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Authors’ response to RC1 - manuscript ESSD-2022-113 

Responses to Reviewer comments: The text in blue represents the authors’ reply. Text in italic 

represents text that was changed in the manuscript, with line numbers referring to those in the revised 

manuscript. We numbered the comments for easier referral. 

General comments: 

My main remark is that the manuscript should highlight better the value of the data set itself for future 

research (which I think is high!), and that the developed and applied QC is relatively strictly focused 

on this type of data set and weather station. For example, one could not apply the QC to another 

crowdsourced data set of, e.g., Netatmo data (radiation data missing) or use it to quality control 

single/few stations (L1.3, L2). 

My opinion is that the comprehensive data set and the fact that it is quality controlled to a high degree 

is the key selling point, not the developed QC itself. The fact that such a data set exists and that the 

network of stations will be maintained for some time (until when?) is great. I do not think that the QC 

is “easily transferable” to other cities, as you need a lot of measurement data for each station, which is 

not the case for most crowdsourced data sets. Thus I recommend to restructure the manuscript a bit to 

give more emphasis on the network (how set up, how maintained, by whom, ...) and the data (how 

collected, what is in the data set, …), and a bit less on the QC. The data set itself on the repository 

should then be enhanced with additional material regarding meta data of the stations, e.g., Gubler et al. 

2021 Supplementary Material (https://doi.org/10.1016/j.uclim.2021.100817). 

Reply: We thank the reviewer for the thorough review and useful comments and suggestions that 

improved our manuscript. We have considered all your comments and revised the manuscript 

accordingly. Please see our point-by-point responses on the specific comments below. 

We agree that the value of this dataset is of high relevance and has many useful applications. Those 

applications were currently not introduced in the manuscript. We incorporated them in an additional 

section; Section 6. Application potential of the quality controlled and corrected Leuven.cool dataset. 

The main applications are further summarised in the conclusion.  

‘6. Application potential of the quality controlled and corrected Leuven.cool dataset 

A validation of the proposed QC method showed that it can reduce the mean temperature difference 

and standard deviation from 0.15 ± 0.56 °C to 0.00 ± 0.28 °C. The QC method can correct the 

temperature difference equally across different hours of the day and months of the year (Figure 16) as 

well and under different radiation and windspeed conditions (Figure 17).  

The quality-controlled Leuven.cool dataset enables a detailed comparison with other crowdsourced 

datasets for which less or even no metadata is available. As such, the Leuven.cool stations can serve as 

gatekeepers for other crowdsourced observations. In the past this role has been limited to standard 

weather station network which mostly only have a limited number of observations available (Chapman 

et al., 2017).  

Numerous studies have shown that the UHI effect causes night time temperature differences up 6 to 9 

°C during clear nights (Chapman et al., 2017; Feichtinger et al., 2020; Napoly et al., 2018; Stewart, 

2011; Venter et al., 2021). These thresholds are much higher than mean bias obtained after correction. 

The dense quality controlled Leuven.cool dataset thus allows for microscale modelling of urban 

weather patterns, including the urban heat island (Chapman et al., 2017; de Vos et al., 2020; 

https://doi.org/10.1016/j.uclim.2021.100817


Feichtinger et al., 2020; Napoly et al., 2018). Since such high-quality datasets contain measurements 

with both high spatial and temporal resolution, they can easily be used to obtain spatially continuous 

temperature patterns across a region (e.g. Feichtinger et al., 2020; Napoly et al., 2018). Interpolation 

methods based on single pair stations or mobile transect methods are much less trustworthy (Napoly et 

al., 2018). Dense weather station networks can be used to investigate the inter- and intra LCZ 

variability within a city (Fenner et al., 2017; Verdonck et al., 2018). The dataset can further help 

investigate the relation between temperature and human and ecosystem health (e.g. Aerts et al., 2022; 

Troeyer et al., 2020) and their effect on evolutionary processes (e.g. Brans et al., 2022). 

The dataset can also help refine existing weather forecast models which are currently mostly based on 

official rural observations (Sgoff et al., 2022). Nipen et al. (2020) showed that the inclusion of citizen 

observations improves the accuracy of short-term temperature forecasts in regions where official 

stations are sparse. Mandement & Caumont (2020) used crowdsourced weather stations to improve the 

observation and prediction of near convection. After quality control and correction, also the wind (Chen 

et al., 2021) and precipitation measurements (de Vos et al., 2019) can be useful to improve detection 

and forecasting. Further, the Leuven.cool dataset could be a useful input in air pollution prediction 

models (e.g. IFD-model (Lefebvre et al., 2011)).’ (Lines 673-701) 

‘The quality-controlled Leuven.cool dataset enables a detailed comparison with other crowdsourced 

datasets for which less or even no metadata is available. The dense dataset further allows for microscale 

modelling of urban weather patterns, such as the urban heat island, and can help identify the relation 

between temperature and human and ecosystem and their effect on evolutionary processes. Lastly the 

dataset could be used to refine existing forecast models which are currently mostly based on official 

rural observations.’ (Lines 723-727) 

 

Reply: We further agree that the QC method was built for this specific data set but believe that it can 

be adapted to similar crowdsourced datasets and regions. When no climate thresholds are directly 

available, thresholds can be based on existing climate classification maps (QC L1.1). If no estimation 

can be made, QC L1.1 can be removed. The QC method was built for weather station networks is thus 

less suitable to quality control single or few stations (QC L1.3, QC L2). Lastly, the random forest model 

(QC L3) is easily adaptable to the parameters that are available (we do acknowledge, however, that 

radiation is the most important parameter in the correction procedure). As an example, we could not 

use atmospheric pressure measurements in our case, since these were not correctly transferred by the 

receiver for many of the stations within the Leuven.cool network. In the conclusion paragraph, we 

summarised what is needed for the QC to be transferred to other regions 

‘Afterwards the method can be applied independently of the official network that was used in the 

development phase. Transferring the method to other networks or regions would require the 

recalibration of the QC parameters. Specifically, for QC L1.1 some indication of climate thresholds is 

needed. QC L1.3 and QC L2 require a dense weather station network, the QC method is thus less 

suitable for single or few stations. For QC L3 quite some other data (e.g., radiation, windspeed, …) are 

needed. The random forest model is however easily adaptable to the parameters that are available.’ 

(Lines 714-719) 

 

Reply: To improve the usability of the dataset, the metadata on the data repository will be enhanced 

with the following parameters: installation height, LCZ, dominant landcover, mean SVF and mean 

building height in buffer of 10m around weather station.  



Specific comments: 

1. Introduction: At some point when crowdsourced data is introduced, the authors should better 

highlight that this paper mainly deals with air-temperature data, especially regarding the QC. 

Reply: We agree that the link to air temperature might not have been very clearly stated in the 

introduction. Within this introduction crowdsourced data is introduced as a promising solution to 

measure the urban heat island. The connection to air-temperature data seemed logic but was indeed not 

specified. The overview of currently existing QC methods did mostly focus on air-temperature data. 

We changed the introduction accordingly.  

‘The rise of crowdsourced air-temperature data, especially in urban areas, could be a promising 

solution to bridge this knowledge gap (Muller et al., 2015).’ (Lines 56-57) 

Recent studies have therefore highlighted the importance of performing a data quality control in data 

processing applications (Båserud et al., 2020; Longman et al., 2018), especially before analysing 

crowdsourced air-temperature data (Bell et al., 2015; Chapman et al., 2017; Cornes et al., 2020; 

Feichtinger et al., 2020; Jenkins, 2014; Meier et al., 2017; Napoly et al., 2018; Nipen et al., 2020). 

(Lines 69-72) 

‘Current QC studies mostly identify and remove implausible temperature measurements (Chapman et 

al., 2017; Meier et al., 2017; Napoly et al., 2018), instead of correcting for known temperature biases 

(Cornes et al., 2020).’ (Lines 95-96) 

 

2. Introduction: In what way is the current data set a “crowdsourcing” data set? Please explain better 

and compare with the definition of crowdsourcing (e.g. Muller et al. 2015). Or is it more citizen 

science? 

Reply: We understand the confusion between both terms. The definition "crowdsourcing" and "citizen 

science" is still somehow fluid, and certainly not settled at this time.  

Muller et al. (2015) states that crowdsourcing was traditionally defined as “obtaining data or 

information by enlisting the services of a (potentially large) number of people” but highlights that the 

definition should be expanded to include “and/or from a range of public sensors, typically connected 

via the Internet”. In the past, crowdsourcing was merely understood as the outsourcing of a certain task 

to the general public but in more recent years it is seen as the "lowest level" of citizen science, i.e., 

citizens contributing to sensing (see, e.g., the review article of Zheng et al. (2018)). Citizen science 

itself is then more broadly defined as "the involvement of citizens in science".  

In this definition, the Leuven.cool weather station network is crowdsourcing in the first place, and hence 

also citizen science. The weather station of Leuven.cool are installed in both private gardens of citizens 

and semi-public locations in Leuven. The volunteering citizens provided us with a location for the 

weather station and are responsible for simple maintenance tasks. It is this terminology we had in mind 

when drafting the manuscript.  

‘Here we report on a statistically-based QC method for the crowdsourced air-temperature data of the 

Leuven.cool network, a citizens science network of almost 100 weather stations distributed across 

private gardens and (semi-) public locations in Leuven, Belgium.’ (Lines 105-107) 

 



3. l. 110-111: This is misleading in my opinion. It is true in your case, but a reader could get the 

impression that the QC could now (as it was developed and evaluated by you) be implemented in 

another city without other data. This is not true, as in L1.1 you also need data from an official station 

and since the thresholds were derived from your single network of stations and might need 

adjustment in other settings. 

Reply: Thanks for this good remark. This is (unintentionally) indeed misleading. Transferring the 

method to other networks would indeed require the recalibration of the QC parameters. These lines are 

rephrased in the manuscript. In the conclusion we give a complete overview of what is needed for the 

QC to be transferred to another regions.  

‘The QC method only needs an official network during its development and evaluation stage. 

Afterwards the method can be applied independently of the official network that was used in the 

development phase. Transferring the method to other networks or regions would require the 

recalibration of the QC parameters.’ (Lines 112- 117) 

‘Afterwards the method can be applied independently of the official network that was used in the 

development phase. Transferring the method to other networks or regions would require the 

recalibration of the QC parameters. Specifically, for QC L1.1 some indication of climate thresholds is 

needed. QC L1.3 and QC L2 require a dense weather station network, the QC method is thus less 

suitable for single or few stations. For QC L3 quite some other data (e.g., radiation, windspeed, …) are 

needed. The random forest model is however easily adaptable to the parameters that are available.’ 

(Lines 714-719) 

 

4. l. 151: “stratified sampling”. Please reword, as the number of stations does not represent the 

percentages (coverage) of the LCZs within the study area. As far as I understand it, the stations 

were installed to cover a large range of LCZ. But does the number represent the spatial coverage of 

the LCZ or was it mainly a choice of where a station could be (administration, finding owners, 

etc.)?  

Reply: We agree that the term stratified sampling is not completely correct. The selection procedure 

started as a stratified sampling based on the concept of LCZs (by looking at building height, building 

density and vegetation cover). The goal was to divide the stations across the LCZ classes so that they 

would represent the spatial coverage of each LCZ. We should state that the network was implemented 

with the intention of gaining knowledge on the mitigating effect of green and blue infrastructures within 

urban settings. The initial study area thus mainly included the city centre of Leuven. As a result, the 

network thus has a bias towards urban classes. 

Figure 1 shows the distribution of the weather stations across the LCZ classes (left panel) and proportion 

of LCZ classes across the initial study area (right panel). Due to the complex urban settings in which 

the network is deployed, practical limitations apply to the eligible locations for installation. We rely on 

volunteering citizens, private companies and government institutions giving permission to install a 

weather station on their property. Due to a technical limitation of the weather station, it cannot be 

installed in natural environments without a LAN connection within 50 to 100 meters of the weather 

station.  

 



 

Figure 1: Distribution of weather stations across LCZ classes (left panel) and proportion of LCZ classes across study area 

(right panel).  

‘From July 2019 onwards the weather stations were distributed along an urban gradient from green 

(private) gardens to public grey locations following a sampling design based on the concept of Local 

Climate Zones (LCZ) (Figure 2) (Stewart & Oke, 2012).’ (Lines 158-160) 

‘It can be noted that the weather stations are not evenly distributed across the different LCZ classes, 

also the number of weather station within a LCZ class does not represent the spatial coverage of this 

LCZ class. Due to the complex urban settings in which the network is deployed, practical limitations 

apply to the eligible locations for installation. We rely on volunteering citizens, private companies and 

government institutions giving permission to install a weather station on their property. Further, the 

middle-sized city of Leuven does not contain all available LCZ classes. In the urban context compact 

high-rise, lightweight low-rise and heavy industry is missing. In the natural context, brush or shrub 

vegetation, bare rock or paved and bare soil or sand are not present in sufficiently large areas (Table 

2). Furthermore, the number of stations within more natural settings is limited due to the technical 

limitations of the weather stations; each outdoor unit needs a base station, with both power and LAN 

connection, within 50 to 100 meters in order to transmit its data. Lastly, the network was implemented 

with the intention of gaining knowledge on the mitigating effect of green and blue infrastructures within 

urban settings. The weather station network thus mostly focusses on urban classes. (Lines 173-183) 

 

Additional note: After submitting the manuscript in May/April 2022, we noticed that a LCZ map based 

on worldwide datasets, as the methodology proposed by Demuzere et al. (2021), is not optimal for fine-

scale applications as the one presented here (Verdonck et al., 2017). Behind the scenes we have 

developed a new LCZ map based on fine-scale land use, building height, building density and green 

ratio data. The methodology was performed using a supervised random forest classification approach 

in R. All details on the LCZ map are summarised under appendix B. 

Since the review process of this manuscript took longer than originally expected, it seemed more 

straightforward to directly update the old LCZ map with the new LCZ map. In the meantime, additional 

stations have been installed. The Leuven.cool networks currently counts 106 weather stations.  

‘Stewart & Oke (2012) define 17 LCZ classes, divided into 10 urban LCZs (1-10) and 7 natural LCZs 

(A-G). A LCZ map for Leuven was developed using a supervised random forest classification approach 

based on fine-scale land use, building height, building density and green ratio data. Details on this LCZ 

map are available in Appendix B. . Table 2 summarises the LCZs present in Leuven and the number of 

weather stations in each LCZ class. 

 



Table 2: LCZs present in Leuven and the number of weather stations in each LCZ class. 

LCZ ID LCZ description # Stations (106) 

LCZ 2 Compact midrise 20  

LCZ 3 Compact low-rise 7  

LCZ 4 Open high-rise 3  

LCZ 5 Open midrise 24  

LCZ 6 Open low-rise 19  

LCZ 8 Large low-rise 2  

LCZ 9 Sparsely built 16  

LCZ A Dense trees 0 

LCZ B Scattered trees 10  

LCZ D Low plants 4  

LCZ E Bare rock or paved 0 

LCZ G Water 1 

(Lines 165-172) 

 

5. Table 6: Please make sure that the given parameter names are used in the same way as in the text. 

Reply: Thanks for noticing this mistake. Adjustments were made in the manuscript.  

Table 6: Parameter settings for QC level 1 - Outlier detection.  

Outlier parameter Value (unit) Description 

Range outliers (RO) 

dev_reference 1 (°C) Max allowed deviation between climatological min and max 

temperature of AWS stations in Uccle/Diepenbeek/Humain and 

LC-R in Uccle/Diepenbeek/Humain 

dev 5 (°C) Max allowed deviation between climatological min and max 

temperature of AWS station in Uccle and LC-X in Leuven 

Temporal outliers (TO) 

TOaThresMin -3 (°C) Min allowed difference between sequential 10 min observations 

TOaThresMax 2.5 (°C) Max allowed difference between sequential 10 min observations 

TObThresMin 0.05 (°C) Min difference that should be noted in TObTimespan 

TObTimespan 19 (-) Number of consecutive 10 min observations in which temperature 

should change with TObThresMin 

Spatial outliers (SO)  

range  2500 (m) Range used to define neighbouring stations  

SOThresMin -3 (-) Min allowed Z-score  

SOThresMax 3 (-) Max allowed Z-score  



nstat 1 (-) Minimum requirement of measurements in range 

(Lines 262-264) 

 

6. QC L1.2: Why are the values different for TOathresmax and TOathresmin? Please explain. 

Reply: The values of TOaThresMin and TOaThresMax differ for meteorological reasons. The cooling down 

of air temperatures is meteorologically seen faster (e.g. through the passing of a cold front or 

thunderstorm) compared to the heating up of air temperatures. Since cold air is less dense than warm 

air, it will rapidly replace warmer air preceding the front’s edge. Cold fronts are thus known to move 

faster than warm fronts hereby producing sharp changes in weather. (Ahrens, 2009).  

‘The values of TOaThresMin and TOaThresMax differ for meteorological reasons. The cooling down of air 

temperatures will, from a meteorological point of view, occur faster (e.g. through the passing of a cold 

front or thunderstorm) compared to the heating up of air temperatures (Ahrens, 2009).’ (Lines 280-

282) 

 

7. QC L1.2: You give a threshold of 0.05 °C, yet the specified resolution of the sensor is only 0.1 °C. 

Of course you can obtain more digits due to the averaging, yet this does not reflect the sensor 

resolution. Additionally, in l. 427 you write 0.1 °C. I suggest to use 0.1 °C. 

Reply: We understand the concern of the reviewer, but we should state that defining the temperature 

threshold of the persistence test has been quite time consuming. The goal of this test is to identify 

stations that repeatedly send out the same observation.  

When setting the threshold equal to 0.1°C too many good observations were thrown away. To identify 

the most ideal threshold, an iterative procedure on the AWS data was performed. Here we assumed that 

the AWS data is correct, the persistence test should thus not return any flagged observation (or only 

return a limited number of flagged observations). Setting TObThresMin and TObTimespan equal to 0.05°C 

and 19 respectively returned the best results.  

‘The results show only a few range outlier and even no spatial outliers for the LC-R reference stations. 

The procedure does however highlight 180 observations as temporal outliers (Table 10). These 

observations were highlighted during the persistence test, 180 observations change less than 0.05 °C 

within 2 hours.’ (Lines 459-461) 

 

8. QC L1.3: Table 6 and text l. 275: SOthresmin and SOthresmax should be dimensionless, no? 

Reply: Thanks for the good remark. SOthresmin and SOthresmax are indeed dimensionless. This has 

been adjusted in the manuscript.  

Table 6: Parameter settings for QC level 1 - Outlier detection.  

Outlier parameter Value (unit) Description 

Range outliers (RO) 

dev_reference 1 (°C) Max allowed deviation between climatological min and max 

temperature of AWS stations in Uccle/Diepenbeek/Humain and 

LC-R in Uccle/Diepenbeek/Humain 



dev 5 (°C) Max allowed deviation between climatological min and max 

temperature of AWS station in Uccle and LC-X in Leuven 

Temporal outliers (TO) 

TOaThresMin -3 (°C) Min allowed difference between sequential 10 min observations 

TOaThresMax 2.5 (°C) Max allowed difference between sequential 10 min observations 

TObThresMin 0.05 (°C) Min difference that should be noted in TObTimespan 

TObTimespan 19 (-) Number of consecutive 10 min observations in which temperature 

should change with TObThresMin 

Spatial outliers (SO)  

range  2500 (m) Range used to define neighbouring stations  

SOThresMin -3 (-) Min allowed Z-score  

SOThresMax 3 (-) Max allowed Z-score  

nstat 1 (-) Minimum requirement of measurements in range 

(Lines 262-264) 

‘Whenever the Z-score is lower than -3 (SOThresMin) or higher than 3 (SOThresMax) the observation 

is seen as a spatial outlier and receives a flag equal to 1.’ (Lines 296-297) 

 

9. QC L1.3: With such a low minimum number of stations (nstat = 1) one could falsely remove values 

that are actually of good quality, if you check each station one by one. Consider three stations, 

located in a line, each 2 km apart. If the middle station produces false values, it will get flagged out 

because it deviates too much from the other two (good!). But similarly, checking either one of the 

stations on the sides will flag that station too, as it deviates too much from the middle station (which 

actually produces false values) (bad!). Have you investigated using a larger number of neighbours 

or have you solved this issue somehow differently? 

Reply: Thanks for the comment. We have investigated this using a larger minimal number of 

neighbours, but the results stayed very similar for our dataset. Within our weather station network there 

is only 1 weather station (LC-064), situated in Lovenjoel south-east of Leuven, which only has one 

neighbour (LC-002). For both stations no spatial outliers were found. If the minimal number of 

neighbours is increased, no spatial outliers could have been calculated for LC-064. 

This is however a very good remark that will be added to the Outlier settings document on the data 

repository.  

 

10. QC L2: Why was the resampling done to 2 hours? Have you tried different lengths here and 

determined somehow the optimal duration (if so, how)? Further, are the episodes you find station 

specific or do they have to overlap across all stations? Please elaborate a bit further. 

Reply: A qualitative assessment was used to define the length of the episode. If we would have taken 

a shorter period (≤ 1h), there is a possibility to select a period without continuous high windspeed 

conditions. This could be the start of the passing of a cold front or thunderstorm or a dynamic episode 

during night time. These episodes should be excluded since UHI effects and other local differences will 



still be present. For longer periods (> 2h), the diurnal cycle will influence the temperature measurements 

while we aim to select episodes with a constant temperature across Leuven. 

Episodes are found by resampling the meteorological variables across all weather stations for each 2 

hour interval. These intervals are filtered based on different conditions for rainfall, radiation and wind 

speed. The episodes are thus not station specific.  

 

11. Training & validation & RF model: How did you split the data set of LC_R (e.g., randomly or by 

time)? Do you also train the RF on each LC_X station later on (l. 552: “In QC level 3 the random 

forest model is applied to each station in order to obtain a site-specific prediction ...”)? The outcome 

of QC L3 for LC_R is probably not surprising, since you train on the same data set (60 % of it) and 

then apply the RF model to the whole data set. Is the differentiation between day and night just for 

illustrative purposes or actually applied in the models? This section needs better description what 

has been done. 

Reply: The LC_R dataset was randomly split in training (0.60) and validation data (0.40).  

‘For the construction of a predictor model, the dataset was randomly split in training (0.60) and 

validation (0.40) data.’ (Line 335) 

 

Reply: Thanks for the question. No, we do not train the RF model on each LC_X. Once the RF model 

is built (based on the LC_R), it is simply applied to each observation of the LC_X dataset. The RF 

model cannot be trained on each LC-X station since no official measurement equipment is available in 

or nearby Leuven. Consequently, a temperature bias cannot be calculated for the LC_X stations.  

‘In QC level 3 the random forest model is applied to each temperature observation of all LC-X stations 

in order to obtain a site-and time-specific prediction for its temperature bias.’ (Line 612-613) 

 

Reply: The outcome of QC L3 for the LC_R dataset is indeed not surprising. For the creation and 

validation of the random forest model, the reference dataset (R01, R02, R43 & R05) is split in to training 

(0.6) and test data (0.4). The histograms in figure 5 and figure 6 are thus based on the test data only. 

However, in order to obtain a corrected temperature for each observation, during the evaluation step the 

random forest model is applied to the complete dataset.  

We understand that this could potentially underestimate the obtained T difference (ΔT = TLC-R - TAWS). 

To account for this we did apply the prediction model to both the complete dataset and the test data set 

(which was not used for training the model). The outcome for each LC-R is listed in Table 1. It can be 

noted that mean T difference remains equal, while the standard deviation slightly increases with 0.5 to 

0.7°C. We have added appendix D to the manuscript explaining the difference between using the 

complete dataset versus the test dataset. The results in the manuscript have been adjusted and are now 

based on the test dataset only.  

Table 1: Comparison of the obtained T difference (ΔT = TLC-R - TAWS) when using the complete LC-R dataset and the LC-R 

test dataset.  

LC-R ΔT for complete dataset  ΔT for test dataset 

LC-R01 0.01 ± 0.24°C 0.01 ± 0.30°C 

LC-R02 0.00 ± 0.23°C 0.00 ± 0.30°C 



LC-R04 0.00 ± 0.20°C 0.00 ± 0.26°C 

LC-R05 0.00 ± 0.18°C 0.00 ± 0.23°C 

Mean 0.00 ± 0.22°C 0.00 ± 0.28°C 

 

‘From Section 3, we recall that the random forest prediction of temperature bias showed the best results 

After applying this prediction model on the reference dataset (LC-R), a level 3 corrected temperature 

is obtained for each LC-R station. These results could be biased since the RF model is trained on 60 % 

of the LC-R dataset, and then applied on the complete LC-R dataset. To account for this we did apply 

the prediction model to both the complete dataset and the test data set (which was not used for training 

the model). The outcome for each LC-R is listed in Appendix D. It can be noted that mean T difference 

remains equal for both datasets, the standard deviation does slightly increase with 0.5 to 0.7 °C when 

using the test dataset. The results below are based on the test dataset only. (Lines 544-550) 

‘Appendix D. Application RF model on LC-R dataset 

In section 5.the RF model is applied to the LC-R dataset to obtain a corrected temperature for each 

observation. These results could be biased since the RF model is trained on 60 % of the LC-R dataset, 

and then applied on the complete LC-R dataset. To account for this we did apply the prediction model 

to both the complete dataset and the test data set (which was not used for training the model). The 

outcome for each LC-R is listed in table D1. It can be noted that mean T difference remains equal for 

both datasets, the standard deviation does slightly increase with 0.5 to 0.7 °C when using the test dataset 

only. The mean temperature difference and standard deviation for all LC-R stations increases from 0.00 

± 0.22°C to 0.00 ± 0.28 °C.  

 

Table D1: Comparison of the obtained T difference (ΔT = TLC-R - TAWS) when using the complete LC-R dataset and the LC-

R test dataset.  

LC-R ΔT for complete dataset  ΔT for test dataset 

LC-R01 0.01 ± 0.24°C 0.01 ± 0.30°C 

LC-R02 0.00 ± 0.23°C 0.00 ± 0.30°C 

LC-R04 0.00 ± 0.20°C 0.00 ± 0.26°C 

LC-R05 0.00 ± 0.18°C 0.00 ± 0.23°C 

Mean 0.00 ± 0.22°C 0.00 ± 0.28°C 

 

For comparison the histograms and heatmaps of the temperature difference (ΔT = TLC-R - TAWS) using 

the complete and test dataset only have been added below in Figure D1, D2 and D3. Only slight 

differences smaller than 0.1°C exist between the the ΔT for complete dataset and ΔT for test dataset. 

The diurnal and seasonal pattern is still corrected for (Figure D2). Also, effects of wind speed and 

radiation are effectively eliminated (Figure D3).  



 

 

Figure D1: Same as Figure 9 for QC level 3. Comparison between ΔT for complete dataset (upper row) and ΔT for test 

dataset (lower row) 

(a) (b) (c) (d) 



 

 

Figure D2: Same as Figure 10 for QC level 3. Comparison between ΔT for complete dataset (upper row) and ΔT for test 

dataset (lower row) 

(b) (c) (d) (a) 

(b) (c) (d) (a) 



 

 

Figure D3: Same as Figure 11 for QC level 3. Comparison between ΔT for complete dataset (upper row) and ΔT for test 

dataset (lower row)’ 

(Lines 822-850) 

 

Reply: The differentiation between night and day is only for illustrative purposes. Only one RF model 

has been made for both day and night, the differentiation between day and night is however indirectly 

present in the model through the input variables “Hour”, “Radiation” and “Radiation60”.  

‘The random forest prediction of temperature bias showed the best results. By splitting up the results 

for day (radiation > 0 W/m2) and night (radiation = 0 W/m2) (Figure 6), a smaller standard deviation 

of the bias during night time (0.25) compared to daytime (0.31) is obtained. This differentiation between 

night and day is only for illustrative purposes, only one RF was built for both day and night. The 

statistical details of the random forest model are further summarized in Table 9.’ (Lines 425-428) 

 

12. Figure 4 and text: What is the authors explanation for the fact that largest biases are found in the 

middle of the radiation range and not at the top? Please elaborate a bit in the text. 

Reply: We agree that this is indeed a bit unexpected, but our hypothesis is that it is related to the station 

design itself. Two effects are at play here: (1) the placement of the radiation sensor and (2) the placement 

of the temperature sensor. For (1), certainly for lower solar elevations (winter), the wind vane drops its 

(b) (c) (d) (a) 

(b) (c) (d) (a) 



shadow at the radiation sensor for a short time of the day. For (2), which we might consider more 

important, the temperature sensor is more shaded around midday (highest radiation) by the body of the 

station (all seasons). This explains in our opinion the local minimum around noon for the summer 

months in the temperature bias. Note that our random forest model is capable of taking these station 

design flaws into account. 

‘The shallow local minimum seen around noon during the summer months (Figure 4a) and the fact that 

the largest biases are found in the middle of the radiation range rather than at the top (Figure 4d) are 

probably related to the station design itself. Two effects are at play here: (1) the placement of the 

radiation sensor and (2) the placement of the temperature sensor. For (1), certainly for lower solar 

elevations (during winter), the wind vane drops its shadow at the radiation sensor for a short time of 

the day. For (2), which we might consider more important, the temperature sensor is more shaded 

around midday (highest radiation) by the body of the station (during all seasons).’ (Lines 372-377) 

 

13. l. 573: You argue that your data set (since only one type of station) is free of certain effects that 

would require station-specific QC methods. Yet, in QC L3 you do a station-specific QC, no? Why 

couldn’t you apply the QC to another type of weather station that measures the same variables? 

Please reword the sentence and/or explain better what you mean. 

Reply: Thanks for this good remark. We did indeed correct for intrinsic differences between different 

weather station units during QC level 2. The sentence has been reworded.  

‘Cornes et al. (2020) further highlights the need for station specific quality controls in order to remove 

the confounding effect of different instrument types. With the use of a unique station type, we aimed at 

minimizing such effects in our dataset. QC level 2 (Sect. 5.2) showed that these effects were indeed 

limited.’ (Lines 635-638) 

 

14. l. 585: Who controls the stations and does the maintenance? Please explain in more detail. 

Reply: The maintenance of the network is controlled by PhD students and the technical staff at the 

Division of Forest, Nature & Landscape of the KU Leuven and with support of the RMIB. Since most 

of the weather stations are installed in private gardens, our volunteers keep an eye out for generic 

problems as well (e.g. leaves in the rain gauge, …).  

‘The maintenance of the network is controlled by PhD students and the technical staff at the Division 

of Forest, Nature & Landscape of the KU Leuven and with support of the RMIB. Since most of the 

weather stations are installed in private gardens, our volunteers keep an eye out for generic problems 

as well (e.g. leaves in the rain gauge, …).’ (Lines 206-208) 

 

15. Figure 20: I suggest to include the months January – June in the top sub figure, simply to have the 

same x range as the other two. Please also ensure that the y range is the same in all sub figures. 

Reply: Thanks for the nice suggestion. Changes have been made in the manuscript: see figure 20 

 

16. Figures and tables in general: 



(a) Maps should contain coordinate axis. 

Reply: Thanks for noticing. The maps have been updates with a coordinate axis: see figure 2 

(b) In all figures the subplot labels a, b, c, etc. are missing. This makes it quite difficult to understand 

some of them and needs to be resolved. 

Reply: Thanks for noticing. All subplots have been labelled.  

(c) In many figures where different sub-figures are present the axes ranges differ. I propose to have 

common axes ranges per figure. Alternatively, should at least give a note in the caption that the ranges 

differ. 

Reply: Thanks for the comment. The axes ranges have been changed where possible. If not possible, a 

note was added to the caption.  

(d) In all figures with coloured background (e.g. Figure 4): Please explain the colour coding and ensure 

that this is the same in all sub-figures, at best in all of those figures for comparison. Further, how did 

you group the data (binsize, hourly averages?, etc.)? 

Reply: The colour coding represents the temperature difference or temperature bias. The range was 

indeed different in different subplots. This has now been adjusted; the temperature difference/bias 

ranges in all figures from -1.7°C (blue) to 1.7°C (red). 

Plots of the temperature difference/bias as a function of hour of the day and month of the year were 

made by averaging the temperature bias/difference for every hour of every month. Plots of the 

temperature difference/bias as a function of radiation and wind speed were made by rounding all 

radiation values in bins of 80 W/m2 and all windspeed values in bins of 0.4 m/s. The temperature 

bias/difference was then averaged for each bin combination. 

(e) The captions need more information regarding the data that is displayed, mainly regarding time 

period and data sets (this also applies to all tables). 

Reply: Thanks for the comment. The heatmaps and histograms in section 3 and 4 are calculated from 

all LC-R measurements between the installation date of each LC-R and December 2021. All figures in 

section 5 are based on the data of all LC-X station between July 2019 and December 2021. All captions 

are updated with additional information on the time period and dataset. 

(f) Number of figures: Several figures could be combined, e.g. Figures 9, 13, 15; Figures 10, 14, 16. 

Please check all figures and check (a) if they are all relevant and (b) if they could be combined. The 

amount of figures (20) and tables (12) is too much in my sense and should be reduced. For figures that 

basically display the same but only differ in the QC level, you could also write in the caption: “Same 

as figure X but for QC level Y”. 

Reply: We understand that 20 figures might seem like a lot, but each figure is relevant for this 

manuscript. Combining all figures result a huge block of figures and would deteriorate the structure of 

the manuscript. Currently the figures are ordered by quality control level. We have minimalized the 

captions of Figures 13; 14, 15, 16 and 17 since they display the same output only for a different QC 

level. If the reviewer would like us to move some figures to the appendix, we will happily do so. 

 



17. The authors should somewhere better describe the actual data set on the repository (e.g. which 

variables, which resolution, what kind of meta data, etc.). This would be extremely helpful for other 

researchers to make use of the data. This section could, e.g., be put before the Conclusions. 

Reply: Thanks for the comment. On the data repository, the dataset is accompanied with an extensive 

README file explaining all these details. To make use of the data more toilless, a few details have 

been added to data and code availability section in the manuscript  

‘The dataset is accompanied by an extensive README file explaining the content of the dataset. The 

dataset includes a metadata file (01_Metadata.csv), the actual observations per 3 months/one quarter 

(LC_YYYYQX.csv) and the R scripts needed to build and apply the QC method (LC-R_QCL1-2-3.Rmd 

and LC-X_QCL1-2-3.Rmd). The metadata file contains info on the weather station's coordinates, 

altitude above sea level, installation height, LCZ class, dominant landcover, mean SVF and mean 

building height in a buffer of 10m around each weather station. Coordinates have rounded to 3 decimals 

for privacy reasons. The actual observations are aggregated to 10 minutes and include Relative 

humidity [%], Dew point temperature [°C], Number of 16 second observations in 10 minutes aggregate, 

Solar radiation [W/m2], Rain intensity [mm/h], Daily rain sum [mm], Wind direction [°], Wind speed 

[m/s], Date in YYYY-MM-DD, Year in YYYY, Month in MM, Day in DD, Hour in HH, Minute in MM, 

Weighted radiation during last 60 minutes [W/m2], Temperature at QCL0 [°C], Temperature at QCL1 

[°C], Temperature at QCL2 [°C], Temperature at QCL3 [°C].’ (Lines 734-743) 

 

18. Conclusions: The authors could highlight more clearly the high value of the quality-controlled data 

set. The large amount of stations in a relatively small city could, e.g., enable detailed comparison 

with other crowdsourced data where no meta data are available and where the station setup is 

unknown (e.g. Netatmo). As such, the stations could act as “gatekeepers” for other stations 

(Chapman et al. 2017). The data set could also be of use to modellers (micro-scale modelling). 

Reply: Thanks for the good suggestion. We have added a list of possible applications to the manuscript.  

‘6. Application potential of the quality controlled and corrected Leuven.cool dataset 

A validation of the proposed QC method showed that it is able to reduce the mean temperature 

difference and standard deviation from 0.15 ± 0.56 °C to 0.00 ± 0.22 °C. The QC method can correct 

the temperature difference equally across different hours of the day and months of the year (Figure 16) 

as well and under different radiation and windspeed conditions (Figure 17).  

The quality-controlled Leuven.cool dataset enables a detailed comparison with other crowdsourced 

datasets for which less or even no metadata is available. As such, the Leuven.cool stations can serve as 

gatekeepers for other crowdsourced observations. In the past this role has been limited to standard 

weather station network which mostly only have a limited number of observations available (Chapman 

et al., 2017).  

The dense dataset further allows for microscale modelling of urban weather patterns, including the 

urban heat island (Chapman et al., 2017; de Vos et al., 2020; Feichtinger et al., 2020; Napoly et al., 

2018). Since such high-quality dataset contain measurements with both high spatial and temporal 

resolution, they can easily be used to obtain spatially continuous temperature patterns across a region 

(e.g. Feichtinger et al., 2020; Napoly et al., 2018). Interpolation methods based on single pair stations 

or mobile transect methods are much less trustworthy (Napoly et al., 2018). Dense weather station 

networks can be used to investigate the inter- and intra LCZ variability within a city (Fenner et al., 

2017; Verdonck et al., 2018). The dataset can further help investigate the relation between temperature 



and human and ecosystem health (e.g. Aerts et al., 2022; Troeyer et al., 2020) and their effect on 

evolutionary processes (e.g. Brans et al., 2022). 

The dataset can also help refine existing weather forecast models which are currently mostly based on 

official rural observations (Sgoff et al., 2022). Nipen et al. (2020) showed that the inclusion of citizen 

observations improves the accuracy of short-term temperature forecasts in regions where official 

stations are sparse. Mandement & Caumont (2020) used crowdsourced weather stations to improve the 

observation and prediction of near convection. After quality control and correction, also the wind (Chen 

et al., 2021) and precipitation measurements (de Vos et al., 2019)can be useful to improve detection 

and forecasting. Further, the Leuven.cool dataset could be a useful input in air pollution prediction 

models (e.g. IFD-model (Lefebvre et al., 2011))’ (Lines 673-701) 

 

19. Conclusions: The authors conclude that the method is “easily transferable to other urban regions 

not having an official weather station”. I do not understand how the authors come to this conclusion 

when such information is need in QC L1.1. Also, “easily transferable” only in that sense, that quite 

a lot of other data are needed for the QC of air-temperature data. That is certainly not the case for 

the vast amount of citizen weather stations that exist, from which data could be crowdsourced. The 

authors should state more clearly what is needed for the QC to be transferred to another regions and 

reword the section. 

Reply: Thanks for the valid comment. This is (unintentionally) indeed misleading. Transferring the 

method to other networks would indeed require the recalibration of the QC parameters. These lines are 

rephrased in the manuscript. In the conclusion we added a complete overview of what is needed for the 

QC to be transferred to another regions. 

‘Afterwards the method can be applied independently of the official network that was used in the 

development phase. Transferring the method to other networks or regions would require the 

recalibration of the QC parameters. Specifically, for QC L1.1 some indication of climate thresholds is 

needed. QC L1.3 and QC L2 require a dense weather station network, the QC method is thus less 

suitable for single or few stations. For QC L3 quite some other data (e.g. radiation, windspeed, …) are 

needed. The random forest model is however easily adaptable to the parameters that are available.’ 

(Lines 714-719) 

 

20. Meta data in the actual data set: I noticed that latitude and longitude values are given with only 

three digits. I highly recommend to give at least four digits for better precision and to subsequently 

allow more detailed spatial analyses on the micro scale. 

Reply: Thanks for the suggestion. Due to privacy issues and as agreed in the informed consent with our 

volunteers, we are however not allowed to give more than 3 digits. Most of our weather stations are 

installed in private gardens. We assured our volunteers that their individual gardens would not be 

detectable, and that the data of each weather station would be shown on a resolution of ‘street level’. 

When using 4 digits, the individual gardens are easily detectable.  

 

21. Do the authors have any idea about the quality of the other variables that are measured and used in 

the quality control? It could make sense to have relatively simple range and persistence tests (as 



you developed) implemented for all variables before the detailed QC of air temperature. Please 

comment on that in the text somewhere. 

Reply: We have made a qualitative assessment of the data quality by making scatterplots of these 

variables for the LC-R stations, compared to the AWS data. Overall, the measured parameters are within 

the accuracy given by the manufacturer. 

There are, however, deviations in the wind and radiation measurement that are attributable to the small 

location differences (in the order of meters) between the LC-R stations and the official sensors. For 

wind, we compared the LC-R data with professional 2m wind measurements, but this height is in fact 

not the standard measurement height for wind since too many ground effects are still into play at this 

height. For radiation, we already mentioned the design flaw regarding the wind vane dropping a shadow, 

but also high nearby trees can influence the measurements for low solar elevations (in the case of LC-

R01 and LC-R02). 

‘A qualitative assessment of the data quality of these variables in included in Appendix C.’ (Line 204) 

 

‘Appendix C. Quality control other Leuven.cool variables 

A qualitative assessment of the data quality was performed by making scatterplots of these variables 

for the LC-R stations compared to the AWS stations (Figure C1).  

Overall, the measured parameters are within the accuracy given by the manufacturer. There are, 

however, deviations in the wind and radiation measurement that are attributable to the small location 

differences (in the order of meters) between the LC-R stations and the official sensors. For wind, we 

compared the LC-R data with professional 2m wind measurements, but this height is in fact not the 

standard measurement height for wind since too many ground effects are still into play at this height. 

For radiation, we already mentioned the design flaw regarding the wind vane dropping a shadow, but 

also high nearby trees can influence the measurements for low solar elevations (in the case of LC-R01 

and LC-R02). 

     



 

  

 

  



  

  

  

Figure C1: Scatterplots of LC-R versus AWS dew point temperature, humidity, radiation and wind 

speed for each reference station LC-R01, LC-R02, LC-R04, LC-R05. The identity line is shown in black. 

The colour scale indicates the density of observations, yellow indicating the highest, purple the lowest. 

The scatterplots include all measurements between the installation data of each LC-R and December 

2021. For each variable the same ranges of x- and y-axis are used.’ 

(Lines 798-820) 

  



Technical corrections: 

- Compound adjective (e.g. “air temperature” but “air-temperature data”). Please check the whole 

manuscript carefully 

Reply: Thanks for the correction. This has been adjusted in the manuscript 

 

- l. 32: consider “… that both cities and their citizens are …” 

Reply: Thanks for the suggestion. This has been adjusted in the manuscript.  

 

- l. 50: “… in which air temperature is continuously modelled …” 

Reply: Thanks for the correction. This has been adjusted in the manuscript 

 

- l. 101: consider “Thus, there is a need for …” 

Reply: Thanks for the suggestion. This has been adjusted in the manuscript. 

 

- l. 104: “Here we report on a …” 

Reply: Thanks for the suggestion. This has been adjusted in the manuscript. 

 

- l. 169: “… is limited due to the …” 

Reply: Thanks for the suggestion. This has been adjusted in the manuscript. 

 

- l. 178: “direct effect contact” ? Please reword. 

Reply: Thanks for the correction. This has been adjusted in the manuscript. 

 

‘Weather stations located on public impervious surfaces were installed on available light poles using 

specially designed L-structures to avoid direct contact with the pole.’ (Lines190-192) 

 

- l. 182: “aggregated” – Do you mean temporally averaged? 

Reply: Thanks for the comments. We indeed mean temporally averaged. This has been adjusted in the 

manuscript. 

 

‘The raw 16 seconds measurements are aggregated (temporally averaged) to 10 minutes observations.’ 

(Lines 195-196) 

 

- l. 194 (and other instances in the text, Table A1): There should be a space between the number and 

the unit, except for geographical degrees; cf. chapter 5.4.3 in 

https://www.bipm.org/documents/20126/41483022/SIBrochure-9.pdf/fcf090b2-04e6-88cc-1149-

c3e029ad8232). 

Reply: Thanks for the correction. This has been adjusted in the manuscript. 

 

- l. 266-267: Please check sentence and reword.  

Reply: Thanks for the comment. This has been adjusted in the manuscript. 

 

‘Whenever the difference between sequential observations cannot be calculated an observation gets a 

flag equal to -1.’ (Lines 287-288) 

 

- l. 285: “non-negligible” – How did you determine that? What is the basis for the statement? 

Reply: A temperature difference of 0.2°C was found. Such a difference cannot be explained by the 

resolution of the temperature sensor (0.1°C) and is thus non negligible.  

https://www.bipm.org/documents/20126/41483022/SIBrochure-9.pdf/fcf090b2-04e6-88cc-1149-c3e029ad8232
https://www.bipm.org/documents/20126/41483022/SIBrochure-9.pdf/fcf090b2-04e6-88cc-1149-c3e029ad8232


 

‘A temperature difference of 0.2°C was found, which cannot be explained by the resolution of the 

temperature sensor (0.1°C).’ (Lines 306-307) 

 

- l. 298: “i.e.” is instead of “e.g.” 

Reply: Thanks for the correction. This has been adjusted in the manuscript. 

 

- l. 300: Could be helpful to say “… across all ten selected episodes is considered …” 

Reply: Thanks for the suggestion but that would be incorrect. First, the query is performed for every 6-

months period, resulting in 10 episodes times the number of 6-month period assessed. The analysis is 

currently done from 2019S2 until 2021S2, resulting in 5 6-month periods x 10 episodes = 50 episodes. 

Afterwards temperature is regressed versus altitude and only the episodes with a high correlation 

between temperature and altitude (> 0.7) are kept.  

 

- Table 7: What is actually shown here? What kind of correlation coefficient? Per definition, a 

correlation coefficient has no units. Please remove them and specify more clearly in the caption what 

is shown.  

Reply: Thanks for the valid remark. Table 7 shows the Pearson correlation coefficient between the 

observed temperature bias and other variables measured by the weather station. The units are indeed 

incorrect, they have been removed. 

 

Table 7: Pearson correlation matrix of temperature bias with other meteorological variables measured by the low-cost 

station. 

Temperature  Dew point 

temperature  

Humidity  Radiation  

  

Radiation60  Wind speed  

  

0.41 0.18 -0.48 0.49 0.56 -0.01 

(Lines 391-393) 

 

- Figure 8: What is the black line? Please explain in the caption.  

Reply: the black line indicates the identity line or line of equality. This has been further explained in 

the caption  

 

‘Figure 8: Scatterplots of LC-R versus AWS temperature for each reference station LC-R01 (a), LC-

R02 (b), LC-R04 (c), LC-R05 (d) at QC level 0. Observations defined as range outliers are symbolized 

by a red circle, temporal outliers by a red square. The identity line is shown in black. The colour 

scale indicates the density of observations, white indicating the highest, black the lowest. The 

scatterplots include all measurements between the installation data of each LC-R and December 

2021.’ (Lines 475-479) 

 

- l. 447 & 448: Where is the information regarding the summer day shown? Please specify or reword. 

Reply: Thanks for the valid comment. The information for one summer day is indeed not shown 

individually. From figures 10 and 11 we can deduce that a higher difference is obtained during the 

summer months (Figure 10) under low cloud and low windspeed conditions (Figure 11). 

 



 ‘As expected, the temperature difference between the LC-R and AWS stations is not constant and is 

correlated with other variables. A higher difference is obtained during the summer months (Figure 10) 

under low cloud and low windspeed conditions (Figure 11).’ (Lines 483-485) 
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Authors’ response to RC2 - manuscript ESSD-2022-113 

Responses to Reviewer comments: The text in blue represents the authors’ reply. Text in italic 

represents text that was changed in the manuscript, with line numbers referring to those in the revised 

manuscript. We numbered the comments for easier referral. 

General comments: 

Small typographic errors (missing punctuation or erroneous capitalization) that proofreaders should 

catch. 

Data accessible, clearly described, easy to work with. This reviewer prefers .csv to .tab but that seems 

a matter of individual preference. 

I understand why authors might prefer CC-BY-NC but, due to proper ESSD cautions, have editors 

granted permission for -NC? 

Overall: good well-organized description of QC levels and good summary of ‘final’ QC outcome, 0.15 

+ 0.56 down to 0.00 + 0.22 for temperature. In describing and summarizing these efforts and QC levels, 

the authors seem to have left out or passed over several issues. 

Reply: We thank the reviewer for the thorough review. We have considered all your comments and 

revised the manuscript accordingly. We have proofread the manuscript to correct for additional 

typographic errors. We also like to mention that the data depository automatically transforms .csv files 

to .tab files. There is, however, a possibility to download the files as .csv. Regarding the CC-BY-NC 

license, this was not raised as a problem during the initial submission phase. If the editors would not 

grant permission for –NC, we can change this. We tried to rephrase and further explain the QC 

methodology in order to solve the issues mentioned below. Please see our point-by-point responses on 

the specific comments below. 

 

Specific comments: 

1. Daytime vs nighttime much used but little described. Based on daily hours sunlight, calculated 

by day, month or season? Or calculated based on measured surface radiation values where night 

= low light = < some minimum value of W/m2?  

Reply: Thanks for the valid comment. We agree that the differentiation between night- and daytime 

was not clearly described. Currently it was only mentioned in the caption of figure 3. The distinction 

between day- and nighttime is based on the radiation measurements of each station; daytime is defined 

as LC_RAD > 0 W/m2, nighttime is defined as LC_RAD = 0 W/m2. This has been further clarified in 

the manuscript. We should further state that the differentiation between night and day is only for 

illustrative purposes. Only one RF model has been made for both day and night, the differentiation 

between day and night is however indirectly present in the model through the input variables “Hour”, 

“Radiation” and “Radiation60”.   

‘The overall temperature bias (i.e., all LC-R stations together) between the LC-R and the AWS data has 

a mean value of 0.10°C and a standard deviation of 0.55 °C (Figure 3). By splitting up the temperature 

bias for day (radiation > 0 W/m2) and night (radiation = 0 W/m2), a positive mean temperature bias 

during daytime (0.32 °C) and a negative mean temperature bias during night time (-0.10 °C) is 

obtained.’ (Lines 348-351) 

‘The random forest prediction of temperature bias showed the best results. By splitting up the results 

for day (radiation > 0 W/m2) and night (radiation = 0 W/m2) (Figure 6), a smaller standard deviation 

of the bias during night time (0.25) compared to daytime (0.31) is obtained. This differentiation between 



night and day is only for illustrative purposes, only one RF was built for both day and night. The 

statistical details of the random forest model are further summarized in Table 9.’ (Lines 425-428) 

 

2. Other parameters (RH, precip, wind) not corrected. Authors describe, correctly, the use of non-

T parameters in various QC functions but otherwise give no hints about suitability, difficulty 

or desirability of addressing RH, precip, etc. Do readers await a future paper? Do we assume 

QC of T proved easier than other parameters? Authors give us no hint what to assume!  

Reply: We understand the question of the reviewer. Before using the non-T parameters in various steps 

of the QC, we have made a qualitative assessment of the data quality by making scatterplots of the non-

T parameters for the LC-R stations, compared to the AWS data. Overall, the measured parameters are 

within the accuracy given by the manufacturer. These scatterplots have been added as an Appendix 

(Appendix C) to the manuscript.  

There are, however, deviations in the wind and radiation measurement that are attributable to the small 

location differences (in the order of meters) between the LC-R stations and the official sensors. For 

wind, we compared the LC-R data with professional 2 m wind measurements, but this height is in fact 

not the standard measurement height for wind since too many ground effects are still into play at this 

height. For radiation, we already mentioned the design flaw regarding the wind vane dropping a shadow, 

but also high nearby trees can influence the measurements for low solar elevations (in the case of LC-

R01 and LC-R02). 

The main focus of the authors research is related to urban temperatures and the UHI effect. Currently 

no QC for the other parameters are planned.  

‘A qualitative assessment of the data quality of these variables in included in Appendix C.’ (Line 204) 

 

‘Appendix C. Quality control other Leuven.cool variables 

A qualitative assessment of the data quality was performed by making scatterplots of these variables 

for the LC-R stations compared to the AWS stations (Figure C1).  

Overall, the measured parameters are within the accuracy given by the manufacturer. There are, 

however, deviations in the wind and radiation measurement that are attributable to the small location 

differences (in the order of meters) between the LC-R stations and the official sensors. For wind, we 

compared the LC-R data with professional 2m wind measurements, but this height is in fact not the 

standard measurement height for wind since too many ground effects are still into play at this height. 

For radiation, we already mentioned the design flaw regarding the wind vane dropping a shadow, but 

also high nearby trees can influence the measurements for low solar elevations (in the case of LC-R01 

and LC-R02). 



     

 

  



 

  

  

  



  

Figure C1: Scatterplots of LC-R versus AWS dew point temperature, humidity, radiation and wind 

speed for each reference station LC-R01 , LC-R02, LC-R04, LC-R05. The identity line is shown in black. 

The colour scale indicates the density of observations, yellow indicating the highest, purple the lowest. 

The scatterplots include all measurements between the installation data of each LC-R and December 

2021. For each variable the same ranges of x- and y-axis are used.’  

(Lines 798-820) 

 

3. Authors should, technically, express offsets and SD in K rather than C. Not often done, I accept.  

Reply: Thanks for the comment. We have followed related literature on air temperature quality control 

and correction methods, which choose to express temperature offsets and SD in °C. A small clarification 

is however added to the manuscript.  

‘The outdoor sensor array measures temperature (°C, add 273.15 for K), humidity (%), precipitation 

(mm), wind speed (m/s), wind direction (°), solar radiation (W/m2), and UV (-) every 16 seconds.’ 

(Lines 145-147) 

 

4. Authors have lumped 2 m data with 3-4 m data? Early mention but then no subsequent 

treatment. One suspects both sensor elevation and surrounding (mostly impervious) surfaces 

would have a large effect but never mentioned? Shadowing by anemometer mentioned 

occasionally but that occurs independently of short vs high poles and regardless of underlying 

surface?  

Reply: The installation height of the weather station is indeed not directly added as a parameter in the 

RF model (QC L3) in order to correct the T observations. This was not possible since all the LC-R 

stations were installed at a height of 2 m. We do however believe that the installation height is indirectly 

present in the RF model through the radiation and wind speed parameters. Furter, the altitude (above 

sea level) of the weather station will more clearly influence the measured temperature and is added as 

a parameter in the RF model.  

We do acknowledge that nocturnal temperature inversions can appear under clear calm nights (under 

low radiation and low windspeed conditions). During such a nocturnal inversion we normally see an 

increase in temperature with height due to radiational cooling of the earth’s surface (Ahrens, 2009). 

Such inversions however often occur at ground level, and thus below 2 m (Ahrens, 2009). 

To quantify the temperature difference between 2 m and 3 m, a small test was performed using multiple 

AWS stations having T observations at both 2 m and 10 m. By interpolating the temperature at 2 m and 



10 m, a temperature at 3 m is obtained. Next the average temperature difference and standard deviation 

between 3 m and 2 m was calculated for the whole of 2021 and for stable conditions (T10 m > T2 m) in 

which we expect the highest difference between 2 m and 3 m. For the whole of 2021 the mean difference 

equals 0 ± 0.09 °C, for the stable conditions we obtain a small difference of 0.08 ± 0.09 °C. We should 

thus state that stations installed at 3 m – 4 m can have an additional offset up to 0.08 ± 0.09 °C under 

stable conditions. This offset is much smaller than the night time temperature difference caused by the 

UHI effect (Chapman et al., 2017; Stewart, 2011; Venter et al., 2021).  

We further stress that stations have only been installed at a height of 3 m to 4 m where it was needed 

due safety reasons.  

 

Reply: The environment and surrounding surfaces of each sensor will indeed further influence the 

temperature measurements (Logan et al., 2020; J. Wang et al., 2022; Q. Wang et al., 2022; Ziter et al., 

2019). The weather stations were however installed following a strict protocol, at least 1 m from 

interfering objects, making sure no direct effects of the environment incorrectly influence the T 

observations. On the other hand, the goal of this weather station network is to measure the micro-climate 

in Leuven, namely the difference between impervious and greener locations within and outside the city 

center. In other words, our stations are installed at both impervious and green locations within and 

outside the city center in order to measure (and in the future also explain) these temperature differences.  

 

Reply: The shadowing of the anemometer is intrinsic to the station design and hence the same for every 

station, also the LC-R stations. As a consequence, the effect is included in our RF model. 

 

5. UHI: This reader missed an overall assessment of data as QC’d here to address UHI. Do we 

need 0.1K? 1.0K? Have the authors come close with these corrections. In view of distance of 

reference AWS from Leuven and, for two RMIB stations at least, distance from true urban 

settings, do authors feel they have a network now suitable for addressing UHI. Not clear, 

perhaps needs/deserves further clarification. Given sensor height differences already mentioned 

plus apparent absence (or, avoidance) of the most urban land use categories, can users really 

trust this data for further UHI work? UHI mentioned frequently in introduction but not at all in 

conclusion paragraph. I agree with summary sentences but, if they could not in the end address 

UHI - which, in many indices, includes high net radiation, low RH and low wind - should they 

have given so much attention in introduction 

 

Reply: We thank the reviewer for the valid comment. The resolution on which the UHI should be 

investigated is highly dependent on the application. For human thermal comfort studies, a resolution of 

1°C would however be sufficient (Epstein & Moran, 2006; Georgi & Zafiriadis, 2006). Before the QC 

method, a mean temperature bias up to 0.15 ± 0.56 °C is noted. After correction the mean bias has been 

diminished to 0.00 ± 0.28 °C. Numerous studies have however showed that the UHI effect causes 

nighttime temperature differences up 6 to 9 °C during clear nights. These thresholds are much higher 

than mean bias obtained after correction, the quality controlled Leuven.cool dataset is thus suitable to 

study the UHI (Chapman et al., 2017; Stewart, 2011; Venter et al., 2021). 

We further showed that the QC method can correct the temperature bias equally across different hours 

of the day and months of the year (Figure 16) as well as under different radiation and windspeed 

conditions (Figure 17). Most UHI indicators are based on either maximum daytime or minimum 

nighttime temperatures during extreme heat events (high radiation + low windspeed), while these time 



periods show the highest temperature bias (Figure 10 and Figure 11). Before correction these indicators 

would have either a positive (daytime) or negative (nighttime) bias, the ideal meteorological conditions 

would result in a positive bias. This QC method ensures that day -and nighttime effects as well as effects 

due to certain meteorological conditions have been corrected for. As a result, we can trust UHI 

indicators calculated for specific day- and night time events.  

‘Numerous studies have shown that the UHI effect causes night time temperature differences up 6 to 9 

°C during clear nights (Chapman et al., 2017; Venter et al., 2021; Stewart, 2011; Napoly et al., 2018; 

Feichtinger et al., 2020). These thresholds are much higher than mean bias obtained after correction; 

the dense quality controlled Leuven.cool dataset thus allows for microscale modelling of urban weather 

patterns, including the urban heat island (Chapman et al., 2017; de Vos et al., 2020; Napoly et al., 

2018; Feichtinger et al., 2020).’ (Lines 683-687) 

 

Reply: Regarding the distance between the AWS and the LC-X in Leuven, we don’t fully understand 

the question.  

We agree that there is quite a difference between the AWS and the LC-X in Leuven, and that due to 

this difference the AWS stations cannot serve as a direct reference for the LC-X in Leuven. We should 

however state that the RF model is based on the T difference between the official AWS and the LC-R 

(installed next to the AWS), the RF model does not take into account the standalone measurements of 

the AWS itself. We further installed reference stations (LC-R) at three different locations (Uccle, 

Diepenbeek, Humain) to make the model more robust against spatial differences.  

For addressing the UHI, the authors will not take AWS measurements into account but exclusively 

focus on the LC-X station in and outside Leuven.  

 

Reply: Regarding the apparent absence of most urban land use classes, we are a bit confused. Our 

weather station network mainly focusses on the urban LCZ classes, natural LCZ classes are not as well 

represented. 

The selection procedure for suitable locations started as a stratified sampling based on the concept of 

LCZs (by looking at building height, building density and vegetation cover). The goal was to divide the 

stations across the LCZ classes so that they would represent the spatial coverage of each LCZ. We 

should state that the network was implemented with the intention of gaining knowledge on the 

mitigating effect of green and blue infrastructures within urban settings. The initial study area thus 

mainly included the city centre of Leuven. As a result, the network has a clear bias towards urban 

classes. 

Figure 1 shows the distribution of the weather stations across the LCZ classes (left panel) and proportion 

of LCZ classes across study area (right panel). Due to the complex urban settings in which the network 

is deployed, practical limitations apply to the eligible locations for installation. We rely on volunteering 

citizens, private companies and government institutions giving permission to install a weather station 

on their property. Due to a technical limitation of the weather station, it cannot be installed in natural 

environments without a LAN connection within 50 to 100 meters of the weather station.  



 

Figure 2: Distribution of weather stations across LCZ classes (left panel) and proportion of LCZ classes across study area 

(right panel). 

 

Reply: We understand the reviewer’s comment on the lacking of the UHI in the conclusion. We have 

added a section with additional applications of this dataset, including the investigation of the UHI effect. 

These applications were summarized in the conclusion.  

‘6. Application potential of the quality controlled and corrected Leuven.cool dataset 

A validation of the proposed QC method showed that it can reduce the mean temperature difference 

and standard deviation from 0.15 ± 0.56 °C to 0.00 ± 0.28 °C. The QC method can correct the 

temperature difference equally across different hours of the day and months of the year (Figure 16) as 

well and under different radiation and windspeed conditions (Figure 17).  

The quality-controlled Leuven.cool dataset enables a detailed comparison with other crowdsourced 

datasets for which less or even no metadata is available. As such, the Leuven.cool stations can serve as 

gatekeepers for other crowdsourced observations. In the past this role has been limited to standard 

weather station network which mostly only have a limited number of observations available (Chapman 

et al., 2017).  

Numerous studies have shown that the UHI effect causes night time temperature differences up 6 to 9 

°C during clear nights (Chapman et al., 2017; Feichtinger et al., 2020; Napoly et al., 2018; Stewart, 

2011; Venter et al., 2021). These thresholds are much higher than mean bias obtained after correction. 

The dense quality controlled Leuven.cool dataset thus allows for microscale modelling of urban 

weather patterns, including the urban heat island (Chapman et al., 2017; de Vos et al., 2020; 

Feichtinger et al., 2020; Napoly et al., 2018). Since such high-quality datasets contain measurements 

with both high spatial and temporal resolution, they can easily be used to obtain spatially continuous 

temperature patterns across a region (e.g. Feichtinger et al., 2020; Napoly et al., 2018). Interpolation 

methods based on single pair stations or mobile transect methods are much less trustworthy (Napoly et 

al., 2018). Dense weather station networks can be used to investigate the inter- and intra LCZ 

variability within a city (Fenner et al., 2017; Verdonck et al., 2018). The dataset can further help 

investigate the relation between temperature and human and ecosystem health (e.g. Aerts et al., 2022; 

Troeyer et al., 2020) and their effect on evolutionary processes (e.g. Brans et al., 2022). 

The dataset can also help refine existing weather forecast models which are currently mostly based on 

official rural observations (Sgoff et al., 2022). Nipen et al. (2020) showed that the inclusion of citizen 

observations improves the accuracy of short-term temperature forecasts in regions where official 

stations are sparse. Mandement & Caumont (2020) used crowdsourced weather stations to improve the 

observation and prediction of near convection. After quality control and correction, also the wind (Chen 



et al., 2021) and precipitation measurements (de Vos et al., 2019) can be useful to improve detection 

and forecasting. Further, the Leuven.cool dataset could be a useful input in air pollution prediction 

models (e.g. IFD-model (Lefebvre et al., 2011)).’ (Lines 673-701) 

‘The quality-controlled Leuven.cool dataset enables a detailed comparison with other crowdsourced 

datasets for which less or even no metadata is available. The dense dataset further allows for microscale 

modelling of urban weather patterns, such as the urban heat island, and can help identify the relation 

between temperature and human and ecosystem and their effect on evolutionary processes. Lastly the 

dataset could be used to refine existing forecast models which are currently mostly based on official 

rural observations.’ (Lines 723-727) 

 

Reply: We agree with the reviewer’s comment that UHI effect is mostly investigated under high 

radiation, low relative humidity and low wind- speed conditions. As a consequence, we must make sure 

that the QC method is also valid under these meteorological conditions. If this is not the case, the dataset 

cannot be used to study the UHI with high accuracy.  

We should however state that QC also works for high radiation and low windspeed conditions. The QC 

method can correct the temperature bias equally across different hours of the day and months of the 

year (Figure 16) as well as under different radiation and windspeed conditions (Figure 17). Most UHI 

indicators are based on either maximum daytime or minimum nighttime temperatures during extreme 

heat events (high radiation + low windspeed), while these time periods show the highest temperature 

bias (Figure 10 and Figure 11). Before correction these indicators could have either a positive (daytime) 

or negative (nighttime) bias, the ideal meteorological conditions would result in a positive bias. This 

QC method ensures that day -and nighttime effects as well as effects due to certain meteorological 

conditions have been corrected for.  
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