on official rural observations. Knowing that both the frequency and intensity of heat waves will only increase during the 

upcoming years, dense high-quality datasets such as the Leuven.cool datasets become highly valuable for studying local 

climate phenomena, planning efficient mitigation and adaptation measures and hence mitigating future risks.  

705 
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Data and code availability 

All data described in this paper and scripts used to design, evaluate and apply the QC method are stored in RDR, KU Leuven's 

Research Data Repository and accessible through the following DOI: https://doi.org/10.48804/SSRN3F (Beele et al., 2022). 

The dataset is accompanied by an extensive README file explaining the content of the dataset. The dataset includes a 

metadata file (01_Metadata.csv), the actual observations per 3 months/one quarter (LC_YYYYQX.csv) and the R scripts 710 

needed to build and apply the QC method (LC-R_QCL1-2-3.Rmd and LC-X_QCL1-2-3.Rmd). The metadata file contains info 

on the weather station's coordinates, altitude above sea level, installation height, LCZ class, dominant landcover, mean SVF 

and mean building height in a buffer of 10m around each weather station. Coordinates have rounded to 3 decimals for privacy 

reasons. The actual observations are aggregated to 10 minutes and include Relative humidity [%], Dew point temperature [°C], 

Number of 16 second observations in 10 minutes aggregate, Solar radiation [W/m2], Rain intensity [mm/h], Daily rain sum 715 

[mm], Wind direction [°], Wind speed [m/s], Date in YYYY-MM-DD, Year in YYYY, Month in MM, Day in DD, Hour in 

HH, Minute in MM, Weighted radiation during last 60 minutes [W/m2], Temperature at QCL0 [°C], Temperature at QCL1 

[°C], Temperature at QCL2 [°C], Temperature at QCL3 [°C]. 
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Appendices 

Appendix A. Specifications of the WH2600 digital weather station 735 

The technical specifications of the Fine Offset WH2600 weather station are given in Table A1.  

 

Table A1: Technical specifications of the Fine Offset WH2600 weather station as given by the manufacturer. 

Outdoor sensor array  

Transmission distance in open field   100- m 

Temperature range   -40 °C – 60 °C  

Temperature accuracy   +/- 1 °C 

Temperature resolution   0.1 °C 

Relative humidity range  1 % - 99 % 

Relative humidity accuracy   +/- 5 % 

Rain volume range   0 – 9999 mm  

Rain volume accuracy   +/- 10 % 

Rain volume resolution   0.3 mm (if rain volume < 1000 mm) 

 1 mm (if rain volume > 1000 mm) 

Wind speed range  0 – 50 m/s  

Wind speed accuracy  +/- 1 m/s (wind speed < 5 m/s) 

 +/- 10 % (wind speed > 5 m/s) 

Light range  0 – 400 k Lux 

Light accuracy   +/- 15 % 

Measuring interval   16 sec 

 

  740 
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Appendix B. Specifications LCZ map  

The LCZ map was created using a supervised random forest classification approach based on fine-scale land use, building 

height, building density and green ratio data within R. The input data used for the creation of the LCZ map is listed in Table 

B1. All input datasets were rasterized and cropped to spatial resolution of 100 m.  

 745 

Table B1: Input data used for the creation of the LCZ map 

Input data Dataset Source 

Land use  Land use data Flanders, 10 m, 2019 (Landgebruik - Vlaanderen - toestand 2019, 2022) 

Building height 3D GRB, 2015 (3D GRB, 2022) 

Building density 3D GRB, 2015 (3D GRB, 2022) 

Green ratio Green map Flanders, 1 m, 2018 (Groenkaart Vlaanderen 2018, 2022) 

 

A grid area of 15 by 15 km was drawn around the city centre of Leuven. Within this grid area training polygons for 12 LCZ 

types (7 urban LCZs and 5 natural LCZs) were drawn. The delineation of the urban training areas was based on the same input 

data layers. The threshold values used during this process are further described in Figure B1. The training areas are plotted in 750 

Figure B2.  

 

The training polygons were randomly split in training (0.7) and validation (0.3) data. Subsequently a random forest model was 

trained and validated using both datasets. A majority filter with a 3x3 matrix (3x3 moving window) was applied using the 

focal function in R to obtain a more realistic and clustered LCZ map (Demuzere et al., 2020). The LCZ map was projected to 755 

ESPG: 31370 – Belge Lambert 72 using the projectRaster function and nearest neighbour method in R.  

 

The resulting LCZ map has an overall accuracy of 0.79 and Kappa equal to 0.76. The confusion matrix is presented in Table 

B2. 

 760 
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Figure B1: Decision tree used to delineate training areas for urban LCZ classes.  

 

 

Figure B2: Training areas used for the creation of the LCZ map. Delineation is based on land use, building height, building density 765 
and green ratio data 
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Table B2: Confusion matrix LCZ map. The matric summarises the number of cells wrongly or correctly classified for each LCZ 

class. The user accuracy (UA) and producer accuracy (PA) for each LCZ class and the overall accuracy are included as well. 

 
LCZ 

2 

LCZ 

3 

LCZ 

4 

LCZ 

5 

LCZ 

6 

LCZ 

8 

LCZ 

9 

LCZ 

11 

LCZ 

12 

LCZ 

14 

LCZ 

15 

LCZ 

17 

Total UA 

(%) 

LCZ 

2 

7.0  1.0  1.0 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 9.0  77.8  

LCZ 

3 

1.0  7.0  0.0 0.0  0.0  0.0  0.0 0.0 0.0 0.0 1.0 0.0 9.0  77.8  

LCZ 

4 

0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 100.0 

LCZ 

5 

5.0  6.0  0.0 15.0  15.0  3.0  0.0  0.0 0.0 0.0  2.0 0.0 46.0  32.6  

LCZ 

6 

0.0 1.0  0.0 0.0  27.0  5.0  1.0  0.0 0.0 0.0 0.0 0.0 34.0  79.4  

LCZ 

8 

0.0  0.0  0.0 0.0  0.0  49.0  0.0  0.0 0.0  0.0 0.0 0.0 49.0  100.0  

LCZ 

9 

0.0 0.0  0.0 0.0  0.0  1.0  40.0  1.0   0.0  0.0  0.0 0.0  42.0  95.2  

LCZ 

11 

0.0 0.0 0.0 0.0 0.0 0.0 0.0  44.0  9.0  0.0 0.0 0.0 53.0  83.0  

LCZ 

12 

0.0 0.0 0.0 0.0 0.0  0.0 2.0  2.0   9.0  0.0 0.0 5.0  18.0  50.0  

LCZ 

14 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.0  0.0 0.0 29.0  100.0 

LCZ 

15 

0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 2.0 0.0 4.0 50.0 

LCZ 

17 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0  9.0  100.0 

Total 13.0  15.0  6.0 15.0  42.0  59.0  43.0  47.0  18.0  29.0  5.0 14.0  306.0  
 

PA 

(%) 

53.8  46.7  66.7 100.0  64.3  83.1  93.0  93.6  50.0  100.0  40.0 64.3  
 

79.1  

  770 
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Appendix C. Quality control other Leuven.cool variables 

A qualitative assessment of the data quality was performed by making scatterplots of these variables for the LC-R stations 

compared to the AWS stations (Figure C1).  

 

Overall, the measured parameters are within the accuracy given by the manufacturer. There are, however, deviations in the 775 

wind and radiation measurement that are attributable to the small location differences (in the order of meters) between the LC-

R stations and the official sensors. For wind, we compared the LC-R data with professional 2m wind measurements, but this 

height is in fact not the standard measurement height for wind since too many ground effects are still into play at this height. 

For radiation, we already mentioned the design flaw regarding the wind vane dropping a shadow, but also high nearby trees 

can influence the measurements for low solar elevations (in the case of LC-R01 and LC-R02). 780 
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Figure C1: Scatterplots of LC-R versus AWS dew point temperature, humidity, radiation and wind speed for each reference station 790 
LC-R01 , LC-R02, LC-R04, LC-R05. The identity line is shown in black. The colour scale indicates the density of observations, 

yellow indicating the highest, purple the lowest. The scatterplots include all measurements between the installation data of each LC-

R and December 2021. For each variable the same ranges of x- and y-axis are used.  

 

Appendix D. Application RF model on LC-R dataset 795 

In section 5 the RF model is applied to the LC-R dataset to obtain a corrected temperature for each observation. These results 

could be biased since the RF model is trained on 60 % of the LC-R dataset, and then applied on the complete LC-R dataset. 

To account for this we did apply the prediction model to both the complete dataset and the test data set (which was not used 

for training the model). The outcome for each LC-R is listed in table D1. It can be noted that mean T difference remains equal 

for both datasets, the standard deviation does slightly increase with 0.5 to 0.7 °C when using the test dataset only. The mean 800 

temperature difference and standard deviation for all LC-R stations increases from 0.00 ± 0.22°C to 0.00 ± 0.28 °C.  

 

Table D1: Comparison of the obtained T difference (ΔT = TLC-R - TAWS) when using the complete LC-R dataset and the LC-R 

test dataset.  

LC-R ΔT for complete dataset  ΔT for test dataset 

LC-R01 0.01 ± 0.24°C 0.01 ± 0.30°C 

LC-R02 0.00 ± 0.23°C 0.00 ± 0.30°C 

LC-R04 0.00 ± 0.20°C 0.00 ± 0.26°C 

LC-R05 0.00 ± 0.18°C 0.00 ± 0.23°C 

Mean 0.00 ± 0.22°C 0.00 ± 0.28°C 

 805 

For comparison the histograms and heatmaps of the temperature difference (ΔT = TLC-R - TAWS) using the complete and test 

dataset only have been added below in Figure D1, D2 and D3. Only slight differences smaller than 0.1°C exist between the 

the ΔT for complete dataset and ΔT for test dataset. The diurnal and seasonal pattern is still corrected for (Figure D2). Also, 

effects of wind speed and radiation are effectively eliminated (Figure D3).  

 810 
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Figure D1: Same as Figure 9 for QC level 3. Comparison between ΔT for complete dataset (upper row) and ΔT for test dataset (lower 

row) 

(a) (b) (c) (d) 

(a) (b)

. 

(c) (d) 
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 815 

 

Figure D2: Same as Figure 10 for QC level 3. Comparison between ΔT for complete dataset (upper row) and ΔT for test dataset 

(lower row) 

 

(b) (c) (d) (a) 

(b) (c) (d) (a) 
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 820 

 

Figure D3: Same as Figure 11 for QC level 3. Comparison between ΔT for complete dataset (upper row) and ΔT for test dataset 

(lower row) 

 

(b) (c) (d) (a) 

(b) (c) (d) (a) 
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